

NIST PUBLICATIONS

NISTIR 5667 V3

A Study of Potential Applications of Automation and Robotics Technology in Construction, Maintenance and Operation of Highway Systems: A Final Report

> Ernest Kent Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Bldg. 220 Rm. B124 Gaithersburg, MD 20899

QC 100 .U56 NO.5667 1995 V 3

.

I

A Study of Potential Applications of Automation and Robotics Technology in Construction, Maintenance and Operation of Highway Systems: A Final Report

Ernest Kent Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Bldg. 220 Rm. B124 Gaithersburg, MD 20899

June 1995

U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director

TABLE OF CONTENTS

Volume: 1

Acknowledgments	Section 1
Executive Summary	2
Overview of the Study	3
Summary of Results and Recommendations	4
White Papers on Selected Topics	5
Bibliographic Study	6
Volume: 2 Technology Proposals Submitted for Evaluation	7
CERF Cost/Benefits Analysis of Technology Proposals Measures of Merit	8
Volume: 3 ***This Volume***	
1st Workshop Report: Industry Views and Requirements	9
2nd Workshop Report: Technical State of the Art	1 0
Volume: 4	
Final Proposals for Potential Research Efforts	11

FINAL REPORT

VOLUME: 3

To: FEDERAL HIGHWAY ADMINISTRATION

Prepared by:

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Dr. Ernest Kent

SECTION: 9

1ST WORKSHOP REPORT: INDUSTRY VIEWS AND REQUIREMENTS

Automation/Robotics For Road Construction, Maintenance And Operations Workshop

November 4, 1992

TABLE OF CONTENTS

Section	<u>Page</u>
PURPOSE	1
BACKGROUND	1
A PRECIS OF THE WORKSHOP. Dr. Ernie Kent. Dr. Charles Woo. Dr. Richard Wright. Goals And Objectives. Dr. Leonhard Bernold. Mr. Thomas Pasko. Brainstorming Session With Dr. Richard Wright. Working Group 1. Working Group 2. Working Group 3. Working Group 4.	5 6 6 7 .11 .13 .17 .18 .19 .20 .21
FINAL PLENARY SESSION Consensus For An Ongoing Process Ernie Kent: Final Words	.21 .23 .23
APPENDIX A: LIST OF WORKSHOP ATTENDEES	.24
APPENDIX B: LITERATURE AVAILABLE AT NIST	.33
APPENDIX C: DR. RICHARD WRIGHT: CHARTS	
APPENDIX D: DR. LEONHARD BERNOLD: CHARTS	
APPENDIX E: MR. THOMAS PASKO: CHARTS	

PURPOSE

On November 4, 1992, the first Workshop on Automation/Robotics for Road Construction, Maintenance, and Operations was sponsored by the Office of Advanced Research of the Federal Highway Administration (FHWA) and hosted by the Robot Systems Division of the National Institute of Standards and Technology (NIST) at Gaithersburg, Maryland. The purpose of the Workshop was to bring together experts from government, industry, and academia, including construction contractors, equipment manufacturers, federal and state highway officials, and researchers, to discuss the prospective use of automation/robotics in road construction, maintenance, and operations. (A list of attendees can be found in **Appendix A**).

The Workshop was to serve as the initial gathering in a series of year-long events to inaugurate the new FHWA research program in automation and robotics. It was a means to provide the technology developers with a reality check from the users, the highway construction, maintenance, and operations experts. It was an initial mechanism to examine the requirements and opportunities for automation/robotics in highway systems.

The purpose of this report is to document the workshop, including presentations, participant discussions, and the results of working group deliberations. A videotape of the Workshop is available at NIST.

BACKGROUND

Automation technology promises to increase safety and productivity while reducing costs and the adverse impact of work sites on traffic. The new FHWA automation/robotics program emphasizes finding near-term solutions to pressing problems and fielding useful equipment.

In recent years there has been significant progress in the development of Government and commercial software and hardware systems for various automation applications. Advanced sensor systems for inspection, automated databases and program management software, and robotic vehicles are some of the new automation technology which promises to benefit road construction, maintenance, and repair.

For example, robotics for military applications, including the development robotic excavators, dozers, and inspection vehicles with various kinds of sensors, can be modified for road construction applications. Robotic systems have also been developed for coal mining, hazardous waste cleanup, and building construction. In 1990, the California Department of

Transportation (CALTRANS) initiated the Automated Highway Maintenance and Construction Technology Program; the Japanese have had active programs for nearly ten years. Automation of road construction, maintenance, and operations can increase safety (highway workers suffer more than 5,000 injuries and nearly 800 deaths per year), productivity, and quality, while reducing costs and the adverse impact of work sites on traffic.

Potential functions include:

Construction:

- * Clearing/sediment control
- * Earthwork
- * Shoring
- * Paving
- * Marine
- * Bridges
- * Utilities
- * Signing
- * Rehabilitation

Maintenance:

- * Concrete patching
- * Repaving
- * Resigning
- * Bridge/tunnel repair
- * Plowing/sweeping
- * Painting/striping
- * Mowing
- * Inspection of roads and bridges

Operations:

- * Special traffic control for construction
- * Highway system management
- * Safety management
- * Incident management

CALTRANS, for example, has been developing automation systems for road maintenance, including: automated pavement marking, automated paint striping, automated litter collection, and automated crack sealing.

Other near-term robotics projects under discussion include: a flag robot for temporary traffic control; a robot for painting road letters; a robot for placing and removing traffic cones; a robot for constructing sound isolation walls; a robot for clearing hazardous material after accidents.

Automation could connect sensors and equipment on a job site with project databases and management software. For example, as an automated excavator performs its job, it could report its movements and accomplishments to a database which, in turn, automatically updates project progress records and revises, if necessary, the work plan. Inspection of road surfaces and bridges could be accomplished automatically with, video and other sensors, using automated sensor processing techniques. The results of the inspection would be organized and entered into a database automatically as the inspection took place. The inspection itself could be accomplished using a robotic vehicle.

There has been research and development in applications areas relevant to road construction, maintenance and operations, but much of the work focuses on building construction, or military applications, or coal mining (pertinent literature, now at NIST, is listed in **Appendix B**). A more focused effort on highway applications is needed, so the Transportation Research Board is offering their first sessions dedicated to road construction robotics and automation in their 72nd annual meeting (January 1993). Examples of previous work on automation/robotics for road and bridge construction, maintenance, and operations include:

* Expert System for Management of Low Volume Flexible Pavements * Artificial Intelligence To Locate And Repair Potholes * Automated Surveying * Automated Position And Control Systems Using Lasers And Electromagnetic Signals * Bar Code Applications in Construction * Robotic Excavation * Artificial Intelligence And Computer Simulation To Plan And Control Earthmoving Operations * Computer Aided Rigging Design System * Object-Oriented Programming In Robotics Research For Excavation * Pavement Distress Video Imager To Quantify Pavement Cracking From Video Images * An Expert System For Optimal Tower Crane Selection And Placement * A Knowledge-Based Approach To Construction Coordination * An Object-Oriented Simulation System for Construction Process Planning * Intelligent Database Applications On Signal Maintenance Activities * Knowledge Representation for Fatigue Evaluation * A Computer Assisted System For Construction Robot Implementation Logistics * Knowledge Elicitation Techniques For Construction Scheduling * Expert Systems for Bridge Monitoring * Adaptive Control for Robotic Rebar Bending * Construction Schedule Generation Using AI Tools * Automated Pavement Surface Distress Evaluation

* Computer Analysis of Segmentally Erected Prestressed Concrete Bridges * An Expert System For Design And Analysis Of Highway Bridges * Investigation Of The Bridge Vehicle/Superstructure Interaction Problem Via Computer-Based Methodology * Database Design For Seismic Evaluation Of The San Francisco Bay Bridge * A Construction Expert System For The Preliminary Design Of Reinforced Concrete Structures * Automatic Pavement-Distress-Survey System * Highway Pavement Surfaces Reconstruction by Moire Interferometry * A Field Prototype of a Robotic Pavement Crack Sealing System * A Design for Automated Pavement Crack Sealing * Integration of Diverse Technologies for Pavement Sensing * Force Feedback Excavator and Material Handling System * Automated Pavement Crack Filler * Perception and Control for Automated Pavement Crack Sealing * Adaptive Control for Robotic Backhoe Excavation * Subsurface Pavement Structure Inventory Using Ground Penetrating Radar and a Bore Hole Camera * A Data Base Program for Preparing and Reporting Concrete Mix Designs * Pavement Image Processing Using Neural Networks * An Expert System For Construction Contract Claims * Analysis and Generation of Pavement Distress Images Using Fractals * Measuring Highway Inventory Features Using Stereoscopic Imaging System * Using Geographic Information Systems For Highway Maintenance * Simulation for Construction Planning and Control * Automated Bridge Plans By Computer Aided Software * Electronic Communication Between Project Participants * CAD-Integrated Rebar Bending * Knowledge Based Expert System for Construction Scheduling * Pavement Design Using An Expert System * A Database Approach for CAD/KBES Integration for Construction Planning * Real-Time Project Tracking * A Relational Database For Long-Span Highway Bridges * A Construction Information Management System * Surface Condition Expert System For Pavement Rehabilitation Planning * Digital Imaging Concepts And Applications In Pavement Management * An Expert System for Pavement Rehabilitation Decision Making * An Expert System for Contractor Prequalification * Generic Framework For Evaluation Of Multiple Construction Robots * Framework for Construction Robot Fleet Management System * A Pavement Management Information System for Evaluating

Pavements and Setting Priorities for Maintenance * Autonomous Robot Excavator * Integrating Data Bases For Executing Automated Construction Tasks * Computer Integration For Automated And Flexible Construction Systems * Integrating Voice Recognition Systems with the Collection of Project Control Data * Sensors And Expert Systems In Production Optimization Of Earthmoving Scrapers * Control System Architecture for Unmanned Ground Vehicles * Teleoperated Excavator * A Graphical Interface For Curved Steel Girder Bridges * An Expert System for Diagnosing and Repairing Cracks in Castin-Place Concrete Structures * Probabilistic Scheduling in Tunneling * A Database For Tunnel Planning And Estimating * Kinematics and Trajectory Planning for Robotic Excavation * Design Considerations For Automated Crack sealing Machinery * A Computer System For Highway Bridge Rating And Fatigue Life Analysis * Knowledge-Based Construction Scheduling * A Hypertext Database for Asphalt Paving * A Knowledge-Based Expert System for Quality Assurance of Concrete * New Capability for Remote Controlled Excavation

But it is really up to the users of the new technology (the highway contractors and departments) to tell the developers (the automation experts) what they really want - what will make a crucial difference on the job site. And the automation equipment must be practical - it must do the job better, faster, or cheaper.

A PRECIS OF THE WORKSHOP

The following description of the Workshop paraphrases the various presenters and participants in an attempt to summarize the key issues discussed.

Dr. Ernie Kent

Dr. Ernie Kent, of the Robot Systems Division of NIST, welcomed the representatives of the highway and scientific communities attending the Workshop. The goal of the Workshop, he stated, was to allow the technical community to learn what are the important issues from the perspective of the highway community. The principal work of the day will fall on the highway community.

Dr. Kent introduced Bob Finkelstein, of Robotic Technology Inc., who helped organize the Workshop. All problems and complaints should be directed at Bob, suggested Dr. Kent.

Dr, Kent then introduced the moderator for the Workshop, Dr. Richard Wright, Director of the Building and Fire Research Laboratory at NIST, Dr. Charles Woo, Research Manager For Robotics at the Office of Advanced Research of the FHWA, sponsor of the Workshop, and Mr. Tom Pasko, Director of the Office of Advanced Research of the FHWA.

Dr.Charles Woo

Dr. Woo, in his introductory remarks, noted that automation, in the context of interest, should be all-inclusive, including the entire life-cycle of the highway system. Robotics technology promises to improve safety and increase productivity, and the technology is sufficiently established to warrant serious consideration for use in highway construction, maintenance, and operations.

Robotics can be used in all phases of highway construction: production of highway materials, construction of highways (including quality control), highway maintenance and operations (including inspection and monitoring) - especially in environments which are hazardous or difficult to access.

Thus far, use of this technology in highway transportation has been limited due to a lack of understanding of the technology and a lack of overall research planning for applications of this technology to highway transportation. Therefore, the FHWA is sponsoring a study to be conducted by NIST, an in-depth evaluation of the feasibility of robotics to highway construction, maintenance, and operations. It will include an assessment of the current technology, as well as the development of new highway improvements and methods. The study does not include robotics applications to the Intelligent Vehicle Highway System (IVHS). The DoT IVHS program has its own robotics applications research.

The first step in this study is to hold this one-day Workshop of knowledgeable industry experts, construction contractors, and equipment manufacturers, for a strategic plan of research. We look forward to a frank exchange of opinions and ideas by all participants.

Dr. Richard Wright

The procedure for the Workshop is:

6

(1) There will be a few words about the objectives and how they were organized.

(2) Dr. Leonhard Bernold will give his view of the state-of-theart of automation and robotics technology - a view to be used in subsequent discussions to describe how these technical abilities can be directed to support the needs of highway engineering through the whole life cycle (design, construction, operation, maintenance, and repair. The FHWA wants to understand - and we want to understand - from the users how robotics and automation can respond to the needs of the highway community.

(3) We will have a plenary issues-raising session, to look at candidate issues to be explored for the effective application of automation and robotics.

(4) We will separate into working groups, which will use their judgement and information from the plenary session, to point out what they think are the issues and how the issues should be addressed by the FHWA and highway community working together.

(5) The working groups will then report to the plenary session, and everyone will seek to synthesize, out of the five views of the five working groups, some reasonable consensus as to the most important issues to be explored for bringing automation and robotics into effective use in the highway system.

The Workshop is being videotaped, but opinions will not be ascribed to specific individuals in order to encourage participants to be candid.

Goals And Objectives

It is not only the hardware moving things on the work site that is important, but also the information management that takes place throughout the whole highway process.

A previous workshop six years ago at NIST, concerning automation in construction in large scale assemble, was similar in purpose to this one but focused on shipbuilding, building construction, aircraft manufacturing and the like. The technology that emerged as the top priority in that workshop was a site positioning system - a system that would automatically record, in real-time, on the site, what is there and where is it. It came to the top of the list because we need this system whether or not there is a robot on the site. Likewise, a highway engineer would find it valuable to know, any time day or night, what is on the site, what condition it is in, and where it is being stored. The Construction Industry Institute and other organizations are now working to bring this technology to reality.

The objectives of this Workshop (please see Appendix C) are to:

* Define the functional needs that can be met by automation and robotics, such as obvious needs for safety.

* Define technological developments required to meet these needs. Some technology is available off-the-shelf and some is not yet ready. Highway engineering is not a low-tech industry, and it has challenging informational requirements.

* Define organizational and institutional changes needed to exploit automation and robotics for highways. Institutional and organizational problems must be addressed before we can take advantage of the capabilities of automation in the highway enterprise. That is why it is important to have highway system people here to address institutional barriers, which are just as important as the technical barriers, and why we need to start early on overcoming them. We need to be sensitive to these kinds of issues - and to legal issues as well.

In the typical progression of innovation, a process which is relevant to the introduction of new technology to the highway system, there are three major steps:

(1) An existing product or process is replaced with innovation.

(2) A product or process is modified to exploit the potential of innovation.

(3) Roles and responsibilities are modified to fit the new environment.

For example, we can replace the flagman with a robot, where the immediate advantage is that the robot can be hit by a car but leave no widow. This type of substitution is only the first step in innovation because once you get new technology you want to change products or processes to fully exploit the new technology. For example, welding replaced rivets, but the connections still looked as if they were to be riveted or bolted. But after people got comfortable with the new technology, the nature and shapes of the connections were changed to take advantage of the welding process. Another example: automobiles were, at first, really horseless carriages.

Hopefully, in addition to seeing how we can replace existing equipment with robotics and automation, we can get second thoughts about how to change whole procedures and products to take advantage of robotics technologies.

We may not get to it this meeting, but when we introduce new technologies, and modify products and processes to exploit these

8

technologies, we begin to see that organizations, roles, and responsibilities have to change to deal with the technologies. For example, in highway bridge engineering, we have gone beyond the point where an engineer designs the bridge and a contractor builds it. The contractor now introduces a new design and the final product is a result of synthesis. With improved information flow and techniques for the design, construction, operation, and maintenance of highways, we will see changes in the way highway systems are procured and managed. This is a bit beyond our charter for today, but we should keep it in mind because there are important issues here for the FHWA to attend to early in the program.

Dr. Leonhard Bernold

It is impossible to present the state-of-the-art of robotics in the time available. The goal is to share some of the important lessons learned, to present a framework with a global, rather than local, view. We will highlight some of the needs identified, highlight some basic concepts, and provide a common sense approach, mixed with some far-out ideas because it doesn't hurt to dream (please see the Charts in **Appendix D**).

There are many definitions of automation, but it doesn't really matter which one picks. One motivation to automate is safety, but what is the broad issue? Back injury is one of the most crucial, costly safety issues. By far back injuries are greatest percentage of injuries (over 24% - the next highest, finger or knee injuries, are at about 7%), and the cost is horrendous. The average weight of cement bags is 94 pounds, while a man can lift 60-65 pounds on a regular basis. Technology can be used so people do not have to lift, as in Germany where there is a mechanical slave that moves bricks for workers.

Automation, in addition to providing safe and humane workplaces, reducing waste, supporting workers, providing consistently high quality, and increasing productivity, can provide other benefits to mankind, such as aesthetics - beauty and art. Robots can, for example, make stone mosaics more affordable so that can be used more widely.

But automating a mess just leads to an automated mess. Processes and facilities need to be reorganized to accommodate automation, and just the reorganization itself can increase productivity by improving the flow of materials and reducing waste - <u>before</u> any robots are actually introduced. As an example of a mess, just consider a typical construction site where rebars are scattered all over the site.

There are several steps in the life-cycle of data and objects of

construction which are amenable to automation: need; concept studies; design/engineering; planning/detailing; procurement; construction; operation; rehabilitation; operation; and demolition. Streamlined material and data flows can be achieved with enhanced electronic and mechanical systems having suitable computer interfaces. For example, rebar bending, which is currently a manual process, can be automated on a conventional rebar bending table with a computer-controlled system using sensory feedback from the bending process and motor control of the bending process. But this system can be expanded to automate process planning, to include information on where and when the bars are needed. We need to look at automating the entire system, not just the bending of the bar.

With computer-aided design and drafting, and automated process planning, we can eliminate some activities and consequent delays in the electronic data flow in tasks preceding construction, operation, and maintenance. At the construction site, where there are robotic excavators and the like, robotic systems should be linked to the data stream to guide the work. Physical systems (robotic excavators and dozers, for example) and processes should be linked together and the data stream: this is the dream.

Large robotic systems, like excavators (which are being developed in Japan), can work accurately and precisely using site measurement and position techniques, such as provided by laser positioning systems. There is immediate feedback from the excavator as to where it is and what it is doing. Such systems can get people out of ditches, which is a very dangerous environment, and increase productivity. NIST, for example, has the SPIDER robotic crane which can be used in road construction.

There are also simple things which can be automated to support the worker, such as a smart nailer. It incorporates a stud sensor to allow the nailer to find the stud and drive the nail into it. It allows an inexperienced worker to perform as if he were a skilled craftsman. Skilled craftsmen do not benefit much from such technology, but less skilled workers improve considerably.

Bar codes are a tremendous technology with lots of opportunities in road construction, including data entry, tracking of materials, and bridge maintenance. Speech recognition and penbased computing, are useful automation tools for people who don't like to type or write, like some construction foremen.

Prototyping is very important. Get prototypes to the field to serve as catalysts, especially for people who are reluctant to change, and to generate synergy among different individuals and groups.

To achieve competence, commitment, and effectiveness in the introduction of automation and robotics for highway applications, government, industry, and academia must work together, perhaps for 10, 20, or 30 years. Government must provide leadership. In academia, students, excited by the technology, can work with industry performing useful research with practical results based on actual field experience.

In summary:

* Automation should start with cleaning up the mess.

* Automation should be based on a global, rather than a local, view.

* An electronic data trail can serve as a direct thread for thinking globally.

* Multi-disciplined, multi-organizational technology and processes should be emphasized.

* Many inexpensive prototypes and field types should be employed to get the technology rapidly into the hands of the users, to get them excited and energized.

Mr. Thomas Pasko

The Office of Advanced Research (please see **Appendix E**) is interested in making big improvements, with respect to the infrastructure, in productivity and effectiveness. For example, in the late 1950s we switched from the old form riding concrete placement equipment, which had a paving crew of about 100 people. We developed the slip form paver and the paving crew was reduced to about 25 people. Now we would like to reduce the 25 people to 10, if we can do it.

With highways, we have a disaggregated market. There is an incorrect impression that the FHWA owns all the roads and order the use of new technology. It doesn't work that way. FHWA owns 6% of the roads, like the GW Parkway and Dulles Access Road. The FHWA works with the states, which own 23% of the roads. The remaining 71% is owned by 39,000 local units (such as counties, municipalities, and townships). This disaggregated market must be sold on the technology as well - 39,000 units, plus the district offices of the states, plus the regional offices of the FHWA. It is very difficult to get anything new into practice. The technology is very traditional and brute-force oriented.

There are about 600,000 people in the various highway departments and FHWA, plus 39,000 organizations as well.

There is a federal aid system which gets funding into 22% of the highways, so 78% have no federal money at all. So FHWA's influence is limited. (But the 22% handle 80% of the traffic federal aid roads are high-value). FHWA works primarily through a federal aid partnership: federal funding goes to states, which then match the funding. The result is like having 50 countries doing their own thing.

The FHWA encourages research and tries to get people to use it. Often they will use new technology when there are financial incentives, and then revert back to what they are comfortable with when the incentives are gone.

The Office of Advanced Research includes the areas of: national service center; decision analysis in transportation; energy conservation related technology; high performance materials; self-monitoring systems; computer driven technologies; and robots/automation/man-machines. The latter includes the use of robots and automation for production, construction, maintenance, continuous quality control, and hazardous environments.

As an indication of what the states think, consider one recent, important report, from Purdue University, on the use of advanced technologies in the Indiana Department of Transportation. It noted that very few states actually have projects in robotics. It is getting very little emphasis, except in California. Most of the research and development is in computerized design, analysis, and planning; database management and information systems; and highway traffic operations and management. In terms of the actual use of computer technology in State DoTs (as of 1985), there was no robotics or artificial intelligence in use. Database management topped the list of computer use.

There are many possible barriers to the adoption of advanced technology. Key barriers, as determined by survey, are: high initial cost; lack of trained personnel; high operation and maintenance cost; general resistance to change; uncertainty about potential benefits; and uncertainty about the type of technologies that can be used.

As an egregious example of a hazardous job which might be automated, and which was photographed, consider a worker who is sitting on the skids of a hovering helicopter repairing an electrical high-tension wire.

Unmanned, miniature helicopters have been used by the FHWA to inspect bridges (and CALTRANS has a similar project). The military has advanced, high-tech unmanned air vehicles (UAVs) while the FHWA has low-tech ones. A technology gap exists. We must change paradigms and procedures to adopt military systems for highway use.

We can create "pull" for technology. We want to have intergovernmental activities, like with NIST, to create synergies, to use new technology, such as automation and robotics, in areas that the government controls. We can get around building codes and liability issues, and the like, by using new technology in government-owned facilities. The U.S. government owns 230,000 miles of highway, supports 270,000 bridges, owns 417,000 buildings, etc. We can do many experimental projects on government facilities, and many products can be made in government facilities.

