
Unravel: A CASE Tool to

Assist Evaluation of
High Integrity Software
Volume 1: Requirements and Design

James R. Lyle

Dolores R. Wallace
James R. Graham
Keith B. Gallagher

Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

QC

100

.U56

NO. 5691

1995
V.)

NIST

I

i

NISTIR 5691

Unravel: A CASE Tool to

Assist Evaluation of

High Integrity Software
Volume 1: Requirements and Design

James R. Lyle

Dolores R. Wallace
James R. Graham
Keith B. Gallagher

Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

August 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Unravel: A CASE Tool to Assist Evaluation

of High Integrity Software

Volume 1

Abstract

Current practice for examination of a high integrity software artifact is often a manual process

that is slow, tedious, and prone to human errors. This report describes a Computer Aided

Software Engineering (CASE) tool, unravel, that can assist evaluation of high integrity software

by using program slices to extract computations for examination. The tool can currently be used

to evaluate software written in ANSI C and is designed such that other languages can be added.

Program slicing is a static analysis technique that extracts all statements relevant to the

computation of a given variable. Program slicing is useful in program debugging, software

maintenance and program understanding. Application of program slicing to evaluation of high

integrity software reduces the effort in examining software by allowing a software reviewer to

focus attention on one computation at a time. Once a software reviewer has identified a variable

for further investigation, the reviewer directs unravel to compute a program slice on the variable.

Instead of examining the entire program, only the statements in the slice need to be examined

by the reviewer. By speeding up the process of locating relevant code for examination by the

reviewer, a larger sample of the software can be inspected with greater confidence that some

relevant section of source code has not been missed.

The source code for unravel is available and requires a UNIX or POSEX environment, an ANSI
C compiler and the MIT X Window System, version 1 1 release 5 or later.

Volume 1 of this report describes the requirements, design and evaluation of unravel. Volume

2 is a user manual and tutorial for the unravel software.

Key Words

Code Analysis; High Integrity Software; Inspections; Program Slicing; Program Understanding;

Reviews; Software Safety; Software Tools; Static Analysis

Trademarks

SPARCstation 2 is a registered trademark of SPARC international, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of Massachusetts Institute of Technology

IV

Unravel: A CASE Tool to Assist Evaluation

of High Integrity Software

Executive Summary

Unravel is a prototype Computer Aided Software Engineering (CASE) tool that can be used to

statically evaluate ANSI C source code using program slicing. Development of unravel was

funded by both the United States Nuclear Regulatory Commission (NRC) and the National

Communications System (NCS) under contracts RES-92-005, FIN #L24803, and DNR046115,
respectively. Under the terms of those contracts, the National Institute of Standards and

Technology (NIST) supplied the prototype to both funding parties.

Program slicing is a static analysis technique that extracts all statements relevant to the

computation of a given variable. Program slicing is useful in program debugging, software

maintenance and program understanding. Application of program slicing to evaluation of high

integrity software reduces the effort in examining software by allowing a software reviewer to

focus attention on one computation at a time.

By combining program slices using logical set operations, unravel can identify code that is

executed in more than one computation. This information is immediately useful for addressing

issues of high integrity software, since a failure involving this code may lead to a malfunction

of more than one logical software component. In the case of safety systems, which commonly

use several computations for protection, common code among them can provide a single point

of failure. In the case of security, what may have been perceived as a secure path may be

penetrated by an otherwise unsuspected approach. The identification of common code enables

the developer to consider redesign or to emphasize verification and validation activities in those

regions to provide assurance of the program.

Unravel was evaluated in the context of reviewing safety system software for quality. The

evaluation considered the size of slices produced, time to compute slices and usability by a

novice user. The objectives of the evaluation were to determine the following:

1. Are program slices smaller than the original program to an extent that is useful to a

software reviewer evaluating a program?

2. Can program slices be computed quickly enough to be useful?

3. Is unravel usable by a novice user?

Two examples of typical safety system code were used to test and refine unravel. Demonstration

of unravel using these and other examples were given to software reviewers. The

demonstrations resulted in improvements to the user interface and in the identification of features

to be explained in more depth in the user manual or to be included in a later version of unravel.

Examination of software is often a manual process that is slow, tedious, and prone to human
errors. With unravel, once a reviewer has identified a variable for further investigation, the

reviewer directs unravel to compute a program slice on the variable. Instead of examining the

entire program, the reviewer only needs to examine the statements in the slice. By speeding up

the process of locating relevant code for examination by the reviewer, a larger sample of the

software can be inspected with greater confidence that some relevant section of source code has

not been missed.

Without any tool, a reviewer evaluates the software for common code by manually searching for

code shared between two computations until it is determined that there is no common code, or

that the common code present will not compromise the mission of the safety critical software.

With unravel, once two computations that could be vulnerable to common mode failure have

been identified, program slices can be computed to find statements relevant to each computation.

Source program statements that have potential to cause common mode failure would be present

in the intersection of the program slices.

Unravel consists of three main components, called the analyzer, linker and sheer. The analyzer

and linker components can process up to 100,000 lines of source code in less than 10 minutes.

The linear behavior of the analyzer and linker leads to stable run time performance. The sheer

component does not use a linear algorithm, but rather uses a quadratic algorithm that can have

significant run time variability. It should be noted that there is potential for significant algorithm

improvement. For example, after one small change in the sheer code the longest time on a

SPARCstation 2 to compute a slice on code from a 4,000 line actual safety system dropped, from

10 hours to 3 hours. Other areas that can be improved include loop analysis and procedure calls.

Certain trade names and company products are mentioned in the text or identified. In no

case does such identification imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the products are necessarily

the best available for the purpose.
^

^
^

VI

Symbol Glossary

Symbol Example Meaning of Example

{ } {x} the set with ;c as a member

E X E A JC is a member of set A

V Vjc, 3 X > 0 for all X such that jc is positive

3 3x, 3 jc > 0 there exists an jc that is positive

n A n B intersection of A and B; members in

both

u A u B union of A and B; members in either

0 0 the empty set, the set with no

members

3 Vjc 3 jc > 0 for all JC such that x is positive

X € A JC is not a member of set A

vii

viii

Table Of Contents

Abstract iii

Executive Summary v

Symbol Glossary vii

1 Introduction 1

2 Slicing ANSI C 3

2. 1 Definitions 3

2.2 General Description 5

2.2.1 Program Slicing Algorithm 6

2.2. 1.1 Expression Statements 7

2.2. 1.2 Compound Control Statements 9

2.2. 1.3 Structure Variables 10

2.2. 1.4 Indirect Assignment by Pointer 10

2.2. 1.5 Indirect Reference by Pointer 13

2.2. 1.6 Dynamic Structures 14

2.2. 1.7 References to Structure Members by Pointer 14

2.2. 1.8 Assignment to Structure Members by Pointer 15

2. 2. 1.9 Procedure Calls 16

2.2.2 Algorithm Limitations 16

2.2.3 Assumptions About Users 17

2.2.4 General Constraints and Assumptions 17

3 Unravel Requirements 19

3.1 Scanner Requirements 19

3.2 Parser Requirements 20

3.3 Language Independent Format Requirements 22

3.4 Slicing Algorithm Requirements 23

3.5 System Map Requirements 25

3.6 Linker Requirements 26

3.7 User Interface And Help System Requirements 29

4 Unravel Design 33

4.1 Analyzer 33

4.1.1 Scanner 33

4.1.2 Parser 34

4.2 Language Independent Representation 35

IX

4.2.1 File.c 36

4.2.2 File.h 36

4.2.3 File.LIF 36

4.2.3. 1 Flow-Graph 36

4.2.3.2 Procedure Headers 39

4.2.3. 3 Declarations 40

4.2.3.4 Expressions 41

4.2. 3.5 Procedure Calls 42

4.2. 3.6 Structure Fields 42

4.2.4 File.T 44

4.2.5 File.H 45

4.2.6 SYSTEM 46

4.2.7 File.K 47

4.2.8 File.LINK 48

4.3 Sheer 48

4.3.1 Procedures 48

4.3.2 Data Structures 50

4.4 Linker 51

4.4.1 Map 51

4.4.2 Slink 51

4.5 User Interface and Help System 52

4.4.1 Main Control Panel 53

4.4.2 Analyzer Control Panel 55

4.4.3 Selection Control Panel 56

4.4.4 Slice Control Panel 57

5 System Evaluation & Performance 63

5.1 Capability Analysis 63

5.2 Timing Analysis 64

5.2.1 Analyzer Timing 65

5.2.2 Linker Timing 67

5.2.3 Sheer Timing 67

5.3 Analysis Summary 69

6 References 71

Appendix A: LIF Format 73

Appendix B: YACC Grammar 75

B.l Expressions 75

B.2 Declarations . 76

B.3 Statements 78

B.4 External Objects 79

X

List of Tables
2-1: Slicing Example Data-Flow Set 8

4-1: Unravel System Files 35

4-

2: File.T Fields For Defined Or Called Procedures 44

5-

1: Slice Size Analysis 64

5-2: Analyzer Results for simplified Example 65

5-3: Analyzer Results for Commercial Code 65

5-4: Analyzer Results for Unravel 66

5-5: Linker Results 68

5-6: Slicer Results for Unravel Code 69

xi

List of Figures

2-1: Unravel Structure Overview 6

2-2: Slicing Examples Program 9

2-3: Pointer State For ***A 11

2-4: Pointer Code Fragment 12

2-5: Pruned Pointer State For ***A 13

4-1: Unravel Analyzer Structure Design 34

4-2: IF Statement Control Flow 38

4-3: WHILE Statement Control Flow 39

4-4: FOR Statement Control Flow 39

xii

1 Introduction

This report describes the design and development of unravel, developed at the National Institute

of Standards and Technology (NIST). Development of unravel was funded by both the United

States Nuclear Regulatory Commission (NRC) and the National Communications System (NCS)

under contracts RES-92-005, FIN #L24803, and DNR046115, respectively. Unravel is a

Computer Aided Software Engineering (CASE) tool that can be used to statically evaluate ANSI
C[l] source code using program slicing. Unravel may also be used to examine software code

for computer security functions. The tool can currently be used to evaluate software written in

ANSI C and is designed such that other languages can be added.

Program slicing is a static analysis technique[3] that extracts all statements relevant to the

computation of a given variable. Program slicing is useful in program debugging[4], software

maintenance [5] and program understanding[6]. Application of program slicing to evaluation of

high integrity software reduces the effort in examining software by allowing a software reviewer

to focus attention on one computation at a time. Once a software reviewer has identified a

variable for further investigation, the reviewer directs unravel to compute a program slice on the

variable. Instead of examining the entire program, only the statements in the slice need to be

examined by the reviewer. By speeding up the process of locating relevant code for examination

by the reviewer, a larger sample of the software can be inspected with greater confidence that

some relevant section of source code has not been missed.

Unravel is intended to support the understanding and evaluation of software by allowing the user

to investigate a program through program slices.

To achieve the goal of making unravel a portable and easy to use slicing tool, the following

general requirements were met:

• The user must be able to execute unravel with minimal knowledge of the platform on

which it resides.

• The user must be able to interactively specify criteria for computing program slices.

• The user must be able to view program slices on-screen.

• The user must be able to perform logical set operations (e.g., intersections) on program

slices.

• The user must be able to use unravel without needing to understand the intrinsics of the

program; hence a user manual and user interface must contain all operational information.

1

• The implementation must comply with the following standards: POSIX[9] operating

system interface, ANSI C, and the X Window System[10].

The source code for unravel is available and requires a UNIX or POSIX environment, an ANSI
C compiler and the MIT X Window System, version 1 1 release 5 or later.

Section 2 discusses slicing ANSI C. Section 3 contains the requirements for building unravel.

Section 4 consists of the design of unravel. Section 5 provides the system evaluation and

performance report. Appendices A and B contain the Language Independent Format and the

Yacc ANSI C grammar respectively. Volume 2 is the unravel user manual.

2

2 Slicing ANSI C

Program slicing can be used to transform a large program into a smaller one containing only

those statements relevant to the computation of a given variable. Program slices have been

shown to aid program understanding, program debugging, program maintenance, and automatic

integration of program variants [7].

This section describes the algorithms for building a program slicing tool[2] for ANSI C. Section

2.1 presents definitions and terminology; section 2.2 gives a general description of program

slicing, its limitations, and assumptions about the expected users of unravel.

2.1 Definitions

This section contains definitions relevant to program slicing.

Active Set. The active set at statement n for slicing criterion <L, V> is a set of program

variables, active(n), such that the value of any member of active(n) just before execution

of statement n could influence the value of V just before execution of statement L.

Informally, the active set is the set of variables that determine the value of the criterion

variable at the criterion location.

Code Generator. See Compiler.

Code Improver. See Compiler.

Compiler. Production of an object program from a source program is often modeled with

concepts from linguistics. A source program is viewed as consisting of words from a

vocabulary. The words are assembled into valid sentences of the language that form

program statements. Each sentence is used to generate object code corresponding to each

program statement. Modem compilers are usually designed in four components:

1 . Scanner reads the program source code and collects strings of characters into the

fundamental vocabulary units of the programming language called tokens. This

vocabulary contains language key words, operators, text strings and identifiers.

2. Parser takes the tokens produced by the scanner and a grammar describing the

language and checks that the sequence of tokens represents valid sentences in the

language. A sequence of tokens that is not a valid sentence of the language

grammar is a syntax error.

3. Code Generator is called by the parser for each valid sentence the parser

recognizes to produce corresponding object code.

3

4. Code Improver Uses data-flow analysis to revise the produced object code so that

the run-time execution is faster or requires less memory. This step is usually

called code optimization.

Data-Flow Analysis. Using information about program structure, variable initialization,

assignment of values to variables, and use of program variable values to answer questions

about the behavior of program variables. Data-flow analysis is often used in compiler

optimization of generated object code.

Defs(n). The set of variables defined (assigned to) at statement n. In data-flow analysis,

modification of a variable is called a definition of the variable.

Dependence Graph. A program representation, defined by Ferrante[8], with many

applications to program manipulation including program slicing. The PDG {program

dependence graph) has the same nodes as a flow-graph but the edges represent control

and data dependence within a program.

Flow Graph. A representation of the control structure of a program as a directed graph.

The nodes of the graph correspond to statements or contiguous tokens of a source

program. The edges correspond to program control flow.

Idefs(n). The set of variables specifying indirect assignment by a pointer at statement

n. Each idef entry is a pair indicating a variable and a level of indirection. Level 0

represents a direct assignment to the variable. Level 1 represents an assignment to a

variable whose address is contained in the idef entry variable.

Irefs(n). The set of variables specifying indirect reference by a pointer at statement n.

