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Abstract

This paper examines the measurement uncertainty of small circular features as a function of the

sampling strategy, i.e., the number and distribution of measurement points. Specifically, we examine

measuring a circular feature using a three-point sampling strategy in which the angular distance

between the points varies from widely spaced, 120 degrees, to closely grouped, a few degrees. Both

theoretical and experimental results show that the measurement uncertainty is a strong function of the

sampling strategy. The uncertainty is shown to vary by four orders of magnitude as a function of the

angular distribution of the measurement points. A conceptual framework for theoretically estimating

the measuring uncertainty is described and a good agreement with experiment is obtained when the

measurements are consistent with the assumptions of the theoretical model.

Introduction

The determination of measurement uncertainty of coordinate measuring machines (CMMs) is a

complex and daunting task. The very versatility that allows CMMs to inspect a wide range of features

and part types makes evaluating the measurement uncertainty a multifaceted problem. Currently the

vast majority of CMM measurements have no rigorous uncertainty budget. This is not to say that these

measurements are significantly in error, but rather that their uncertainty is usually a guess based on the

experience of the operator. While an experienced operator may often have a reasonable feeling for the

capability of a CMM, there are measurement situations where intuition and experience may
dramatically fail.

In this paper the evaluation of measurement uncertainty is described using the terminology and

methodology recommended by the International Committee for Weights and Measures (CIPM) [1],

This terminology has been adopted by the International Organization for Standardization (ISO) and by

national laboratories including NIST [2]. This methodology states that the uncertainty of a

measurement result y can be quantified by the combined standard uncertainty u
c , given below. In this

expression the measurand Y (the quantity being measured), is dependent on a number of different

sources of uncertainty X( (i = 1 to N).

Y=f(Xp X2
,...,XN) ( 1 )

=1
i=i

N-

1

N

«’(*,) + 21Zff
(2)

This equation (loosely speaking) states that the combined uncertainty (characterized by its variance u
c
2

)

is the summation of each individual uncertainty source (characterized by its variance u2
(xj), multiplied

by the square of a quantity known as the sensitivity coefficient (denoted 5//3x
( )

whose magnitude

describes the importance of the uncertainty source relative to the total measurement uncertainty. The

quantity u(x
( , Xj) is the covariance of x

t
and x

;
,and is a measure of the correlation between these two
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uncertainty sources. The combined standard uncertainty, u
c , can be thought of as representing one

standard deviation of the measurement uncertainty resulting from combining all known sources of

uncertainties in the manner described by equation (2).

Although equation (2) describes the method of determining the combined standard uncertainty, the real

work is in quantifying the sources of uncertainty by a variance, determining the correlation between

these uncertainty sources, and in evaluating the sensitivity coefficients. Exactly how the measurement

uncertainty sources are decomposed can depend on the specific measurement under investigation and

the methods available to quantify the uncertainty sources. One general paradigm for separating CMM
uncertainty sources is shown in Figure 1

.

Figure 1. Schematic outlining the variousfactors affecting CMM measurements.

For the problem we are considering in this paper, namely the measurement of a small ring gauge, many

of the issues shown in Figure 1 can be neglected. For example, since the form error of the ring gauge is

on the order of 0.2 (im, the part form error is insignificant with respect to other sources of error.

Furthermore, since the sampling strategy used involves only three points, the algorithm selection and

implementation issues are rendered moot since three points exactly determine a circle and the problem

becomes analytic. (However, tests were performed to ensure that other errors, such as the internal

representation of numbers resulting in round off error, were insignificant.) Consequently, determining

the combined standard uncertainty in our ring gauge measurements reduces to one of evaluating the

uncertainty in the CMM and then determining the appropriate sensitivity coefficient for the particular

sampling strategy used in the measurement. Since the aggregate of the CMM hardware errors manifest

themselves as errors in the coordinates of the individual measurement points, conceptually the problem

reduces to that shown in Figure 2.