Brainstorming Session With Dr. Richard Wright

We would like to generate ideas for consideration in the working groups. As a starting point for discussions, we will first consider needs or requirements for highway systems performance, followed by the opportunities for automation/robotics in highway systems.

Requirements for highway system performance might consist of:

- * Economy (in terms of life cycle perspective, not just first costs)
- * Functionality (how well do they really serve the needs of the users of the highway system?)
- * Durability (do they maintain their initial properties effectively over time?)
- * Time Savings (time is money, so reduce the times for design, construction, operations, and maintenance)
- * Safety (most likely to gain substantial attention)
- * Environment (the system should be environmentally benign)
- * Regulatory Compliance (look at ways robotics/automation can reduce the burden of dealing with regulations)

What are the requirements from the point of view of state and local governments, FHWA, materials suppliers, contractors, etc.? Which are the most important? Which are easiest to do? Most important to CALTRANS is safety - to get workers off the road.

Opportunities in automation/robotics include:

* Measurement and site data acquisition

* Automation of quality assurance and inspection

- * Materials handling and management
- * Earth moving, fabrication, placement, finishing
- * integrated project information systems
- * Project management
- * Operations, maintenance, repair

The Workshop will separate into five heterogenous groups. The objectives of the groups will be to determine: on which priorities, with respect to road construction, maintenance, and operation, automation/robotics should focus, and what are the most important issues. Each group will report its findings to the rest of the Workshop.

Before separating into groups, the plenary session will first generate an initial list of the most important **requirements** or needs for the groups to consider:

* Safety

* Durability (which is related to safety - do it carefully and it lasts a long time)

* Simple to regulate (so contractors will use them)

* Performance-based requirements (define system requirements to use automation/robotics as a given; characterize user's <u>needs</u>)

* Open systems

* Able to define clear economic benefits (performance-related specifications; efficient procedures by contractors; better materials)

* Evolutionary, not revolutionary, approach (near-term usability; no esoteric systems)

* New approaches (such as high-pressure water instead of backhoes)

* Labor considerations (education/training in use of the technology; potential job losses)

* Life-cycle cost/benefits

* Political, as well as institutional and structural, barriers to acceptance of new technology

* Minimum initial cost (lowest initial cost drives new programs, not life cycle costs)

* Jobs

* Labor costs/quality

* Workers want better equipment, better man/machine interface (more done with less effort; systems must work well with real people)

* Leverage DoE, DoD, European, and Japan robotics programs

* Education/retraining (for enhancing labor pool)

* Equipment maintenance and repair (requirements for new systems)

* Demonstrate to contractor he can make money - give confidence in technology (can't be just marginally beneficial)

* Investment in R&D/technology by industry and government (require that advanced technology be used on projects; carrot better than stick?; cost sharing of technology demonstrations; encourage innovation with procurement of systems)

* Establish a network of stakeholders for this technology

* Need to reduce risk to initial users of new technology (capital risk; liability risk; how to spread risk equitably)

* Determine what makes the technology economic and attractive to users (such as improving the performance or cost of new workers; new people needed in the trade who can do a good job; contractors are concerned with *near-term* costs because they need to stay in business)

* Requirements to force use of robotic technology - driving forces (specifications which imply the use of certain technology, as in Japan where companies must show they invest in R&D in order to get contracts)

* Historical drivers are cost, safety, and health

* Not Invented Here (NIH) syndrome must be overcome

* Perhaps the U.S. should adopt European model: non-adversarial relationships; government, industry, and academia; partnering (but there are questions of scale - the U.S. has smaller construction companies than in Europe)

The plenary session will now generate a list of potential

opportunities, with respect to the introduction of robotics/automation for highway applications, for the working groups to consider:

* Use incentives (such as buy-back incentives where the government buys back old equipment, and subsidies for labor or equipment)

* Reduce hazards, which leads to savings in labor costs (working in trenches is hazardous; and falling is the main lethal accident in construction)

* Employ grade control (using automated measurement; materials oriented)

* Eliminate rollers and roller operators: compact behind the machine automatically in one pass instead of two or three; eliminate at least one roller operator)

* Eliminate handwork, such as raking, which leads to injuries

* Use quick methods of maintenance, such as patching, pavement repairs, and bridge painting to reduce traffic jams and public inconvenience

* Develop early maintenance procedures, such as non-destructive evaluation (NDE) capabilities to correct flaws before they get big

* Plan ahead

* Improve materials and emplacement techniques

* Improve traffic management and control during maintenance and repair (50% of the repair budget is spent on traffic management during repair)

* Improve data flow with management and project information systems

* Integrate traffic control with <u>all</u> jobs that need to be done at one time (i.e., take a systems approach)

* Extend/integrate computer-aided manufacturing techniques into road construction, maintenance, and operations

* Make systems user friendly (a major concern)

* Design appropriate standards and specifications (tradeoffs between innovation and open systems; have an innovation acceptance process)

16

* Incorporate GPS into robots and equipment for position determination on the job site (determining where equipment is located on a job site can be costly)

* Examine far-term (10-20 years) technology, support academic research and development

* Examine safety issues for robots, such as the ability of humans and robots to work safely in the same workspace (there's little past experience), and fail-safe behavior for the robots

After the five working groups discussed the various requirements, opportunities, and issues, they returned to the plenary session and briefed the Workshop on their recommendations.

Working Group 1

Recommendations by Working Group 1 included:

* Using robotics for further compaction at longitudinal joints (to seal the joints and increase the life of the pavement)

* Develop an alternative to excavation, or material removal, in traffic

* Develop computerized asbuilt, scheduling, etc., to have an integrated system, a total information process

* Develop positional control of equipment and tools

* Establish operational demonstration programs for new technology and share risks with equipment developers: the federal government should lend equipment to the contractor; then as technology becomes more accepted, the government should lease the equipment to the contractor; finally, the manufacturer sells the equipment to the contractor

* Emphasize teleoperation in the near-term, but some level of autonomy is needed to increase efficiency

* Avoid very specialized equipment

* Change the process, rather than simply automating the existing process

* Establish a long-range R&D program

* Integrate DoD and DoE robotics/automation technology into current DoT R&D process

* Use foreign technology as appropriate

* Canvass the private sector for other technology applications

Comments:

* There are already mechanisms in place for industry to share risks with government, such as the Cooperative Research And Development Agreement (CRDA).

* Evolution (instead of revolution) of new technology is not the only path - the Xerox machine did not evolve from carbon paper.

Working Group 2

Working Group 2 suggestions include:

* Involve labor in technology development (for example: the bricklayer's union is in favor of technology and automation, but they want to be involved in the introduction of the technology on the site)

* Automate the worker training process

* Assess road and bridge conditions using NDE (non-destructive evaluation) techniques, preferably in real-time

* Automate the detection of personnel, equipment, and material, for collision avoidance

* Automate materials management, to locate materials (which reduces waste) and enable night-time (or limited visibility) operations

* Automate traffic management (replacing the flagman and ensuring traffic stays outside the worksite)

* Justify using and investing in a new technology with value engineering and life-cycle costing (show how the technology contributes to life-cycle benefits, not just the initial costs)

* Introduce mechanisms in the contracting process to promote innovative technology (low bidder criteria discourages new technology because the company cannot recoup the investment cost)

* Develop mechanisms to evaluate innovations

* Introduce performance incentives to justify expenditures on new, innovative technologies

* Encourage industry/government/academia partnering

Comments:

* The mind set in the U.S. needs to change. The U.S. cannot simply adopt the European cooperation model because we have a different society. The form of the suggested partnering needs to be determined.

* The highway field can look to explorations of partnering by the building construction industry. Also, some states are engaging in partnering in road construction.

Working Group 3

Working Group 3 focused on the following problems:

* Low cost bid gets the job

- This tends to shunt aside new technology. In the U.S., the contractors are too small; perhaps small companies should merge (or perhaps this will happen as natural progress). Perhaps smaller companies can share expensive equipment (perhaps through leasing arrangements).

- The bidding structure should be renovated to favor new technology.

* Safety

- Traffic control through construction sites is needed. Consider: portable, mobile, automated speed bumps; or optimum detours across jurisdictional boundaries (to reduce driver frustration); or defensive radar with double penalties.

- Safety is labor intensive; new technology can reduce wasted time and labor.

* Technology transfer

- The technology needs CALTRANS type investment.
- Incremental introduction of new technology is less painful.
- Educate users otherwise the technology won't get used.
- Government should orchestrate matched partnerships

* Regulation

- Simplify and reduce paperwork. For example, perform nuclear density testing at roadside; and with respect to asphalt content, certify plants, use process reports, and eliminate hazardous waste.

Comment:

* The problem is not the low bid system, but getting the technology into the bid. Initial costs must be overcome to gain the eventual benefit of less expensive operational or other costs (such as environmental costs).

Working Group 4

Working Group 4 considered the following needs:

* A database of automation projects in progress (perhaps generated at NIST). And get useful and motivational information to contractors, including cost and savings information. "We all want information."

* A listing of automation demonstrations - where and when.

* Working teams between contractor and administration, to ensure appropriate technology.

* Database of applicable technologies (such as ground-penetrating radar).

* Risk liability for R&D directed projects. (Who has the most risk, and how is risk shared)?

* Low bid mentality for value added automation projects.

* Top down input for projects; bottom up input for technology (contractors know what the problems are and what they want). Federal government should recommend projects. States should request bids with new technology included. Contractors should determine how to get new technology into proposal. Contractors should be part of the design phase of new technology.

Working Group 4 priorities for automation and robotics included:

* For bridges

- Remote access

- Remove humans from danger

- Miniaturized equipment to operate in confined space and toxic atmosphere

- Continuous on-line monitoring (load cells, acoustic emission, weight in motion)

- Use of improved materials

* For traffic safety

20

- Traffic control (determine real hazards and best type of traffic control)

- Information about road repairs: imaging systems to find cracks, etc; preplanning before repairs to reduce time in the field, time for repairs, and public inconvenience.

- Educate the public about automation/robotics

- Use automation for backfilling of pipes

Working Group 5

Working Group 5 suggested:

* Performance-based specifications that would allow contractors to use proprietary materials and technology.

* Safety developments that reduce workplace hazards (whether contractor's employees or traveling public).

* Partnerships between government, academia, and industry, to focus on use of existing resources and technology. Historically, new technology has been introduced by state's mandating certain technology, or performance which required new technology to achieve.

FINAL PLENARY SESSION

After the presentations of the working groups, various recommendations culled from the various topics and issues were listed. Each attendee was given five votes, and asked to vote once for each of his or her top five priority choices. While the list consisted of a non-homogeneous, non-coherent, incomplete aggregation of issues and functional areas, it is a reasonable first-cut effort at bounding and partitioning the problem space. It is useful to see what a cross-section of the road construction community thinks is important, and there were clear demarcations of the topic priorities. The list follows, in priority order with the number of votes in brackets at the end of each item.

{1} Use lifecycle value engineering or performance-based specifications to provide incentives for automation and robotics innovations (such as designing structures or bridges for ease of later maintenance and repair; even if the initial cost is greater, the lifecycle cost could be less). [26]

{2} Use automation and robotics to reduce workplace hazards. [24]

{3} Develop a site positioning system (to determine what is on a site and where it is). [19]

{4} Use partnering to share costs and risks of innovation (including R&D). [15]

{5} Develop techniques for non destructive evaluation (NDE) and monitoring for bridges, pavements, locating utilities, etc. [13]

{6} Improve traffic control and reduce its costs (which can be 50% or more of a repair job) to highway department users. [12]

{7} Assemble a database of automation projects, demonstrations, and technologies. [12]

{8} Use automation and robotics for pavement maintenance and construction. [11]

{9} Use automation in the maintenance of bridges (there are 500,000 bridges in the U.S. and 25% are known to be structurally defective). [10]

{10} Design automation and robotics into the construction, maintenance, and retrofit process (i.e., concurrent engineering); to have repair-friendly designs for bridges, for example, so that a modified bridge structure could accommodate new technology using sensors, rails, etc. [9]

{11} Involve the labor force in the process to give them a stake in innovation (i.e., make labor a part of the solution instead of part of the problem). [7]

{12} Develop an "as built" (and "as maintained" and "as operated") integrated project information system. [7]

{13} Use automation and robotics to enhance the capabilities
(i.e., increase efficiency) and reduce the cost of labor. [7]

{14} Use automation and robotics for trenching and ditching. [3]

{15} Use automation and robotics for demolition/recycling. [0]

While one might partition the results in various ways, it seems reasonable to assign recommendations $\{1\}-\{4\}$ to the first rank of priorities; recommendations $\{5\}-\{7\}$ (where $\{7\}$ is at 50% of the top score for $\{1\}$) to the second rank; and recommendations $\{8\}-\{15\}$ to the third rank.

According to the top four priorities, the automation and robotics program should take the broad systems approach to introduce the technology, stressing lifecycle value engineering for highway projects. While increased safety should be a major goal for the technology, a key initial application should be site positioning system. And government, industry, and academia should work
together to develop and introduce the technology to the worksite.

Consensus For An Ongoing Process

After the plenary voting on recommendations, the workshop consensus was that there should be an ongoing process in which government, industry, and academia could work together to further the development and implementation of automation and robotics for road construction, maintenance, and operations, perhaps a structure analogous to what IVHS America does for the IVHS program. Other associations could be involved in an ongoing process, such as the Transportation Research Board, the Society of Automotive Engineers, and the Stone, Asphalt, and Concrete Pavement Associations. The Association For Unmanned Vehicle Systems offered to sponsor an Industry Support Group (ISG), similar to the ISGs it support for unmanned air and ground vehicles. Meanwhile, NIST will provide the coordinating function for ongoing working groups, and it will survey workshop attendees and other prospective participants for the groups.

Ernie Kent: Final Words

This has been an initial meeting in a series of actions - to touch base with the community familiar with highway construction, maintenance, and operations, and to give guidance to the process. We are also doing a literature search , forming panels of robotics experts for job site visits, and convening a technologybased workshop in conjunction with the National Science Foundation.

Output from this workshop and continuing consultation will give us an ongoing reality check. Out of the process will come a number of proposals which will undergo cost/benefit analyses before being submitted to the FHWA. The FHWA will then act on the findings.

Each attendee to this Workshop will get a copy of a report on the Workshop. We encourage you to act as a sounding board and give us suggestions to keep us on track, and continue to provide input into the process.

We have had a good beginning in this Workshop and some of our cherished views have changed, and that is all to the good. We need to have the technologist's views changed in many instances by the people who are out there where the work is going on. This is crucial to the process.

Thank you for your time, your effort, and your input.

APPENDIX A

LIST OF WORKSHOP ATTENDEES

Ũ

LIST OF ATTENDEES

Mark G. Alderman 1221 E. Broad Street 4th Floor, Maintenance Richmond, VA 23219 (804) 786-2801

Jeff Amoriello State Highway Administration 9300 Kenilworth Avenue Silver Spring, MD 20910 (301) 220-7300

George L. Bartholomew, Jr. David A. Bramble, Inc. P.O. Box 419 Chestertown, MD 21620 (410) 778-3023

Tommy Beatty Technology Assessment Branch HTA-11 400 7th Street, S.W. Washington, DC 20590 (202) 366-8028

Frank Bednar Technology Assessment Branch HTA-11 400 7th Street, S.W. Washington, DC 20590 (202) 366-8027

Richard L. Bennett Prince Georges Contractors 5411 Kirby Road P.O. Box 145 Clinton, MD 20735 (301) 297-5230

Leonhard E. Bernold Civil Engineering Department North Carolina State University Box 7908, Mann Hall Raleigh, NC 27695-7908 (919) 515-3677

Donald Boyd Pacific Northwest Lab. MSIN: K5-10 P.O. Bol 999 Richlang, WA 99352 (209) 375-2149

Caroline Carver American Traffic Safety Service Association 5440 Jefferson Davis Highway Fredericksburg, VA 22405 (703) 898-5400

Greg Chirikjian Dept. of Mechanical Eng. Johns Hopkins University 3400 North Charles Street Baltimore, MD 21218 (410) 516-7127

Thomas Chrisman Virginia Department of Transportation P.O. Box 2249 Staunton, VA 24402-2249 (703) 332-9078

Everette L. Cole 1221 E. Broad Street 4th Floor, Maintenance Richmond, VA 23219 (804) 786-2801

Campbell Crawford National Asphalt Pavement Association 5100 Forbes Blvd. Lanham, MD 20706-4413 (301) 731-4748

Richard Daugherty Virginia Road and Transport Builders 30 LaBrock Drive Richmond, VA 23255 (804) 276-3393

Jay Etris Civil Engineering Research 1015 15th Street, N.W. Suite 600 Washington, DC 20005

Robert Finkelstein Robotic Technology, Inc. 10001 Crestleigh Lane Potomac, MD 20854 (301) 762-1622

Kerien Fitzpatrick Carnegie Mellon University Field Robotics Center Pittsburgh, PA 15213 (412) 268-6564

Mark Flack State Highway Administration 9300 Kenilworth Avenue Greenbelt, MD 20770 (301) 220-7300

Charlie Gildon Shirley Contracting Corp. 8435 Backlick Road Lorton, VA 22079 (703) 550-7897

Ken Goodwin NIST Bldg. 220, Rm. B124 Gaithersburg, MD 20899 (301) 975-3421

John Gray Gray & Associates 7306 Radcliffe Drive College Park, MD 20740 (301) 474-7522

John L. Gross NIST Bldg. 226, Rm. B158 Gaithersburg, MD 20899 (301) 975-6068

Robert Hambright Southwest Research Institute 6220 Culebra Road San Antonio, Texas 78228 (512) 522-2623

Martin Herman NIST Bldg. 220, Rm. B124 Gaithersburg, MD 20899 (301) 975-3452

John Huchrowski State Highway Administration 707 North Calvert Street, Room 403 Baltimore, MD 21202 (301) 333-1122

Von Jennings Martin Marietta 103 Chesapeake Park Plaza Baltimore, MD 21220 (410) 682-0892

Avi Kak Robot Vision Lab School of Electrical Eng. Purdue University West Lafayette, IN 47907 (317) 494-3551

Thomas Kelly CRAFCO 10 Grandview Drive Latham, NY 12110 (518) 783-8027

Thomas J. Kelly Corps of Engineers 2902 Newmark Drive Champaign, IL 61821-1076 (217) 352-6511

Ernest Kent NIST Bldg. 220, Rm. B124 Gaithersburg, MD 20899 (301) 975-3441

Martin Knecht Maryland Department of Transportation SHA Maintenance 10 Elm Road BWI Airport, MD 21240 (301) 859-7311

Marshall Klinefetter David A. Bramble, Inc. P.O. Box 245 Wye Mills, MD 21679 (410) 758-3676

Robert Latham Maryland Highway Contractors Association Suite 707, Empire Towers 7310 Ritchie Highway Glen Burnie, MD 21061 (410) 760-9505

Ronald Lumia NIST Bldg. 220, Rm. B127 Gaithersburg, MD 20899 (301) 975-3452

Bernard McCarthy The Asphalt Institute 6917 Arlington Rd., Suite 210 Bethesda, MD 20814 (301) 656-5824

Chuck McGogney Physical Research Division FHWA-TFHRC (HAR-20) 6300 Georgetown Pike McLean, VA 22101-2296 (703) 285-2441

Donald Merwin Highway & Heavy Construction Products and Infrastructure Cahners Publishing 1350 East Touhy Avenue P.O. Box 5080 Des Plaines, IL 60017-5080 (708) 390-2627

Larry Michael Maryland State Highway Administration 2323 West Joppa Road Brooklandville, MD 21022 (410) 321-3538

Michael Moravec Federal Highway Administration Leo W. O'Brien Building Rm. 729 Albany, New York 12207 (518) 472-4253

Salim Nassif Technology Assessment Branch HTA-11 400 7th Street, S.W. Washington, DC 20590 (202) 366-8026

Charles Niessner Federal Highway Administration 6300 Georgetown Pike Mail Stop HAR-20 McLean, VA 22101-2296 (703) 285-2074

Arnold O'Donnell O'Donnell Construction Co. 2209 Channing Street, N.E. Washington, DC 20018 (202) 259-3350

Jay Openshaw Cherry Hill Construction, Inc. 8211 Washington Blvd. P.O. Box 356 Jessup, MD 20794-0356 (410) 799-3577

Morton Oskard Federal Highway Administration 6300 Georgetown Pike Mail Stop HAR-10 McLean, VA 22101-2296 (703) 285-2074

Thomas J. Pasko, Jr. Department of Transportation HAR-1 6300 Georgetown Pike McLean, Virginia 22101-2296 (703) 285-2034

Richard Quintero NIST Bldg. 220, Rm. B127 Gaithersburg, MD 20899 (301) 975-3456

Arthur Sanderson Rensselaer Polytechnic Institute Troy, NY 12180 (518) 276-2879

Leonard Schultz Maryland Department of Transportation SHA Maintenance 10 Elm Road BWI Airport, MD 21240 (301) 859-7311

Robert Sewell Genstar Stone Products Co. 11350 McCormick Road Hunt Valley, MD 21031 (410) 527-4000

Richard Stander Mansfield Asphalt Paving Co. P.O. Box 1321 Mansfield, Ohio 44901 (419) 529-8455

Richard Steele 1401 E. Broad Street Materials Division Richmond, VA 23219 (804) 786-2801

Yair Tene Global Associates, Ltd. Suite 205 2300 Clarendon Blvd. Arlington, VA 22201 (703) 351-5660

Karen Trovato Phillips Lab. 345 Scarborough Road Briarcliff Manor, NY 10510 (914) 945-6233

David Urbanc Caterpillar, Inc. 100 NE Adams Street Peoria, Illinois 61629 (309) 675-4301

Douglas Walters McLean Contracting Co. 6700 McLean Way Glen Burnie, MD 21060 (410) 553-6700

James Wentworth Federal Highway Administration 6300 Georgetown Pike Mail Stop HAR-10 McLean, VA 22101-2296 (703) 285-2748

Thomas West California Dept. of Transportation Division of New Technology 5900 Folsom Blvd. Sacremento, CA 95819 (916) 454-6583

Gary White Federal Highway Administration 18209 Dixie Highway Homewood, Illinois 60430 (708) 206-3221

Meg Willett American Road & Trans. Builders Association 501 School Street, S.W. Washington, DC 20024-2713 (202) 488-2722

Charles Woo Federal Highway Administration 6300 Georgetown Pike Mail Stop HAR-20 McLean, VA 22101-2296 (703) 285-2444

Richard Wright NIST Bldg. 222, Rm. B216 Gaithersburg, MD 20899 (301) 975-5900

APPENDIX B

LITERATURE AVAILABLE AT NIST RELEVANT TO AUTOMATION/ROBOTICS FOR ROAD CONSTRUCTION, MAINTENANCE, AND OPERATIONS

33

Abraham, Dulcy M. and Leonhard E. Bernold, "A State-Based Framework For Construction Control," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Abraham, Dulcy M. and Leonhard E. Berhold, "Control For Computer-Integrated Construction," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Advanced Highway Maintenance Technology Program, (Data Sheets, including: Delineation and Signing Technology; Hazmat Debris and Litter Removal; Landscape Management; Workzone Safety; Pavement Integrity; Structures Maintenance; Maintenance Minded Infrastructure; Paint Striping Guidance System; Paint Striping Information System; Maintenance of the Future; Remote Hazmat Lab; Smart Herbicide Applicator; Litter Bag Retrieval; Telerobotics in CALTRANS Maintenance; Automated Raised Marker Placement; Crack/Joint Sealing Machine), California Dept. of Transportation, Sacramento, CA, 1992