Each iref entry is a pair indicating a variable and a level of indirection. Level 0

represents a direct reference to the variable. Level 1 represents a reference to a variable

whose address is contained in the iref entry variable.

Parser. See Compiler.

Pointer. A variable that contains the address of a variable or other program object such

as a procedure.

Pred(n). The set of statements that can be executed immediately before statement n.

The predecessors of n.

Program Slice. Given a syntactically correct source program P, in some programming

language, and a slicing criterion C = <L,V>. Where L is a location in the program and

y is a variable in the program. S is a slice of program P for criterion C if the following

are true.

4

1. S is derived from P by deleting zero or more tokens from P.

2. S is syntactically correct.

3. The value of V just before control reaches location L is the same for

EXECUTE(P) as EXECUTE(S).

Program Dice. The result of application of logical set operation to two or more program

slices is a program dice. The intersection of two slices yields the statements in common
to both computations. A software fault in the common code can be a single point of

failure for both computations. The intersection of one slice with a logical complement

of a second slice yields the set of statements in the first slice that has no influence on the

second computation. This is useful when trying to isolate a fault in the second

computation.

Refs(n). The set of variables referenced at statement n.

Requires(n). A set of nodes that is required to also be included in a slice along with

node n. The set is used to specify control statements (e.g., if or while) enclosing

statement n or other tokens that are syntactically part of statement n but are not

contiguous with the main group of tokens comprising the statement.

Scanner. See Compiler.

Slicing criterion. A slicing criterion, for a program is a tuple <L,V> where L is a

statement in the program and V is a variable. A program slice is computed on V, at

statement L. Where the meaning is clear from context, V is extended to a subset of

program variables.

Succ(n). The set of statements that can be executed immediately after statement n.

Token. The output of the scanner and input to the parser; the fundamental lexical units

of a language.

2.2 General Description

Unravel is divided into three main components: a source code analysis component, a link

component, and an interactive slicing component. The analysis component collects from source

files (with a .c extension) and included header files (usually with a .h extension) the information

necessary for the computation of program slices. The information is translated to a representation

independent of source language called language independent format (LIE). The analyzer is

designed like a compiler with a scanner to break the source code into tokens that are recognized

by a parser, but instead of generating object code, it produces LIE code. The analyzer also

produces a tally of objects (.T file) such as procedures and variables, and a file to list global

5

objects (.H file) declared in each included header file. The link component operates in two parts.

The first part, map, identifies for each program in the current directory its constituent files and

then saves this information in a file named SYSTEM. The second part of the link component,

slink, uses the SYSTEM file to merge data-flow information from the .LIE, .T and .H files

created from separate source files into a single .LINK file and a single .K file. Under user

control, the interactive component extracts and displays program slices and keeps a record of user

activities in a .LOG file. The overall structure of unravel is presented in Figure 2-1.

Figure 2-1: Unravel Structure Overview

2.2.1 Program Slicing Algorithm

A program slicing algorithm must locate all statements relevant to a given slicing criterion. The

essence of a slicing algorithm is the following: Starting with the statement specified in the slicing

criterion, include each predecessor that assigns a value to any variable in the slicing criterion and

generate a new slicing criterion for the predecessor by deleting the assigned variables from the

6

original slicing criterion and adding any variables referenced by the predecessor. The slicing

algorithm considers the following language features:

1 Expression statements

2 Compound control statements

3 Structure variables

4 Indirect assignment by pointer

5 Indirect reference by pointer

6 Dynamic structures

7 References to structure members by pointer

8 Assignment to structure members by pointer

9 Procedure calls

2.2.1.1 Expression Statements

An expression statement is the primary method in ANSI C of expressing an assignment of a

computed value to a variable. For expression statement n, a predecessor of statement m, the

defs(n) set and the slicing criterion determine if an expression statement is included in a slice.

Statement n is included in a slice for criterion <m, v> if statement n assigns a value to variable

V.

if V ^ defs{n)

{«} U V X € refs{n) otherwise

Table 2-1 presents the data-flow sets used in computing program slices of the program of Figure

2-2. For example, suppose we want to know how the value of the variable sweet printed at line

25 was computed. The specification of a slicing criterion requires a variable and a node in the

flow-graph. Node 18 corresponds to the printf statement at line 25 so, the criterion would be

S<,g^eet>- Applying this criterion generates a sequence of criteria:

^<18,sweet> ^<17,sweet> • • • *^<9, sweet> {^} ^<8, red> ^<8,green>

Nodes 9 through 18 do not assign a value to sweet and are not included in the slice. Node 8

assigns a value to sweet based on red and green and therefore node 8 (line 13) is included in

the slice along with slices on red and green at node 8. The slice on red consists of nodes 7 and

3; the slice on green consists of node 5. The slice is now complete except for some syntactic

dependencies (nodes 1, 2 and 20) that are captured by the requires set, explained in section

2.2. 1.2. The nodes included in the slice are marked with an asterisk in Table 2-1.

7

Line Statement Node Succ Req Defs Refs

1 main() 1* 2 - - -

2 {
2* 3 1, 20 -- -

7 red = 1; 3* 4 2 red -

8 blue = 5; 4 5 2 blue -

9 green = 8; 5* 6 2 green -

10 yellow = 2; 6 7 2 yellow -

12 red = 2*red; J* 8 2 red red

13 sweet = red*green; 8* 9 2 sweet red, green

14 sour = 0; 9 10 2 sour --

15 i = 0; 10 11 2 i
--

16 while(i<red) { 11 12, 14 2, 14 - i, red

17 sour = sour+green; 12 13 11 sour sour, green

18 i = i+1; 13 11 11 i i

19 } 14 15 -- -- --

20 salty = blue+yellow; 15 16 2 salty blue, yellow

21 yellow = sour+1; 16 17 2 yellow sour

22 bitter = yellow+green; 17 18 2 bitter yellow, green

24 printf("%d %d %d %d\n",

sweet, sour, salty, bitter);

18 19 2 — sweet, sour

salty, bitter25

26 exit(O); 19 - 2 - --

27 }
20* -- - -- -

Table 2-1: Slicing Example Data-Flow Set

8

1 main()

2 {

3 int red, green, blue, yellow;

4 int sweet,sour,salty,bitter;

5 int i;

6

7 red = 1;

8 blue = 5;

9 green = 8;

10 yellow = 2;

11

12 red = 2*red;

13 sweet = red*green;

14 sour = 0;

15 i = 0;

16 while (i < red) {

17 sour = sour + green;

18 i = i+l;

19 }

20 salty = blue + yellow;

2 1
yellow = sour + 1

;

22 bitter = yellow + green;

23

24 printf ("%d %d %d %d\n",

25 sweet,sour,salty,bitter);

26 exit(O);

27 }

Figure 2-2: Slicing Examples Program

2.2.1.2 Compound Control Statements

A compound control statement is a statement that has a condition directly controlling the

execution of another statement (possibly also a compound statement). Control statements such

as if, switch, while, for, and do ... while should be included in a program slice whenever any

statement governed by the control statement is included in a slice. When control statement k is

added to a program slice, the slice on the criterion <k, refs(k)> is added to the original slice

computation.

A requires set is maintained for each statement to specify an enclosing control statement or to

specify other statements and tokens that should always be included with the statement in a slice.

9

The rules for representing C statements as flow-graph nodes and for specifying requires sets are

as follows:

1 . A statement that is composed of noncontiguous tokens is divided into two or more data-

flow nodes such that each group of contiguous tokens is one or more nodes. Examples are the

matching braces of a compound statement and the do ... while statement.

2. An additional data-flow node is used to represent each C prefix (++x), postfix (x++) or

comma (x+y, z) operator in an expression. A conditional operator uses three additional data-flow

nodes.

3.

Any compound statement that is represented with more than one data-flow node has one

node designated for inclusion in requires sets. Any node controlled by the compound statement

references the designated node in its requires set. The other nodes of the compound statement

are referenced in the requires set of the designated node. This strategy reduces the size of the

requires sets.

The rule for slicing expression statements with v e defs(n) given in section 2.2. 1.1 is actually

a special case of an empty requires set from the following rule:

= («) u
X G refs{n)

u
u
refs{k) k

U
req(n) <Jc,y>

The above rule states that when v e defs(n) add the following to the slice:

• statement n,

• the slice on each member of refs(n) at statement n, and

• for each statement k, a member of requires(n), slice on each variable referenced in

statement k.

2.2.1.3 Structure Variables

A slice on a structure variable is a slice on each member of the structure.

2.2.1.4 Indirect Assignment by Pointer

Pointers interact with slices both by indirect assignments and by indirect references. To

determine if an expression statement with an indirect assignment should be included in a slice,

every possible location to which a pointer could be pointing must be known. This is often

complicated by using more than one level of indirection. Figure 2-3 shows the pointer state for

the variable A to three levels of indirection for the program fragment in Figure 2-4. Pi(n,v) is

the set of variables to which v might point (dereference to). P/n.v) is the set of variables to

which * " *v (where there are k *’s) might point. Note that Po(n,v) = v and for i > 0, Pi(n,v)

= (x \ XE Pj(n,y) V y e Pi.,(n,v)}.

10

Consider the following statement with an assignment through k levels of indirection.

k *’s

n: *
. . .

* A = . . .

If a statement is included in a slice due to an indirect assignment, then all intermediate indirect

references must be sliced on and unioned with the slice. The function R^Jn,v,x) returns the set

of intermediate pointers that might be used at level i of indirection for an assignment at statement

n of k levels of indirection through pointer variable x to variable v. The R function prunes away

indirect pointers that are not relevant to the slicing criterion. At a given level of indirection, say

i, Pi(n,v) is the set of variables that v might point to. The only members of Pln.v) that are

relevant to the slice are the pointers that might dereference to v after k-i levels of indirection.

Figure 2-5 shows the pruned sets of indirect pointers for the criteria and

RJn,v,x) = {r \ re P^(n,x)&v e P^Jn,r)}

For example, there are two sets of intermediate pointers, Rj/n,W,A) and R2jn,W,A) required for

pruning Figure 2-5 for W. R,Jn,W,A)=({B,D}) is the subset of pointer variables from *A that

can dereference to Why two levels of indirection. R,Jn,W,A) includes B (a member of Pj(n,A})

since W is a member of P2(n,B). D is also included in R,j(n,W,A) since W e P2(n,D), but C is

not a member since W g P2(n,C). R2jn,W,A)=(fE,I,J}) is the set of variables that dereference

to W and can be reached by dereferencing A twice.

11

For slicing criterion where n g pred(m), and (a,k) e idefs(n)&x g Pi,(n,a) then statement

n should be included in the slice unioned with slices on variables referenced, the pruned pointer

state and the original criterion variable if the pointer could point to more than one variable.

{«}

u s
<Jl,V>

V V G refs{n)

U 5
<nyX> if 1 PfnA) 1 > 1, V (a,k) G idefs(n)

u s
<n,y>

V G R.Jji,apc) V /, 0 < i < k, \/ (a,k)

/* integers: W X Y Z
pointers to integers: E F G H I J

pointers to pointer to integer: BCD
pointer to pointer to pointer to integer: A

cond() is some condition that is true or false

K ? M : N; ANSI C conditional expression

evaluate M if K is true, otherwise evaluate N

int ***A,**B,**C,**D,*E,*F,*G,*H,*I,*J;

int W,X,Y,Z;

A = condO ? (condO ? &B : &C) : &D;

B = condO ? &E : &F;

C = condO ? &G : &H;
D = condO ? &I : &J;

E = condO ? &W : &X;
F = &X; G = &Y; H = &Z; I = &W;
J = condO ? &W : &Z;

Figure 2-4: Pointer Code Fragment

idefs{n)

12

; R(n,W,A)
"

R(n,Z,A)

Figure 2-5: Pruned Pointer State For ***A

2.2.1.5 Indirect Reference by Pointer

If a statement with an indirect reference is included in a slice, each variable that might actually

be referenced must be sliced on too. Consider a k level indirect reference such as:

k *’s

n:A=

For slicing criterion: where n g pred(m), and statement n is included in the slice then the

following should also be unioned to the slice:

S<n.v> V ^ Pi(n,b)\fi, 1 < i < k, y (b,k) e irefs(n)

13

2.2.1.6 Dynamic Structures

Dynamic structures are created by obtaining a contiguous block of storage allocated to a program

by the operating system. Since unravel is a static (not run time) analysis tool, an exact analysis

of dynamic storage is not possible. The unravel solution is to assume that any assignment to

a dynamic object is also a reference to the dynamic object. This reflects the possibility that

although one object instance may be changed by some statement, other instances of the object

are unchanged and may still be relevant to some computation.

Each storage allocation statement creates a pseudo-variable for the allocated block of memory

that might contain a scaler, an array or a structure. It is assumed that storage is allocated more

than once and the pseudo-variable represents several instances. Each pseudo-variable has an

implicit type attribute that is determined by usage. If the pseudo-variable is used as a structure,

additional pseudo-variables are created for each structure field used.

2.2.1.7 References to Structure Members by Pointer

A reference such as n: y = v->a • • to a field of a structure when statement n is being

included in a slice generates slices on the variable v and on the accessed field of each structure

(each variable returned by P(n,v) is assumed to be a structure). A mapping from a (variable,

field) pair to a structure member variable, s=F(v,f), must be maintained. This gives the following

modification to the slicing algorithm for references to structure members by pointer (v->a);

'

{n}

< :

\Js
<nyX.a>

A pointer chain expression is defined as

field names separated by the token

n: y = • •
• v->fi-> • • •

->fi->
• • • ->f^ • • •

To generalize to an arbitrary reference through a pointer chain, the following three functions are

useful:

1. crefs(n) is the set of pointer chain expressions in statement n.

2. clength(n,x) is the length of (number of fields referenced in) pointer chain expression x.

3. fleld(n,x,i) is the i‘^ member of pointer chain expression x in statement n.

When a statement containing a pointer chain expression is included in a slice, in addition to

generating slicing criteria for all variables the entire chain might reference, criteria must be

V, the pointer variable

V X G P(n,v), the member a

a pointer variable followed by one or more structure

14

generated for each intermediate link in the pointer chain. For example, consider the following

typedefs and structs:

typedef struct alpha alpha_rec, *alpha_ptr;

typedef struct beta beta_rec, *beta_ptr;

struct alpha {

int value;

beta_ptr b;

};

struct beta
{

int c;

};

alpha_ptr a;

alpha_rec r,s,t,u;

beta_rec w,x,y,z;

n: . . . a->b->c . . .