Point
Coordinate

Uncertainty

Substitute

Geometry

Uncertainty

Figure 2. Schematic of the variousfactors affecting the CMM measurement ofa small ring gauge.
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Experimental Estimation of Uncertainty

The measurement uncertainty of a small ring gauge (having a diameter of 47 mm (1.85 in)) can be

estimated directly by repeated measurements in which parameters that are not strictly controlled during

a normal part inspection are allowed to vary. (This is somewhat analogous to gauge repeatability and

reproducibility studies in which factors such as changing the CMM operator can result in increased

measurement variation.) In order to focus the scope of our investigation, we have minimized extrinsic

factors such as operator variation, by using a computer controlled CMM, precisely specifying the

sampling strategy, and employing a nearly perfect ring gauge. We do, however, vary the orientation of

the sampling strategy coordinate system with respect to the machine coordinate system as discussed

below. The quantity of interest is the measurement variation (a direct indication of measurement

uncertainty) of each specified three-point sampling strategy, where the sampling strategy is defined by

specifying the angle 0 shown in Figure 3.

Y

X

Figure 3. Three-point sampling strategies which are defined by

specifying the value of the angle 0.

The measurement procedure is to define a coordinate system with the origin at the center of the ring

gauge and the X and Y axes initially aligned along the machine coordinate system. The ring gauge is

measured using the sampling strategy shown in Figure 3, i.e., the three measurement points are

symmetrically displaced with respect to the Y axis. The values of the radius and the X and Y circle

center location are recorded. The coordinate system is then rotated about the origin by ten degrees with

respect to the machine coordinate system, and the measurement repeated. This process is repeated a

total of 36 times so that the sampling strategy and the defined coordinate system have been incremented

in 10 degree steps around the entire ring gauge. Note that since the sampling strategy and defined

coordinate system rotate together with respect to the machine coordinate system the sampling strategy

is always identical to Figure 3, i.e., the points are always symmetrically displaced with respect to the

defined Y axis. Using the resulting 36 values of the ring gauge radius and center location, the standard

deviation of each of these quantities is then computed. The entire process is repeated again for a

different sampling strategy, i.e., a different value of 0. The final result can be shown as a plot of the

standard deviation of the fitted parameters (radius and center location) versus 0 (which defines the

sampling strategy), for example see Figure 4. Since different stylus lengths and probe types behave

differently, the procedure was repeated for several common probe configurations as shown in Figures

4-8. Although a complete uncertainty analysis would include additional sources of uncertainty, e.g., the

thermal expansion of the gauge and the uncertainty in the effective stylus size, these factors can be

accounted for in a straightforward manner. (These factors are independent of the sampling strategy and

their uncertainty would be added in the usual (RSS) manner to the calculation of the combined standard

uncertainty.)

It may seem unrealistic to inspect a ring gauge using points which are closely grouped together,

however, there are many measurement situation where only a small partial arc of material is present

which forces this situation. In such a partial arc case, it is clear that the uncertainty of the usual circle

measurement is unexpectedly large and that an alternative may be needed such as fixing one of the

circle parameters to its nominal value.
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Figure 4. The standard deviation of radius and center location vs. sampling strategy anglefor a TP 12

probe with a 50 mm long stylus.
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Figure 5. The standard deviation of radius and center location vj. sampling strategy angle for a TP 6

probe with a 30 mm long stylus.
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Figure 6. The standard deviation of radius and center location vs. sampling strategy angle for a TP 6

probe with a 50 mm long stylus.
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Figure 7. The standard deviation of radius and center location vs. sampling strategy angle for a TP 2

probe with a 50 mm long stylus.
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Figure 8. The standard deviation of radius and center location vs. sampling strategy angle for a TP 2

probe with a 100 mm long stylus.
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Theoretical Estimates of Uncertainty

One benefit of a theoretical model of measurement uncertainty is to avoid the large number of

measurements required to estimate the measurement uncertainty experimentally. Such measurements

are both time consuming and costly, and may require a skilled metrologist to design the procedure.

Using a theoretical model of the uncertainty allows the operator to determine the uncertainty directly,

for example using a handbook, formula, or software program. Any theoretical model must contain two

basic components, first an estimation of the uncertainty of the coordinates of each measurement point,

and secondly a method to propagate the point coordinate uncertainty into the uncertainty of the

substitute geometry, e.g., the radius and center coordinates for the ring gauge.