Albus, James, et. al., "Mining Automation Real-Time Control System Architecture Standard Reference Model (MASREM): Coal Mine Automation," NIST Technical Note 1261, Volume 1, 1989

Albus, James and Ken Goodwin, "The NIST Spider: A Robot Crane," National Institute of Standards and Technology, Gaithersburg, MD, 1992

Ambrose, Dean, "Using Speech Technology in the Mining Industry," Speech Technology, Oct/Nov 1989, pp. 34-37

Anderson, Donna, "Laser Tracking and Tram Control of a Continuous Mining Machine," U.S. Bureau of Mines, RI 9319, 1990

Aougab, Hamid, et. al., "Expert System for Management of Low Volume Flexible Pavements," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Artificial Intelligence to Aid in War on Potholes, ENR, December 12, 1985, p.31

Ausefski, David B., "Researchers Interface Software for Computer Based Mining System Development and Testing," Tenth WVU International Mining Electrotechnology Conference, West Virginia University, July 24-27 1990

Automated Surveying Aids I-280 Retrofit, Civil Engineering, Dec. 1990, pp. 26-27

Baecher, Gregory B., et. al., "Integrated Automation for Site Work," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Beliveau, Y.J., "Automated Position And Control Systems Using Lasers And Electromagnetic Signals," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Beliveau, Yvan J., "3-D Positioning for Construction Surveying and Automation," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Bell, Lansford C. and Bob G. McCullouch, "Bar Code Applications in Construction," Journal of Construction Engineering and Management, Vol. 114, No. 2, June 1988, pp. 263-278

Bernold, Leonhard E., et. al., "Computer-Controlled Brick Masonry," Journal of Computing in Civil Engineering, Vol. 6, No. 2, April 1992, pp. 147-160

Bernold, Leonhard E. and Nil Guler, "Analysis Of Back Injuries In Construction," Submitted To the ASCE Journal of Construction Engineering and Management, October 1992

Bernold, Leonhard E., "Experimental Studies On Mechanics Of Lunar Excavation," Journal of Aerospace Engineering, Vol. 4, No. 1, Jan. 1991, pp. 9-22

Bernold, Leonhard E., et. al., "FMS Approach To Construction Automation," Journal of Aerospace Engineering, Vol. 3, No. 2, April, 1990, pp. 108-121

Bernold, Leonhard E., "Motion And Path Control For Robotic Excavation," Submitted to the ASCE Journal of Aerospace Engineering, September 1990

Bernold, Leonhard E., "Construction Automation and Robotics Laboratory," North Carolina State U., Raleigh, NC, March 1992

Bernold, Leonhard E., "Bar Code-Driven Equipment And Materials Tracking For Construction," Journal of Computing in Civil Engineering, Vol. 4, No. 4, October 1990, pp. 381-395

Bernold, Leonhard E., "Learning and Innovating in a Construction Technology Laboratory," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Bernold, Leonhard E., "Laboratory And Field Research in Construction Automation," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Bernold, Leonhard E., "Low Level Artificial Intelligence And Computer Simulation To Plan And Control Earthmoving Operations," Earthmoving And Heavy Equipment: Proceedings Of The Conference Sponsored By The Committee On Construction Equipment And Techniques, ASCE, Tempe, AZ, February 5-7, 1986

Bernold, Leonhard E., "Automation And Robotics In Construction: A Challenge And A Chance For An Industry In Transition," Project Management, Vol. 5, No. 3, August 1987, pp. 155-160

Bernold, Leonhard E. and Md. Salim, "Placement-Oriented Design and Delivery of Concrete Reinforcement," Submitted to the ASCE Journal of Construction Engineering and Management, Special Issue on Computers in Construction, July 1992

Bernold, Leonhard E. and Davis B. Reinhart, "Process Planning For Automated Stone Cutting," Journal of Computing in Civil Engineering, Vol. 4, No. 3, July 1990, pp. 255-268

Bernold, Leonhard E., "Testing Bar-Code Technology In Construction Environment," Journal of Construction Engineering and Management, Vol. 116, No. 4, December 1990, pp. 643-655

Bernold, Leonhard E., et. al., "Emulation For Control System Analysis In Automation Construction," Journal of Computing in Civil Engineering, Vol. 3, No. 4, October 1989, pp. 320-332

Berzonsky, Bruce E., "A Knowledge-Based Electrical Diagnostic System for Mining Machine Maintenance," IEEE Transactions on Industry Applications, Vol. 26, No. 2, March/April 1990

Bhatt, S.K., "Continuous Haulage Systems for Computer-Assisted Continuous Miner," Mining Engineering, Oct. 1990, pp. 1184-1189

Bohinsky, Joseph A. and Douglas W. Falls, "Computer Aided Rigging Design System," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Brazell, James W., "Automation Of A Truck-Mounted Drill Rig," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Brown, Steven J. and Major Thomas J. Kelly, "The Effect of Concrete, Masonry, and Steel Construction Automation on Traditional USACE Quality Assurance," USACERL Technical Report, November 1992

Brown, Steven J. and Major Thomas J. Kelly, "The Effect of Sitework Construction Automation on Traditional USACE Quality Assurance," USACERL Technical Report, November 1992

Bullock, Darcy M. and Irving J. Oppenheim, "Object-Oriented Programming In Robotics Research For Excavation" Journal of Computing in Civil Engineering, Vol. 6, No. 3, July 1992, pp. 370-385

Butler, Bertell C., "The Pavement Distress Imager Quantifying Pavement Cracking From Video Images," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

CASTEC: Vertical Excavating And Casting, Brochure, Eagle-Pitcher, 1992

Chalabi, A. Fattah, "Two Microcomputer Programs For Heavy Construction Equipment Productivity And Cost Evaluation," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Chalabi, A. Fattah and Christopher Yandow, "CRANE, An Expert System For Optimal Tower Crane Selection And Placement," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Chang, David Y. and E. Lynn Cook, "Construction Coordination: A Knowledge-Based Approach," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Chang, David, "An Object-Oriented Simulation System for Construction Process Planning," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Chang, Edmund Chin-Ping, "Intelligent Database Applications On Signal Maintenance Activities," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Chen, Stuart S. and John L. Wilson, "Knowledge Representation for Fatigue Evaluation," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Chironis, Nicholas P., "High-Tech Products On The Way From The Bureau Of Mines," Coal, March 1988

Clark, Thomas and A.P. Young, "Implementation of Software for Project Management," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Cornejo, Carlos, et. al., "Computer Assisted System For Construction Robot Implementation Logistics," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

De La Garza, Jesus, et. al., "Knowledge Elicitation Techniques For Construction Scheduling," Microcomputer Knowledge-Based Expert Systems In Civil Engineering: Proceedings Of A Symposium Sponsored By The Structural Division of the American Society of Civil Engineers, Nashville, TN, May 10-11, 1988

Dendrou, Basile, "The Excavation and Underground Technology in Europe and the U.S.A.: A Critical Review and Comparison," National Science Foundation, Dec. 1991

DeWolf, J., et. al., "Expert Systems for Bridge Monitoring," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Distress Identification Manual for the Long-Term Pavement Performance Studies, Strategic Highway Research Program, National Research Council, Washington, DC, 1990

Dunston, Phillip S. and Leonhard E. Bernold, "Adaptive Control for Robotic Rebar Bending," Submitted to the Journal Microcomputers in Civil Engineering, September 1992 T

Echeverry, D., et. al., "Construction Schedule Generation Using AI Tools," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

El-Korchi, Tahar, et. al., "System design for Automated Pavement Surface Distress Evaluation," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Everett, John G., "The CRANIUM: A Case Study Of Sensory Improvement for Construction Equipment Operators," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Farran, H.J., "Implementation of the Computer Analysis of Segmentally Erected Prestressed Concrete Bridges," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Fenske, T.E., et. al., "KYBAS: An Expert System For Design And Analysis Of Highway Bridges," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Fenske, T.E. and J.Z. Yang, "Investigation Of The Bridge Vehicle/Superstructure Interaction Problem Via Computer-Based Methodology," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Fenves, Gregory L., et. al., "Database Design For Seismic Evaluation Of The San Francisco Bay Bridge," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Field Material Handling Robot (FMR), Data Sheets, Martin Marietta Baltimore Aerospace Co., 1992

Finn, Gavin A., "AEC Experience With Expert Systems In Construction," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Fischer, Martin, "A Construction Expert System For The Preliminary Design Of Reinforced Concrete Structures," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Fukuhara, Toshihiko, et. al., "Automatic Pavement-Distress-Survey System," Journal of Transportation Engineering, Vol. 116, No. 3, May/June 1990, pp. 280-286

Future Construction Skills To Require Joystick Finesse, ENR, June 15, 1989, p. 11

Geographic Information Systems, Brochure, Patton Harris Rust Associates, 1992

Guralnik, Sidney, et. al, "Highway Pavement Surfaces Reconstruction by Moire Interferometry," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Haas, Carl, et. al., "A Field Prototype of a Robotic Pavement Crack Sealing System," The 9th International Symposium on Automation and Robotics in Construction, Tokyo, Japan, June 3-5, 1992

Haas, Carl, et. al., "Opportunities For Automation In Pavement Maintenance," Transportation Association of Canada Annual Conference, Winnipeg, Manitoba, September 15-19, 1991

Haas, Carl, et. al., "A Design for Automated Pavement Crack Sealing," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Haas, Carl and Chris Hendrickson, "Intgegration of Diverse Technologies for Pavement Sensing," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Harbur, Steve, "Telerobotics: A Technology Worthwhile To Man," Utility Construction & Maintenance, June/July 1992, pp. 18-23

Haz-Trak: Force Feedback Excavator and Material Hnadling System, Kraft Telerobotics, Overland Park, Kansas, 1992

Hendrickson, Chris and Sue McNeil, "Automated Pavement Crack Filler," Data Sheet, carnegie Mellon U., Pittsburgh, PA, 1992

Hendrickson, Chris, et. al., "Perception and Control for Automated Pavement Crack Sealing," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Howard, Cynthia Stotts and H. Craig Howard, "COMEDI: A Multi-Modal Database Interface," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Hsieh, Ting-ya and Carl Haas, "Costs and Benefits of Automated Road Maintenance," to be presented at Transportation Research Board Annual Meeting, Washington, DC, January 1993

Hsieh, Ting-ya and Carl T. Haas, "Costs and Benefits of Automated Road Maintenance," Dept. of Civil Engineering, University of Texas at Austin, November 1992

Huang, Xiaodong and Leonhard E. Bernold, "Configuration and Components of the Multipurpose Robotic Manipulator Platform (MRMP)," Appendix to Technical Report CARL-92-02, North Carolina State U., Raleigh, NC, September 1992

Huang, Xiaodong and Leonhard E. Bernold, "The Multipurpose Robotic Manipulator Platform," Technical Report CARL-92-02, North Carolina State U., Raleigh, NC, March 1992

Huang, Xiaodong and Leonhard E. Bernold, "Adaptive Control for Robotic Backhoe Excavation," to be presented at Transportation Research Board Annual Meeting, Washington, DC, January 1993

Huang, Hui-Min, "Hierarchical Real-Time Control Task Decomposition for a Coal Mining Automation Project," NIST, March 24, 1990

Huang, Hui-Min, et. al., "A Reference Model, Design Approach, and Development Illustration Toward Hierarchical Real-Time System Control for Coal Mining Operations," Advances in Control & Dynamic Systems, Academic Press

Huang, Hui-Min and Richard Quintero, "Task Decomposition for the Design of a Coal Mining Automation Hierarchical Real-Time Control System," NIST

Huang, Hui-Min, et. al., "Task decomposition and Algorithm Development for Real-Time Motion Control of a Continuous Mining Machine," NISTIR 4596, May 1991

Ibbs, C. William Jr., "Proceedings of a Workshop for the Development of New Research Directions in Computerized Applications to Construction Engineering and Management Studies," University of Illinois at Urbana Champaign, July 1985

Inagaki, M., "Subsurface Pavement Structure Inventory Using Ground Penetrating Radar and a Bore Hole Camera," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Jobes, Christopher, "Utilizing Mechanical Linear Transducers for the Determination of a Mining Machine's Position and Heading," U.S. Bureau of Mines, IC 9254, 1990

Jobes, Christopher C., "Mechanical Sensor guidance of a Mining Machine," Tenth WVU International Mining Electrotechnology Conference, West Virginia University, July 24-27 1990

Johnson, Daniel W., et. al., "Towards an Autonomous Heavy Lift Robot for Field Applications," Martin Marietta Aero & Naval Systems, Baltimore, MD, 1990

Johnstone, Bob, "Robots To The Rescue," Eastern Econmic Review, 31 Dec. 87, pp. 52-53

Joss, Craig J., et. al., "A Data Base Program for Preparing and Reporting Concrete Mix Designs," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Kangari, Roozbeh and Daniel Halpin, "Potential Robotics Utilization in Construction," Journal of Construction Engineering Management, Vol. 115, No. 1, March 1989, pp. 126-143

Kangari, Roozbeh and Tetsuji Yoshida, "Prototype Robotics in Construction Industry," Journal of Construction and Engineering Management, Vol. 115, No. 2, June 1989, pp. 284-301

Kaseko, Mohamed S. and Stephen G. Ritchie, "Pavement Image Processing Using Neural Networks," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Killen, Timothy S., "Automation and Robotic Applications in North American Construction," Cost Engineering, Vol. 33, No. 7, July 1991, pp. 9-13

Kim, Moonja Park and Kimberly Adams, "An Expert System For Construction Contract Claims," Microcomputer Knowledge-Based Expert Systems In Civil Engineering: Proceedings Of A Symposium Sponsored By The Structural Division of the American Society of Civil Engineers, Nashville, TN, May 10-11, 1988

Kim, Jae-Jun and C. William Ibbs, "Toward the Automated Construction Work Packaging: Data Modeling and Knowledge Representation Issues," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Koutsopoulos, Harris N. and Ibrahim El Sanhouri, "Methods and Algorithms for Automated Analysis of Pavement Images," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Koutsopoulos, Haris N., et. al, "Automated Analysis Of Pavement Distress Data," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Kuzela, Lad, "Here Comes The Automated Manager," Industry Week, Nov. 20, 1989, pp. 45-46

Kwitowski, August J. et. al., "Advanced Control Methodologies for Highwall Miners," American Mining Congress Coal Convention, Cincinnati, May6-10, 1990

Langreth, Robert, "Smart Shovel," Popular Science, June 1992, pp. 82+

LeBlanc, Jeffery, et. al., "Analysis and Generation of Pavement Distress Images Using Fractals," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Lee, Hosin, et. al., "Measuring Highway Inventory Features Using Stereoscopic Imaging System," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Lewis, Chris R. and Cliff J. Schexnayder, "Production Analysis Of The CAT 245 Hydraulic Hoe," Earthmoving And Heavy Equipment: Proceedings Of The Conference Sponsored By The Committee On Construction Equipment And Techniques, ASCE, Tempe, AZ, February 5-7, 1986

Li, Lan, et. al., "Flexible Pavement Distress Evaluation Using Image Analysis," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991 Li, Lan, et. al., "Detection of Thin Cracks on "Noisy" Pavement Images," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Lovece, Joseph A., ed., "Unmanned Ground Vehicles," Military Robotics Sourcebook: 1991-1992 Edition, L&B Ltd., Washington, DC (Including Descriptions of: Attachable Robotic Convoy Capability, p.10; Autonomous Rapid Runway Repair, p. 12; Convoy Speed Control System, p.17; Field Material Handling Robot, p.20; Haz-Trak, p. 28; Pele Remote Control System, p. 57; Remotely Controlled Mobile Excavator, p. 62; Remotely Operated Bobcat, p.63; Robotics for Airbase Recovery Program, p. 79; Telerobotic Excavator, p.99)

Lux, William J., "The Past, Present & Future Of Earthmoving Scrapers," Earthmoving And Heavy Equipment: Proceedings Of The Conference Sponsored By The Committee On Construction Equipment And Techniques, ASCE, Tempe, AZ, February 5-7, 1986

Martin, Michael R. et. al., "Using Geographic Information Systems For Highway Maintenance," 4th International Conference on Microcomputers in Transportation, Baltimore, MD, July 22-24, 1992

McCahill, Dennis F. and Leonhard E. Bernold, "Simulation for Construction Planning and Control," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

McCarthy, William C. and Kenneth R. White, "Automated Bridge Plans By Computer Aided Software," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

McNeil, Sue, "An Analysis of the Costs and Imnpacts of the Automation of Pavement Crack Sealing," Carnegie Mellon U., Pittsburgh, PA, 1992

Measurement Technology for Automation in Construction and Large Scale Assembly, National Bureau of Standards, Feb. 1985

Meyer, H.W. Guy and Jeffrey Russell, "Electronic Communication Between Project Participants," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Miller, Mark L. and Leonhard E. Bernold, "Sensor-Integrated Nailing For Building Construction," Journal of Construction Engineering and Management, Vol. 117, No. 2, June 1991, pp. 213-225

Miltenberger, Matthew A. and Leonhard E. Bernold, "CAD-Integrated Rebar Bending," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Miresco, Edmond T., "Knowledge Based Expert System for Construction Scheduling," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Mitchell, Julie, "Diagnostic Maintenance Expert System for the Hydraulic Sub-System of a Continuous Miner," U.S. Bureau of Mines

Mitchell, J., "Hydraulic Maintenance of a Continuous Mining Machine Using Diagnostic Expert System Techniques," SME Annual Meeting, Salt Lake City, UT, 26 Feb.- 1 March 1990

Mitchell, Julie, "A Knowledge-Based System for Hydraulic Maintenance of a Continuous Miner," 21st Application of Computers and Operations Research in the Mineral Industry, Alfred Weiss, ed., 1989

Mohajeri, Jerry H. and Patrick J. Manning, "ARIA: An Operating System of Pavement Distress Diagnosis by Image Processing," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Mohsen, Jafar P. and Timothy R. Crowder, "Pavement Design Using An Expert System," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Morad, Ayman A., "A Database Approach for CAD/KBES Integration for Construction Planning," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Muspratt, Murray, "Hi-Tech for Construction Projects," Computers in Industry, 10 (1988) pp. 197-208

Nease, A.D., "Air Force Construction Automation/Robotics," Air Force Civil Engineering Support Agency, Tyndall AFB, FL, 1992

Needs Assessment for Construction Automation, The Construction Industry Institute, July 1991

Normile, Dennis, "Robotic Roundup," Civil Engineering, May 1989, pp. 76-79

Oberlender, Garold D., "Real-Time Project Tracking," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Pagdadis, Sotiris, "Conceptual Model For A Site Operations Control System," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Paulson, Boyd C. Jr. and Hooman Sotoodeh-Khoo, "Teaching Experiment In Real-Time Construction Data Acquisition," Earthmoving And Heavy Equipment: Proceedings Of The Conference Sponsored By The Committee On Construction Equipment And Techniques, ASCE, Tempe, AZ, February 5-7, 1986

Pollak, Axel and Rosalind Pierce-Spring, "CADD - Database Application for Facility Inspections," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Proceedings for the Automated Pavement Distress Data Collection Equipment Seminar, Iowa State University, Ames, Iowa, June 12-15, 1990

Puri, Satinder P.S., "A Relational Database For Long-Span Highway Bridges," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Rasdorf, William J., et. al., "A Formal Approach to Modeling Construction Data," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Rasdorf, William J. and Mark J. Herbert, "CIMS: A Construction Information Management System," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Ravani, B. and T.H. West, "Applications of Robotics and Automation in Highway Maintenance," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991 .

Ray, Malcolm H. and David Logie, "An Object-Oriented Approach To Warranting Roadside Safety Hardware," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Research and Development Program for Highway Construction Engineering Management, Transportation Research Board, National Research Council, Washington, DC, 1991

Reynolds, Michael F. and George Stukhart, "Project Cost Forecasting," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Rihani, Rami A. and Leonhard E. Bernold, "Computer Integration for Robotic Masonry," Submitted to the Journal Microcomputers in Civil Engineering," September 1992

Ritchie, Stephen G., et. al., "Surface Condition Expert System For Pavement Rehabilitation Planning," Journal of Transportation Engineering, Vol. 113, No. 2, March 1987, pp. 155-167

Ritchie, Stephen G., "Digital Imaging Concepts And Applications In Pavement Management," Journal of Transportation Engineering, Vol. 116, No. 3, May/June 1990, pp. 287-298

Ritchie, Stephen G., et. al., "Development of an Expert System for Pavement Rehabilitation Decision Making," Transportation Research Record 1070, pp. 96-103

Ritchie, Stephen G., et. al., "Development of an Intelligent System for Automated Pavement Evaluation," Transportation Research Board 70th Annual Meeting, Washington, DC, January 13-17, 1991

Robotic Road Repair, News Item, undated.