Suppose that at statement n the pointer state is such that:

P{n,a) = {5,r}

P(n,r.b) = {w,;c,z}

P(n,s.b) = {w,y}

P{n,t.b) = {y,z}

P(n,u.b) = {H’,x,y}

If statement n is included in a slice, then slicing criteria based on a->b->c must be generated

for any variable that a->b->c might designate to account for variables that the entire chain

might reference. Since a points to s and s.b points to w then one of the criteria is The

other criteria are for the variables y.c and z.c. This example chain has one intermediate link,

a->b that must also be accounted for by generating criteria on s.b and s.t.

Generating criteria for an arbitrary chain generalizes as follows:

V tG w., w. = F(z/) V Z e P(n,r), V r g w._^

f. = field{n,c,i) V / 3 1 < / < A:,

where = field(n,c,0), k = clength{n,c), V c g crefs{n)

to Structure Members by Pointer

A statement that assigns a value to a structure member by a pointer should be included in a slice

if there is at least one variable in common between the active set and the set of variables to

which the pointer chain points.

{n}

2.2.1.8 Assignment

15

2.2.1.9 Procedure Calls

When procedure calls are included in a slice, the called procedure needs to be sliced. Procedure

calls are included in a slice for the following reasons:

1. The procedure call assigns a value to a variable in the active set at the call site.

2. The call site is part of a statement included in a slice and a value returned by the called

procedure is used in the statement at the call site.

3. The procedure is a member of the call tree of the procedure containing the slicing

criterion.

To slice procedures lower in the call tree, the following steps are required:

1. Introduce statements before the procedure entry to assign each actual parameter to the

corresponding formal parameter.

2. Slice the procedure at the last node using the variables in the active set of the procedure

call.

2.2.2 Algorithm Limitations

There are a number of limitations to the current slicing algorithm:

• If the program to be analyzed is not ANSI C, the parser is not able to produce the

various data structures needed for program slicing. This is likely to happen if a C
compiler is used that has implemented extensions to the ANSI C specification. This

limitation is the most likely to cause unravel to fail to analyze a program. The only

recourse is to modify the program being analyzed to remove the non-standard code

without changing the program semantics.

• Asynchronous UNIX system calls such as signal and fork are beyond the state of the art

of program slicing and are ignored.

• Variables declared as an ANSI C union are treated as separate variables.

• Pointers to functions are ignored.

• The statements goto, break and continue are ignored.

• Arrays accessed by pointer instead of indexing are not recognized as arrays and therefore

an assignment to a single array element is treated as an assignment to the entire array.

16

• Aliasing, multiple variables referencing the same memory location, is treated as distinct

variables rather than a single variable.

• Functions must have a fixed number of formal parameters. The varargs and stdargs

variable length parameter lists are ignored.

2.2.3 Assumptions About Users

The users of unravel are assumed to be knowledgeable about computers and ANSI C, but they

may not be familiar with UNIX, POSIX or program slicing.

2.2.4 General Constraints and Assumptions

• Unravel assumes a UNIX environment with an ANSI C compiler, the X Window System,

Version 11, Release 5 and the MIT Athena widget library.

• Programs to be analyzed by unravel are assumed to be syntactically correct ANSI C with

no language extensions.

• Programs are assumed to use the standard ANSI C library [1] and no other libraries.

• Programs are assumed to be a single process, i.e., no multitasking, no asynchronous code,

no forks and no signals.

• An ANSI C preprocessor is assumed to exist to process all # commands (e.g., #define and

#include) and to remove comments. The ANSI C preprocessor should insert #line

directives to indicate location and file of included statements from #include directives.

• Files included (# include header . h) by the ANSI C preprocessor contain only ANSI
C preprocessor directives or ANSI C declarations. Files included by the ANSI C
preprocessor do not contain procedure bodies or executable statements.

17

18

3 Unravel Requirements

The functional requirements are divided into scanner, parser, UF, slicing algorithm, system map,

linker, user interface, and help system requirements. The function of the sheer is to extract

program slices for the user interface to display. The sheer depends on information about the

program collected by the scanner and parser that is bound together by the linker.

Requirements that would enhance unravel (i.e., nice to have) but would not make unravel

unacceptable if absent are labeled as desirable. Requirements that may not be worthwhile to add

to unravel or that might be added to unravel if time permits are labeled optional. All unlabeled

requirements are mandatory.

3.1 Scanner Requirements

Input is ANSI C source program files. Output is a token stream to the parser.

Rl.l Recognize all ANSI C keywords: auto, break, case, char, const, continue,

default, do, double, else, enum, extern, float, for, goto, if, int, long, register,

return, short, signed, sizeof, static, struct, switch, typedef, union, unsigned,

void, volatile, while.

R1.2 Recognize all ANSI C operators: >>= <<= += -= *= /= %= &=
|

=

>> << ++ — — > &&
I I

<= =+ == ! =+ .«•# = [] .&!~ —

+ */ 5&<>^|?} ;{():.

R1.3 Recognize ANSI C numeric constants with optional suffix: decimal, octal,

hexadecimal and float.

R1.4 Recognize ANSI C character constants with optional prefix.

R1.5 Recognize ANSI C octal escapes, hex escapes and character escapes: \a \b \f

\n \r \t \v \' X" \? \\.

R1.6 Recognize ANSI C string constants with optional prefix.

R1.7 Merge multiple string constants into a single constant.

R1.8 Recognize ANSI C identifiers.

R1.9 Recognize ANSI C programmer defined type names.

Rl.lO Remove white space (blank, tab and new line characters).

19

Rl.ll Each character not recognized as a keyword, identifier, type name, constant,

operator or string is passed to the parser as a token.

R1.12 (Desirable) Be able to optionally trace each token recognized.

3.2 Parser Requirements

Input is a string of tokens from the scanner. Output is a language independent

representation of the program.

R2.1 Recognize ANSI C grammar.

R2.2 If the parser detects a syntax error, report the file and line within the file

containing the error.

R2.3 Keep mapping of source code line and column to statement.

R2.4 Assign a statement number for each statement.

R2.5 Generate successor relation to add a statement to a statement list.

R2.6 Generate branching flow for the following statements: if, else, while, do, for,

switch, case, return.

R2.7 Generate requires sets of syntactic components for the following statements: if,

else, while, do, for, switch, case, break, continue, return.

R2.8 Generate a statement node for each statement label.

R2.9 Generate flow to target label of goto.

R2.10 Switch should branch to default case.

R2. 1 1 Continue should branch to bottom of loop.

R2.12 Break should exit loop or case.

R2.13 Assign each identifier a unique id number.

R2.14 There is a separate name space for each of: 1) statement labels, 2) tags (struct

tags, union tags, and enum tags), 3) members of each structure or union, and 4)

other identifiers.

R2.15 Recognize type definitions.

20

R2.16 Keep the type of each identifier.

R2.17 Recognize the four kinds of scope: function (statement labels), block (within

braces), file and function prototype.

R2.18 Create stacked local symbol table on block or procedure entry.

R2.19 Remove top symbol table on block or procedure exit.

R2.20 Recognize external declarations.

R2.21 Recognize references to external objects.

R2.22 Generate refs sets for each variable referenced.

R2.23 Generate defs sets for each variable assigned.

R2.24 Generate defs and refs for each compound assignment.

R2.25 Prefix operators generate a node for each operator that is before the current

statement.

R2.26 Postfix operators generate a node for each operator that is after the current

statement.

R2.27 Structure assignment generates refs and defs for the members.

R2.28 Assignment to a structure member is a define of the member and a reference and

define to the structure.

R2.29 Assignment to an array element is a reference and define to the array.

R2.30 Resolve references of the form refjchain . identifier or ref_chain -> identifier.

For a structure or pointer to structure reference find the type definition for the

ref_chain structure type to resolve the identifier.

R2.3 1 Identify operations that may create an alias to an area of memory.

R2.32 (Optional) Recognize that union members are aliases to the same area of memory.

R2.33 (Desirable) Identify C preprocessor token substitutions for identification of defines

used.

21

R2.34 (Desirable) ANSI C syntax errors should be tolerated and noted but should not

prevent the analyzer from continuing.

R2.35 (Optional) Try to determine if code to be analyzed contains common extensions

to ANSI C that can be ignored for slicing (e.g., far pointers).

3.3 Language Independent Format Requirements

The Language Independent Format (LIF) is the output of the analyzer and, with some

modifications from the linker, input to the slicer. The LIF file should capture all

information necessary to compute a program slice for the ANSI C source program input

to the analyzer.

R3.1 LIF should identify procedure start.

R3.2 LIF should identify a procedure end.

R3.3 LIF should identify formal procedure parameters.

R3.4 LIF should identify procedure calls.

R3.5 LIF should identify actual procedure parameters.

R3.6 LIF should identify a flow graph node for each arithmetic expression.

R3.7 LIF should identify flow graph nodes necessary to represent each statement.

R3.8 LIF should identify the flow graph nodes that are direct successors of each flow

graph node.

R3.9 LIF should identify each program variable.

R3.10 LIF should identify variables that are extern, pointer, static or array.

R3.11 LIF should identify each program variable referenced (used) at each statement.

R3.12 LIF should identify each program variable assigned at each statement.

R3.13 LIF should identify level of indirection for references and assignments to pointer

variables.

R3.14 LIF should identify return statements.

R3.15 LIF should identify goto statements.

22

R3.16 LIF should maintain a mapping between each flow graph node and source

statements.

3.4 Slicing Algorithm Requirements

The following requirements refer to the slicing algorithm described in section 2.2.1. The

background for requirements R4.1 - R4.4 is sections 2. 2. 1.1 and 2.2. 1.2 (Expression

Statements and Compound Control Statements), R4.5 - R4.10 refer to sections 2.2. 1.3 -

2.2. 1.8 (pointer expressions) and R4.11 - R4.14 refer to section 2.2. 1.9 (procedure calls).

The output of the slicing algorithm is the set of statements relevant to the computation

of the variables in a given slicing criterion. The input to the slicing algorithm is:

- LIF representation of an ANSI C program.

- slicing criterion

R4.1 Given expression statement n and statement m, a successor to n, and slicing

criterion S<^ for variable v the slicing algorithm includes expression statement

n if n assigns a value to v.

R4.2 If an expression statement is included in the slice by the slicing algorithm, the

following slicing criteria are generated: V jc e refs(n).

R4.3 Given statement n and statement m, a successor to n, and slicing criterion

for variable v if n does not assign a value to v, (the slicing algorithm does not

include expression statement n in the slice) then the following slicing criterion is

generated:

R4.4 If a statement n is included in a slice then all statements in the set requires(«) are

included in the slice with the following generated criteria: V jc e refs(y) V

y E requires(n).

R4.5 The pointer state function Pk(n,v) is a function that returns the set of addresses to

which * • • • *v (where there are k *’s) could point.

R4.6 Given expression statement n with a k level indirect assignment through variable

a, and statement m, a successor to n, and slicing criterion for variable v, the

slicing algorithm includes expression statement n if v e P^(n,a).

R4.7 If statement n with a k level indirect assignment through variable a, is included

in a slice for slicing criterion then the following criteria are generated (to

capture relevant assignments of addresses at each level of indirection):

^<n,y> V y E RiJn,v,a) i, 0 < i < k, ^(a.k) g idefs(n)

Where: RiJn,v,a) = f r \ r e Pi(n,a)&v g P^.^(n,r)}

23

R4.8 If statement n is included in a slice the following criteria are generated:

^<n.v> ^ Pi(n,b)'^i, 1 < i < k, 'i(b,k) e irefs(n)

R4.9 If statement n is included in a slice and the set crefs(n) is not empty then the

following criteria are generated for each pointer chain, v-^/;—> • •
• in

crefs(n):

[n]

V te w., w. = Fizj") V z € P{n,r), y r e w._^

f. = field{n,c,i) V / 3 1 < / < A:,

where = field(n,c,0), k = clength{n,c), V c e crefs(n)

R4.10 For a slicing criterion and statement n where m = succ(n), with cdefs(n)

not empty, n: v-^ /y-^ • •
• ^ = - if g w,^.i where:

w. = {F{z^) V z G P{n,r) and r g w._j}

where = {v}

then include statement n in the slice and generate the following criteria:

S ^ y t E w., for 0 < i < k

w. = {F(zf) V Z G P(n,r) and r g w._,

where = {v}

R4. 1 1 Given the set of procedure call sites, where a call site is represented as an ordered

triple (statement, calling procedure, called procedure). Let Po be the procedure

containing the user supplied slicing criterion. Let C be the set of procedure call

sites.

Let G = {y(no,Xo,yo) e C 3 yo = Po or 3(nj,yo,y]) e Q }

The set Q represents the tree of procedure calls that invoked Pq, the procedure

containing the slicing criterion. The statements containing each call site in Q are

included in the slice and the following criteria are generated:

^<mj>

^<n.r> ^ Q
V t actual parameter to q corresponding to a formal parameter of q
or a non-local variable, in the active set of node 0 of q

R4.12 If a statement, n, is included in a slice and statement n includes a function call,

f that returns a value, then the following slicing criteria are generated:

^<r,v> ^ r) y r return statement in f
S^n.a> '^o. G formal_to_actual(v) Vv g fbegin

S^n,g> '^8 (global variable) g fbegin
wherefbegin is the set ofgenerated criteria at statement 0 in procedure

f

24

R4.13 If a statement, n, includes a function cd\\, f(aj,a2,
• •), with slicing criteria

generate the criterion: where f.last is the last statement of the procedure,

and include statement n in the slice if the generated criterion includes any

statements in the slice.

R4.14 If a statement, n, includes a function call, /fay,

‘

' / with slicing criterion

where &x is one of the a,, generate the criterion: where //a^r is the

last statement of the procedure. If the generated criterion includes any statements

in the slice, then include statement n in the slice and generate the criterion

where f.last is the end of the procedure.

3.5 System Map Requirements

The link component operates in two parts. The first part, map, identifies for each

program, in the current directory and its constituent files and then saves the information

in a file named SYSTEM. The goal of map is to identify the files containing the

procedure definitions of all procedures required to link each program in a given file

system directory. A program is defined to be a main procedure and the set of procedures

that must be defined for the program to link. This set of procedures is called the required

procedure set, RPS, and the set of files containing the definitions of the RPS is called the

required file set, RFS.

The input to map is the set of LIF files and T files produced by the parser. The output

of map, a file named SYSTEM, defines the RFS of each program for slink to link the

.LIE, .H and .T files together. The SYSTEM file contains a list of programs, identified

by the file containing the main procedure for the program. For each program there is a

list of files (the RFS) that contain the definitions of procedures called by the program

either directly or by a sequence of intermediate calls. Any procedures that are not defined

within the directory are classified as library functions.