A sophisticated model for determining the point coordinate uncertainty may include a detailed

description of the machine. For example, all of the rigid body motion parameters (three translational

and three rotational for each axis) may each have an associated uncertainty and their effects would

propagate through to each measurement point. Similarly, other effects from causes such as nonrigid

body behavior, hysteresis, thermally induced errors, and so forth, could also be included to describe the

uncertainty of the CMM. Such a model would have a different value of uncertainty at each point in the

CMM work zone, and in general, a different uncertainty for each coordinate (x, y, and z) at each point.

The advantage of this approach is the ability to predict precisely the point coordinate uncertainty

throughout the workzone. The disadvantage is the difficulty of developing a detailed model of the

CMM and of the measurements needed to evaluate the model parameters. Additionally, the model

parameters must be temporally stable or the predictions will degrade as the parameters drift from their

assessed values. Additional aspects of estimating CMM measurement uncertainty can be found in [3].

For the measurement of a ring gauge, which is considered in this paper, most of the long range, i.e.,

length dependent, sources of uncertainty can be neglected because the ring gauge has a very small

diameter. For simplicity, we select a single parameter model of the CMM point coordinate uncertainty.

This means that each point within the CMM workzone has the same uncertainty, and that these points

are independent of one another, i.e., their uncertainty is not correlated. Similarly, each coordinate (x, y,

and z) of every point also has this same value of uncertainty. Obviously, using a single number to

represent the uncertainty of the CMM is a tremendous over simplification; nevertheless in some cases

the results can be surprisingly good. In the case of a machine with complete software error correction

(including probe correction if the probe has significant lobing), the assumptions can be nearly true.

To estimate the value of this single parameter, which must be stated as a variance (or as a standard

deviation) when using the CEPM formulation, we take the standard deviation of the radial residuals

found from the ASME B 89. 1.12 probe performance test [4]. In this procedure 49 points are recorded

on the surface of a small high precision sphere and a (least squares) best fit to a sphere is calculated.

The radial residuals to each of the measurement points from the best fit radius are determined and their

standard deviation is used for the single parameter to characterize the point coordinate uncertainty of

the CMM. The sphere used in this measurement has a form error of less than 0.15 Jim [5], and hence is

negligible compared to the probe errors. Although this procedure is conducted on a small sphere, one

can imagine its diameter shrinking to zero and the result being 49 measurements of the same (physical)

point, with the standard deviation of these 49 values being characteristic of the uncertainty of the point.

The advantage of this method is that most CMM users know about the B89 probe performance test and,

hence, can easily perform the test to determine this value. As previously mentioned, such a simple

model of the CMM will not accurately predict the uncertainty for all possible CMM measurements.

For the special case of a circle measured using a three-point sampling strategy the problem is analytic

and allows a direct calculation of the substitute geometry uncertainty assuming that the errors at each of
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the three points are independent, i.e., are not correlated [6], Therefore we can write down directly the

combined standard uncertainty for each of the substitute geometry parameters as shown in equation (3),

where u2m is the variance of the radial residuals found from the B89.1.12 probe performance test and

+... indicates that other sources of uncertainty should be included in the combined standard uncertainty.

However, we are not explicitly considering them in this paper.

Radius:

Y center:

X center:

1 + 2cos
2
0

2(1- cos© )

2

3

2(1- cose y
i

2sin
2
e

lB89

uB89

2
UB89

+...

+...

+... (3)

Results

We have performed both the experimental and theoretical determinations of measurement uncertainty

using the methods described for the measurement of a small ring gauge. In order to examine the

generality of the results we have repeated the procedure using several different touch trigger probes and

stylus combinations. For each probe type we have determined the standard deviation based on the B89
probe performance test. To accurately estimate this standard deviation we have repeated the B89 probe

test a total of 10 times and used the mean of the results as the characteristic value. Table 1 presents the

B89 results for the five probe configurations used in our study [7].