Robotic Applications To Construction, Cost Engineering, Vol. 31, No. 6, June 1989, pp. 10-17

Robotics In Construction: Proceedings, Carnegie-Mellon University, Pittsburgh, PA, April 1985

Robots Move in to tackle Heavier Weights On Building Sites, New Scientist, 2 Sept. 1989

Rossman, Lewis A. and James T. Decker, "A Rule-Based System For Evaluating Final Covers For Hazardous Waste Landfills," Expert Systems For Civil Engineers: Knowledge Representation, ACE, New York, 1992

Russell, Jeffery S. and Miroslaw J. Skibniewski, "An Expert System for Contractor Prequalification," Computing in Civil Engineering: Microcomputers to Supercomputers, Proceedings of the Fifth Conference, Alexandria, VA, American Society of Civil Engineers, March 29-31, 1988

Russell, Jeffrey S., et. al., "Generic Framework For Evaluation Of Multiple Construction Robots," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Russell, Jeffrey S. and Miroslaw J. Skibniewski, "Knowledge Engineering In A Knowledge-Based System For Contractor Prequalification," Microcomputer Knowledge-Based Expert Systems In Civil Engineering: Proceedings Of A Symposium Sponsored By The Structural Division of the American Society of Civil Engineers, Nashville, TN, May 10-11, 1988

Russell, Jeffery, et. al., "Framework for Construction Robot Fleet Management System," Journal of Construction Engineering and Management, Vol. 116, No. 3, Sept. 1990, pp. 448-463

Sammarco, John, "Mining Machine Orientation Control Based On Inertial, Gravitational, and Magentic Sensors," U.S. Bureau of Mines, RI 9326, 1990

Sammarco, John, "Computer-Aided Software Engineering (CASE) for Software Automation," U.S. Bureau of Mines, IC 9265, 1990

Sammaro, John J., "Heading Control for a Continuous Mining Machine," Mining Automation, 4th Canadian Symposium, Saskatoon, Canada, 16-18 Sept. 1990

Scarponcini, Paul, et. al., "Information Follows Function," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Schiffbauer, William, "A Testbed for Autonomous Mining Machine Experiments," IC 9198, U.S. Bureau of Mines, 1988

Schiffbauer, William H., "A Microcomputer Network for Autonomous Mining Research," 21st Application of Computers and Operations Research in the Mineral Industry, Alfred Weiss, ed., 1989

Schiffbauer, William H., "Distributed Communications and Control Network for Robotic Mining," NASA Conference on Space Telerobotics, Pasadena, CA, Jan. 31 - Feb. 2, 1989

Schnakemberg, George H. Jr., "Computer-Assisted Continuous Coal Mining System-Research Program Overview," U.S. Bureau of Mines, IC 9227, 1989

Schnakenberg, George H. Jr., "U.S. Bureau of Mines Coal Mining Automation - Research Update," Mining Automation, 4th Canadian Symposium, Saskatoon, Canada, 16-18 Sept. 1990

Schnakenberg, George H., "Bureau of Mines Research to Automate Continuous Mining Machines," Mining Engineering, Dec. 1990, pp. 1329-1333

Schoemberger, Gerhard, "A Pavement Management Information System for Evaluating Pavements and Setting Priorities for Maintenance," Transportation Research Record 951, pp. 60-63, 1984

Schwartz, C.W., et. al., "Database Organization For Airfield Pavement Management," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Setting A National Research Agenda For The Civil Engineering Profession: Executive Summary, Civil Engineering Research Foundation, Report #91-F1003.E, September 1991

Setting A National Research Agenda For The Civil Engineering Profession: Vol. 1, Final Report, Civil Engineering Research Foundation, Report #91-F1003, September 1991

Seward, Derek, "Lucie - The Autonomous Robot Excavator," Industrial Robot, Vol. 19, No. 1, 1992, pp. 14-18

Shapiro, Lawrence K. and Howard I. Shapiro, "Construction Cranes," undated

Singh, Amarjit, "Construction And Robotics: Problems And Solutions," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Singh, Amarjit and Miroslaw J. Skibniewski, "Integrating Data Bases For Executing Automated Construction Tasks," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Singh, Amarjit, "Computer Integration For Automated And Flexible Construction Systems," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Skibniewski, Miroslaw and Chris Hendrickson, "Automation and Robotics for Road Construction and Maintenance," Journal of Transportation Engineering, Vol. 116, No. 3, May/June 1990, pp. 261-271

Songer, Anthony D., et. al., "Integrating Voice Recognition Systems with the Collection of Project Control Data," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Sotoodeh-Khoo, Hooman and Boyd C. Paulson, Jr., "Sensors And Expert Systems In Production Optimization Of Earthmoving Scrapers," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Syal, M.G., et. al., "Computer-Based Integration Of Design And Project Controls," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Szabo, Sandor, et. al., "Control System Architecture for Unmanned Ground Vehicles," Proceedings of AUVS-90, Dayton, Ohio, 1990

Szabo, Sandor, et. al., "Control System Architecture for a Remotely Operated Unmanned Land Vehicle," Proceedings of the 5th International Symposium on Intelligent Control, Philadelphia, PA, Sept. 1990

Teleoperated EL200B Excavator, Caterpillar Corp. Data Sheet, 1992

Tenende, Lennard M. and C.P. Johnson, "A Graphical Interface For Curved Steel Girder Bridges," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

The Roads Ahead, Civil Engineering, April 1992, pp. 55-57

Tiemeng, By Wang and Qin Quan, "An Expert System for Diagnosing and Repairing Cracks in Cast-in-Place Concrete Structures," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Tokar, Michael D., "Utilizing On-Site Computer-Based Information Systems," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Touran, Ali and Ahmed Banafa, "Probabilistic Scheduling in Tunneling," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Touran, Ali and Julio Martinez, "A Database For Tunnel Planning And Estimating," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Touran, Ali, "Expert System/Simulation Integration For Modeling Construction Operations," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

TSA Remote Excavator (T-Rex), Data Sheets, Martin Marietta Baltimore Aerospace Co., 1992

Tucker, R.L., et. al., "JTEC Panel Report on Construction Technologies in Japan," Loyola College in Maryland, Baltimore, June 1991

Vaha, P.K., et. al, "Kinematics and Trajectory Planning for Robotic Excavation," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Velinsky, Steven A. and Kenneth R. Kirschke, "Design Considerations For Automated Crack sealing Machinery," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

Wang, Ton-Lo, "A Computer System For Highway Bridge Rating And Fatigue Life Analysis," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Wang, Mao-Jiun, et. al., "A Decision Support System for Robot Selection," Decision Support Systems 7 (1991), pp. 273-283

Ward, Carter J., "High Speed Multi-Link Automated Control," Excellance In The Construction Project: Proceedings Of Construction Congress I, ASCE, San Francisco, CA, March 5-8, 1989

Ward, Carter, "Earthwork And Resource Estimation On Large Expedient Projects," Earthmoving And Heavy Equipment: Proceedings Of The Conference Sponsored By The Committee On Construction Equipment And Techniques, ASCE, Tempe, AZ, February 5-7, 1986

Warszawski, A. and R. Navon, "Robot for Interior-Finishing Works," Journal of Construction Engineering and Management, Vol. 117, No. 3, Sept. 1991, pp. 402-423

Warszawski, Abraham, "Robotics in Building Construction," Carnegie Mellon University, Pittsburgh, PA, May 1984

Warszawski, A., "Robots in the Construction Industry," Robotica, Vol. 4, pp. 181-188, 1986

Waugh, Lloyd M., "Knowledge-Based Construction Scheduling," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Welsh, Jeffery, "Automation and Robotics Technology for Intelligent Mining Systems," NASA Conference on Space Telerobotics, Pasadena, CA, Jan. 31 - Feb. 2, 1989

Williams, Trefor P., "A Hypertext Database for Asphalt Paving," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Williams, Trefor P., et. al., "A Knowledge-Based Expert System for Quality Assurance of Concrete," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Wing, Robert, "Robotic Joining Technology for Building Construction," Industrial Robot, Vol. 19, No. 1, 1992, pp. 19-20

Wohlford, William, et. al., "New Capability for Remote Controlled Excavation," SAE International Off-Highway & Powerplant Congress and Exposition, Milwaukee, WI, Sept. 11-14, 1989

Wong, Thomas C.K. and Denis A. Chamberlain, "Essential Factors in the Automation of Tall Building Inspection," 9th International Symposium on Automation and Robotics in Construction, Tokyo, Japan, June 3-5, 1992

Yamazaki, Yusuke, "Integrated Design and Construction Planning by Knowledge-based Systems," Preparing For Construction In The 21st Century, Proceedings Of Construction Congress '91, ASCE, Cambridge, MA, April 13-16, 1991

Yau, N.J., et. al., "An Environment For Integrating Building Design, Construction Scheduling, And Cost Estimating," Computing in Civil Engineering And Symposium On Data Bases, Proceedings of the Seventh Conference, Washington, DC, American Society of Civil Engineers, May 6-8, 1991

Zhang, X.J., et. al., "Tools For Expert System Development In Damage Assessment," Computing in Civil Engineering: Computers in Engineering Practice, Proceedings of the Sixth Conference, Atlanta, GA, American Society of Civil Engineers, Sept. 11-13, 1989

Zhou, Tong, "Assessment of the State Of The Art Of Robotics Applications in Highway Construction and Maintenance," California Dept. of Transportation, Sacramento, CA, May 1991

Zhou, Tong and Thomas West, "Assessment of the State of the Art of Robotics Applications in Highway Construction and Maintenance," Applications of Advanced Technologies in Transportation Engineering, Proceedings of the Second International Conference, American Society of Civil Engineers, New York, 1991

APPENDIX C

DR. RICHARD WRIGHT: CHARTS

AUTOMATION AND ROBOTICS

FOR

HIGHWAY DESIGN, CONSTRUCTION, OPERATION AND MAINTENANCE

OBJECTIVES

- DEFINE THE FUNCTIONAL NEEDS THAT CAN BE MET BY AUTOMATION AND ROBOTICS
- DEFINE TECHNOLOGICAL DEVELOPMENTS REQUIRED TO MEET THESE NEEDS
- DEFINE ORGANIZATIONAL AND
 INSTITUTIONAL CHANGES NEEDED TO
 EXPLOIT AUTOMATION AND ROBOTICS
 FOR HIGHWAYS

PROGRESSION OF INNOVATION

 EXISTING PRODUCT OR PROCESS REPLACED WITH INNOVATION

Sec.

14 × 10

No.

- PRODUCT OR PROCESS MODIFIED TO EXPLOIT POTENTIAL OF INNOVATION
- ROLES AND RESPONSIBILITIES MODIFIED TO FIT THE NEW ENVIRONMENT

REQUIREMENTS FOR HIGHWAY SYSTEMS PERFORMANCE

- ECONOMY (LIFE CYCLE PERSPECTIVE)
- FUNCTIONALITY
- DURABILITY
- TIME SAVINGS
- SAFETY
- ENVIRONMENT
- REGULATORY COMPLIANCE
OPPORTUNITIES IN AUTOMATION AND ROBOTICS

MEASUREMENT AND SITE DATA
 ACQUISITION

1

2

- AUTOMATION OF QUALITY ASSURANCE
 AND INSPECTION
- MATERIALS HANDLING AND MANAGEMENT
- EARTH MOVING, FABRICATION, PLACEMENT, FINISHING
- INTEGRATED PROJECT INFORMATION
 SYSTEMS
- PROJECT MANAGEMENT
- OPERATIONS, MAINTENANCE AND REPAIR

APPENDIX D

1

5

7

DR. LEONHARD BERNOLD: CHARTS

AUTOMATION OVERVIEW

1

2

Presentation to the Workshop on Automation for Road Construction, Maintenance and Operations

Sponsored By The Federal Highway Administration Hosted By The National Institute of Standards and Technology

by

Dr. Leonhard E. Bernold Associate Professor Department of Civil Engineering North Carolina State University

Director Construction Automation and Robotics Laboratory

Gaithersburg, Maryland November 4, 1992

TABLE OF CONTENTS

1. Introduction

Reverse of

2

2. Definition of Automation

3. Motivation to Automate

4. First Things First

5. Search for Potential (R)Evolutions

- On the Data Trail
- Work Hazards
- Smart Tools
- Waste Reduction
- New Technologies

6. Process Automation in Phases

7. Planning for Success in Automation

- Sharing Success and Failures
- Prototyping and Field Testing
- Competence, Committment, and Effectiveness
- 8. Conclusions

(ONE) DEFINITION FOR AUTOMATION

"... a technology that is concerned with the

use of mechanical, electronic, and computer-

based systems in the operation and control

of production."

in Industrial Robotics by Groover, Weiss, Nagel, Odrey

MOTIVATON TO AUTOMATE

Safe and Humane Workplaces
 Reduction of Waste
 Support for Human Workers
 Consistent High Quality
 Increase of Productivity
 Benefits to Mankind
 ...

BACK INJURIES IN CONSTRUCTION

THE MASON'S MECHANICAL SLAVE (Germany)

1000

FIRST THINGS FIRST

"If you automate a plant that is a mess,

you should expect an automated mess."

Bob Stansell of Luck Stone, Inc.

Se .

-

AUTOMATED DATA ENTRY (Speech Recognition/Pen)

		SOUND RECOGNITION DATA BASES		
OBJECTS	LEXICON OF CODE NAMES (WORDS)	User 1	User 2	User 3
	Skilsaw	Junn	www.	•••••
	Circular Saw	mon	when	•••••
	Handsaw	mpm	mpm	•••••
	etc.			
	Georgia Buggy			
	Buggy			
	etc.			

HOPE

Ĵ

2.2

2

Second marriage: The triumph of hope over experience.

Samuel Johnson

APPENDIX E

1

Ū

1

20

]

MR. THOMAS PASKO: CHARTS

Secretary - (Vacant) Secretary - (Vacant) OPERATIONS RESEARCH DIVISION Mr. James Wentworth Dr. M. Oskard Dr. M. Oskard Dr. M. Oskard Dr. D. C. Woo
--

Office of Advanced Research

Mission

innovative adaptations for emerging and advanced technologies which have potential for long range applications in the highway program. The research and technology adaptation is coordinated with NAS, NSF, Federal and "To plan, administer, conduct, and coordinate fundamental research and State agencies, [etc], --- international and domestic --

programs of the Associate Administrator for Research and Development --The results -- are further refined and developed in the applied research and other applied research organizations --"

ADV. RESEARCH	SBIR IDEA	SK HIGH
NCHRP SHRP FHWA	HPR (Problems)	LOW RI (\$, Tin
HIGH	ГОМ	
(sdunf) (st HO HF	(Increment	

ACTIVITIES

- 1. Visiting Researchers Program
- 2. Innovator's Front Door
- 3. Grants for Advanced Technologies
- 4. Conference with Position Papers
- 5. Key Contract Gap Filling
- 6. Co-funding (NSF, NIST, etc)
- 7. Technology Scans Here/Abroad
- 8. Internal Teams/Circles

1

1

CHERS
EARC
RES
TING
ISIA

IPA	Prof. Lee, Iowa, 7/1, 1 yr	Asphaltic Mixtures
	Prof. Flood, MD, 7/1, Summers	Neural Networks
IRF	Prof. Ouyang, China, 9/1, 1 yr	Geosynthetics
	Prof. Liao, China, 9/1, 1 yr	Tiebacks
NRCPD	Dr. Schueller, UVA, 9/1, 2 yrs	Basic Corrosion
	Dr. Stewart, MT State U, 9/1, 2 yrs	Basic Asphalt
	Dr. Huong, CCNY, 1/1, 2 yrs	Basic Deicers
	T.B.D. Pending, 2 yrs	Surface Energy

National Service Center (Niessner)	Decision Analysis in Transportation (Oskard)	Energy and Conservation Related Technology (Ormsby)	High Performance Materials (Pasko)	Self-Monitoring Systems (McGogney)	Robots/Automation/Man-Machines (Woo)	Computer Driven Technologies (Wentworth)
ľ	II.	III.	IV.	Υ.	VI.	VIII.

I National Service Center (Niessner)

- Entry Door for Innovators
- **Coordinated Evaluation Efforts**
- Contractor Operated \$1M/yr
- Time and \$ Savings for Applicants/Users
- Workshop September 1992
- FHWA/CERF/TRB/AASHTO/C of E
- Develop Center Concepts

II. Decision Analysis in Transportation (Oskard)

- **Optimization Methods in Planning R&D**
- Phenomenological Approach to Problems
- Neural Networks
- Multi-Criteria Decision Methods
- Nonlinear Finite Element Methods
- Investment Analysis (Life-Cycle Costs)

III. Energy and Conservation Related Technologies (Ormsby)

- Upgrading Materials via Chemical Treatment
- High Temperature Materials Processing
- Laser Fused Surfaces
- All Weather Roads
- New Cements
- Institutional/Environmental/Safety Issues

IV. High Performance Materials (Pasko)

- COMAT (interagency)
- CERF/AISI/ACI
- Optimized Prototype Structures
- Minimize Quantities, Lighter/Longer Structures Composite Action
 - Institutional Issues

V. Self-Monitoring Systems (McGogney) Sensors/Communications/Systems Multi-property NDE Scanning Reactive (Repair) Visual Warning SMART Materials Global NDE Sensors

Inspection

VI. Robots/Automation/Man-Machine (Moo)

- Production
- Construction
- Maintenance
- **Continuous Quality Control**
- Hazardous Environment

VII. Computer Driven Technologies (Wentworth)

- Expert Systems/Fuzzy Logic
- Machine Vision/Voice Synthesis
- Advanced Communications/Computer Systems
- Statistical/Computational Methods
- Artificial Intelligence Circle

FEDERAL-AID SYSTEMS MILEAGE

1

		-
FEDERAL AID SYSTEMS	TOTAL	PERCENT OF TOTAL MILEAGE
Interstate (Arterials)	44,629	1.2
Primary (Arterials)	259,069	6.7
Urban (Arterials & Collectors)	147,035	3.8
Secondary (Collectors)	400,081	10.3
Total Federal Aid Systems	850,814	- 22.0
Not On Federal Aid Systems	3.020.329	78.0
Total	3.871,143	100.0

National Service Center (Niessner)

- Decision Analysis in Transportation (Oskard)
- Energy and Conservation Related Technology (Ormshy)
- High Performance Materials (Pasko)
- Self-Monitoring Systems (Mct
- Woo)Robots/Automation/Man-Macl
- Computer Driven Technologies (Nvcutworth) V LL.

V.I. Robots

Woo)

41.1

Production

Construction

Maintenance

- 15

Continuous Quality Com

Hazardous Environme

JOINT HIGHWAY RESEARCH PROJECT

Final Report

States -

5

.

1

2

FEWA/IN/JERP-92/13

THE USE OF ADVANCED TECHNOLOGING-IN INDIANA DEPARTMENT OF TRANSPORTATION

1.

Thomas R. Kruse Kumares C. Sinha

36	
Table 2.4: Possible Barriers to Advanced Techr	ologies
Per jer.	cent of Sta
	kesponalnç
High Initial Cost	798
Lack of Trained Personnel	748
High Operation and Maintenance Cost	568
General Resistance Against Change	538
Uncertainty About Potential Benefits	51\$
Uncertainty About the Type of Technologies	35\$
That Can Be Used	
Poor Training and Support Offered By Vendors	21\$
If You Wait, Even More Advanced Systems Will	198
Be Available Next Year	
Fear of Labor Displacement	12%
Lack of Provisions in Contract Agreements	\$6
Unable to Get Funding	28
Liability Regarding IVHS and Anti-Trust	28
Managers Overburdened by Rate of Change,	2\$
Space Shortage for Computer Systems	28
Necessary to Custom Design and Build with	2
Much Systems Integration Work	
No Assigned Development Group	28

high potential for future application.

195 Table 2.5: Research and Development Projects,

Percent of States With Projects

Area

8 9 9 5% 578 8938 3 30 Computerized Design, Analysis Collection and Analysis and User Communications and Highway Information Systems Highway Traffic Operations Laboratory and Field Data Information Systems **Construction Management** Database Management and Quality Control and Management and Planning

CREATE "PULL" FOR TECHNOLOGY THE U.S. GOV'T: 230,000 MILES OF HWY. Owns: (6%) PROVIDES FED AID TO: 600,000 MILES OF HWY. (16%) 270,000 BRIDGES ON FED AID (47%) SUPPORTS: 2800 MILES OF MAINTAINS: RAILROAD 417,000 BUILDINGS OWNS: 68,000 LOCATIONS LEASES: 622M ACRES OF LAND ADMINISTERS: (30%) 300M Sq. Ft. of MAINTAINS: LOW SLOPE ROOFS (ARMY) BUILDS PRISONS, POST OFFICES, COMEDO MILITARY INSTALLATIONS AND AIRFIELDS, VETERANS HOSPITALS, COASTAL/HYDRAULIC INSTALLATIONS, ETC.

SECTION: 10

2

2ND WORKSHOP REPORT: TECHNICAL STATE OF THE ART

WORKSHOP PROCEEDINGS

1

"Application of Robotics and Automation to Highway Construction, Maintenance and Operations"

Proceedings from Day 1 of "Research Needs in Automated Excavation and Material Handling in the Field" Workshop

Sponsored by: NSF, NIST & FHWA

April 28, 1993

Courtyard Marriott 805 Russell Avenue Gaithersburg, MD 20879

TABLE OF CONTENTS

Executive Summary

-

.)

1

15

1

.

1

2. 1 2.

Session 1: Project-Scale Control and Design

Session 2: Large-Scale Robotics

Session 3: Teleoperation and Human Interfaces

Session 4: Automated Sensing and Inspection

Executive Summary

R

April 28-30, 1993

Workshop Proceedings

Why the Workshop?

The purpose of the workshop was to attract selected researchers and practitioners from academia, government and industry to exchange information, ideas and their vision on how "Automated Construction and Excavation" can benefit Civil Infrastructure Systems (CIS).

The size and quality of the world competition in the area of surface and underground construction and excavation technologies dictated an immediate plan of action. The workshop offered the opportunity to professionals of different background to interact with each other, be exposed to different philosophies, and contribute in identifying a coherent set of recommendations for research that will produce the highest returns.

Objectives of the Workshop

The general theme of the meeting was "Automation in Construction and Excavation Technology" with the following objectives:

- Present an inventory of state-of-the-art procedures in construction and excavation technologies
- Identify application areas where these technologies will have an immediate return (Transportation, Environmental Protection, Utility Networks, and others)
- Produce a set of recommendations for research needs and identify potential near and long-term programs.

Organization of the Workshop

The NSF, NIST and FHWA sponsors felt that this is the time to obtain a holistic view of the challenges facing the construction and excavation industry. In today's stringent safety and performance requirements there is a need to address the construction and excavation problem from a global perspective. The common theme bonding all the contributors to this workshop was "Automation and Machine Intelligence in Surface and Underground Construction."

The broad range of automated construction /excavation machines includes:

- the automated earth-moving, spreading, compacting machines, and Whittaker's family of autonomous machines at one end of the spectrum
- the continuous mining machines in coal mines,
- the continuous Tunnel Boring Machines in hard rock and weak soils,
- the drill and blast machines, and
- microtunneling machines at the other end of spectrum.

All of these machines are "semiautonomous" with shared man-machine control, operating in a highly unstructured environment. Automation is the common link between all these machines, which although different in size and function encompass:

- 1. The automatic movement (guided motion) of the machine
- 2. The automatic manipulation of appropriate tools for the realization of predetermined tasks
- 3. The automatic sensing and processing of real-time data for decision making and control at the local scale
- 4. The automatic characterization (detection) of the operating environment at the global scale (macroscale).

Workshop Proceedings

The selected topics for discussion covered, in twelve technical sessions, a broad spectrum of application areas, from the highly automated excavation devices at the surface of the soil medium, to the sophisticated TBM's (Tunnel Boring Machines), the continuous mining machines used in the coal mining industry and the different small diameter boring machines used in trenchless technology.

Content of Technical Sessions

The technical areas covered in each session are illustrated below:

In Sessions 1 to 4 the focus was on areas of automation as applied to highway construction and surface operations, while in sessions 5 to 11 the emphasis was on underground excavation and operations related to the development of the underground space. The topics discussed in each session are described below:

Session 1 (Chaired by Arthur Sanderson) focused on the design for automation in highway construction, site integration through hierarchical control, and, automated project planning and scheduling. Road construction and maintenance require extensive coordination of workers, machines, and resources. The use of advanced computer and automation technologies provide the means to improve the efficiency, productivity, and safety of construction projects.

Session 2 (Chaired by Kerien Fitzpatrick) placed the emphasis on technologies for automated earth-moving, spreading, compacting, lifting and positioning of materials and structural elements. Computers and communications technology have revolutionized earth-moving industries. The major changes are still to come, but they are just around the corner. These new developments include basic communication, machine monitoring and diagnostics, job and business management, planning and operations.

In Session 3 (Chaired by Leonhard Bernold) presentations were made on teleoperated devices, smart tools, operator-assisted automation, advanced operator interfaces, and virtual reality. The creation of intelligent controls for large and heavy machines used in the construction of highways poses a considerable challenge to engineers and scientists. For example, the unstructured nature of soil in its natural setting requires a thorough understanding of soil mechanics to develop dynamic control systems for robotic excavation. Problems that originate from site conditions in which construction operations have to take place need urgently to be solved.

Session 4 (Chaired by Avi Kak) dealt with technologies for inspection of bridges and road surfaces, automated surveying, "As-Built" databases, site positioning and quality assurance. The focuses of ongoing research activities are on nondestructive testing of highway and runway pavements, and the application of this technology to real time sensing of the quality control of repairs or new construction.

Session 5 (Chaired by William Whittaker) discussed elements of automated excavation, hazardous waste applications, military applications, academic and corporate research. Advances in perception, reasoning and manipulation that have it technically feasible for a robot to discern objects, discriminate them from their surroundings, plan approach trajectories and grasp them. However, an important class of material handling problems related to the extrication of objects that are embedded in soils need to be solved.