If a procedure used by the program (i.e., in the RPS) is externally defined in more than

one file, map fails for the given program since map cannot determine the file that should

be used. The procedure is identified as ambiguous in the SYSTEM file entry for any

programs that try to use that procedure. If map fails, the list of required files contains

a partial list of the RFS and a partial list of library procedures corresponding to the stage

of computation where map discovered a called procedure defined in more than one file.

The SYSTEM file entry for this main must be built manually.

Map is limited to assuming that a main procedure is used for a single program.

R5.1 By default, map operates on the current directory.

R5.2 A directory may optionally be given on the command line.

25

R5.3 Map should make a program entry in the SYSTEM file for each main procedure

found in a LIE file.

R5.4 A program entry consists of three sections: required source files, library functions

and ambiguous functions.

R5.5 The source file containing the main procedure should be listed in the required

source files.

R5.6 The required file set (RES) for program M is the set of source files that contain

the definitions of procedures (but not library procedures) called somewhere in the

program. In addition to the source file containing the main procedure, a source

file, F, that meets the following conditions should be in the required source files

for program M.

1 . P is a member of RPS of M and defined extern only in F.

2. F does not contain a main procedure.

R5.7 Procedure P is included in the library procedure section of program M if there is

at least one call to P that meets the following conditions:

1 . P is a member of RPS of M.

2. P is not defined extern in any RSF file of M.

3. There is no static definition of P visible at the call site.

R5.8 Procedure P is included in the ambiguous procedure section of program M if the

following conditions are met:

1. P is a member of the RPS of M.

2. P is defined extern in at least two files, G and H.

3. Neither G nor H contain a main procedure.

3.6 Linker Requirements

After map has produced a SYSTEM file, the second part of the linker, slink, uses the

SYSTEM file to merge data-flow information from the .LIE, .T, and .H files created

from separate source files into a single .LINK file and a single .K file. Items such as

object addresses, chains of pointers to structure fields, global variables or procedures must

be resolved by the linker. The following files are input to the linker:

26

SYSTEM The SYSTEM file identifies all source files required for each main program

in the current directory. This file is an output of the map component.

.LIE There is one .LIE file for each source file. All the .LIE files are combined into one

.LINK file.

.T There is one .T file for each source file. All the .T files are combined with the .H

files into one .K file.

.H There is one .H file for each source file. All the .H files are combined with the .T

files into one .K file.

R6.1 Each of the following records (see sec. 4.2) in a .LIE file should be passed

unchanged to the .LINK file:

PROC_END
CALL.END
SUCC
LOCAL ID

FORMAL.ID
RETURN
REQUIRES

ACTUAL_SEP
GOTO
SOURCE_MAP

R6.2 Each named procedure is given a unique procedure identifier, pid. If two .T files

each refer to a procedure with the same name, the procedures are assigned the

same pid if neither one is static. If at least one is static, then each procedure is

assigned a different pid.

R6.3 For each unique pid the .K file should contain one line with the following

information: pid, entry statement, exit statement, number of local variables, flag

indicating static or extern and the procedure name.

R6.4 A procedure that is not defined in any of the source files should have an entry

statement of -1.

R6.5 Each PROC_START record input from a .LIE file yields a PROC_START record

in the .LINK file with the pid field updated to contain the unique pid assigned to

the procedure.

R6.6 Each CALL_START record input from a .LIE file yields a CALL_START record

in the output .LINK file with the unique pid corresponding to the pid in the .LIE

file.

R6.7 REF or DEE records that refer to an identifier that has a LOCAL_ID record with

an X flag are replaced in the .LINK file with a GREF or GDEF record referring

to the corresponding global id. The node field stays the same.

27

R6.8 Other REF or DEF records are passed to the .LINK file unchanged.

R6.9 Each GLOBAL_ID record with a unique name not found in any other LIE file is

assigned a unique id number and a GLOBAL_ID record using the new id number

is output to the .LINK file. All other fields in the GLOBAL_ID record are

unchanged.

R6.10 For a GLOBAL_ID record that does not have a unique name, but is flagged static,

a new unique id is assigned and a GLOBAL_ID record is output for each static

id.

R6. 1 1 For a GLOBAL_ID record name that appears in multiple records, the instances

that are not flagged static are considered to refer to the same object and a single

GLOBAL_ID record with a unique id is generated to the .LINK file.

R6.12 GREFS, GDEFS, GCHAIN, ADDRESS and STRUCT records are passed from the

.LIF files to the .LINK files with the id field updated to the assigned unique id.

R6.13 Duplicate chains should be eliminated and a unique new chain id assigned. A
single CHAIN or GCHAIN should be generated to the .LINK file.

R6.14 CREF, CDEF and FIELD records should be updated with the new chain id in the

.LINK file.

R6.15 Duplicate ADDRESS records should be eliminated and reassigned unique address

ids for the .LINK file.

R6.16 AREF records should be updated with the new address ids in the .LINK file.

R6.17 FILE records should be inserted in the .LINK file just before records from the

corresponding .LIF file are inserted into the .LINK file.

R6.18 The .H files should be merged together into the .K file as header file groups

consisting of the header file name and a list of variable ids and variables for each

variable declared in a header file.

R6.19 A header file group name should appear only once in the .K file.

R6.20 The .K file should contain the following information for each source file: file id

number (starting from 0), number of procedures, number of statements, number

of lines, number of characters and file name.

28

R6.21 The .K file should contain a count of the number of each of the following items;

global variables, procedures, object addresses, pointer to structure field chains,

header file groups and source files.

3.7 User Interface And Help System Requirements

The function of the user interface and help system is to provide controlled access to

unravel components by the unravel user. The goals of the user interface are to insulate

the user from detailed knowledge of the underlying software and hardware, assist the user

in saving the results obtained, give the user feedback on progress for lengthy tasks and

provide access to additional information on using unravel. The user interface uses a

mouse driven window system that provides a set of control panels (windows with buttons

and other objects) to allow the user to invoke unravel components and display the results.

R7.1 The user interface shall display the following information about the current

directory: directory name, number of source files, number of ANSI C source files

analyzed, number of main programs analyzed, number of main programs linked

and number of procedures that appear in more than one file.

R7.2 The user shall be able to change directories.

R7.3 The user interface shall allow the user to select from all source files in the current

directory a subset for operations (analyze or clear analysis results).

R7.4 The user shall be able to specify command line options for the C preprocessor

and the analyzer.

R7.5 The user shall be able to invoke the analyzer on the selected set of files (see

above).

R7.6 The user shall be able to remove any analysis files created by the analyzer on the

selected set of files (see above).

R7.7 The user interface shall display the name of the file currently being analyzed when

a set of source files is analyzed.

R7.8 The user interface shall display a summary of analysis results indicating any

non-ANSI source files.

R7.9 The user interface shall allow the user to display all messages produced by the

analyzer for each analyzed source file.

R7.10 The user interface should update displayed information about source files after

analysis of a set of source files is completed.

29

R7.11 After the analyzer is run on a set of source files, the map program shall be run,

(map identifies main programs).

R7.12 The user shall be able to select a main program for slicing.

R7.13 The user interface shall automatically invoke the linker when a main program is

selected.

R7.14 The user shall be able to select a slicing criterion (program variable and location)

for slicing from all program variables and statements.

R7.15 The user interface shall be able to display all the source files linked with a

selected main program.

R7.16 If the entire program cannot be displayed at one time, the user interface shall

display a contiguous block of statements such that any given statement is

displayed in at least one block of statements (i.e., every statement can be

displayed somehow in a scrollable window).

R7.17 The user interface shall be able to display statements identified for user attention

in a manner easily identified by the user (e.g., reverse video or contrasting color).

R7.18 The following statements are identified for user attention:

• Statements in a slice.

• Statements in an operation on two slices.

• Statements marked to indicate the location of a procedure.

• Statements marked to indicate the location of a procedure’s call tree.

R7.19 The user interface shall display an indication of progress during the slice

computation.

R7.20 Each computed slice shall be saved to a file.

R7.21 The user interface shall allow the user to select and display a saved slice.

R7.22 The user interface shall allow the user to select two previously computed slices

for display of the intersection, union and program dice of the two slices.

R7.23 The user interface shall allow the user to halt the computation of a slice and

display the partial results.

30

R7.24 The user interface shall display a visual summary of the set of statements

identified for user attention that indicates the approximate set size and statement

location relative to the entire program (e.g., an object like a scroll bar with tick

marks at the location corresponding to each identified statement).

R7.25 The user interface shall provide for the display of information describing each

control panel, the function of each interface object on the control panel and

guidance in using the control panel (i.e., a help button).

R7.26 The user interface shall always display a brief description of the interface object

currently under the mouse pointer.

31

4 Unravel Design

This section describes the design of unravel. The description of procedures and data structures

is a high-level abstraction of the actual implementation presented in an informal pseudo-code.

Unravel is divided into three main components: a source code analysis component to collect

information necessary for the computation of program slices into a source language independent

format; a link component to merge flow information from separate source files; and, an

interactive slicing component that the user can use to extract program components and statements

to answer questions about the software being examined.

4.1 Analyzer

The analyzer is similar to a compiler with a scanner, a parser and a code generator. The analyzer

translates each ANSI C source code file into a language independent format (LIF) file. The

UNIX compiler writing tools lex and yacc handle the scanning and parsing of the source code.

The code generator is a collection of semantic action routines, code fragments suitable for

insertion as a case in a switch statement. Each semantic action routine is attached to a yacc

grammar production and is called to output LIF when a grammar production is recognized

(reduced). Figure 4-1 presents the structure of the analyzer. A main procedure calls the parser

iyyparseO), which returns zero if the parse is successful, and one if the parse is unsuccessful.

The semantic actions for declarations record information about variables and types in the symbol

table and the .LIF file. The semantic actions for expressions, statements and external objects

using the symbol table and information passed up from grammar productions already recognized

also generate entries in the .LIF file.

4.1.1 Scanner

The scanner, coded in lex, is called by the parser to read the source code and return tokens to

the parser. The source code is assumed to have been already processed by an ANSI C
preprocessor. The major difficulty for the scanner is to correctly recognize IDENTIFIER and

TYPENAME tokens. The problem comes up when a name declared as a TYPENAME in an

outer scope is redeclared in an inner scope. The name must be recognized as an IDENTIFIER
token in the inner scope when it is redeclared. This is somewhat ambiguous since the context

determines if the name is used as a TYPENAME or an IDENTIFIER.

33

read characters until pattern match
set yytext to matching characters
if matched pattern is IDENTIFIER then

if yytext is found as a typename then
if typename expected return TYPENAME token
else return IDENTIFIER token

else return IDENTIFIER token
else return token found
end if

Figure 4-1: Unravel Analyzer Structure Design

4.1.2 Parser

The flow of yyparse(

)

is to call yylex(

)

(the lex scanner) for a token, then either shift the token

onto a stack or reduce the stack by a matching grammar production. The yacc grammar (given

in Appendix B) productions are arranged in four groups; declarations, statements, expressions and

external objects.

34

do
get token from scanner
if no match then

shift token to parse stack
else

pop parse stack
reduce production
switch (production)

case expression:
output to LIF: variables referenced
output to LIF: variables defined
output to LIF: procedure calls

case statement:
output to LIF: flow graph node

case declaration:
output to LIF: variables declared
save declaration in symbol table

case external objects:
output to LIF: external variables declared
output to LIF: procedures defined
output to LIF: formal procedure parameters

end switch
end if

while not EOF

4.2 Language Independent Representation

The language independent representation captures the details of the program required for the

slicing algorithm to compute program slices. The program representation is contained in several

files as shown in Table 4-1.

File Contents Produced by . . .

file.c source code to be examined (source file) programmer

file.h declarations for C preprocessor to include programmer or ANSI C

file.LIF translation of source code analyzer

file.T count of objects in file.LIF analyzer

file.H mapping of variable names to header (.h) files analyzer

SYSTEM summary of all programs in directory map

file.LINK merged LIF from all modules linker

file.K merged T and H files linker

Table 4-1: Unravel System Files

35

The language independent format represents the program as an annotated flow graph of nodes

and edges. Nodes are generated to represent semantic or syntactic units of the program that

correspond to statements or parts of statements. Edges are of two types, control flow and

requires. A control flow edge between two nodes indicates the flow of control from one node

to the other. The requires edges from a node indicate other nodes that should be included in any

slice containing the node the edges are from. The requires edges are a general mechanism for

specifying control dependence between nodes, pieces of required source code, or other slicing

dependencies. The annotations specify location of corresponding source code, variables

referenced or assigned and special statements such as goto and return.

The following subsections describe the format of each file.

4.2.1 File.c

The source code as produced by the programmer.

4.2.2 File.h

The source file is assumed to use the #include preprocessor directive to include only header files

containing declarations, typedefs and defines. No procedure bodies should be in a header file.

4.2.3 File.LIF

The general form of the .LIF file is a sequence of one line records. Each record is one of the

LIE codes followed by a comma separated list of parameters in parenthesis. The LIE codes,

found in Appendix A, can be grouped in codes for flow-graph, procedure headers, declarations,

expressions, procedure calls and structure fields.

4.2.3.1 Flow-Graph

The following LIE codes are used to specify the flow-graph:

#define LIF_REQUIRES 17 /* 17 (node, required_node) */

#define LIF_SOURCE_MAP 18 /* 18 (node , from_ln, from_cl , to_ln, to_cl*

/

#define LIF_RETURN 14 /* 14(node,l|0) */

#define LIF_GOTO 15 /* 15 (node, G [B | C) */

ttdefine LIF_SUCC 16 /* 16 (from_node, to_node) */

Eor producing LIE code, ANSI C source statements are classified as declarative, expression,

compound control and branch. Each flow-graph node produced is annotated by

LIF_SOURCE_MAP to provide a mapping from flow-graph nodes to source code statements.

The declarative statements are declarations and procedure headers. Declarations generate no

flow-graph nodes. Procedure headers generate an entry node corresponding to the procedure

header and an exit node corresponding to the closing brace of the procedure.

36

An expression generates one flow node for the expression plus one flow node for each postfix,

prefix or comma operator in the statement.

The compound control statements are; if, switch, while, do ... while, for and compound
statement ({ ... }). Any nodes directly within the scope of control of a compound control

statement specify the control statement with a LIF_REQUIRES entry in the LIF file. When
control statements are nested, only the next layer of control out from a node is specified with a

LIF_REQUIRES entry.

The compound statement generates a flow-graph node for the beginning bracket and one for the

ending bracket.

An if statement without an else generates at least two nodes: first a node for the if, left

parenthesis token and the condition expression, second a node for the right parenthesis to serve

as an exit point from the statement. The nodes for the controlled statement must exit through the

right parenthesis node. The controlled statement generates a LIF_REQUIRES entry for the if

node. The if node requires the parenthesis node.