Table 1

probe configuration standard deviation of the 49 radial residuals found from

the B89 probe performance test (mean of 10 tests)

standard deviation of the

10 standard deviations

piezoelectric (TP 12)

50 mm stylus

0.40 pm 0.03 pm

mechanical (TP 6)

30 mm stylus

1.14 pm 0.06 pm

mechanical (TP 6)

50 mm stylus

3.08 pm 0.1 1 pm

mechanical (TP 2)

50 mm stylus

3.10 pm 0.07 pm

mechanical (TP 2)

100 mm stylus

6.64 pm 0.15 pm

Figures 4-8 show both the experimental and theoretical determinations of the measurement uncertainty

of the ring gauge as a function of sampling strategy for the probe configurations given in Table 1. The

experimental results are the standard deviations of the 36 measurements of the ring gauge for each

sampling strategy. The theoretical results are calculated using the values of Table 1 and the sampling

strategy rules (which play the role of sensitivity coefficients) given in equation (3). The ordinate of

these plots represents a single standard deviation. If an expanded uncertainty is required, then the

uncertainty is increased by the coverage factor which is typically two, i.e., twice the combined standard

uncertainty. Also plotted for reference is the value of the B89 derived standard deviation shown in

Table 1.
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Discussion

The agreement between the experimentally determined standard deviation and that of the theoretically

predicted standard deviation is reasonably good for all the probe configurations presented. It is clear

that the sampling strategy plays an enormous role in the uncertainty. Neglecting this effect would lead

to an uncertainty prediction that would be a constant for all values of 0, i.e., would predict a straight

line with a magnitude equal to the standard deviation found from the B89 probe performance test.

In the case of the piezoelectric probe the agreement between the experimental and theoretical results for

the radial uncertainty is very good. We attribute this conformity to the fact that the piezoelectric probe

is dominated by random (not systematic) errors and consequently the assumption implicit in the

sampling strategy rules of independent uncorrelated errors at each measurement point is realized by this

type of probe. The theoretical uncertainty tends to underestimate the variation in the X and Y center

location by a small amount (on the order of one micrometer). We believe this is caused by thermal drift

which is cumulative in the case of measuring the center location. This (and other) sources of

uncertainty could have been added to the theoretical model but are not explicitly considered here

because they are not the focus of this paper.

Pre-travel Variation in X-Y Rane
E98821 6-way Probe

Figure 9.

The probe lobing ofa mechanical touch

trigger probe showing systematic probe

errors

0 45 90 135 180 225 270 315 360

Azimuth (degrees)

In the other touch trigger probes the mechanical structure supporting the stylus also serves as the

electrical switch which is triggered when the stylus is displaced. This mechanism results in a

directionally dependent sensitivity of the probe and is commonly called probe lobing because the

measurement of circular parts with small form error appears to have a three-lobed shape, reflecting the

triangular mechanical structure within the touch trigger probe. Figure 9 shows the three lobed pattern

which is the result of this highly systematic error. For this class of probes the error at any measurement

point is highly dependent upon the probe approach direction and hence for probe approach directions

which are close together, the probing errors will be similar. Consequently, when 0 is small, the three

measurement points undergo the same perturbation, i.e., have similar errors, and thus have significantly

less variation between points than would be expected if the errors were truly independent as assumed in

the theoretical model given by equation (3). Hence, the theoretically predicted variation is greater than

that experimentally observed in the case of small 0. A more sophisticated model of the probe behavior

which included this systematic effect [8] would be expected to improve the theoretically predicted

uncertainty.
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Summary

We have investigated the uncertainty of measuring a small ring gauge both experimentally and

theoretically. Both methods show that the uncertainty can vary by four orders of magnitude, ranging

from submicrometer to millimeters, depending upon the sampling strategy. Using a single parameter

model to describe the CMM uncertainty, which is determined by the standard deviation of the radial

residual of the B89 probe performance test, surprisingly good agreement between theory and

experiment can be obtained. For touch trigger probes which exhibit systematic probe lobing the

experimental results show less than the predicted variation when the measurement points are closely

spaced because these points have correlated errors which reduces the variation in the fitted parameters

of the substituted geometry.
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