In Session 6 (Chaired by Priscilla Nelson) new TBM technologies were presented, along with technologies for steering and control systems, perception sensors, automatic lining. New developments in TBM's design include: main beam steering, floating grippers, direct drive cutterheads, mechanical cutterhead stabilization, hydraulic clutch engagement, oil sealing system for cutterhead drive, effective ventilation and

April 28-30, 1993

Workshop Proceedings

dust control, field replaceable cutter assemblies, new safety features.

Session 7 (Chaired by Ken Stokoe) focused on geophysical methods for subsurface detection, site characterization and, subsurface utility engineering. New developments in fusing certified three-dimensional data of soil conditions and underground existing utilities into the field operator console of "smart" equipment. This would guide automated directional excavating machines to avoid existing underground structures. However, presently geophysical exploration is still relying on old technologies that do not use the recent developments in automation.

Session 8 (Chaired by Ray Sterling) elaborated on today's problems and opportunities in R&D for excavation by blasting. Conventional drill and blast, while being able to excavate the hardest of rocks at acceptable efficiencies, are limited in that the technique must be applied in cyclic fashion, resulting in the inefficient and often interfering use of the equipment required for each cycle. Newly developed technologies are shown to be energy efficient for breaking hard rocks and permit more continuous and automated operation.

Session 9 (Chaired by Tom Iseley) dealt with the tracing and steering of horizontal earth boring systems, recent microtunneling innovations and applications of trenchless technology. Trenchless technology is the process of installing or rehabilitating underground infrastructure with minimum disruption and destruction typically associated with traditional methods. There are many methods that make up the family of techniques that can be used to install new infrastructure system.

Session 10 (Chaired by Basile Dendrou) provided the framework in which most of the new technologies introduced in the previous sections was put together in an integrated computer based environment to support the implementation of Mega excavation projects. These technologies included: an automated engineering information system, a reactive navigation scheme, real-time position measurement in underground construction, robotic perception of material properties, dynamic interface simulation for underground construction operations. It is believed that the most efficient way to handle the mega-scale problem of underground excavation projects is with the use of integrated computer platform that will assist in the management and control of automation as applied to the excavation process. The new integrated systems expand on the GIS technology to include the 3rd (depth) dimension, time, and the interaction of all processes characterizing the underground excavation.

Session 11 (Chaired by Herbert Einstein) continued the general theme of the previous session, with more details on the information technology as applied to construction, mechanistic simulations for safety analyses, data fusion and visual data bases, intelligent information systems. Information technology is the natural link between different activities of tunneling construction that includes management-costing programs, and safety and risk analyses.

Finally in Session 12 (Chaired by Mike Gaus) the impact of the new excavation technologies on the construction industry was presented through different evolutionary and visionary implementations. Two new ideas were promoted in this session, the concept of underground freight network and the concept of underground urban corridors.

Professionals Attending the Workshop

With the large variety of topics covered in each session it was only natural to have a broad range of professionals of different background participating in this workshop. It was very interesting to see: mechanical engineers interacting with civil engineers, specialists in robotics talking to specialists in geomechanics, construction specialists discussing with manufacturers, and engineers from the military sharing their experience with the private sector. A glance at these new concepts and ideas resulting from these discussions is given in the following sections.

Development Trends Identified at the Workshop

underground surface and Progress in technology is necessary if the "Automation" construction, mining and environmental protection industries are to remain competitive in the world market. The workshop, clearly demonstrated that automation technologies, advances in recent particularly the development of fast, inexpensive computers, control software design, and sensing technology, improve construction efficiency and worker health and safety.

Workshop Proceedings

In the construction site of the very near future, construction workers and operators will be relocated from the relative dangerous construction site, to a protected Control Center from which the operators will be able to direct the activities of their machines through graphic/video real-time computer terminals. The new technologies for computer-assisted construction are being developed by building upon conventional, mechanized equipment used in wellunderstood construction operations. By using familiar machines in familiar ways, the manufacturers hope to avoid confronting the barriers traditionally associated with introducing radically new machines and procedures. This trend was clearly identified in many sessions of the workshop dealing with different excavation machines. Table 1 shows typical machines and their "automation" components, as identified at the workshop.

Benefits of the Automated Construction and Excavation

The potential benefits of "Automation" in excavation technologies include: quicker and higher quality site characterization, improved craftspeople performance, improved modular construction, reduced rework, improved performance and quality improvement, and improved overall construction time.

The benefits according to preliminary estimates given by Dr. Yvan Beliveau can be more than \$150 billion per year in savings from the \$500 billion U.S. Construction industries. Most of these spendings are planned for construction at the surface. However, the underground space may well be the new frontier for the U.S. construction industry.

The underground excavation industry offers a unique opportunity to attract the interests of many different professions and put into practice new technological concepts and ideas, as shown in the closing session of the workshop. Potential new surface and underground developments for the next 5 years in the U.S. alone include:

In Surface Transportation:

- \$5-\$10 billion dollars for the rehabilitation of highways
- \$20 billion dollars for expanding the highway network

Candidates for the implementation of these projects are: Surface excavators.

In Underground Transportation:

- \$6-8 billion dollars for new programs in urban railway transportation
- \$2 billion dollars for new highway tunnels
- \$10 billion dollars during first 5 years and increasingly thereafter for the new underground freight systems

Candidates for the implementation of these projects are: TBM's, Drilling Machines.

In Mining:

- \$2 billion dollars for new Mines
- \$20 billion per year for ongoing operations

Candidates for the implementation of these projects are: Mining Machines, Drilling Machines, Surface Excavators.

In Water Management:

- \$5 billion dollars for rehabilitating existing pipe networks
- \$6 billion dollars for new construction of water facilities
- \$4 billion dollars for new sewerage networks

Candidates for the implementation of these projects are: TBM's, Trenchless technology, and surface excavators.

Table 1 Typical Automated Machines

1. 2

Machine Type	Features and Functions
Surface Excavators	Semi-autonomous machines operator assisted. Real-time Positioning: GPS, (2" accuracy) Automotive: compt. enhanced automotive fcts. Electronic Hardware: RISC +LAN's technology Software: Assembly and C on RO chips. US against Foreign Competition: Ahead
Whittaker's Family of Machines (Primarely for material handling in the field)	Remote-supervised operating system (semi-autonomous and automous machines Real-time Positioning: LPS (0.2" accuracy) Automotive: Traditional (Battery) Electronic Hardware: RISC Software: Assembly US against Foreign Competition: Ahead
Mining Machines	Computer-assisted, remote-supervised operating system (semi-autonomous) Real-time Positioning: LPS (Laser Based) Automotive: Electric Power Electronic Hardware: RISC - CISC Software: Assembly and C, Video Console US against Foreign Competition: Ahead
TBM (Tunnel Boring Machine)	Computer-assisted, manually remote-supervised operating system (semi-autonomous) Real-time Positioning: LPS (Laser Based) Automotive: Traditional Gas /Electric Software: Conventional, Video Console US against Foreign Competition: Weak
Drilling and bolting machines	Automated mechanically-assisted operation. (semi-autonomous) Real-time Positioning: LPS (Laser Based) Automotive: Traditional Gas Electronic Hardware Traditional Software: Assmbly and C US against Foreign Competition: Even
Trenchless Technology	Remote-supervised operating system (semi-autonomous) Real-time Positioning: LPS (Laser Based) Automotive: Traditional Electronic Hardware State of the Art RISC Software: Assembly and C, Video Console US against Foreign Competition: Weak

April 28-30, 1993

In Clean up Operations: (Information provided by Dr. Vernon Myers)

- \$50 billion for 2000 Superfund sites
- \$100 billion for 3,750 RCRA sites
- \$10-\$15 billion for 6,000 sites of DOD
- \$53-90 billion for 45 sites of DOE
- \$100 billion for 30,000 Real Estate sites

Sixty percent of these cleanup operations require the use of excavation technologies. Candidates for the implementation of these projects are: TBM's, Trenchless technology, and surface excavators.

Underground utilities:

- \$0.5-1 billion dollars for communication networks
- \$1 billion dollars to create underground space in major cities

Candidates for the implementation of these projects are: TBM's, Trenchless technology. The 1992 World Market for trenchless pipelaying is estimated at approximately \$4.7 Billion (Kramer, 1993)

These are only conservative estimates but the important fact is that the magnitude of these new financial ventures is such that "Automated excavation" can make a significant contribution towards the infrastructure investments that are necessary to help reverse the recent downward trend of the U.S. economy.

Promoting and Expanding "Automated Excavation Technology"

Technology alone is not enough to commit the governmental agencies and the investors to these new developments. The discussions at the workshop clearly indicated that there is a need to attract the popular concern as represented through the legislative institutions and regulations. According to attorney David Calverley, environmental regulations in the area of the utilization of underground space, are not nearly as well developed as in other media. An integrated regulatory scheme could significantly assist in the overall growth of the industry, while assuring at the same time, that the goals of sustainable development are met.

However, the single biggest issue to the overall success of these technologies is to properly educate, retrain, attract, and retain well-qualified professionals of the technology. It was the consensus of all the participants that the level of resources that the construction industry spends for training and education is inadequate (1% of its sales compared to 10% of sales for manufacturing). To remedy this, the participants of the workshop agreed to follow the Dr. Herbert Einstein's advice and create a "virtual network" of dedicated professionals that will actively support the promotion of "Automated Excavation Technology."

There are undoubtedly costs associated with the implementation of these technologies. In the final analysis, however, it is expected that each dollar of added effort will yield tenfold and even larger returns.

Technical Challenges

The new developments in automated surface and underground excavation include:

1/ the identification of in situ conditions using the latest technology in sensor devices (geophysical site investigation), 2/ Processing the in situ information through computers and expert modules to establish design and construction strategies, 3/ Adapt automatically the excavation tools and proceed with the excavation, 4/ Remove and automatically process the excavated material, 5/ Install automatically the lining or other structural system, and 6/ Complete the job to satisfy building code's safety requirements.

To implement all these tasks a broad range of different technologies must be blended together in a macroengineering framework (macro-scale approach). Workshop Proceedings

.

The challenge now is to integrate these technologies in the "semiautonomous" excavation machines, operating in the highly unstructured environment of the real world. The following table provides a summary of the different disciplines required for the "Automation" of most of these excavation machines.

Automated	Disciplines & Technologies
Function	
Automatic movement (guided motion) of the machine.	Robotics: Robotic control and mobility, Task planning, Intelligent sensors and actuators, Automatic drilling and lining systems. Manufacturing Automation: Flexible manufacturing, Process automation, Computer integrated manufacturing.
Automatic manipulation of appropriate tools for the realization of predetermined tasks	Control Applications: Motion control, Guiding systems, Modeling and simulation, Signal processing, Fuzzy control and diagnosis.
Automatic sensing and processing of real-time data for decision making and control at the local scale	AI & Expert Systems: Knowledge bank. Intelligent control, AI software. Network dynamics, learning algorithms, hardware implementation Global and Local Positioning: Laser network. Infrared technologies. Computer Vision: Image processing, Dynamic scene analysis, Machine vision, Pattern recognition. Fractals and IFS algorithms.
Automatic characterization and detection of the operating environment at the global scale (macroscale). Automatic Stabilizing counter measures.	Site Characterization and Detection: Geophysical methods, Real time sensors of evolution of mechanistic processes. Mechanistic and Construction Simulation: Prototyping, Parallel processing, Impact of automation to the environment, Reliability and risk analysis, Management and cost. Soil/Rock Stabilization: Concrete admixtures, Geotextiles, Fiber anchors, Chemicals for soil grouting and stabilization.

The overall research, development, demonstration program should be on a 5 year schedule requiring a total funding of \$15 to 20 million dollars for a target machine system. TBM's and mining machines will require more research funds than microtunneling and material handling machines.

Automated Function	R & D Cost Estimate
Automatic movement (guided motion) of the machine.	Robotics: \$4 million Manufacturing Automation: \$2 million
Automatic manipulation of appropriate tools for the realization of predetermined tasks	Control Applications: \$4 million
Automatic sensing and processing of real-time data for decision making and control at the local scale	AI & Expert Systems: \$1 million Global and Local Positioning: \$1 million Computer Vision: \$1 million
Automatic characterization and detection of the operating environment at the global scale (macroscale). Automatic Stabilizing counter measures.	Site Characterization and Detection: \$ 4 million Mechanistic and Construction Simulation: \$1 million Soil/Rock Sciences: \$ 2 million

These key technologies can be tested in certain important critical missions, such as:

- The cleanup operation of the nuclear power plants.
- Other major government excavation projects.

National Geotechnical Experimentation Sites (NGES) sponsored by NSF and FHWA would provide the means of field-testing these technologies in the development stages.

April 28-30, 1993

Recommendations

Here are some key suggestions for what the research community and funding agencies, might realistically do to foster more effective research in the area of "Automated Excavation and Material Handling in the Field":

- There are four areas for "Automation" that are intimately interrelated and thus require a mechanism where sharing of ideas can take place. Small workshops need to be held to discuss how to encourage multi-investigator proposals.
- The methodology for research and development in this area needs to move out from the confines of the laboratory and into real-life contexts. The field of "Automated excavation" is in an exploratory phase right now; in situ style studies must be encouraged.
- The development of underground space with its multitude of application areas represents a multibillion dollar market requiring the use of automated excavation tools that are still at a prototype stage. More than 100 million dollars are probably needed to complete ongoing research, requiring the active participation of the private sector. Federal Agencies need to interact with each other and identify needed incentives to attract private US and foreign investors.
- Automated excavation technology is an integral part of any environmentally sustainable development. However, there is a need to define the metrics for measuring sustainability in excavation procedures. Macroengineering may be the proper vehicle to quantify sustainability. The creation of a "think tank" to address this problem, is strongly recommended.
- The personnel to adequately handle the size and complexity of the new projects requiring excavation technology is inadequate. The possibility of converting part of the defense industry to fulfill the needs of these major government excavation projects must be closely examined in a future workshop.

Acknowledgments

The organizing committee would like to acknowledge Drs. Mehmet Tumay, Ken Chong, Howard Moraff of the NSF and E. Kent of NIST for initiating and funding this workshop or "Research Needs in Automated Excavation and Material Handling in the Field."

We also want to thank Dr. Don Linger of the DNA for his encouragement and moral support.

The success of this workshop would not have been possible without the contribution of all the participants before the meeting. We are thankful to the individuals who volunteered to write position papers and the chairpersons for their writing of the pre-workshop summary reports.Finally, we would like to express our appreciation to NSF/NIST/FHWA for their support.

Companies contributing to this workshop are the following:

The Robbins Company, Caterpillar Inc. Kraft Telerobotics Inc., Jacobus Technology Inc. Phoenix Scientific Inc, Olson Engineering Inc. So-Deep Inc, Sunburst Excavation Inc. MicroEngineering Inc., Horizontal Holes International Inc., Iseki Inc, Ampower Corporation, Transystems Inc., Spectra Physics, Hayward-Baker Inc., TRW, Image Machines Corporation, AMS

Reasearch Inc. (KROME Computers).

References

JTEC, 1991. JTEC Panel on Construction Technologies, Final Report, Feb. 1991, Japan technology Evaluation Center, Loyola College, Maryland.

Civil Engineering Research Foundation, "Setting a National Agenda for the Civil Engineering Profession", Volume 1, August 1991, report No. 91-F1003.

Session #1

4

1

1

1

1

N.

Sec. 2

- And

Project-Scale Control and Design

Chaired by:

Arthur Sanderson Rensselaer Polytechnic Institute

Participants:

Kenneth Goodwin, NIST

Iris Tommelein, University of Michigan

A.B. Cleveland, Jacobus Technology, Inc.

NIST/FHWA WORKSHOP ON AUTOMATION AND ROBOTICS IN ROAD CONSTRUCTION, MAINTENANCE, AND OPERATIONS

SESSION ON PROJECT-SCALE CONTROL AND DESIGN

"SESSION OVERVIEW: ISSUES AND APPLICATIONS IN PLANNING, INTEGRATION AND DESIGN"

Arthur C. Sanderson

Road construction and maintenance require extensive coordination of workers, machines, and resources. The use of advanced computer and automation technologies may provide means to improve the efficiency, productivity, and safety of construction projects. Often the sequence or concurrency of operations is critical to success. The complexity of planning and scheduling to best achieve effective materials handling, use of machines, and quality of the project is well-suited to computer-based methods which incorporate interactive optimization and knowledge-bassed planning tools. As more automated and sensor-related operations are developed for use in construction projects, the integration of machines and sensors becomes essential. An 'architecture' which systematically describes the interconnection and communications among machines, sensors, and users makes this integration possible, and may make many new tasks and approaches possible. Design underlies all of the planning and execution of projects, and new computer-aided design tools improve the efficiency of design, but also yield a representation of sites, parts, and structures which encourage better planning, more complete integration, and the possibility of new more efficient methods. 'Design for automation' specifically addresses the development of components and processes which enable new operations and tools. This session will highlight the underlying technologies for planning, integration, and design, and describe examples of current and future use in road construction.

FOR ROAD CONSTRUCTION AND OPERATIONS PLANNING, INTEGRATION AND DESIGN

Arthur C. Sanderson

Center for Advanced Technology in Rensselaer Polytechnic Institute Automation and Robotics Troy, NY

VERVIEW: NTROL AND DESIGN ing, Integration, and Design istruction and Operations yout Scheduling for yout Scheduling for Materials Management Architectures for Site Issues in Construction
VERVIEW: NTROL AND DI Ing, Integration, a ing, Integration, a istruction and Op istruction and Op yout Scheduling f yout Scheduling f anage yout Scheduling f ind f anage Achitectures for S Achitectures for S

,

CONCURRENT ENGINEERING IN CONSTRUCTION

WHAT IS PLANNING?

Planning is the ordering of tasks to optimize the use of time and resources.

Better planning results in:

- Lower cost
- Improved efficiency
- Higher quality
- Safety

HIERARCHICAL PLANNING

PROJECT LEVEL

example: Build retaining wall, Pour concrete roadbed .. Sequencing of major project segments, for

TASK LEVEL

example: Excavate trench, pick up pipe, align pipe ... Sequencing tasks within major project, for

OPERATIONS LEVEL

Individual operations such as: Move crane to pipe, grasp, move crane to trench, lower pipe, ...

COMPUTER-BASED PLANNING TOOLS

automation systems can be applied effectively to Many of the tools developed for robotics and construction projects.

These tools:

- Capture knowledge of a specific domain, such as road construction
- Efficiently store and retrieve large data sets
- Reason about domain to aid in decisions
- Interact with the user as a computer-based assistant

EXAMPLE OF PLAN - PIPE PLACEMENT

TOOLS FOR PLANNING: Project level

- management tool (related to PERT and PPS), based on network analysis of time and cost estimates. Critical Path Methods (CPM) - general project
- tools as decision aids when quantitative models **Optimization Methods - analytical and numerical** are available.
- constraints to infer decisions and plan sequences Knowledge-based Systems - logical and relational tools use stored, domain-related rules and of operations.

185

キン こ いいちょう

e

. 7

1

1

「ころ」のことのことであるという

i,

KNOWLEDGE-BASED SYSTEM

EXAMPLES: KNOWLEDGE-BASED SYSTEMS

SYSTEM NAME HI-RISE

BDES BTEXPERT BTEXPERT RETWALL SPIKE SOILCON SIGHTPLAN SIGHTPLAN SIGHTPLAN CONSITE PLANEX PLANEX PLANEX RONSAES KYBAS ITDS

SAFEROAD

TRANZ

Bridge structural analysis Highway safety structures **Design standards check Construction site layout Construction site layout** Soll exploration consult Traffic ctl in work zones **Construction planning** Retaining wall design Bridge truss design **Traffic Data System Project scheduling** Safety evaluation DOMAIN **Building design Brldge design**

AUTHOR

Maher, 1984 Welch and Biswas, 1986 Adeli, 1988 Hutchinson, 1985 Rasdorf and Wang, 1986 Ashley and Wharry, 1985 Tommelein, 1987 Hamianl and Popesen, 1988 Hendrickson, 1987 Levitt, 1986 C'Connor, 1986 Fenske and Fenske, 1990 Rathi, 1990 Rathi, 1990 Rathi and Demetsky, 1990 Roschke, 1991

Figure 11-3 Elements of the OARPLAN product model in PMAP (adapted from [Ito 1989]).

Component properties, such as dimensions, material composition, and finish specifications, are provided when OARPLAN accepts default values, which are correct in many cases. As project definition proceeds,

Figure 11-5 Reasoning from object relationships to activity dependency in OARPLAN.

Some specific examples of the dependency rules that the OARPLAN prototype system utilizes to develop plans for low-rise frame buildings are

- Supports constraint. Columns must be placed before the beams they support. The relation between the object constituents of the activities for installing columns and installing beams is supported_by.
- □ Safety constraint. In steel-framed buildings, do not start work on the members of floor n until the slabs of floor n-1 or floor n-2 are constructed. The relation nere between activity objects is that they belong to floors that are one or two levels apart.

Expert Systems Applications

त्म । भू

FIGURE 13. Schematic layout of all the knowledge blocks in the higher-level module. (From Huteninson, P., An Expert System for the Selection of Earth Retaining Structures, M.S. thesis, University of Sydney, Department of Architectural Science, Australia, 1985. With permission (

embankment or cut could be constructed. It not, then it is determined by default that an earth-retaining structure is required.

The knowledge on the types of structure suitable for a given wall application provides a higher-level control on the search and determines the order in which the various wall types are considered, and which types are considered for every application. If the types considered by these rules prove to be

Actual layout produced by the expert

FIGURE 9. Output of CONSITE after solving the office-building problem. (From Hamiani, A. and Popesen, C., Proc. 5th ASCE Cont. Computing in Civil Engineering. Microcomputers, Will, K. M., Ed., ASCE, New York, 1988, 248. With permission.)

FIGURE 21. Knowledge structure (From O'Connor M. J., De La Garza, J. M., and Ibbs, C, W., Jr., Proc. ASCE Symp. Expert Systems in Civil Engineering, Kostem, C. N. and Mayer, M. L., Eds., ASCE, Seattle, 1986, 55. With permission (

type of information that contractors present to owners for verification before the commencement of the project. Typical information would consist of the owner's approval activities, participation of major subcontractors in the formulation of the plan, etc. The in-progress scheduling evaluation module allows project managers to examine questions such as delay and duration modification concerns.

4.3.6.2. Methodology

CONSAES (CONstruction Scheduling Analysis Expert System) relies upon existing project control system software to (1) identify and capture expressions of similar form in the "paper" knowledge base, (2) determine the specific target inference engine, (3) decide how the "paper" knowledge base is to be represented in the inference engine, and (4) develop a mapping technique to adapt the concepts, facts, and rules to the corresponding engine syntax.

FIGURE 2. Typical bridge configuration recommended by KYBAS. (From Feaske, T. E. and Fenshe, S. M. Developments in Shor: and Medium Span Bridge Engineering '90. Turomo. August 1990; 23 With permission.)

AASHTO girder types, diaphragms and their related location in each span. etc. These recommendations are based upon user input to queries regarding clearance, usage, and site location. Figure 2 shows a typical girder bridge contiguration recommended by KYBAS.

The prototype RCBD (Reinforced Concrete Bridge Design) ES (Nguyen. 1990) for selecting a reinforced concrete bridge was developed by using the VP-Expert development tool. RCBD is a rule-based ES that has more than 100 rules in its knowledge base. There are 12 different types of bridges for the goal variables and eight dependent variables for the bridge: span length.