An if statement with an else generates an additional node for the else. Nodes of the second

controlled statement require the else node. The else node requires the if node. The flow-graph

of an if statement is presented in Figure 4-2.

A switch statement generates two nodes, one for the switch token and expression and one for

the right parenthesis token. The right parenthesis token is used as an exit point for each case in

the controlled statement. The controlled statement generates a LIF_REQUIRES entry for the

switch node.

A while statement generates two nodes, one for the while, left parenthesis and expression and

one for the right parenthesis. The right parenthesis node is a successor to the while node and

the last node of the controlled statement. The controlled statement generates a LIF_REQUIRES
entry for the while node. The while node requires the right parenthesis node. The flow-graph

of a while statement is presented in Figure 4-3.

The do . . . while generates three nodes: the do, the while and condition, and the right

parenthesis. The successor of the do node is the first node of the controlled statement. The

while node is the successor of the last node of the controlled statement. The while node has two

successors: the do node and the right parenthesis. The do node is required by the controlled

statement, and the do node requires the while node and the right parenthesis.

The for statement generates three nodes. The first node contains the for, left parenthesis, and

the initialization. The second node encompasses the test expression, and the third node contains

the increment and the right parenthesis. The test is a successor of the for and initialization. The

statement is a successor of the test, and the increment is a successor of the statement. The for

and the initialization expression require the test, the increment and the statement. The statement

37

and increment are both required by the test and the right parenthesis requires the for. The flow-

graph of a for statement is represented by Figure 4-4.

Nodes corresponding to return statements are identified by LIF_RETURN. The second field of

the LIF_RETURN indicates a return with expression by 1 and a return without expression by

0. The statements goto, break and continue are identified by a corresponding G B or C code

in a LIF_GOTO entry.

Figure 4-2: IF Statement Control Flow

38

Figure 4-3: WHILE Statement Control Flow

Figure 4-4: FOR Statement Control Flow

4.2.3.2 Procedure Headers

A procedure header, function_name (fl,f2,...fn), uses the following LIF codes:

define LIF_PROC_START 1 /* 1 (node, pid, name) */

define LIF_PROC_END 2 /* 2 (node [, S] [, R]

)

*/

define LIF_FORMAL_ID 3 /* 3 (id, name [, A] [, P]

)

*/

The LIF_PROC_END indicates a static declared procedure with an S flag. Procedures that

return an expression are indicated with an R flag.

For formal parameters, the variable attributes pointer and array are indicated by the codes: P and

A in the LIF_FORMAL ID record.

39

All local variable declarations, (LIF_LOCAL_ID), and flow graph node related LIF codes appear

between the LIF_PROC_START and the LIF_PROC_END. The following is an example of a

procedure header and generated LIF codes:

add_to_result (int a, int *b, int c[])

{

... body . . .

}

1(13,5, add_to_result

)

3 (l,a)
3(2, b,P)
3 (3 , c. A)

. .

.

body . .

.

2 (30)

The procedure starts at node 13 in the flow graph.

The last node of the procedure is 30.

There are three formal parameters.

Formal b is a pointer.

Formal c is an array.

4.2.3.3 Declarations

Declarations generate the following:

define LIF_LOCAL_ID 4 /* 4 (id, name [, S] [, P] [, X] [, A]

)

*/

define LIF_GLOBAL_ID 5 /* 5 (id, name [, S] [, P] [, X] [, A]

)

*/

Declarations generate a positive, id-code for each variable. Each global variable (declared

outside a procedure) is allocated a unique id-code. Each procedure has a separate set of id-codes

for local variables and formal parameters, starting from 1. All local variable declarations,

(LIF_LOCAL_ID), appear between the LIF_PROC_START and the LIF_PROC_END. Global

variable declarations, (LIF_GLOBAL_ID) may appear anywhere outside of a

LIF_PROC_START and LIF_PROC_END pair. The variable attributes, static, pointer, external,

and array are indicated by the codes: S, P, X and A. An example of LIF codes generated for

declarations follows:

static int a,*b,c[10];
extern x;

fun (int y)
{

int u,v,w,x;
}

proc(int *z)

{

int a,w;
}

40

1(1,1, fun)
3 (l,y)
4(2, u)
4(3, V)
4 (4 , w)
4(5, X)
2 (2)

1(3, 2,proc)
3(1, z,P)
4(2, a)
4(3, w)
2 (4)

5(1, a, S)
5(2,b,S,P)
5 (3 , c, S, A)
5(4, x,X)

4.2.3A Expressions

Expressions generate the following LIE codes for variables referenced and variables assigned at

a node.

define LIF__AREF 24 /* 24 (node, addr

)

*/

define LIF__ADDRESS 25 /* 25 (addr, pid, id) */

define LIF__REF 7 /* 7 (node , id [, level]

)

*/

define LIF__DEF 8 /* 8 (node, id[, level]

)

*/

define LIF__GREF 9 /* 9 (node , id [, level]

)

*/

define LIF__GDEF 10 /* 10 (node, id[, level]

)

*/

An expression generates one flow node for the expression plus one flow node for each postfix

(x++), prefix (++x) or comma operator (x+y,z) in the statement. The nodes are ordered in the

flow-graph as follows: prefix operators from left to right, the expression flow node, and the

postfix operators from left to right.

LIF_REF code is generated for local variables whose values are used. LIF_GREF code is

generated for global variables whose values are used. Variables that are assigned a new value

generate LIF_DEF for assignment to local variables and LIF_GDEF for assignment to global

variables.

The level indicates the level of indirection of the ref or def A level of zero, no indirection, is

omitted. A level of -1 indicated the address o/ operator (&). An LIF_ADDRESS is generated

for each object of the address of operator, indicating the variable, the procedure where the

variable is declared (zero for global declaration) and a unique address id. Address ids are

assigned sequentially from 1. An example of expressions and corresponding LIE codes follows:

41

int x,y; /* global ids 23 (x) and 24 (y) */

int a,b,*c; /* local ids 18(a), 19(b) and 20(c) */

c = &x; /* node 46, x is address 14 */

X = y - (b++) + *c; /* nodes 47 and 48 */

16(46,47)
9(46,23,-1)
8 (46,20)
25(14,0,23)
24(46,14)
16(47,48)
7 (47,19)
8(47,19)
9(48,24)
7 (48,19)
7 (48,20,1)
10(48,23)

4.2.3.5 Procedure Calls

Procedure calls are handled as part of an expression and use the following LIF codes:

define LIF_CALL_START 11 /* ll(node,pid) */

define LIF_ACTUAL_SEP 12 /* 12 *** void *** */

define LIF_CALL_END 13 /* 13 *** void *** */

The actual parameters are listed as expressions in order separated by LIF_ACTUAL_SEP entries.

int x,y,z; /* local ids x(72) y(73) z(74) */

X = fun (x+y , *z)

;

/* node 47, fun is pid 18 */

11(47,18)
7 (47,72)
7 (47,73)
12
7(47,74,1)
13
8(47,72)

4.2.3.6 Structure Fields

Structure fields generate the following LIF codes:

define LIF_CHAIN
define LIF_GCHAIN
define LIF FIELD

19 /* 19 (node , chain, id)
20 /* 20 (node, chain, id)
21 /* 21 (node, chain, seq, fid, field)

*/
*/

42

define LIF__CREF 22 /* 22 (node, chain)
define LIF__CDEF 23 /* 23 (node , chain)
define LIF__STRUCT 26 /* 26 (pid, id, of fset

)

At an expression node, each reference or assignment through a pointer to the fields of a structure

generates a chain (LIF_CHAIN or LIF_GCHAIN). The chains of a node are given a chain

number sequentially from 1. The variable at the head of the chain is specified in the id field of

the LIF_CHAIN for local variables and in the id field of the LIF_GCHAIN for global variables.

LIF_CREF and LIF_CDEF indicate if the chain specifies a reference or a define. LIF_FIELD
is used to specify each field of a chain by sequence number. The fid is the sequence number of

the field within the data structure and field is the field name.

LIF_STRUCT indicates that the variable identified by the pid and id is a structure with

ojfset members. For example, consider the following:

typedef struct a_struct a_rec , *a_ptr

;

typedef struct b_struct b_rec , *b_ptr

;

struct a_struct {a_ptr al; b_ptr a2 ; int a3 }

;

struct b_struct {b_ptr bl; int b3 }

;

a_rec ar; /* Global ID 9(ar) lO(ar.al) ll(ar.a2) 12 (ar.a3)*/
a_ptr a; /* Global ID 13(a) fields l(al) 2(a2) & 3(a3) */

b_ptr b; /* Local ID 7(b) fields l(bl) 2(b2) & 3(b3) */

a->a3 = b->b3 + a->al->a2->bl->b3 ;
/* node 88 */

26(0,9,3) structure ar has 3 fields
20(88,1,13) a->a3
19(88,2,7) b->b3
20(88,3,13) a->al->a2->bl->b3
23 (88,1)
22(88,2)
22(88,3)
21(88, 1,1, 3, a3) ->a3
21 (88, 2, 1, 3, b3) ->b3
21(88,3,l,l,al) ->al->
21(88, 3, 2, 2, a2) ->a2->
21 (88, 3, 3, l,bl) ->bl->
21(88, 3, 4, 3, b3) ->b3

43

4.2.4 File.T

The .T file is produced by the analyzer at the same time as the .LIF file. The purpose of the

.T file is to provide for sizing of dynamic objects by the linker and sheer. The format of the .T

file is as follows:

1. The first line has two fields, the number of procedures defined or referenced and the

number of flow-graph nodes in the source file.

2. One line for each procedure either called or defined within the source file. Each line has

6 fields as shown in Table 4-2.

3. One line with three fields: number of global variables declared, number of pointer chains

(i.e., expressions using ->), and number of address objects (i.e., & operator applied).

4. The last line has four fields, number of lines, number of words, number of characters and

the file name (i.e., the output of the UNIX command wc).

Field Contents

1 unique procedure id number

2 entry statement number if defined, else -1

3 exit statement number if defined, else 0

4 number of local variables

5 an X if extern, an S if static

6 procedure name

Table 4-2: File.T Fields For Deflned Or Called Procedures

Example source and .T files:

>

include
int

main (n,p)
int
char

{

int

z.c <

a.h"
zed, Zulu;

n;

*P [] ;

kappa , lambda , mu

;

zircon (kappa+ lambda- zed, zulu, z2->zeta, zl . zeta, Sczl) ;

}

44

*zeta_ptr

;

> a.h <

int alpha, beta, omega;
typedef struct zeta_struct zeta_rec,
struct zeta_struct {

int zeta;
zeta ptr za,zb,zc;

};

zeta_rec
zeta__ptr

>

2 4

1 1

2 -1

12 1 1

10

4.2.5 File.H

zl , *z2

;

z3 ;

z.T <

4 5 X main
0 OX zircon

17 155 z.c

A program may have global variables either declared directly in the source files or declared in

included header files. If a program has many include files then a large number of global

variables could be declared. If the user of unravel needs to select a global variable then the set

of global variables should be organized so that it is easy to locate global variables declared in

source files and global variables declared in included files.

The purpose of the .H file is to partition the set of global variables according to the location of

the variable declaration. The .H file consists of two types of records, file name records and

variable name records. The .H file is organized as a series of file name records followed by

variable name records for each global variable declared in the file. The same file name may
appear more than once in the .H file. A variable may be declared in more than one file.

The format of a file name record is (iuf ile_name with @u in columns one and two and the

file name starting in column 3 and extending to the end of the line. The file name is as produced

by the C preprocessor for a change of file from a # include statement.

The variable record is a tab character in column 1 followed by the variable name extending to

the end of the line. Example .c, .h and .H files follow:

> c File (yy.c) <

int a,tip;
include "a.h"
int rip, TRIP, sip;

> h File (a.h) <

int alpha, beta, omega, zl,z2,z3;

45

> H File (yy.H) <

@ yy . c
a
tip

@ a . h
alpha
beta
omega
zl
z2
z3

@ yy . c
rip
TRIP
sip

4.2.6 SYSTEM

The SYSTEM file is the output of the linker component map using the .T and .LIE files as

input. The purpose of the SYSTEM file is to describe each main program in a directory in terms

of required source files, library functions called and called procedures defined in more than one

source file. The SYSTEM file consists of 6 kinds of records (one record to a line) described in

Table 4-3.

Record name Format

1 main file MAIN filejtame filejcount

2 file separator FILE

3 ambiguous procedure separator AMBIG

4 library separator LIB

5 file name tab character yi/e_name

6 procedure name tab character proc_name

Table 4-3: SYSTEM File Records

The arrangement of records in the SYSTEM file to describe a single program divided among

several files is as follows:

1 main file record

2 file separator

3 source (.c) files required by the given main file

4 ambiguous procedure separator

46

5 zero or more procedure name records

6 library separator

7 zero or more procedure name records

The above organization is repeated for additional programs in the current directory.

The following example has two main programs (one in ex-l.c, the other in b.c). The main in

ex-l.c uses four library functions and the entire program is contained in one file. The main in

b.c uses procedures defined in three other files. One procedure, a4, is ambiguously defined since

it has a procedure body defined in more than one source file.

MAIN ex-l.c 1

FILES
ex-1 . c

AMBIG
LIB

scanf
printf
exit

MAIN b.c 4

FILES
b . c
bb . c
bbb . c
abc . c

AMBIG
a4

LIB
exit

4.2.7 File.K

The linker merges the .H and .T files for all the files of a program into one .K file. The .K file

is organized into 4 sections:

1. The first line of the file gives counts for number of global variables, number of

procedures, number of address objects, number of pointer chains, number of header files

and number of source files. Each value is preceded by an identifying string.

2. One line of procedure description for each procedure. The content is similar to the .T

file. Each line contains, procedure id, entry statement, exit statement, number of local

variables, static or extern flag as an S or an X, and procedure name.

3. One line of description for each file. Each line contains a file id, number of procedures,

number of statements, number of lines, number of characters and file name minus

extension.

47

4 . The last section is the merge of the .H files. There should be a file record for each file

where global variables are declared. Each file with declared global variables should have

only one file record. A file record has two fields, a count of the number of globals

declared in the file and the file name. Each file record is followed by a set of global

records. A global record has two fields, the id number assigned to the global variable by

the linker and the variable name.

4.2.8 File.LINK

The .LINK file contains the merged .LIF files from all the files that are required the main

program in file.c.

One LIE code, LIF_FILE, not found in .LIF files is added to the .LINK file to indicate the

source file associated with each procedure.

define LIF_FILE 6 /* 6 (f ile_id, f ile_naine) */

4.3 Slicer

This section presents by informal pseudo-code the procedures and data structures of the program

slicing component. There is one procedure, slice, that serves to control invocation of the other

procedures that are used to compute program slices. The slice procedure is invoked from a user

interface component that obtains the slicing criterion from the user and displays the program slice

to the user.

The data structures fall into two categories, representation of the program being sliced and

dynamic support for slice computation.

4.3.1 Procedures

slice This procedure controls computation of a program slice and is called by the user interface

after the slicing criterion has been obtained. The slice is returned to the caller as a set of flow-

graph nodes.

slice (criterion c, set slice_set)
{

clear criteria for each node
clear slice_set
set initial criterion
call main_slice (c, slice_set)

}

main_slice Sweep over the program applying the slicing criteria until no more changes occur

(and no more statements are added to the slice.

48

main_slice (criterion c, set slice_set)
{

change = 1

while (change) {

change = 0

for each node, n, {

for each successor, m, of n{
change += include_or_not (n, m, slice_set

)

}

}

}

}

include_or_not Test a statement for inclusion in a slice and return a count of changes. The

change count is the sum of number of statements added to the slice and number of new criteria

generated. If the statement changes a variable in the criteria for the statement’s successor then

the statement should be added to the slice and additional criteria should be generated.

int include_or_not (node_index n, node_index m, set slice_set)
{

change = false
if (defs(n) intersects criteria (m))

{

change += add_to_slice (n, slice_set)
}

if (idefs(n) intersects criteria (m))

{

change += add_to_slice (n, slice_set)
change += add_idef_criteria (n)

}

if (cdefs(n) intersects criteria (m))

{

change += add_to_slice (n, slice_set)
change += add_cdef_criteria (n)

}

return change
}

add_to_slice If statement n is not in the slice add n to the slice and adjust slicing criteria. Add
any statements in the requires set and return the count of changes.

int add_to_slice (node_index n, set slice_set)
{

count = 0

if n already in slice then return 0

add n to slice_set
count = 1 + add_criteria (n)

for each node, r, in requires (n)

{

count += add_to_slice (r

)

}

return count
}

49

add_criteria Add the criteria generated by inclusion of any statement in a slice.

int add_criteria (node_index n)

{

add refs(n) to criteria (n)

add criteria implied by irefs(n)
add criteria implied by crefs(n)
return change count

}

add_idef_criteria Add criteria for variables referenced in the specification of the variable

indirectly defined (assigned).

int add_idef_criteria (node_index n)

{

add criteria implied by idef s (n)

return change count
}

add_cdef_criteria Add criteria for variables referenced in the specification of the variable

indirectly defined (assigned).

int add_cdef_criteria (node_index n)

{

add criteria implied by cdef s (n)

return change count
}

4.3.2 Data Structures

The following data structures, built from the files produced by the analyzer and linker, are used

to represent the program being sliced.

typedef struct source_file_struct source_file_rec , *source_file_ptr

;

typedef struct flow_node_struct flow_node_rec , *flow_node_ptr

;

typedef struct proc_struct proc_rec , *proc__ptr ;

typedef struct ptr_state_struct ptr_state_rec , *ptr_state_ptr

;

typedef struct {

int start_line;
int start_col

;

int end_line;
int

} src_map;
end_col

;

struct source_.file_struct {

proc_ptr procs []

;

}

50

struct flow_node_struct {

src_map
set
chain
ptr_state_ptr

set
set

refs,defs, irefs, idef s , cref s , cdef s

;

successors , requires

;

source

;

criteria;
chains []

;

p;
}

struct proc_struct {

flow_node_ptr
set
set

nodes []

;

globals_defed, globals_refed;
formals_def ed, forinals_ref ed;

}

struct ptr_state_struct {

set state []

;

}

4.4 Linker

The linker component operates in two parts. The first part, map, identifies for each program in

the current directory its constituent files and then saves the information in a file named SYSTEM
as discussed in sec 4.2.6. The second part of the link component, slink, uses the SYSTEM file

to merge data-flow information from the .LIE, .T and .H files created from separate source files

into a single .LINK (sec. 4.2.8) file and a single .K (sec. 4.2.7) file.

4.4.1 Map

The task of map is to identify all the source files that make up each main program. While this

is not solvable in general, it is possible for most situations the user is likely to encounter. It is

also possible to identify a situation where map cannot complete its task and the user must

provide assistance.

The input to map is the set of all .LIE, .T and .H files in the current directory.

The output is a SYSTEM file that identifies each main program and its associated source (.c)

files.

4.4.2 Slink

The input to slink is a file name (to identify the main program), the SYSTEM file and the .LIE,

.T and .H files that the SYSTEM file indicates belong to the main program.

The output is the merged .LIE files in a .LINK file and the merged .T and .H files in a .K file.

51

4.5 User Interface and Help System

The user interface displays four control panels and two pop-up information windows. The four

control panels are the following:

The Main Control Panel is used to invoke Analyzer Control Panel and Slicer Control Panel

and provides relevant information about the current directory.

The Analyzer Control Panel allows the user to select files, run the analyzer and automatically

run map to scan for main programs.

The Selection Control Panel allows the user to select a main program and runs the linker on

the selected main program followed by invoking the Slicer Control Panel for the selected

program.

The Slice Control Panel gives the user access to the program slicer, accepts a slicing criterion

interactively and displays the source program text in a scrollable window with slice statements

highlighted.

All control panels have the following features:

• Control buttons on top row of the panel

• Leftmost button pops-down (exits) the panel

• Rightmost button pops-up the help display for the panel

• Help button sticks to right window edge on resize

• Other buttons keep same distance from left edge on resize

• Panel name in the window title bar

• Last line of panel displays a brief description of the object under the mouse pointer

• Help button short cuts (accelerators): pressing anywhere on the panel outside a text

window h, H or ? invokes help

• Exit button short cuts (accelerators): pressing anywhere on the panel outside a text

window q or Q exits the panel

• All top level control panel windows are created with an X Windows application class

name of Unravel so that X resources can be set for all panels at once (e.g., to set the

52

foreground color to red give the following resource specification to xrdb:

Unravel*Foreground: red).

Two application resources, runningFG and runningBG, are defined. These resources are a

foreground and a background color that are used to indicate a lengthy operation is in progress.

The two information pop-ups display a history of user activities and help text for each panel.

An information pop-up window consists of a done button to dismiss (pop-down) the window and

a scrollable text window.

The user interface keeps the following log files;

1. The file HISTORY.LOG is a log of user analysis and slicing activity in the current

directory for past invocations of unravel. The HISTORY.LOG is updated with current

activity when the Main Control Panel exits.

2. The file HISTORY is a log of user analysis and slicing activity in the current directory

for the current invocation of unravel. The HISTORY file is updated with current

analysis activity when the Analyzer Control Panel exits and is updated with slicing

activity when the Slicer Control Panel exits.

3. The file HISTORY-A is a log of user analysis activity for the current invocation of the

Analyzer Control Panel. Results of analysis of each file is recorded, including syntax

errors found in the source code.

4. The file HISTORY-S is a log of user slicing activity for the current invocation of the

Slicer Control Panel.

4.4.1 Main Control Panel

The function of the Main Control Panel is to respond to user interaction with the panel.

The Main Control Panel is invoked by running the program unravel. The input to unravel is

a single directory name on the command line to specify a working directory. If the command
line is empty, the current directory is used as the working directory. After a working directory

is obtained, unravel makes the working directory the current directory.

Invoking the Main Control Panel does the following initializations:

1. Change to the directory specified on the command line.

2. Initialize HISTORY-S to No slices computed this session.

3. Initialize HISTORY-A to No analysis done this session.

53

4. Initialize HISTORY to UNRAVEL directory name current date and time.

The Main Control Panel displays the following information:

• Current directory name.

• Number of source files. This is a count of files with a .c extension.

• Number of files analyzed and up to date. The number of C source files that have .LIE

and .T files such that the C file is older than the .LIE and .T files.

• Number of source files not analyzed. This is a count of files with the .c extension that do

not have either an .LIE, .T or an .H file.

• Number of files analyzed and out of date. The number of C source files that have either

.LIE or .T files such that the C file is younger that either the .LIE or the .T file or both.

• Number of main program files analyzed, i.e., the number of main program files identified

in the SYSTEM file.

• Number of main program files linked. This is the number of main program files

identified in the SYSTEM file that also have .LINK and .K files.

• Number of duplicate procedures found. This is the number of procedures identified in

the SYSTEM file as ambiguous (appearing in more than one file).

• Last line of panel displays a brief description of the object under the mouse pointer.

The Main Control Panel buttons invoke the following actions:

Exit The Exit button does the following:

1. Append the file HISTORY to HISTORY.LOG

2. Delete HISTORY

3. Exit

Run Analyzer The Run Analyzer button does the following:

1 . Invokes the Analyzer Control Panel, passing the window id of the Run Analyzer button

as a command line parameter.

54

2.

When the Run Analyzer button receives a non-maskable event (i.e., xsend from
Analyzer Control Panel) the displayed counts are updated.

Review History

indicated file.

Last Analysis

Last Slice

This Session

All History

The Review History button pops-up a four item menu, and display the

HISTORY-A
HISTORY-S
HISTORY
HISTORY.LOG

Run Slicer The Run Slicer button invokes the Selection Control Panel.

Help The Help button runs helpu with the file unravel.help as command line parameter.

Current Directory The following is done when the directory is changed:

1. Append the file HISTORY to HISTORY.LOG

2. Delete HISTORY

3. Initialize HISTORY-S to No slices computed this session

4. Initialize HISTORY-A to No analysis done this session

5. Initialize HISTORY to UNRAVEL directory name current date and time

4.4.2 Analyzer Control Panel

The Analyzer Control Panel presents the user with;

• Buttons to control file selection, running the analyzer, clearing analysis files and

popping-up a help window.

• A status line to give the user feedback on progress of the analysis of a set of files.

• Two text windows for specifying command line options to the C preprocessor and to the

unravel parser.

• A list of selected source files from the current directory.

• A list of other source files in the current directory.

• Last line of panel displays a brief description of the object under the mouse pointer

The Analyzer Control Panel buttons invoke the following actions:

55

Exit Analyzer This button appends the file HISTORY-A to HISTORY and then exits.

File Selection The File Selection button pops-up a menu with the following four choices and

actions;

All Files: All source file names are placed in the selected list window. The not selected

list window will be empty.

No Files: All source file names are placed in the not selected list window. The selected

list window will be empty.

Analyzed Files: All source file names of files that have older .LIF, .T and .H files are

placed in the selected list window. The remaining source file names are placed in the not

selected list window.

Files Not Analyzed: All source file names of files that have older .LIF, .T and .H files

are placed in the not selected list window. The remaining source file names are placed

in the selected list window.

Analyze Selected Files/Stop Analysis This button runs the analyzer on each selected file,

adding the contents of the C preprocessor options window to the C preprocessor command line

and adding the contents of the parser options window to the parser command line. When the

Analyzer Control Panel button is pushed the button label is changed from Analyze Selected

Files to Stop Analysis. If the Stop Analysis button is pressed, do not analyze any more of the

selected files after the file currently being analyzed is finished. As each file is analyzed, the file

name currently being analyzed is displayed on the status line along with a progress indication.

The progress indication is defined by the following: number each file in sequence starting from

1 in the order that the files will be analyzed. Display the file’s sequence number and the total

number of files. The status line should be set to the foreground and background colors specified

in the application resources runningFG and runningBG.

After all selected files have been analyzed, run map.

Clear This button deletes the analysis files (.LIF, .H and .T) for each selected file and delete

the SYSTEM file.

Help The Help button displays the file analyzer.help.

4.4.3 Selection Control Panel

The Selection Control Panel presents the user with:

• Exit and Help buttons

56

A status line

• A list of main program source files from the current directory

• Last line of panel displays a brief description of the object under the mouse pointer

The Exit button pops-down the panel with no further action.

If a file from the list is selected, the file is linked, the Selection Control Panel is popped-down

and the sheer is called.

The status line initially indicates that select is waiting for the user to make a selection. After

a file is selected, the status line indicates that a file is being linked.

If there is exactly one main program file, the file is linked and the sheer is called without

bringing up the selection panel.

The Help button displays the file select.help.

HISTORY-S is updated with a message indicating the file to be linked before the linker is

called. Any linker output (e.g., error messages) is appended to HISTORY-S.

4.4.4 Slice Control Panel

The sheer accepts slicing criteria from the user, computes a program slice for each criterion

given, saves each slice for later recall and displays the program in a scrollable window. The

sheer presents the user with:

• Buttons to exit, to pop-up help and interrupt a lengthy slice calculation.

• A display indicating slice size and slice calculation progress.

• A display of the currently selected slicing criterion variable.

• Menu of selection options for selecting slicing criterion variables, or previously computed

slices.

• Menu of operations that can be performed on two selected slices.

• Display describing the contents of the scrollable window.

• Display of program source text in a scrollable window.

57

• The last line of the panel displays a brief description of the object under the mouse

pointer.

• Clicking a mouse button in the text window specifies the statement for the slicing

criterion and initiates the slice computation.

Primary slice and secondary slice has no significance other than being convenient names for two

slices when an operation such as intersection is performed on two slices.

In addition to interaction with the user through the window interface, the sheer has the following

inputs and outputs:

Command Line The sheer takes one command line argument, file.c, the name of a main

program file.

Summary Counts The sheer looks for a .K file, flle.K, that matches the main program file on

the command line where file is the name of the main program file without any extension.

Linked .LIF File The sheer looks for a .LINK file, file.LINK, that matches the main program

file on the command line where file is the name of the main program file without any extension.

Computed Slices Each slice that is computed is saved in file.Y as a criterion and set of flow

graph node numbers. The file format is as follows:

1. Criterion (four integers): variable id number, procedure id number that variable is local

to or zero if global, file id number containing statement and statement number.

2. Partial slice flag (integer): value 0 if slice computation was not interrupted, value 1 if

interrupted.

3. File entries (one per file): consists of file id number followed by zero or more statement

numbers, terminated by -1 . The last file entry is followed by a file id of -1 (i.e., slice

entry is terminated by two -1 entries, one to end the statements of the last file of the main

program and one to mark end of files in the program for the slice).

HISTORY-S The sheer records information in the following format for each slice computed is

placed in HISTORY-S to record the criterion, the slice size in flow graph nodes and the wall

clock time to compute the slice:

slice on var name {Ln procedure name) at line nnn in file name (nnn stmts in

mm:ss)

If the variable is global then the word global replaces the procedure name.

58

The Slice Control Panel buttons do the following:

Exit This button appends HISTORY-S to HISTORY and then exits.