FIGURE 2. Management information system. (From Howell, T.F., J. Transp. Eng., 116(6), 831, 1990. With permission.)

strategies. Transportation engineers can design and evaluate various alternative traffic control strategies prior to their real-life implementation. This evaluation helps reduce motorists' operating costs, vehicular fuel consumption and emissions, and costly retrofits, which occur when a problem is detected only after implementation.

Traffic models, however, have a few major difficulties associated with their use. Basically, there is no consistency in the definition of traffic-related terminology used by different models. Also, since these computer programs were written for use in a batch processing mode, a card image input data file must be prepared for each run. This makes them awkward and time consuming to use. Finally, due to the limitations of these models, users who are devel-

 TOOLS FOR PLANNING: TASK LEVEL SIMULATION - New design methodologies embed simulation and visualization into the tools. 	 DISCRETE EVENT MODELS: PETRI NETS - Methods which model and control coordination of events. Analysis tools to improve performance. 	 MOTION PLANNING: COLLISION AVOIDANCE ANE SAFETY - Planning safe and efficient motions to improve quality and safety. 	
•		•	

, A

TO ROAD CONSTRUCTION AND OPERATIONS EXAMPLES OF PETRI NET APPLICATIONS

- coordination of simultaneous operations such as Planning of operations sequences - especially loading, spreading, and monitoring.
- Net model maps naturally to a multidevice network **On-line supervisory control of operations - A Petri** and provides deadlock-free communications.
- state representation may be used to monitor and Resource flow control and traffic control - A PN control traffic flow or coordinate delivery of materials.

MULTIMACHINE INTEGRATION

- machines e.g. loading and spreading, cooperative Many tasks require the cooperation of multiple lifting, positioning and sensing.
- improved coordination --> improved quality, communication, would provide a basis for Direct communication, or local network efficiency, and safety.
- Redefines the role of the operator and the needs for human interface. How do you monitor and control multiple interacting machines?

MOTION PLANNING

EFFICIENT MOTION AND COLLISION AVOIDANCE

Motion plans based on an integrated site location surfacing) and reduce risks (e.g. collisions on site, or system would improve quality (e.g. grading and crane avoidance of power lines)

- Use of on-line sensing permits dynamic planning **REACTIVE PLANS AND SENSOR-BASED MOTION** and reaction to changing conditions.
- SAFETY

Detection and avoidance of humans on the worksite.

ARCHITECTURE OF ROBUST SYSTEMS

DESIGN FOR AUTOMATION

GOALS:

- Design of devices, parts, and materials for automated handling and construction
- Design of roads, structures, and bridges for efficient inspection and maintainance
- Design with improved, smart, and environmentally sound materials
- New design methods to improve simulation and visualization

ROAD CONSTRUCTION AND OPERATIONS SPECIAL CONSIDERATIONS IN

- through bids, awards, and government procedures Design, planning, and construction are carried out -- not the same as manufacturing.
- practice, and design and planning innovations Standards and conventions widely affect the must be demonstrated before acceptance is possible.
- Close coordination of agencies, contractors, and operation. New incentives for coordination and suppliers has not been the traditional mode of integration may be necessary.

SUMMARY OF OPPORTUNITIES

- Knowledge-based systems for planning, e.g. site layout and cost analysis.
- deliveries of materials, multimachine interaction. networking, e.g. scheduling of machines and Petri net models for site coordination and
- Hierarchical architectures for site integration of dynamic activities, e.g. sensor-based contour following for grading, teleoperated machines.
- improved quality, efficiency, and safety, e.g. design Design for automation and new design tools for of bridges for inspection and maintenance.

Robot Systems Division

Precision Lift and Manipulation Heavy Loads of.

Ken Goodwin Jim Albus Robot Systems Division National Institute of Standards and Technology Gaithersburg, Maryland National Institute of Standards & Technology

APPLICATIONS

Steel or concrete beam erection

Bridge construction

Bridge inspection, paint stripping, repainting

National Institute of Standards & Technology

Î

Proprietary information included in this page , All rights reserved to 10A Inc.

Page # 16

Robot Systems Division

BRIDGE INSPECTION, PAINT STRIPPING

High lift platform, joystick control Near term developments needed:

Inspection heads

Indexing vacuum shroud

CAD programmed inspection

Inspector programmed stripping

National Institute of Standards & Technology

SIGHTPLAN MODEL FOR SITE LAVOUT

By I. D. Tonnuclein,' Associate Nember, ASCE, R. E. Levin,¹ Nember, ASCE, and B. Hayes-Rohh¹

ABSTRACT: A model that uses artificial methgence programming techniques is presented as a new nucl that layout designer. This model, named SphPlan, represented as a new nucl the layout designer. This model, named SphPlan, representing end prolifers webeng method is governof the SightPlan, representing end prolifers webeng method is governof the SightPlan, represented as a number, named SightPlan, represented as a two-dimensional system that minus, represented as a two-dimensional system that minus the end of the Animal Layout designer. SightPlan lays that minus, represented as a two-dimensional system that minus the end of the anti-site provided as a two-dimensional system that minus the program operation in the SightPlan is applied to a case study project illustrates how the program operates in stand-almer mode. SightPlan demonstrates that how the groupt model almer mode. SightPlan demonstrates that how the regram operates in stand-almer mode. SightPlan demonstrates that how the regram operates in stand-almer mode. SightPlan demonstrates that how the regram operation industry. The present system is a prototype, however. Addiminal, thus three weas of the structure models sightPlan will be ready for field use and useful to field practitue to model to be ready for field use and useful to field practitue to models and the structure models are been system in the constant and the structure models. The present system is a prototype, however. Addiminal threads the model practitue must be done before SightPlan will be ready for field use and useful to field practitue must be done before SightPlan will be ready for field use and useful to field practitue must be done before SightPlan will be ready for field use and useful to field practitue must be done before SightPlan will be ready for field use and useful to field practitue must be done before SightPlan will be ready for field use and useful to field practitue must be done before SightPlan will be ready for field useful to the study of the study of total study of tot

INTRODUCTION

The allocation of space to temporary facilities on construction sites has received fittle attention in modeling due to the complexity of the problem, resulting in a lack of optimization models, and the perceived marginal benefits to be gamed from performing this task better. Yet, it is a routine task for many site engineers and project managets, and it is obvious that a site's layout affects worker travel time, activity interference, and, thus, productivity Better layouts do pay off, il only managers could afford the time and effort needed for designing them.

A characterization of the site-layout problem and a thorough review of field practice and existing models lead to an understanding of the strengths and weaknesses of existing layout tools, so that a better model could be proposed. Model developers can essentially follow one of two approaches. They can learn what people do, model what people do, and develop tools that support people in what they do. Alternatively, they can build tools that approach the problem in a manner different from what people do, and possibly solve the problem in a manner different from what people do, and possibly solve the problem in some better way. The first typically is the objective of cognitive scientists; the latter of engineers. In either case, constructing a model is meaningful because it helps identify the important factors, formulate the problem, study the interaction between factors, and understand alternative solutions. In the work that is presented here, the first approach is adopted.

This paper describes a model that mimics how people tay out construction

¹Assi, Prof., Dept. of Civ. and Envir. Engrg., Univ. of Michigan, Ann Arbor,

MI 48(10)-2125 Prof. Dept. of Civ. Energ., and Assoc. Dir., Cir. for Integrated Facility Engrg., Stanford Univ., Stanford, CA 94305-4020.

Sr. Rey Assoc, Dept. of Computer Sci., Knowledge Systems Lab., Stanford Univ., Stanford, CA 94305-1070.

Nrite. Discussion open until May 1. 1993 To extend the clusing date one month, a written request must be filed with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on August 23, 1991. This paper is part of the Journal of Construction Engineering and Management, Vol. 118. No. 4. December, 1992. OASCE, ISSN 0733-9364/92/0004-0749/51.00 + 5.15 per page Paper No. 2455.

sites. Details on the artificial intelligence (AI) programming techniques that were used for coding it as a computer system are given elsewhere (Tommelein 1989, 1992). A site-layout model adopting the engineering approach is contrasted with the present model in Tommelein et al. (1991). The generality of the model is assessed in Tommelein et al. (1992a).

PROBLEM DESCRIPTION

The layout of temporary facilities is a routine construction management task. Once facilities needed to support construction operations are identified and their size and shape determined, they must be positioned within the boundaries of the available on-site or remote areas to meet multiple constraints and objectives related to safe and efficient operations.

Examples of temporary facilities are office and tool trailers, parking lots, warehouses, fabrication vards or buildings, staging areas, and lay-down areas. Such facilities usually remain in place for a period ranging from some days to several months and sometimes years (the duration of a construction activity or a major construction phase) and are, therefore, called temporary facilities. Despite their name, some temporary facilities are not dismantled after project completion and, instead, are reused for maintenance facilities during operation. Conversely, parts of the permanent structure may be built early so that they can be used for construction purposes.

Good site layouts meet multiple, though often cuilitcting, objectives. For example, reducing travel time may increase cungestion. Managers who set out to meet several objectives must therefore prioritize them (a nontrivial and highly subjective task) and apply their priorities in constructing a layout (for which, sadly enough, no generally agreed upon method exists).

Substantial amounts of money can be tied up in temporary facilities, but it is hard to attribute project savings or avoided costs directly to layout decisions. Even so, layout costs are typically charged to project overhead, so no one eagerly pays for them. This makes it difficult to convince management that layout is an essential and indispensible planning task.

Space needs during construction are governed by the construction schedule, construction methods, and contractors' mobilization and demobilization of materials, equipment, and personnel on site. This tight interaction turns site layout into a complex problem. Practitioners dealing with it typically limit its complexity by treating site layout as an isolated problem after many other decisions have been made. Consequently, opportunities to construct good layouts are often passed up and bad layouts are recognized only when problems have arisen.

For the same reason, the present work focuses on the two-dimensional spatial location of temporary facilities on site. This is only part of the sitelayout problem. In fact, one may argue that the other parts (including the selection, sizing, and shaping of temporary facilities) cannot reasonably be ignored; but this strong assumption is commonly made in layout modeling.

Existing Models

Practitioners typically sketch the layout of tempurary facilities at different points in time on the site-arrangement blueprint. Fig. 1 shows such a site arrangement of the permanent facilities, marked up to show temporary facilities. Practitioners use this single drawing and farely update it as construction progresses. As many changes are likely to occur, the drawing will become less valuable.

FIG. 1. Site Arrangement of Intermountain Power Project with Highlighted Long-Term Lay-Down Areas

The most popular aids for studying layouts are cut-out templates or other modeling blocks that people can move around to study space needs and assembly sequences (Henderson 1976). Many of the physical models have now been replaced by computer models (Rad 1982; Cleveland 1990; Reinschmidt and Zabilski 1990). Computerized product models have the additional advantage that they need not be limited to spatial representation; instead, they can be annotated and have more general functionality.

Other product models consist of anecdotal descriptions of specific site layouts (Tatum and Harris 1981; Weidemier 1986). These would be useful if more of them were available. At present, however, such descriptions do not provide meaningful, reusable layouts because they fail to elaborate on the specific context in which the layout applied, and one cannot gauge to what degree the subsumed knowledge is typical for the described or a new situation.

In contrast to product models, process models need no human assistance for generating a layout when given the appropriate inputs. Descriptive process mudels (Dressel 1963; Neil 1980, 1982; Popescu 1980; Rad and James 1983; Handa and Lang 1988, 1989) list facilities that may be needed, what types of steps a practitioner should consider in constructing a layout, while not specifying exactly which steps should be taken or in what order. This partial process specification is useful, yet insufficient to teach novices or program computers to become successful in constructing layouts.

Procedural process models typically involve heuristic construction or rmprovement methods (Francis and White 1974; Tompkins and White 1984; Kustak and Heragu 1987). Although tested on construction applications, these operations-research (OR) type models are selftom used in practice (Rodriguez-Ramos 1982; Reinschmidt 1975). This is probably because they require large aniounts of data about material flows between facilities and they are unrealistic in assuming steady-state conditions. Such data is difficult to obtain for operations where fixed fravel paths may not exist and projects change over time as construction progresses.

There is a large discrepancy between tools and methods used in field

ons why procedural models Al Modeling Philosophy	d practice include: While existing tools help people construct layouts, they do not help model	sirable for the following reasons:	tie different from field prac-	although knowledge-based is as to allow	Tor improvement, cither in terms of the quality or quantity of input data,	input to these models. I'list 2. Knowledge of the process could be made available to teach assisted	actitioners, though it is passed as a subject of the layout or to obtain feedback from managers now left out during	alized data in a declarative the layout process.	In particular, this was ad- 3. When the process and all factors of importance are clearly stated, they	knowledge is prived party that could be taken into account in related construction-management decision-	owiedge inter a (computer) making.	ubstantially cut the time to These observations gave rise to the questions:	o effective. generic problem-	1. What are the logical steps that people take while laying out a site?	as black-hox systems. follow 2. Do people have a systematic approach for laying out a site?	intuitive, or questionable to 3. If so, is it possible to model this approach?	such models when the results	have to resort to a superficial and a supervision of the supervision of the layout was taken by Humiani	ory to start with, to achieve (1987), out a more sophisticated model is presented here. The present	In which they are need re- commentation which represents the domain knowledge and heuristics they apply in this provess	no autinority. w bous (1960) (Tommetein et al. 1987a, 1987b).	raily pass on both authority	le for a model's results, they Sight Plan Model	use of the model, even when Task Definition	preferred. Black-bux models SightPlan tays out about 25 facilities among approximately the same num-	ans to gain insight into the ber of facilities that are in place. Each facility to be positioned is subjected	itervention to make intuitive 10 three constraints on average. As input to the system, all facilities are	tion, so practitioners oppose the providence of the they include as a prouping. In the latter case, it is part of Sight Plan's	d exterms have met this ob-	on developing better inter-	can interact with computers facilities relative to the site and nermanent facilities where they made the	imposed constraints.	simplifications in order to be	of effort scent may outweigh Case Study Statemark in and dotter and the statemark in and dotter and the statemark in the	or criter specifi must our weight. The line is knowledge is modeled affer two case studies. The Inter- mountain Power Project (IPP) and the model resulting from a layout pro-	tocol analysis are described in this paper. The American I Power Project	(AMI) was used to validate the IPP model and to extend SightPlan's ca- ts of procedural models and publities. More detail on AMI is given in Tommed-tin (1980).	fa 1966; Scriabin and Vergin	dires over more abstract but site of about 1.850 acres (not including the area reserved for evanitation	
practice and procedural models. Possible reasons wh	have not gained recognition in construction field pract	interest and	1. Expertise is required tor selecting an appropriate linitian each forward problem. This expertise is quite different for the second s	titioners' know-how and may not be available, althou	systems can address this problem (Fisher 1984).	2. Substantial aniounts of data are needed as input t	information is not readily accessible to field practition	suble to store vast amounts of generic or specialized	system and make it available for multiple uses. In pa	vixated by Feigenbaum (1977) who collica me know	adigm, and its usefuncts has been demonstrated in montrine large amounts of domain-specific knowledg	system, one can gain tremendous power and substan	search for a solution. especially in cases where no effect	solving algorithm is available.	3. Most mathematical models. implemented as blac	procedures that are incomprehensible. counterintuitiv	users. More important, users cannot easily alter such m	are different from what they expect. They thus have to	tweaking of input data. that were not satisfactory to	the desired outcome. People resent situations in wh	sponsible for an outcome over which they have no aut	dentified the responsionity/autitotity update on a speciality of means speciality they generally by	and responsibility. If people are held responsible for a	should also have control over the selection and use of t	this means that less-than-optimal models are thus preferi	do not provide the practitioner with any means to	process, nor do they allow the practitioner s interven	changes in order to lead to an acceptable solution. Set	their use. The aim of much Al rescarch has been to	more transparent and casy to use. Nuic-Dased syste indiue only in next. Onening recearch formas on de	faces and interruptible systems, so that users can int	naturally and be in control.	4. If a user is forced into introducing many simplified	able to apply a model, it may take substantial citori to	results within its product context. The amount of cities the value of the results.		Many of these are well-known shortcomings of p	computer implementations (Vollman and Buffa 1966	simple, well-understood models to lay out sites ov	mentially more moverful models. Keeping the limitat

the project manager. LADWP hired Black & Veatch architect engineers (BV) for the design of the plant and contracted with Bechtel Construction (Bechtel) as construction managers. With 1,500 MW, constructed in a time span of six years, and at a construction cost of about \$3.5 billion, this project is one of few of this size constructed in the 1980s. For more information on the successful construction of IPP, see (Boltz and Molinski 1987) and (Reinhardt 1987).

The following description is necessarily a simplification of the layout process as it was described by different parties. It captures the work of both the architect-engineers (AE) and the construction managers (CM) on IPP. Each party generated a layout design as needed for its specific task, so the result closely relates to the party's period of involvement and responsibility on the project.

Besides designing the permanent facilities, including power umits, support buildings, permanent roads, and railroads, the AE laid out the temporary structures comprising warehouses, office buildings, first-and facilities, entrance gates, brass alleys, security buildings, and management and labor parking lots. These are the buildings and support facilities needed for almost the entire duration of construction of the project, some of which would later be used for maintenance of the plant in operation. Of course, all structures associated with the construction workers' entrance to the site had to be grouped together. For practical reasons, many of the other long-term temporary facilities were clustered in the same area so that they would not cut up large open spaces on site that might he used by contractors for other purposes.

The AE also made rough estimates of needs for lay-down spaces for construction and anticipated their grouping on sate. Accordingly, the AE extended the railroad and road grid to include construction railroads and roads. Upon completion of the design task, the AE produced the site-arrangement drawing, which was submitted together with a milestone schedule to the CM. As it turned out, the owners revised the scope of the project at the beginning of construction and decided to proveed with only two units instead of the planned four.

down areas for approximately 25 major confractors. The CM's lead mechanical coordinator was assigned to do this. Starting with the sitearrangement drawing, the CM identified all areas occupied with permanent facilities, all access roads, and all otherwise unavailable areas on site. From for long-term lay down. Since unit I would go on-line before completion plant operation and, thus, could not be used for long-term lay down. The area immediately surrounding the power units was kept open as a work area and for short-ternilay down (the work area). A temporary railtoad extension gave access to the southwest corner of the site, so all lay-down areas for contractor work on power units 1 and 2 would be concentrated in that socalled construction area. Contractors working on coal-handling facilities would be located in the coal storage area. Material lay-down for the cooling of unit 2, a section of the site to the southeast of unit 1 was reserved for lowers and circulation water piping would be located near the cooling tow-Part of the CM's task was to decide on the layout of the long-term laythe site arrangement, the CM inferred which area the AE had anticipated ers.

For each contractor, the CM specified the needed area, identified access requirements, determined whether or not major pieces of material would need to be moved to and from the lay-down area, and established how

critical the contractor s activity was. Based on this information, the CM ranked the areas by overall importance and picked the one ranked lirst to fund an appropriate location for it on site. This meant determining in what area that lay down had to be (i.e., inceting a zoning constraint), determining whether or not the tay down needed to be adjacent to a railroad (adjacency constraint), and making sure that it did not overlap with roads or any of the fixed lacitities on site (nonoverlap constraint). Finally, if several afternative positions remained that met these constraints, the CM satisfied the preference of the contractor to be as close as possible to the place of installation of the work in the permanent facility by picking the best (as-closeax-possible constraint, computed based on shortest distance) position from the remaining alternatives. Then, the CM repeated this process with the second contractor's lay down, and so on. The results of this process were finalized by highlighting and labeling areas on the site-arrangement drawing (Fig. 1).

Before the award of contracts, contractors hidding the job were told what area would be available to lay down materials on site, so they could plan their work and further subdivide their assigned areas to specifically accommodate individual needs. The atorementioned description is necessarily a carcature of the layout process applied at the IPP site, but it is what was implemented in SightPlan.

Nodel Description

SightPlan's model builds upon the blackboard knowledge-based system architecture for cooperative problem solving (Haves-Roth 1985; Engelmore and Morgan 1988). *Blackboard architecture* refers to the structure and mode of operation of a specific type of computer program. Different implementations of this architecture exist, such as the BBI architecture that was used lor SightPlan (Hewett 1988).

The following analogy applies between the system's operation and the setting of a meeting at which a problem is to be sulved. At any one time, different meeting participants (called knowledge sources) may suggest contributions to solve the problem that is stated on the blackboard (a common data structure), but only one participant at a time will get to make a change. To select one of several changes that may have been proposed at once, the moderator (called scheduler) gauges each participant's potential contribution against an explicitly stated problem-solving strategy. After determining the change that hest matches the strategy's prescription, the user of the system can either agree with the moderator's clincic, or disagree and propose an alternate change. The user has the final word on which change gets excented and effectively acts as another participant in the system.

SightPlan uses this mechanism of considering all possible actions at a cycle and selecting the best one in accordance with a strategy to construct layouts. To do so it needs two types of knowledge. First, it must know which objects are to be positioned and which constraints they innst be subjected to. Second, it must have a strategy

The following project-specific data pertaining to objects and constraints on IPP is input to SightPlan:

- Major permanent facilities on site with their dimensions (rectingular in shape; possibly including some surrounding area) and tocation.
 - Access roads and railroads with their dimensions and location.

· Long-term temporary facilities with their dimensions (location to	TABLE 1.	Some Cycles from SightPlan's Expert Strategy Applied to tPP
be determined).	Cycle	Action
 Long-term lay-down areas with their dimensions (location to be 	(1)	(2)
determined). • Constraints an the location of termostrice (archines and his down		(11) Architect-Engineers
areas relative to the permanent facilities and roads (e.g., constraints	=	create pal
describe whether facilities need to be adjacent to a road or railroad.	55	include context in pal
or which permanent facility a lay down must be close to)	t.	include lived whiceis in pal
 Zones that partition the site in smaller areas (including the work. 	24 - 30	include and identify occupied space in pal
coal, operations, and construction area).	14-17	includes areas in pat
	11	include litst aggregate in put
The early-commitment strateov, learned from the AF and CM in the case	44	size arktickate context
sudvis skoninnum to Stahi Pang This success and a strategy is a successful and	15	shape aggregate context
stated to be a second to be a second of the second s	11	include second aggregate in pal
as exercise pair that provide the speed of extrains again the region of	NT	select argregate layout plan
contract the structure of a point of a point point and the structure of a point of a point of the structure of	55	create pa2
	641-72	melade object in pa2
	11	oricold pa2
the space excupted by betmanent racinities, that temporary figurities on site	H2 - 136	uncline object in pa2
ior the entire duration of construction should be positioned first. followed	142	share context raz
by shorter term facilities, and that larger objects should be positioned betw.:	145	franskr size funnt avereaste condext in m.) to meanance in and
smaller ones. Thus, this strategy is not project-specific; it is rather general	2	training oil
in that it can be used to lay out other construction sites in well Fig. 2	201	
illustrates this strategy's skeletal plan.	COI - NCI	boolined lits) aggregate in pal
Table 1 lists some of SightPlan's actions while nurshing the expect strategy	5/1-/01	provision second aggregate in pal
on 100 Column 1 when the vector is even which the source of the source o	161 - CXI	refine pa2
outlines Sight Plan's action correctione to each exclusion to reach the remainder		(b) Construction Managers
		0
	7	create pal
Steletas Streteau Sub- Focus	5	include context in pat
Plan Brokagy	54	include fixed wheels in put
CONTAIN OF SPACE (1)	67	include and identify incurpted space in pal
	41 - 11	include areas in pal
	141	include laydowns in put
	11	oricol pul
PAG LAYOUT CERTAIN E GEORETAY 11	541-136	pusition objects in zone or outside of zone in pul
	138-188	f position objects so that they don't overlap with nermaneut targities
	[62-(M)]	Position large objects first, with as close as missible constraints, then
		undate incomped space and norreed with following object
A BACLUDE PRESENT JUED OBJECTS (1))		
	of the paper, d	iscussion is locused on a lew specific cycles and actions. For
	a ruit descriptio	on of the expert tayout strategy, please refer to (Tommelein
MALLINE ANY ORIGINAL DALECTS (14)	1909).	
		viedge acquisition, we found that the AE and the CM each
CHADAGETSA POSITICHAAYDOWN (HAII URDARE OCC. SPACE (11)	reflected in the	I the temporary facilities on IPP. This division of tasks is
	2 and Table IV	Nour strategy. the Activity out precedes the CM-layout (Fig.
AGONEGATE. DEFONE PARON CONCINE THE SPACE [1]	similar to those	Many of the strategic steps of the AE, however, were quite of the CM. Identical numbers in parameters (allowing and
ADDREADIR ADDREADIR	factor in the ch	of the Civit recirited munities in parentineses following cach
		cicial piani icritect uns apparent gupucation of effort. Yet,
ADGREGATE RESIRICT AGGREANIS (1)		origed in the actions of the AE are different from those of
		tample, lable I felicels the same action for the AE as for
DEPLAY		respective cycle 24 (include fixed objects in partial arrange-
	facilities terred	riscu objects for the AE are the unerthened power plant
FKG. Z. SKONDEN PLAN OF EXPORT SURJEGY APPRIED TO IPP		Hard objects to the AL are the watenonges and construction

756

management office buildings that they design and also locate. Fixed objects for the CM, however, are the permanent power plant facilities as well as the warehouses and construction management office buildings located by the AE, whereas temporary objects for the CM are the long term lav-down areas for contractors. The Euglish-like sentences of the lavout steps shown in Table 1 clearly describe SightPlan's actions.