Interrupt The Interrupt button does the following:

1. Stops computation of the slice and displays partial results.

2. Marks the slice as partial and saves.

Help This button pops-up the panel help file, u.help.

There are six information display windows on the Slice Control Panel.

1. Slice Progress Window displays the current size of the slice being computed (or last

computed) in units of flow graph nodes. This window is located between the Interrupt

and Help buttons on the top line of the panel.

2. Criterion Variable Window displays the currently selected criterion variable, the file

where the variable is declared and the declaration scope. If the variable is global then

the scope is the word global, otherwise, it is the name of the local procedure containing

the variable declaration. If an element is not defined, the word none is displayed. This

window is the second line of the panel.

3. Primary-Secondary Window displays the criteria for the current primary and secondary

slices. If there is no such slice, none is displayed. This window is the third line of the

panel.

4. Text Description Window describes the contents of the Text Window using one

message from Table 4-4. This window is the fourth line of the panel.

59

Contents Message

None Source File: file_name

Slice Slice on criterion

Intersection Intersection of primary_criterion & secondaryjoriterion

Union Union of primaryjcriterion & secondary_criterion

Dice primaryjoriterion diced by secondaryjoriterion

Dice S-P secondaryjoriterion diced by primaryjoriterion

Marked proc Location of procedurejiame in filejiame

Call tree Call tree of procedurejiame

Table 4-4: Text Description Windows

5. Text Window displays the program text with a scroll bar for navigation. Statements can

be designated for highlighting by the text window. Highlighting is used to indicate sets

of statements such as the statements that are members of a slice. The right margin of the

text window contains a tick bar that is used to visually indicate the location of

highlighted statements throughout the entire program. The vertical length of the tick bar

is scaled to the length of the program in source file lines. A tick (horizontal line) in the

tick bar indicates that at that relative position in the display there are one or more

highlighted lines. The tick bar is adjacent to the scroll bar to facilitate scrolling to

highlighted regions of the text.

6. Current Object Window describes the function of the object currently under the mouse

pointer. This window is the last line of the panel.

The Select menu has the following selections:

Local Variable This entry is a two-step selection. First, a list of procedure names is popped-up

for the user to select one item. The list consists of all procedures that are defined somewhere

in the main program. Procedures such as library routines that are used, but not defined, are not

included in the list. The first entry in the list is No Selection. If a procedure is selected, the

procedure header, opening brace and closing brace are highlighted, a list of variables declared

local to the selected procedure is popped-up and the list of procedure names is popped-down.

If no procedure is selected, the list of procedure names is popped-down. The Criterion Variable

Window is updated with the selected items.

Global Variable This entry is a two-step selection. First, a list of file names is popped-up for

the user to select one item. The list includes all source files (.c) in the program and all header

files (.h) that are included in the program. The first entry in the list is No Selection. If a file

60

is selected, a list of global variables declared in the selected file is popped-up and the file list

is popped-down. If no file is selected, the file list is popped-down. The Criterion Variable

Window is updated with the selected items.

Mark Proc A list of procedure names is popped-up for the user to select one item. The first

entry in the list is No Selection. If a procedure is selected, the procedure header, opening brace

and closing brace are highlighted. The list is popped-down.

Show Call Tree A list of procedure names is popped-up for the user to select one item. The
first entry in the list is No Selection. If a procedure is selected, the procedure header, opening

brace, closing brace and all the call sites for the selected procedure are highlighted. The

highlighting continues for each procedure containing a highlighted call site until no more

unhighlighted procedures are found. If a call site in controlled by a conditional statement (e.g.,

if or while), the conditional statement is highlighted. The list is popped-down.

Primary This selection pops-up a list of previously computed slices. The first entry in the list

is No Selection. If a slice is selected, it becomes the primary slice and is displayed. The list is

then popped-down.

Secondary This selection pops-up a list of previously computed slices. The first entry in the list

is No Selection. If a slice is selected, it becomes the secondary slice and is displayed. The list

is then popped-down.

The Operation menu has the following selections:

The selection Dice highlights the statements of the primary slice that are not members of the

secondary slice and updates the Text Description Window.

The selection Dice S-P highlights the statements of the secondary slice that are not members of

the primary slice and updates the Text Description Window.

The selection Intersection highlights the statements in both the primary and secondary slice and

updates the Text Description Window.

The selection Union highlights the statements in either the primary or secondary slice and

updates the Text Description Window.

The selection Clear removes all highlighting and updates the Text Description Window.

The Text Window has four actions triggered by the mouse.

1. Clicking a mouse button in the tick bar area scrolls the window to the corresponding area

of the program text.

61

2. The leftmost mouse button computes a primary slice.

3. The middle mouse button computes a secondary slice.

4. The rightmost mouse button highlights the current line.

The source program line under the mouse pointer when the mouse button is clicked specifies the

statement for the slicing criterion. If the specified slicing criterion has already been used to

compute a slice (without interruption), then the slice is not computed, but is retrieved and

displayed.

62

5 System Evaluation & Performance

Unravel was evaluated in the context of reviewing safety system software for quality. The
evaluation considered the size of slices produced, time to compute slices and usability by a

novice user.

The objectives of the evaluation were to determine the following:

1. Are program slices smaller than the original program to an extent that is useful to a

software reviewer evaluating a program?

2. Can program slices be computed quickly enough to be useful?

3. Is unravel usable by a novice user?

Program slicing can help automate two tasks performed by reviewers:

1. A thread check traces a variable chosen for evaluation through the software. This

includes reviewing relevant sections of program source code that currently must be

manually located.

2. Evaluation of functional diversity is accomplished by attempting to determine if two

application functions share source code. If source code is shared by two diverse

application functions, then the reviewer must carefully evaluate the shared code for errors.

The concept of functional diversity is used to defend against common mode failure in

digital systems.

Two examples of typical safety system code were used to test and refine unravel. Demonstration

of unravel using these and other examples were given to software reviewers. The

demonstrations provided useful results that resulted in improvements to the user interface and in

the identification of features to be explained in more depth in the user manual or to be included

in a later version of unravel.

5.1 Capability Analysis

The first example a simplified safety system was developed in three versions. One version was

written to conform to safety system diversity requirements while the other two were deliberately

seeded with common code. Unravel was able to verify and display the presence of the common
code in the seeded versions and show the absence of common code in the diverse version. Only

the conforming version of the example is used in the size and timing analysis.

63

The second example, a commercial sample of safety related code, presented a realistic evaluation

for unravel. While the code was not ANSI C, unravel was used after a few simple changes

brought the commercial code into ANSI compliance. The commercial code was used by a

software reviewer to evaluate the utility of unravel.

Slice Size Ex-1 Example Commercial Example

Size <1% 147 76% 155 37%

1% < Size < 25% 26 14% 135 32%

25% < Size < 50% 10 5% 129 31%

50% < Size 10 5% 0 0%

Total 193 100% 419 100%

Table 5-1: Slice Size Analysis

Table 5-1 presents an analysis of slice sizes for the two example programs. The sizes are

clustered in terms of number of statements in a slice relative to the total program size. For each

example, the number of slices in a category and the percentage of the total slices are given. The

table shows that the user of unravel can expect unravel to eliminate a significant portion of code

from consideration when using program slicing to extract a given computation for examination.

The reviewer directed unravel to compute six slices for both safety and nonsafety related process

variables. The reviewer was able to identify several unanticipated connections between

subsystems. The following observations by the reviewer are relevant to the evaluation of

unravel:

1. Use of unravel in a review should significantly enhance the ability to perform and

analyze string checks^.

2. Unravel is easy to operate for a person with computer skills.

3. Unravel can disclose subtle relationships between safety related and nonsafety related

code that would require a C expert to discover.

5.2 Timing Analysis

This section reports on empirical tests to estimate the time necessary for unravel to compute

program slices for programs of 1000 lines, 10,000 lines and 100,000 lines. The tests are divided

^ A string check is a method for software evaluation that includes locating all source code

statements involved in some computation.

64

into three areas; analyzer, linker and sheer. The tests were performed on three sets of source

code: a simplified safety system, a commercial example, and the unravel source code. Times

are in seconds for the analyzer and linker except as noted. Times for the sheer are in minutes.

5.2.1 Analyzer Timing

Table 5-2 presents the timing results for the simplified example. Results for the commercial code

are presented in Table 5-3 and the unravel source code results are presented in Table 5-4. The

first column is the file name. The next three columns represent three different measures of the

file size. Column two, labeled Lines, is the number of source lines in the file; this is the number
' of lines the programmer sees when editing the file. The next column, labeled CPP LOC, is the

number of lines in the file after expansion by the C preprocessor to insert any include files. This

is the actual input that the slicing component of unravel receives. The last of the three columns,

labeled NCLOC (Non-Commentary Lines Of Code), is the size of the expanded file after

comments and blank lines are removed. The column labeled LIF is the size in bytes of the

analysis files. The data are sorted by NCLOC.

File Lines CPP LOC NCLOC Time LIF

main.c 193 256 143 1 30,595

coolant.c 467 704 320 1 65,161

pressure.c 510 747 342 1 69,529

Total 1270 1707 805 3 165,285

Table 5-2: Analyzer Results for simplified Example

File Lines CPP LOC NCLOC Time LIF

filel.c 545 282 475 1 19,424

file2.c 672 409 587 1 30,292

prog.c 707 1764 638 2 20,981

file3.c 668 1405 651 2 32,221

file4.c 552 1521 655 2 30,178

file5.c 888 1625 703 2 41,754

Total 4032 9006 3709 10 174,850

Table 5-3: Analyzer Results for Commercial Code

65

File Ver Lines CPP LOC NCLOC Time LIF

visit-filter.c 1.1 17 192 48 1 1,825

visit-ctrl.c 1.1 38 213 52 1 2,381

pss-driver.c 1.1 30 532 238 1 3,179

tsummary.c 1.1 198 518 251 1 9,341

summary .c 1.2 185 505 252 1 11,994

err.c 1.1 23 613 264 1 3,355

const.c 1.1 30 620 277 1 3,340

slice_driver.c 1.3 143 500 296 2 11,361

call-tree.c 1.1 94 613 302 1 8,684

sets.c 1.1 302 592 323 1 22,699

parser.c 1.6 141 815 390 1 12,204

history.c 1.1 227 669 411 1 16,487

mem_alloc.c 1.1 167 842 431 1 12,436

auto-slice.c 1.4 216 1,099 471 2 20,088

chain.c 1.3 375 1,025 540 1 27,163

map.c 1.4 614 1,355 711 2 42,176

pss.c 1.3 871 1,373 838 3 58,607

stmt.c 1.7 846 1,401 946 2 57,003

xpr.c 1.3 778 1,513 965 4 63,532

kgram.c 1.6 1,950 2,590 1,872 5 108,902

kscan.c 1.4 2,017 2,734 1,884 6 65,433

slice-load.c 1.5 1,390 2,349 1,351 5 105,134

slice.c 1.6 1,691 2,108 1,642 4 141,898

slink.c 1.3 1,176 1,496 1,131 3 98,524

sym_tab.c 1.3 1,359 1,999 1,279 4 95,638

helpu.c 1.1 76 12,815 5,646 15 8,970

MultiSlice.c 1.2 793 12,723 6,353 32 92,807

analyzer.c 1.2 1,216 14,980 6,673 25 66,713

select.c 1.3 601 14,576 6,208 20 36,968

u.c 1.5 1,383 14,742 6,839 32 86,455

unravel.c 1.4 709 14,089 6,210 59 35,904

Total 19,656 112,191 55,095 3:21 1,330,192

I'able 5-4: Analyzer Results for Unravel

66

These data indicate that it is practical to run the unravel analyzer on programs of at least

100.000 lines of code. Since the definition of lines of code is often controversial, three file size

measures are given. In this analysis we consider NCLOC the most reasonable measure of lines

of code and the most accurate predictor of run time. For the simplified example and the

commercial code, analyzer run time is about 3 or 4 seconds for a thousand lines of NCLOC, a

rate of 250-330 lines per second. Since the analyzer does a single pass over the source code and

linear performance is expected, 100,000 lines of code should be analyzed in about 6:40 minutes

(at 250 lines per second). The 55,095 lines of unravel source code were analyzed in 3:21

minutes; this time agrees with the expected value.

5.2.2 Linker Timing

The unravel linker has two main components: map which scans the analysis files for main
procedures and slink which merges the LIF files of a program into a single LINK file. The

map component of the linker ran in less than 2 seconds on the unravel source files (55,000

lines) and should run in less than 5 seconds on 100,000 lines of code.

The timing results of linking each main program are presented in Table 5-5. The column labeled

Program contains the program name. The source files that must be linked together for the

program are given under Files. The Link Time column gives the time in seconds for the linker

to run on each program. Two programs for unravel are typical. The program u represents

17.000 NCLOC and is linked at the rate of 1,700 lines per second. The program parser

represents about 7,500 NCLOC and is linked at the rate of about 950 lines per second. Since

the linker is a single pass algorithm, and a linear timing relationship is expected, the linker

should be able to link 100,000 lines of code in about 2 minutes.

5.2.3 Slicer Timing

To evaluate the times to compute program slices, criteria were automatically generated by slicing

on the last statement of the main procedure for each global variable and the last statement of the

procedure where a local variable is declared for each local variable. Usually the timing results

produce clusters of slices with similar times. It should be noted that we use these examples as

performance benchmarks as unravel evolves. These results are for unravel version 2.1, different

results are obtained as improvements are made to the slicing algorithm or as bugs are fixed.

The example code provided 193 slicing criteria. Most slices (183) were completed in under 1

second. The remaining ten slices were completed in less than ten seconds.

The commercial example provided 419 slicing criteria. The slicing times divided into four

clusters, 354 slices were completed in under 1 minute. Fifty-eight slices required more than 1

minute but under 5 minutes. Six slices required between 35 minutes to one hour. One slice took

3 hours and 9 minutes.

67

Program Files Link Time Link Size

main main.c coolant.c pressures 1 160,341

prog prog.c filel.c file2.c fileS.c file4.c fileS.c 3 148,479

visit-filter visit-filter.c 1 1,343

visit-ctrl visit-ctrl.

c

1 1,901

unravel unravel.

c

1 33,104

u u.c MultiSlice.c slice.c sets.c history.c

slice-load.c pss.c

10 480,886

tsummary tsummary.c 1 8,760

summary summary.c 1 11,396

slink slink.c 1 96,898

slice_driver slice_driver.c slice.c slice-load.c sets.c pss.c 6 307,815

select select.c 1 33,956

pss-driver parser.c sym_tab.c mem_alloc.c xpr.c

chain.c stmt.c kgram.c kscan.c err.c

8 417,953

map map.c 1 40,940

helpu helpu.

c

1 6,277

call-tree call-tree.c 5 305,616

analyzer analyzer.c 1 63,800

Table 5-5: Linker Results

68

Cluster Time N Slices Percent

1 < 1 104 36

2 1 < r < 12 113 40

3 23 < r < 25 15 5

4 45 < r < 60 13 5

5 60 < t 40 14

Table 5-6: Slicer Results for Unravel Code

The unravel source code generated 834 slicing criteria, 155 global variables and 679 local

variables. Slices were computed for 285 of the criteria, the 155 global variables and 130 local

variables. Table 5-6 presents the results for each cluster size. Times are in minutes.

5.3 Analysis Summary

The software review process as currently implemented is a manual process that is slow, tedious,

and prone to human errors. With unravel, once a software reviewer has identified a variable for

further investigation, the reviewer directs unravel to compute a program slice on the variable.

Instead of examining the entire program, only the statements in the slice need to be examined

by the reviewer. By speeding up the process of locating relevant code for examination by the

reviewer, a larger sample of a commercial product can be inspected with greater confidence that

some relevant section of source code has not been missed.

Once two computations that could be vulnerable to common mode failure have been identified,

program slices can be computed to find statements relevant to each computation. Functional

diversity of the two computations can be evaluated by intersecting slices to show any statements

in common. Source program statements that have potential to cause common mode failure would

be present in the intersection of the program slices. Without any tool, a software reviewer

evaluates the software until it is determined that there is no common code, or that the common
code present will not compromise the mission of the safety critical software.

The analyzer and linker components can process source code of up to 100,000 lines of code in

less than 10 minutes. The linear behavior of the analyzer and linker leads to stable run time

performance. The slicer component does not use a linear algorithm, but rather uses a quadratic

algorithm that can have significant run time variability. The slicer performed well on the

simplified example. Larger programs, such as parser with 7,500 lines, have slices (14%) that

69

can take longer than one hour. It should be noted that there is potential for significant algorithm

improvement. The sheer makes repeated passes over the program until no more changes occur.

The sheer is sensitive to the order in which program statements are analyzed. For example, after

one small change in the sheer code that controls the order of visiting nodes during the slice

computation, the longest time to compute a slice on the commercial code dropped from 10 hours

to 3 hours. Other areas that can be improved include loop analysis and procedure calls.

70

6 References

1. ANSI. American National Standard for Information Systems - Programming Language - C.

Technical Report ANSI X3. 159- 189/FIPS PUB 160, American National Standards Institute, 1430

Broadway New York, New York 10018, December 1989.

2. M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352-357, July

1984.

3. K. Kennedy. A Survey of Data Flow Analysis Techniques. In Steven S. Muchnick and Neil

D. Jones, editors. Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood

Cliffs, New Jersey, 1981.

4. J. R. Lyle and M. D. Weiser. Experiments in slicing-based debugging aids. In Elliot Soloway

and Sitharama Iyengar, editors. Empirical Studies of Programmers. Ablex Publishing

Corporation, Noewood, New Jersey, 1986.

5. K. B. Gallagher and J. R. Lyle. Using Program Slicing in Software Maintenance. IEEE
Transactions on Software Engineering, 17(8):75 1-761, August 1991.

6. M. Weiser. Programmers Use Slicing When Debugging. CACM, 25(7):446-452, July 1982.

7. S. Horwitz, J. Prins, T. Reps. Integrating Non-Interfering Versions of Programs. ACM
Transactions on Programming Languages and Systems, 1 1(3):345-387, July 1989.

8. J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its Use In

Optimization. ACM Transactions on Programming Languages, 9(3):3 19-349, July 1987.

9. FIPS PUB 151-2, "Portable Operating System Interface (POSIX)-System Application Program

Interface [C Language]," U.S. Department of Commerce/National Institute of Standards and

Technology, 1993 May 12.

10. FIPS PUB 158-1, "The User Interface Component of the Application Portability Profile,"

U.S. Department of Commerce/National Institute of Standards and Technology, 1993 October 8.

71

72

Appendix A: LIF Format

#ifndef
#define _lif_h
#define LIF_H_SCCS_ID " @(#)lif.h 1.8 5/23/94 '

/*

*

*

* id
* node -

* pid
* name -

* level-
* addr -

* chain-
* field-
* fid
* offset
* A
* P
* S
* X
* G
* B
* C
* R
*

-k-k'k'k'k'k'k'k'k'k'krk'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'kic'k'k'k'k'k'k'kic'k

*/

define LIF._PROC_START 1 /* 1 (node
,
pid , name

)

*/

define LIF._PROC_END 2 /* 2 (node [, S] [, R])
*/

define LIF._FORMAL_ID 3 /* 3 (id, name [, A] [, P]

)

*/

define LIF._LOCAL_ID 4 /* 4 (id, name [, S] [, P] [, X] [, A]

)

*/

define LIF._GLOBAL_ID 5 /* 5 (id, name [, S] [, P] [,X] [, A]

)

*/

define LIF._FILE 6 /* 6 (f ile_id, file_name

)

*/

define LIF._REF 7 /* 7 (node, id[, level]

)

*/

define LIF._DEF 8 /* 8 (node, id[, level]

)

*/

define LIF._GREF 9 /* 9 (node, id [, level]

)

*/

define LIF._GDEF 10 /* 10 (node , id [, level]

)

*/

define LIF._CALL_START 11 /* 11 (node, pid) */

define LIF._ACTUAL_SEP 12 /* * * * void *** */

define LIF._CALL_END 13 /* 13 *** void *** */

define LIF._RETURN 14 /* 14 (node ,

1

0) */

define LIF._GOTO 15 /* 15 (node,

G

BlC) */

define LIF._SUCC 16 /* 16 (from_node, to_node) */

LIF FORMAT
variable id
source program statement (or fragment)
procedure id
variable or procedure name
indirection level
address number
chain number of pointer chain on a node
sequence number of field in chain
field offset in struct
number of fields in a declared structure variable
is an array
is a pointer
static object
is declared extern
is a goto statement
is a break statement
is a continue statement
returns an expression value

73

define LIF_.REQUIRES 17 /* 17 (required„node , node [, to node]')*/
define LIF__SOURCE_MAP 18 /* 18 (node, fr„l, fr„c, to„l, to_.c) */

define LIF_.CHAIN 19 /* 19 (chain, id) */

define LIF_.GCHAIN 20 /* 20 (chain, id) */

define LIF_.FIELD 21 /* 21 (chain, field, fid, name) */

define LIF_.CREF 22 /* 22 (node , chain) */

define LIF_.CDEF 23 /* 23 (node , chain) */

define LIF_.AREF 24 /* 24 (node , addr

)

*/

define LIF_.ADDRESS 25 /* 25 (addr
,
pid, id) */

define LIF_.STRUCT 26 /* 26 (pid, id, offset) */

#endif /* _lif_h */

74

Appendix B: YACC Grammar

B.l Expressions

%%

primary_expr

: identifier

I CONSTANT
I string_literal_list

I
’(’ exprXX ’)’

string_literal_list

: STRING.LITERAL
I string_literal_list STRING_LrrERAL

postfix_expr

: primary_expr

I postfix_expr ’[’ exprXX ’]’

I postfix_expr ’(’ ’)’

I postfix_expr ’(’ argument_expr_list ’)’

I postfix_expr identifier

I postfix_expr PTR_OP identifier

I postfix_expr INC_OP
I postfix_expr DEC_OP
9

argument_expr_list

: assignment_expr

I argument_expr_list assignment_expr

unary_expr

: postfix_expr

I INC_OP unary_expr

I DEC_OP unary_expr

I unary_operator cast_expr

I SIZEOF unary_expr

I SIZEOF ’(’ type.name ’)’

unary_operator :
’&’

I I

’+’
I I I

’!’

9

binary_operator :
’&’

I I

’+’
I I I

’!’
I V’ I I

’«’
I

’»’
I

’<’
I

’>’
I

’<=’
I

’>=’
I

’==’
I

’!=’
I

’A’
I I ’ll’

cast_expr

; unary_expr

I

’(’ type_name ’)’ cast_expr

9

binary_expr

: cast_expr

I binary_expr binary_operator cast_expr

9

conditional_expr

: binary_expr

I binary_expr ’?’ expr conditional_expr

assignment_expr

: conditional_expr

I unary_expr assignment_operator

assignment_expr

9

assignment_operator

:
’=’

I MUL_ASSIGN I DIV_ASSIGN
I MOD_ASSIGN
I SUB_ASSIGN I LEFT_ASSIGN
I RIGHT_ASSIGN
I XOR.ASSIGN I OR_ASSIGN
I ADD ASSIGN I AND ASSIGN

expr

75

: exprXX

exprXX

: assignment_expr

I expr assignment_expr

constant_expr

: conditional_expr

y

B.2 Declarations

declaration

: declaration_specifiers

I declaration_specifiers init_declarator_list
y , y

declaration_specifiers

: storage_class_specifier

I storage_class_specifier

declaration_specifiers

I type_specifier

I type_specifier declaration_specifiers

y

init_declarator_list

: init_declarator

I init_declarator_list init_declarator

y

init_declarator

: declarator

I declarator ’=’ initializer

storage_class_specifier

: TYPEDEF I EXTERN I STATIC
I AUTO I REGISTER

type_specifier

: CHAR I SHORT I E^T I LONG
I SIGNED 1 UNSIGNED
I DOUBLE I CONST I VOLATILE
I FLOAT ITYPE_NAME
I struct_or_union_specifier

I enum_specifier I VOID
5

struct_or_union_specifier

: struct_or_union identifier

struct_declaration_list

I struct_or_union

’{’ struct_declaration_list

I struct or union identifier

struct_or_union

: STRUCT I UNION

struct_declaration_list

: struct_declaration

I struct declaration list struct declaration

struct_declaration

: type_specifier_list struct_declarator_list

struct_declarator_list

: struct_declarator

I struct_declarator_list struct_declarator

struct_declarator

: declarator

I constant_expr

I declarator constant_expr

enum_specifier

: ENUM enumerator_list

76

I ENUM identifier ’ {
’ enumerator_list ’

}

’

I ENUM identifier

enumerator_list

: enumerator

I enumerator_list enumerator

I enumerator_list

enumerator

: identifier

I identifier ’=’ constant_expr

declarator

: declarator2

I pointer declarator2

parms_next : /* empty */

declarator2

: identifier

I
’(’ declarator ’)’

I declarator2 ’[’ ’]’

I declarator2 ’[’ constant_expr ’]’

I declarator2 parms_next ’(’ ’)’

I declarator2 parms_next

’(’ parameter_type_list ’)’

I declarator2 parms_next

’(’ parameter_identifier_list ’)’

y

pointer
.

I type_specifier_list

I pointer

I type_specifier_list pointer

y

type_specifier_list

: type_specifier

I type_specifier_list type_specifier

y

parameter_identifier_list

: identifier_list

y

identifier_list

: identifier

I identifier_list identifier

y

parameter_type_list

: parameter_list

I parameter_list

y

parameter_list

: parameter_declaration

I parameter_list parameter_declaration

y

parameter_declaration

: type_specifier_list declarator

I REGISTER type_specifier_list

declarator

I type_name

y

type_name

: type_specifier_list

I type_specifier_list abstract_declarator

y

abstract_declarator

:
pointer

1 abstract_declarator2

I pointer abstract_declarator2

abstract_declarator2

: abstract_declarator ’)’

77

I

’[’ ’]’

I
’[’ constant_expr ’]’

I abstract_declarator2 ’[’ ’]’

I abstract_declarator2 ’[’ constant_expr ’]’

I

’(’ ’)’

I
’(’ parameter_type_list ’)’

I abstract_declarator2 parms_next ’(’ ’)’

I abstract_declarator2 parms_next

’(’ parameter_type_list ’)’

initializer

: assignment_expr
!’{’ initializerjist

I initializer_list

initializerjist

: initializer

I initializerjist initializer

B.3 Statements

statement

: labeled_statement

I compound_statement

I expression_statement

I selection_statement

I iteration_statement

I jump_statement

labeled_statement

: identifier statement

I CASE constant_expr statement

1 DEFAULT statement

decl_start

: /* empty */

compound_statement

:

I
’ {

’ statement_list ’
}

’

I
’ {

’ decl_start decl_end ’
}

’

r {
’ decl_start decl_end statementJist ’

}

’

9

declarationjist

: declaration

! declarationjist declaration

statementjist

: statement

I statement list statement

expression_statement
• 9.9
• 9

I expr

9

selection_statement

: IF ’(’ expr ’)’ statement

I IF ’(’ expr ’)’ statement ELSE statement

I SWITCH ’(’ expr ’)’ statement

9

oexpr : /* optional */

I expr

decl_end

: declaration list

iteration_statement

: WHILE ’(’ expr ’)’ statement

I DO statement WHILE ’(’ expr ’)’

I FOR ’(’ oexpr oexpr oexpr ’)’

statement

78

; identifier

: IDENTIFIER
jump_statement

;

: GOTO identifier

I CONTINUE %%
I BREAK
I RETURN
I RETURN expr

B.4 External Objects

program ;

I file

file

: extemal_definition

I file external definition

extemal_definition

: function_definition

I declaration

function_start

: /* empty */

function_defmition

: declarator function_start

I declarator function_start function_body

I declaration_specifiers declarator

function_start function_body

function_body

: compound_statement

1 declaration_list compound_statement

79

r

wn.;
:^"'-^f:5^ lift

Jimii

JS'^"
''

’i -if
' ''Mwtiw^aKff. vy .

^ ;?tt

4#
m

V^* »E*?J:%4a

ipmijdO

(0'-' fm'liMi
;i!

-'"
.,3i|tH«Bi«fe5,t'-

''^M

la
-Si-

'-W
m. IK.

0" iC.

.

'(P

O# W'^iSiiiSiMSr:'

iti»«fefti^!>fo'..f>Git:^T'^^ '^4'

® ^ (WXiB^lwbl
•

'ir

«*t‘ ’A.'tv:::4s«w>»»-#^’' J

!£l£

lit ''':':^^-:ii|

'

,; !*f
''

v.'i'S

_ 3^1
'sa.^

., a,
.'. " w

?i’’!' .^Ir

'^Vg' .^^,_4jbiJ3mll' ,

,

ti(in

'•A t

.*#i«a*s«wiJ^ IT

•^wia«»#-bi'm»ogoisifc}(j^^
'

I iSb iti»ktm<t WHiiu^-'f ’ wJjw •«, ?a'

l-C*V.

y-

‘f-

r

I

i

i