SightPlan in Uperation

Screen dumps illustrate how SightPlan constructs a solution. In parentheses are the cycle number and the corresponding action's description.

SightPlan creates a first partial arrangement (14-create PA1) and defines the boundaries of the space to be laid out (19-include context in PA1). second aggregate in PA1). Because these groupings do not have a shape nor dimensions. SightPlan must first take some steps to determine those. trance) can be displayed (Fig. 4). The substrategy that SightPlan calls to The system then includes the fixed objects (24-include fixed objects in and includes them (43-include first aggregate in PAI and 47-include before the aggregates (IPP-construction-facilities and IPP-construction-enshape and size the IPP-construction-entrance groupings is shown as the PA1) (Fig. 3). It identifies the groupings of objects, called aggregate objects. aggregate-plan in Fig. 2, but discussing its operation is not done here. interested readers can refer to Tommelein (1989) for more detail.

by sequentially meeting less stringent constraints. as is prescribed by its strategy (158-165-position first aggregate in PAI) (Figs. 4 and 5) (167-175-position second aggregate in PAI) (Fig. 5). After that is done. SightPlan can position each of the aggregates in PAI

the CM layout. All facilities shown on the AE layout are now treated as lixed. (Before construction started. the project owners decided to build only wo 750-MW units instead of the planned four. These actual units are shown When the AE layout is complete. SightPlan uses the result as input for as two black rectangles in Fig. 6, whereas Fig. 5 showed four.)

The CM starts by creating a new partial arrangement (14-create PA1). including the site boundaries within which they have to work (19-include context in PAI) and what they consider to be permanent facilities (24-

Two Shaped and Sized Aggregates in PA1. IPP-Construction-Facilities Has Met All Constraints Except Preference Constraint as-Close as-Possible to Power-FIG. 4. Unh-1

SightPlan's Solution to AE's Layout Task on IPP FIG. S.

include fixed objects in PA1). SightPlan then zones the site into four areas [33-36-include areas in PA1) (Fig. 6): 1. The work area. immediately surrounding the power units, to he used for short-term lay down.

2. The coal area, where the coal handling facilities are, to be used to locate all contractors constructing these facilities.

3. The operations area, located to the southeast of unit 1, to remain accessible at unit 1 start-up when unit 2 still is under construction.

4 The construction area, to the southwest of the site, where all contractors involved in construction of nints 1 and 2 will be grouped. SightPlan then includes temporary facilities (40-include laydowns in

FIG. 6. SightPlan Zones Site in Four CM-Specified Areas and Includes All Lay-Downs in PA1 for Layout by CM

PAI) (Fig b) and positions each lay-down area in the appropriate zone (501–136–position objects in zone or outside of zone in PAI) (Fig. 7).

The program can then position each lay-down area by sequentially meeting less stringent constraints, as is determined by the strategy (138–158 position objects so they do not overlap with permanent facilities in PA1 and 190–293—position large objects first in PA1, with av-close-av-possible constraints, then update occupied space and proceed with following object1. SightPlan stops when no more executable actions remain (Fig. 8). In this way, it has computed possible locations for each of the facilities that needed to be positioned and has thus satisfactorily completed its task.

Implementation

SightPtau is implemented in Common Lisp using BB1 version 2.1 running on a Texas Instruments Explorer. Its system code is available from the Civil and Environmental Engineering Department at the University of Michigan and from the Center of Integrated Facilities Engineering at Stanford University. A license to the BB1 development environment must be obtained from Stanford's Office of Technology Licensing.

LESSONS LEARNED

SightPlan's Capabilities

The SightPlan model shows that it is feasible for a computer program to mimic the steps taken by a field practitioner for laying out a construction site. The model takes into account more factors than other construction site-layout models have done so far, including objects classified by type. spatial, and temporal characteristics, and constraints expressing requirements or preferences. SightPlan is in that sense a more realistic model than other models are.

SightPlan's operation is easy to follow not only by AI researchers, but also by field practitioners. This was empirically assessed by having the construction manager of IPP observe the program. It only took a short introduction to clarify the operation of the system and our manuger could easily comment on the program during its run and critique its actions and the

FiG. 7. All Lay-Downs Meet Their Zoning Constraints

FIG. 8. SightPlan's Solution to CM's Layout Task on IPP

resulting layouts. The following step in assessing the transparency of the system is to have field practitioners use it. SightPlan's current implementation does not easily lend itself to that.

Clearly, SightPlan does not capture all expertise used by practitioners for addressing the layout task, and, in fact, that would be impossible. In parneular, human's spatial reasoning, emulated by SightPlan as constraint satlicular, human's spatial reasoning, emulated by SightPlan as constraint satsifactum, is arguably modeled satisfactorily. When natural language can remain vague, SightPlan's constraints had to be forced into unamhiguous spatial propositions. SightPlan's knowledge is different from that of human practitioners, who rely to a large extent on visual inspection and frequently use graphical and physical models for constructing and evaluating layouts. Early on in this work it became clear that a graphical display would be essential for debugging the program and communicating the layout to other people. Accordingly, the graphical display system was developed, of which screen dumps were used to illustrate this paper.

Beyond mimicry and unlike most other systems. SightPlan explicitly tepresents the practitioner's layout strategy. so the system knows what it is

Positions, gradually constrain those, sample multiple positions after all hard constraints have been met, and generate combinations of satisfactory lay- outs. The postponed commitment strategy together with a graphical inter- face for users to change layouts interactively while solutions are constructed as	task at hand, it is insufficient for addressing other tasks. Additional or different types of knowledge would be required to deal with overconstrained site layouts such as those of downtown building construction sites or to allow 762
nate strategies could be tried that might better suit the available compu- tational power. Experimentation led to such a strategy, using postponed commitment (Tommelein et al. 1991). A computer program need not com- mit to finding a single position of one object at a time before proceeding with the next object because it does not exhibit the same cognitive limitations	practice. SightPlan's Scope SightPlan's task-specific knowledge solves the carefully bounded layout problem and annears to be largely andicable to the united to be
every time a knowledge-based expert system is built, and one questions the quality and validity of expertise. One cannot assume that a descriptive knowledge system will lead to desirable results when it is used prescriptively. Thanks to the flexibility of SightPlan's implementation environment, alter- nate strategres could be tried that might better suit the auditor.	grams can easily be updated by one or several sources us construction pro- gresses and interface with other programs. The ability to maintain current site data (e.g., to reflect material delivery, construction execution status, and schedule changes) may tremendously improve materials management
Modeling Philosophy An issue not raised in this paper is whether the expert strategy is nec- essarily best for a computer system to follow. Clearly, this issue resurtaces	frey and Hayes-Roth 1990; Gans and Hayes-Roth 1990). Improving avail- ability means reimplementing the system on hardware available on con- struction sites and optimizing its execution speed. These are both feasible. Computer-based models for the site-layout process and product have potentially major advantages over other models. though. Computer pro-
lay-down areas belong to the same parent class lay-down areas. SightPlan's strategy uses this classification knowledge by referring to the class, rather than to individuals. In this way, the strategy remains unaffected when in- dividual contractor lay-down areas of one, get replaced by those of another project. SightPlan could, thus, be applied to layout problems in other do-	tomated knowledge-acquisition tools (of which research prototypes evist) could aid them in creating knowledge bases. If SightPlan's strategy is not satisfactory, the user can override it by choosing alternate actions from the SightPlan agenda or using the graphical interface to narrow sets of positions (Tommelein et al. 1991). Learning programs (of which research prototypes
teristic of objects in many domains and appear to be a fundamental concept in the layout task. As with many AI systems, however, SightPlan gains power by using a classification of objects according to their type, which is	better layouts than people could. For SightPlan to become field-usable, it must be made both practical and readily available. Field practitioners may want to mirror their expertive in
more about the domain of the task it tackles, its knowledge about power plant construction is not that domain-specific. SightPlan differentiates [a- cilities based on, for example, their dimensions. Dimensions are a charge	ferior quality. Assessing the quality of any layout is difficult, however. If an evaluation procedure would be available to replace visual inspection, computer programs could evaluate more alternatives and evaluated fault
in the BB1 architecture lends itself well to extending the system with ad- ditional knowledge sources to address increasing complexity. Expanding SightPlan's task in an integrated or distributed manner is thus possible. Although it was stressed that SightPlan would again source to the	SightPlan's output (Fig. 8) can be compared with the expert's (Fig. 1). The layouts necessary look similar, as SightPlan's constraints reflect those specified by the expert. By virtue of ignoring a number of factors (such as site elevation and underervoind initiates). SightPlan's from a non-basid
blamed for. In fact, most procedural programs while a physicans are blamed for. In fact, most procedural programs exhibit the same type of brittleness. However, SightPlan's implementation architecture has been used to successfully model other tasks. In addition, the opportunism that is inver-	it has not been implemented or optimized for speedy performance. Much intermediate data is kept around for process verification and analysis. While acquiring data is tedious and unavoidable in either automated or manual lavout approach, crafting SightPlan's knowledge base takes additional time.
agers leave open critical areas for staging and equipment access. Explicitly, reasoning about the assignment of space over time that is needed to deal with mobile equipment. For example, is beyond SightPlan's current scope.	data. IPP's expert took several hours, but less than a day, to lay out the site (more exact data is not available). Faced with the sume problem, but likely supplied with less knowledge to take into account. SightPlan constructs its layout for IPP in about three hours. The program is show, in part because
(partial) arrangements, i.e. it does not perform case-based reasoning. The present work locuses on the allocation of space to long-term facilities and ignores shorter-term facilities. This is not to say that short-term facilities are not important. In fact, assigning short-term staging areas is often crucial as delays directly impact the construction schedule. In done hydrow, we	The expert strategy is, thus, a first step towards articulating a strategy that could be applied on different projects and taught to novice practitioners. The current implementation of SightPlan is nowhere close to outper- forming field practitioners. For example, when supplied with all necessary
reuse of space over time, taking into account the criticality of activities based on the construction schedule. Field practitioners often recall parts of previous layouts and integrate such case-based knowledge into the solution process. SightPlan starts each solution process from scratch, and does not learn from previously successful	to the extent that it can be reused to construct layouts for new sites. When to the extent that it can be reused to construct layouts for new sites. When the objects and constraints related to 11P are replaced by those on a new site. SightPlan's strategy will create a layout for the corresponding new problem. This was confirmed using data from AMT (Tommetein 1980). Only minor changes were meeted for the transferred structure is concent.
fease of space aver time taking into measure the meanity.	doing. The major advantage of this is that the strategy exhibits generality.

F

	of knowledge engineering." Proc. Int. Joint Conf. on Aruficial Intelligence, Morgan
delivers proof of concept that we can build powerful accision support to assist field practitioners with layout design.	Kaufmann, Los Altos, Calif. Fisher, E. L. (1984). "Knowledge-based facilities design," PhD thesis, Purdue Univ., West for the second
Conclusions	west Latayette, Inu. Francis, R. L., and White, J. A. (1974). Facility layout and location. Prentice-Hall, Enclowerd Citie N I
The allocation of space to temporary facilities on construction sites was identified as a task for which no good process and few product models exist.	Gans, A., and Hayes-Roth, B. (1990). "NEWWATCH: Learning interrupted strat- cgres by observing action." Report 89-44, Stanford Univ., Knowledge Systems
The discrepancy between tool availability and tool use was ascribed to the difficulty of identifying the appropriate tool to suit a new situation. the need for tools to be usable, the unauteness of	Lab., Stantord, Calit. Itamiani, A. (1987) "CONSITE: A knowledge based expert system framework for construction site layout," PhD thesis, Univ. of Texas, at Austin, Texas.
nost tools, and the difficulty of realistically interpreting the solutions to hishly tailored problems. To overcome some of these shorteonings and	Handa, V., and Lang, B. (1900). CONSIDUCTION SIC PLANNING. CONSIT. CUMAGA. 88(5), 43-49. Handa, V., and Lang, B. (1989). "Construction site efficiency." Constr. Cumada.
better understand what people do, the SightPlan system was implemented to mimic the actions of field practitioners laying out construction sites. The	89(1), 40-48. Hayes-Ruth. B. (1985) "A blackboard architecture for control." Aruficial Intelli-
strengths of this model are that it not only closely approximates the prac- titioner's layout process and solution layout, making the model cusy to fution. For it evolution represents a strateor that can be reused to lay out	Tech. Report No. 213, Stanford Univ., Constr. Inst., Stanford, Culif.
other sites. The fully implemented model was tested on only two case stud- ies. so further testing is needed to strengthen and validate claims of gen-	IIcwett, NI. (1988). "BBI User Manual—2.1 Update (Common LISP)." <i>Report</i> ASL 86-6/a. Stanlord Univ., Knowledge Systems Lab., Stanford, Culif. Hollnagel, E., Mancint, G., and Woods, D. D., eds. (1986). <i>Intelligent Decisiu</i>
erality and practicality.	Support in Process Environments. Springer-Verlag, Stuttgart, Germany. Kusiak. A., and Heragu, S. S. (1987). "The facility layout problem." European J.
ACKNOWLEDGMENTS	of Operations Kes , 29, 229 - 231. Neil, J. M. (1980). "Leaching site layout for cunstruction." Proc. ASCE Convention
This paper summarizes work on site-layout modeling that was part of Iris	and Exposition. ASCE, New York, N.Y. Neil. J. M. (1982). Stream-electric generating station construction. M-K Power Graup
Iommetein s doctoral research, advised by hand the provident and standard University. Many thanks are owed to the introduct and	Buise, Id. 7-11-7-29. Popescu, C. (1981). "Temporary facilities utilities designing steps." Prise, ASCE
enthusiastic group of engineers and managers from the t.o. Angeles De- partment of Water and Power, Bechtel, Black & Veach, and Stone &	Conveniion and Exposition, ASCE. New York, N.Y. Rad, P. F. (1982). "A graphic approach to construction jub-site planning " Cos
Webster for their time and patience in posing challenging questions per- taining to site layout, explaining layout approaches, and granting permission	Engrg , 24(4), 211-217. Rad, P. F. , and James, B. M. (1983). "The layout of temporary construction fa
to reproduce company documents and blueprints. N. Vilughan Johnson enthisiastically helned build the first SightPlan prototype. Nichael Hewett	cultues " Cost Engrg 23(2), 19-20. Reinhardt, W. G. (1987) "Powerplant rebuilds confidence: Intermountain's coal
made many thoughtful suggestions for implementing leatures and hacks.	fired units are a technical and financial success." ENR, 218(5), 24–28. Reinschmidt, K. F., and Zabilski, R. J. (1990). "Applications of computer graphic
reasoning about arrangement problems, and Tony Cunfrey and François	in construction." Excellence in the constructed project. Proc. Constr. Congress 1 R. J. Bard, ed., ASCE, New York, N.Y., 137–142.
Daube assisted in designing and coding Signitrian's constraint engine. Financial support from the Stanford Construction Institute. the National	Rodriguez-Ramos, W. E. (1982). "Quantitative techniques for construction site lay out planning." PhD thesis. Univ. til Florida. Gainesville. Fla.
Science Foundation Vitant M3M-80-13120, and the Control of Pacifities Engineering at Stanford are gratefully acknowledged.	Scriabin, R. C. and Vergin, K. C. (1973). Comparison of compared argument and visual based methods for plant layout." <i>Mgmr. Sci.</i> , 22(2), 172–181. Tatum, C. B., and Harris, J. A. (1981). "Construction plant requirements for nuclea
APPENDIX. REFERENCES	sites "J Cinnur, Div, ASCE, 107(4), 543–550. Tummelcin, I. D. (1989) "SightPlan — An expert system that models and augment
Boltz, D. H., and Molinski, J. (1987). "Computer scheduling: On line and on time."	human decision inaking for designing cunstruction site layouts." PhD thesis, Stan ford Univ , at Stanford, Calif.
Cleveland, A. B. Jr. (1990). "Real-time animation of construction activities." Ex- Cleveland, A. B. Jr. (1990). "Real-time animation of construction activities." Ex- cellence in the Constructed Project, Proc. Constr. Construct I. R. J. Bard, ed.,	Lunimelein. F. D. (1992). "Cunstructing site layouts using blacklyhard reasoning with layered knowledge." <i>Experi systemis for civil engineers</i> . Anowledge representation R. 11. Allen. ed. a SCF. New York: N. Y.
ASCE, New York, N.Y., 238-243. Confrey, T., and Hayes-Ruth, B. (1990). "Knowledge-based strategy generaliza- com." Pranter A.S. No.45. Stanford Univ., Knowledge Systems Lab., Stanford,	Tommelein, I. D., Hayes-Roth, B., and Levitt, R. E. (1992a). "Altering the SightPlan knowledge-based Systems." J. Artif. Intell. Engrg., Design. Manufacturing, MI)
	19–37. Tommelein, I. D., Juhnson, M. V., Jr., Hayes-Roth, B., and Levitt, R. E. (1987a)
Dressel, G. (1963). Arbeitstechnische Merikolatier jur uch bautoenree. Fushiungs- gemeinschaft Bauen und Wohnen, IFA-Verlag Stuttgart. Stuttgart. Germany, J. Englemore, R., and Morgan, T., eds. (1988). Blackboard systemis. Addison-Wesley.	"SIGHTPLAN: A blackboard expert system for construction site layout." <i>Expersions in computer-aided design</i> , J. S. Gero, ed., North-Holland, Amsterdam the helberlands 1531.153
Reading. Mass. Feigenbaum. E. A. (1977). "The art of artificial intelligence: Themes and case studies	Tommelein, I. D., Levitt, R. E., and Hayes-Roth. B. (1987b). "Using expert system

for the layout of temporary lacifities on construction sites." Managing Construction Worldwide, Vol. 1, Systems for Alanoging Construction, P. R. Landey, and P. A. Harlow, eds., E. & F. N. Spon, London, England, 566-577 Tonimelein, L. D., Levitt, R. E. and Hayes Roth, B. (1992b) "Site Lyout modeling, How can artificial intelligence help?" J. Constr. Linco. Ment., ASCE, 118(3).

- 594-611.
- Tommelein, L. D., Levitt, R. E., Haves Roth, B., and Confrey 1 (1991) "SightPlan experiments. Alternate strategies for site layout design J (mupur Cit, Lugrg, ASCE, 5(1), 42-63.
 - Tompkins, J. A. and White, J. A. (1984). Furdines planning. John Wiley & Sons, New York, N.Y.

- Voliman, F. E., and Bulfa, E. S. (1966). "The facilities layout problem in perspective." *Mgm. S.t.*, 12(10), B-450–B-468.
 Weidemier, J. (1986). "Layout of power station construction sites." *Proc. L.S.A.A. Conf.*, The Queensland Electricity Commission, Australia, 6B, 1–6B, 9, Woods, D. D. (1986). "Cognitive technologies: The design of joint human-machine cognitive systems." *AI Mag.*, 6(4), 86–92.
Automation Integration for Construction

A. B. Cleveland, Jr.PresidentJacobus Technology, Inc.Gaithersburg, MD 20879

Abstract

When compared to engineering design, the use of automation in construction is still fairly limited. The applications of automation to construction have largely been focused in the general area of project management for activities such as scheduling, manpower tracking, billing, materials control, etc. Since the advent of powerful personal computers, these technologies are routinely used at construction sites. However, with the increased use of 3D modeling in the design process, coupled with the increased availability of cost effective hardware and software, there are now many opportunities for strategically new applications of automation to construction. In this discussion, we will focus on two very specific examples of new uses of automation. Both of these applications are currently underway for a major transportation projection. The first application is the integration of project schedule information with 3D animation. This application makes it possible to see and compare various schedule alternatives in a 3D real-time animated mode. The second application is the extension of 3D real-time animation into the area of virtual reality. In this case, virtual reality is being tested to assess its viability for reviewing transportation designs, such as automobile tunnels, by simulating the experience of the car driver. Both of these applications are good examples of potential uses of automation for construction which leverage electronic data generated during the design process.

Biography

Mr. Cleveland is president of Jacobus Technology, Inc. in Gaithersburg, Maryland. Jacobus Technology provides consulting services and software products to the Architecture, Engineering and Construction (AEC) industry, specializing in the area of computer-aided design, computer-aided engineering and animation.

Prior to this, Mr. Cleveland was the Manager of Automation Technology for Bechtel Corporation in Gaithersburg, MD. He was responsible for hardware and software procurement, systems operations, networking, user support, software development and computer-aided design activities in the Gaithersburg Regional Office. He supervised the start-up of the group in 1980 and directed the development of Bechtel's 3-D plant design system, 3DM[™], and the real-time animation system, Walkthru[™]. Mr. Cleveland was appointed as a Bechtel Fellow in 1987.

He graduated from Johns Hopkins University in 1972, where he received a Bachelor of Engineering Science degree in Operations Research and Industrial Engineering. He has authored over 25 publications concerning computer-aided design and engineering.

Jacobus Technology, Inc.

Schedule Animation

- Background
 - Complex, multi-year construction project
 - Multiple design contractors
 - Multiple construction contractors
 - Logistics during construction critical

Jacobus Technology, Inc.

Conclusion

- Computer-integrated construction is a continuous evolutionary process
- Incentives for automating and integrating are dynamic and will change as work processes change
- We must give people an incentive to automate

Teols that work Methods for sharing information

Session #2

.

Large Scale Robotics

Chaired by: Kerien Fitzpatrick, Carnegie Mellon University

Participants:

Charles Schaidle, Caterpillar, Inc. Anthony Stentz, Carnegie Mellon University

William Whittaker, Carnegie Mellon University

James Albus, NIST Ronald Lumia, NIST

Technologies for Automated Earth-Moving, Spreading, Compacting, Lifting and Positioning of Materials and Structural Elements

> Kerien Fitzpatrick Carnegie Mellon University

Background

Automation is a by-product of progress. As a specific process evolves, its needs become well understood and predictable. This progression toward automation revolutionized the manufacturing world when robotic manipulators and mechanized plants demonstrated what is achievable once the appropriate equipment exists for the task(s) at hand. Productivity boomed, quality increased by orders of magnitude, and costs dropped. Critics argue that manipulators and equipment used in manufacturing are not robotics, but mechanization, and the lessons learned are not applicable to arenas such as road construction, farming, and forestry.

This distinction is not clear since the basic principles and technologies required to automate are the same. Road construction could be considered manufacturing on the move. Its perfect equipment moves over the path, absorbs materials, and lays down a complete roadway of high quality and low cost. The technologies of perception, planning, control, and site integration used in manufacturing are based upon the same algorithms and techniques as those needed for arenas such as road construction. The prime differences between manufacturing and an outdoor task such as road construction include the following.

- Structure Manufacturing is optimized for structure, components come down a certain belt, are modified in some way, and shipped off on another belt. Most equipment performs a single operation. Construction is less structured than manufacturing, but is still presents significant structure. Materials can be unloaded in specific areas to sort by task and designs can be modified to suit automation. All structure existing in manufacturing did not occur naturally, it was created the same principle can be applied to construction automation.
- Mobility Manufacturing is optimized by fixing the location of equipment while in construction everything is on the move. The difference is construction automation's additional need for position estimation and registration. For example, a bulldozer might be considered a milling machine that moves. All it needs to know is its position, or pose when you consider the many actuators on construction equipment, and have the ability to inform other nearby or cooperative equipment. In past years this goal was unachievable since the accuracy necessary (a couple of inches or less) required very expensive equipment. Cost of recent generations of commercial positioning equipment (lasers and global/satellite positioning systems) capable of achieving the necessary accuracy has dropped significantly. This accurate, reliable, and inexpensive position information will revolutionize the usage of the class of equipment used in highway construction and maintenance.
- Multi-Duty Manufacturing benefits from configurations that minimize the need for equipment to perform multiple tasks. In construction, backhoes and bulldozers perform many different tasks. This does not preclude automation for certain costly or dangerous tasks such as trenching and pipelaying.
- Site Integration While manufacturing benefits from simple communications paths, generally predictable materials delivery, and stable resources, extrapolating the techniques used in this arenas to serve construction is quite viable. Construction

projects can benefit significantly by implementing existing techniques with little change. In fact, current construction projects perform planning, scheduling, and resource/materials control, but the difference is that they are more disjoint at certain levels (multi-contractors).

Thus, the technology advancements necessary to make highway construction, maintenance, and operations feasible continue to occur in one form or another in different areas of robotics research. To enable these advancements to benefit FHWA interests, they must be applied to characteristic or archetype tasks to further the understanding required for successful automation. Indeed, some equipment manufacturers have recognized this potential and are investigating certain enhancements such as "intelligent" machinery extending to automated haulage for surface mining. It is in the FHWA interests to guide these developments by directing research into core areas which show the greatest promise of success.

Rationale

To identify which archetype tasks should be more fully explored, the panel evaluated their potential based upon current technology levels, current benefits, long-term benefits, and risk. Four key areas were itemized to represent the basic components of technology relevant to highway construction, maintenance, and operations. These areas include sensing and inspection, large scale robotics, teleoperation and human interface, and integration design, plan, and schedule. Each technology area is then subdivided to even greater detail which are represented in Figure 1a. Construction and maintenance were evaluated as the greatest opportunities for automation. The two flow charts in Figure 2 depict the process through which a project comes to fruition. Central to all tasks are planning and scheduling, indicating that improvements in this area would definitely benefit the FHWA.

Construction

Construction topics inherently provide an excellent opportunity for automation. Much of this is due to the nature of the project. Construction projects take over a specific area and adapts the area to the needs of the project. Since adaptation is already performed, changes to existing methods would not be as traumatic as implementing an entirely new scheme. The changes for automation could be represented as evolution instead of revolution. Three areas were identified as prime candidates for automation using the criteria listed in the Rationale section - site integration, bridge deck construction, and trenching & pipelaying. Each topic is discussed briefly in the following paragraphs. Greater detail can be found in the proposal sections.

Current methodology separates an overall project into multiple sites, each having a specific site for which they are responsible. Each site has its own plan and schedule within the overall project schedule. A site plan can be further divided into plans and schedules for the individuals tasks required to complete the job. This organization method identifies site integration which includes site design, planning, scheduling as a key focal point. Improvements in site integration provide direct benefits to the contractors involved, the DOTs, and to FHWA. Details of the actual benefits are presented in the first project titled, "Site Integration Through Hierarchical Control." This topic would serve to develop the extensions to *site integration* listed in the Background section.

Evaluation of tasks sitting below site integration identified a small number that already exhibited significant structure in the task's environment. Automation projects such as these are less costly and have less risk since the automated method can take advantage of the existing structure. Certain bridge deck designs and construction methods offer an excellent opportunity for automation. The screed, commonly used for bridge deck construction, represents an existing structure which could be modified to perform additional duties beyond the spreading and finishing of concrete. The proposals on automated bridge deck construction and rebar installation provide examples of what is feasible using a modified screed or its support structure. Work of this type precludes the need for position estimation and registration of mobile equipment, as mentioned in the Background section and places emphasis on the advantages of *structure*.

The last of the construction applications is that of trenching and pipelaying. The primary drivers for this task are safety and efficiency. This area requires additional support due to its *mobility* which increases the complexity of automation. However, it is an ideal first step since the process has the equipment move from location to location and the stationary time at each location is sufficient for many cost-effective position estimation and registration methods. This proposed topic also addresses the need to automate *multi-duty* equipment such as a backhoe.

Maintenance

Maintenance differs from construction in that the task or project may not be of significant duration, in fact, the duration might even be less than a full shift. While the setup cost for maintenance may not rival that for construction, all DOTs visited agreed that in the future the majority of budgets would be directed towards maintenance. This places additional requirements on automated systems such that their intrusion into the traffic flow

be limited. When a maintenance project reaches such proportions that roadways or bridges are shutdown for length periods of time - they resemble more of a construction project and can be treated as such. Using the same criteria as construction, two topics were identified as having significant relevance, near and long term benefits, and minimum risk given existing technology.

The first topic, bridge inspection and maintenance, incorporates *mobility* and *structure* in the near term with the potential for *multi-duty* in future years. Initial versions would most likely take advantage of existing machinery, such as snooper trucks, to minimize the cost. The human bucket would be replaced by custom tooling to handle a specific task. In future years, the snooper-based machinery might be replaced by optimized machinery which would attach to the bridge and would feature a variable toolset. The proposal, "Automating Bridge Inspection and Maintenance" provides further details of how a system would benefit the FHWA.

The second topic, "Pavement Inspection and Repair," focussed on improving the inspection and evaluation process used in highway maintenance. To limit intrusion, this process must occur at highway speeds. This speed requirement places significant emphasis on mobility and structure due to the limited visual presentation offered by the defects. Ideally, detecting defects after they become visual may not suffice in the future and thus the sensing may have to detect them prior to becoming visual. Beyond the actual detection problem, another problem of magnitude must be overcome. Sampling for the small defects for an entire lane at highway speeds also requires improvements in data acquisition modes. The data rate can easily exceed gigabytes per second if filters or compression are not used. The proposed project outlines a method to reduce the magnitude of the data collected and a scheme to overcome the mobility problem.

Earthmoving in the Information Age

C.L.Schaidle Senior Staff Engineer Caterpillar Inc.

ABSTRACT: Computers and communications technology have revolutionized many industries. In earthmoving for highway construction, mining and site preparation, this revolution has just begun. The major changes are still to come, but they are just around the corner. This pesentation is a vision of this up-coming revolution in our industry. This vision is comprehensive. It includes basic communication, machine monitoring and diagnostics, job and business management, planning and operations, and machine control. For our industry to realize maximum benefits from the information age, we must have a vision of the future that is shared by technologists, machinery producers, end users, and job planners. Using a highly visual format, this presentation describes such a vision.

THE VISION

- Basic Communications
- Monitoring
- Management
- Planning / Operations
- Control
- Total Information System

KEY TECHNOLOGIES

Existing

Low Cost. Powerful Computing Global Communications Software Sensors. Actuators, Displays

Under Development

Hi Speed, Accurate Locating Low Cost, Accurate Mapping Lower Cost Sensor, Actuators, Displays More Application Specific Software Systems Integration

Earthmoving in the Information Age

DIGITAL SITE INPUT

Machines / Operators Interfacing With People for Information

ŧ

Machine / Operators Interfacing With Digital World for Information

KEY CUSTOMER VALUES

Reduced Human Effort Reduced Material Usage Improved Job Quality Better Documentation Faster Payment Fewer Mistakes Higher Machine Utilization

= LOWER COST

Kobotic Excavation of Buried Objects

Anthony J. Stentz Behnam Motazed Red Whittaker Carnegie Mellon University

Sponsored by: Geomechanical, Geotechnical and Geo-Environmental Systems National Science Foundation Award No. 9114674

Processed GPR image of three objects

Raw GPR image of three objects

. .

An Example

,

Ľ

Terrain to be Excavated

Perception System

INPUT: Sequence of range images from Perceptron laser scanner.

OUTPUT: Terrain elevation maps.

Maps built on demand from other modules (planners *etc.*).

Reachability Constraint(Londer)

Volume Constraint (Londer)

Shaping Constraint (Londer)

Simulation of Loading

Current Accomplishments

- Developed perception software to build elevation maps from laser radar data, fit tool-soil models to force/torque data, and detect and localize small buried objects using ground penetrating radar data.
- Developed planning software to select optimal digging strategy based on initial soil shape, manipulator constraints, and target soil shape.
- Completed an excavation testbed, including Cincinnati Milacron T3 manipulator with bucket, force sensor, ground penetrating radar, laser radar, and sandbox for validating our approaches.

Program Goal and Status

Objective:

• Develop and integrate perception, planning, and manipulation technologies necessary for autonomously detecting, uncovering, and retrieving fragile buried objects.

Applications:

- Space exploration and data sample acquisition
- Characterization and remediation of hazardous waste and unexploded ordnance
- Mining and construction:
 - detection and unearthing of buried pipes
 - debris removal
 - trenching
 - pipe laying

Field Robots for Construction, Maintenance, & Inspection

Field Robots for

Highway

onstruction & Maintenance

William L. " " Whittaker Director, Field Robotics Center Carnegie Mellon University

28 April 1993

Field Robots for Construction, Maintenance, & Insportion

Mix of Disciplines

- Planning & Cognition
- Sensing & Perception
- Configuration & Mechanism

- Modelling & Simulation
- Actuation & Control
- Infrastructure & Electronics
- Telemetry & Interfaces
- Software Integration

<u>.</u>

© Carnegie Mellon University 1993

Field Robots for Construction, Maintenance, & Inspection

Field Robots

- Depart from robots for factory and office
- Significant agenda and resource
- Operate on environment as it occurs
- Engage the surroundings
- Sense and Plan
- Act and React

servites, "l'alectores, se

' Field Robots for Construction, Maintenance, & Inspection

Perception

- Sensing, Calibration
- Filtering & Feature Extraction
- Modeling & Representation
- Matching & Merging
- Constraint Uncertainty

Field Robots for Construction, Maintenance, & Inspection

-

Planning

- Planning & Prioritization
- Scheduling & Resource Allocation
- Monitoring, Diagnostics & Recovery
- Task Control
- Advising & Learning

'Field Robots for Construction, Maintenance, & Inspection

Mechatronics

- Configuration
- Dynamics & Physics
- Motion Control
- Devices & Infrastructure
- Telemetry & Communications
- Design & Development
- Real-Time Computing

يغفينه

to release to a free stay & free station of dightings. One are then Maintenance, and the or

© Carnegie Mellon University 1993

Field Robots for Construction, Maintenance, & Inspection

Future

- **Exploit Cross-Over Technologies**
- Evolve Prototypes to Products
- Productive Robots in Use
- New Applications & Physical Forms
- Increasing Competence & Self-Reliance.
- Tools for Construction, Maintenance & Inspection

Site Integration through Hierarchical Control

Jim Albus Ron Lumia

Robot Systems Division National Institute of Standards and Technology Gaithersburg, Maryland

National Institute of Standards & Technology

Robet Systems Division

SITE INTEGRATION

A construction site is like a symphony orchestra with many different players and different skills.

If all the instruments play their assigned tasks (notes), at the proper time (beat), the result is a beautifully coordinated activity (music).

If the players do the wrong tasks, at the wrong time, confusion results (dissonance).

SITE INTEGRATION

A plan is like a musical score.

Each player has a part to play. The parts are synchronized to form harmony.

When the plan is right and is properly carried out, everything arrives just in time, at the right place, in the right amount.

Everything fits properly. Nothing is lost or late. Nothing requires rework. Nothing is damaged or wasted.

National Institute of Standards & Technology

Robot Systems Division

Robot Systems Division

Blackboard - Stanford SOAR - CMU Subsumption - CMU Task Control Architecture - CMU Pilot's Associate - DARPA Autonomous Land Vehicle - DARPA Intelligent Task Automation - AF, DARPA Real-time Control System (RCS) - NIST NASREM - NASA/NIST Meystel - Drexel Saridis - RPI U. New Hampshire RIPE / RIPPLE/GISC - Sandia Next Generation Controller - AF, NCMS etc., etc., ...

National Institute of Standards & Technology

Robot Systems Division

AN ARCHITECTURE FOR SITE INTEGRATION

The NIST Real-time Control System (RCS) is a hierarchical control architecture that can integrate many people and machines into a coordinated system.

RCS provides an engineering methodology for designing hierarchical control systems.

RCS defines how global plans can be decomposed into local actions that can be produced by servo motors, hydraulic flow rates, and engine power profiles.

RCS deals with planning horizons ranging from years and months, down to jobs lasting weeks, days, and hours, and tasks lasting minutes, seconds and milliseconds.

National Institute of Standards & Technology

Robet Systems Division

Rober System Division

,

National Institute of Standards & Tochnology

•

Robot Systems Division **RCS FOR SITE INTEGRATION** Continuator I De protecti j arem Digital Digital Digital -Famere -5 tipn motion al i De -------------

1

Robet Systems Division

BENEFITS OF SITE INTEGRATION

Systems can communicate up-to-date information

Sensors can detect errors and variable conditions

Material delivery schedules and equipment use plans can be regenerated in real-time

Operators can have complete information - where, when, how much - with visual displays

Novice operators can produce skilled performance

Measurements can be made (semi)automatically

Required dimensions can be recomputed in real-time for "as-is" conditions

National Institute of Standards & Technology

Robot Systems Division

SITE INTEGRATION

It has not been practical to organize a construction site like a factory -- until now.

Computer and communications revolution

High Performance Computing and Communications (HPCC)

CAD, process planning, expert systems, intelligent control, learning, sensors, sensory perception, distributed databases, knowledge representation, part geometry and attributes, data exchange standards, supervisory control, operator interfaces, virtual reality.

National Institute of Standards & Technology

Robot Systems Division

Session #3

1

.

Teleoperation and Human Interfaces

Chaired by:

Leonhard Bernold, North Carolina State University

Participants:

Antal Bejczy, Jet Propulsion Laboratory H. Lee Martin, Telerobotics International, Inc. H. McIlvaine Parsons, HUMPRO

NSF/NIST/FHWA WORKSHOP

on

"Research Needs in Automated Excavation and Material Handling in The Field"

Session 3: Teleoperation and Human Interfaces

CHAIRPERSON:

Leonhard E. Bernold North Carolina State University

Participants: Leonhard E. Bernold, Construction Automation and Robotics Laboratory, NCSU Antal K. Bejczy, Jet Propulsion Laboratory H. Lee Martin, TeleRobotics International, Inc. H. McIlvaine Parsons; Human Resources Research Organization (HumRRO)

Technical Description:

Smart tools, adaptive control of heavy manipulators, data sensing and data representation for teleoperated machines, opportunities through "virtual reality", lessons learned from the application of remote manipulation systems in nuclear environments, design aspects for human-machine interfaces.

LOCATION: Gaithersburg, Maryland

DATE: April 28-30, 1993

Teleoperation and Human Interfaces

Technical Description:

The development of fully automated and robotic machines for construction has to address many different but interrelated issues. The four main elements include: electronic sensing, intelligent control, human-machine interfaces, and mechanical adaptations. These and many other pieces of this large "puzzle" need to be considered in a "holistic" manner since they are very closely interlinked.

A teleoperated machine is considered a remotely operated system that is controlled by (a) human operator(s) in real-time (or on-line).

This session will address four aspects of teleoperation presented by experts from different industries/backgrounds namely: 1) Smart tools and adaptive control in construction, 2) Large volume manipulation, 3) Control and information issues in teleoperation mode, and 4) Design of human-machine interfaces.

SESSION OVERVIEW

SMART TOOLS AND ADAPTIVE CONTROL FOR CONSTRUCTION,

by

Dr. Leonhard E. Bernold, Director, Construction Automation and Robotics Laboratory, North Carolina State University, Raleigh, NC 27695-7908

Although smart tools don't fit the definition of a teleoperated machine, they represent a category of construction "equipment" that merged some important elements of advanced technologies with traditional (old) technology. For example, a smart nailer increased labor productivity when used by less-skilled laborer. The advantages of this innovative device over traditional nailers stem from the use of an electronic sensor, directly attached to the nailer, which was able to inform the worker real-time when the nailer head was lined up with the (invisible) stud behind the plywood. Thus, nailing accuracy was increased and time for measuring and marking the position of studs was eliminated.

Several aspects of construction operations create great challenges for the development of robust and reliable controls. Some to the important facts are: 1) Construction takes place in a generally unstructured environment, 2) the tasks to be performed require mechanical contact with many non-homogenous materials, and 3) the materials to be manipulated are generally heavy and some important ones chip or break when handled without care (e.g., concrete elements).

Excavation of soil has many characteristics that represent the challenges of construction robotics. It can be considered one of the most unstructured problems in the construction environment. On one hand, many technologies have been developed over history to build shelters using earth. On the other hand, the combinations of encountered soil characteristics are almost infinite and may vary significantly within the range of one meter. While many traditional control strategies developed for applications in manufacturing can not be used for controlling an excavator boom (e.g., position control), a more sophisticated model, depicted adaptive control, has been found useful. An adaptive controller is able to process real-time information about the environment during operation and to adjust (adapt) their behavior to the changing environment. The impedance control model, in particular, stresses the inclusion of the environment into an overall control strategy. It considers the dynamic relationship between the actuator and the environment, such as the soil. Here, the soil is considered an admittance, and the excavator boom as having an impedance which can be modified by the controller.

Path planning, which is responsible for identifying the most efficient means to fill the bucket with soil, requires data and information for intelligent decision making. Research in robotic excavation has shown that forces and positions measured during excavation reveal the "grammar" describing the soil conditions much like a conepenetrometer. The analysis of actual data provided the basis for describing the mechanics of an automatic path optimization system which would be able to adapt automatically to different bucket configurations, task objectives, and soil characteristics.

Adaptive control models have also been tested for other applications such as robotic masonry, and automated rebar bending.

"Smart" Nailing
Traditional Nailing

IMPEDANCE CONTROL MODEL

DATA INTERPRETATION WITH PATTERN RECOGNITION

(a) in the first(1st) layer

(b) in the third(3rd) leyer

.

-th

4 u

ήţ

COMPUTER-CONTROLLED MORTAR APPLICATOR

CONTROL AND INFORMATION ISSUES FOR OPERATING LARGE MANIPULATORS AND INTEGRATED EQUIPMENT "WORKCELLS" IN TELEOPERATION MODE

by

Dr. Antal K. Bejczy, Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109

The on-line operator interaction with the remote system is a combination of perceptive, cognitive, decision making, and action taking elements. The actions to be taken are typically manual ones. For a successful teleoperated system design and for productive system operation it is imperative to look at the control and information issues not only from the viewpoint of the equipment but also from the viewpoint of the human operators.

The information issues can be grouped into three technical areas: sensing or data acquisition at the work site, data transmission from the remote work site to the control station, and information displays to the operator in the control station. The sensing of the remotely operated machine's internal state is an elementary requirement, and the operator should be aware of the machine's internal state data in the control station. The other sensing domain is the machine's external state relative to the work or work environment. Here, the visual sensors (TV cameras), including their placement and control, play a key role, since remote control to a large extent is a visual perception problem to the operator. Proximity or near-contact sensors can add a necessary supplement to the TV camera information since near-contact events in many cases are not available from TV camera images. Proximity sensors can also add an automatic protective and safety feature to the remotely controlled operation. Another important external state sensing registers the machine's interaction force or torque with the environment. This sensing can also be used to provide a scaled force or torque feedback to the operator's hand through a proper hand-controller device. Sound sensors (microphones) can, in many cases, convey important bits of audible information to the operator's always open and omnidirectional audio channel. The state-of-the-art in the above discussed sensing devices is quite advanced. However, the adaptation of the sensors and their instrumentation to the machine feature and to the work environment may require development efforts.

The sensor data transmission from the remote work site to the control station can present design decision issues: tethered or wireless transmission. Some application cases may permit feasible tethered data transmission. The bulk of the highway application cases, however, may require wireless data transmission. The technology does exist for that, but its adaptation to the application environment will require development work and testing.

A main issue is the way and method by which the information is presented to the operator in a well-organized manner, taking also account of human factors. Today's computer graphics technology offers very useful tools to deal with information organization and display issues in a teleoperator control station. In addition to that, use of today's computer graphics technology permits the creation of a "virtual reality" in the following sense: we can build high-fidelity graphics models of working machines and of objects of interest, and these graphics models can, with high fidelity, be calibrated into a given TV image frame which covers the sight of the machine and objects of interest. After TV camera calibration and object localization, the graphics images of machines and objects of interest can, with high fidelity, be overlaid over the actual images of machines and objects of interest in a given TV camera image frame. This creates a virtual (or phantom) representation of machines and objects in a given working environment as seen by the operator on a TV camera monitor. These types of "virtual reality" graphics displays are very useful tools for planning and previewing controlled actions by controlling the motion of graphics images first before controlling the motion of the real machine. These "virtual reality" displays can also be used for operator training and action monitoring. An interesting property of these calibrated graphics displays is the capability of providing "synthetic TV camera views" to the operator. These views enable the operator to see events which are not visible within a given real TV camera view or to see events for which no real TV camera view is available.

The control issues can be summarized under the three categories: types of control (position, rate, force), modes of control (manual, computer, combined manual and computer), and control system architectures. All three control issue categories have an existing broad technology base, though a varying levels of maturity in the three categories. Therefore, a few remarks are in place here.

Control of large manipulators typically implies the control of not fully rigid but somewhat flexing mechanisms. Computer control typically implies the automation of some manipulator motions or actions. Combined or shared computer (automatic) and manual control typically implies that the operator's manual commands are guided by the operator's visual perception in some motion direction, while at the same time in some other directions automatic computer controls are used referenced to some sensor information. A typical example is an insertion task under visually narrow tolerances, where the forward insertion motion can be manually controlled under the operator's visual guidance, and the lateral displacement and misalignment errors during insertion can be automatically controlled referenced to force-torque sensor data to prevent jamming. If we try to put all these control ingredients together into an actual applied and remotely operated system (large flexing arm, shared manual and sensor referenced computer control), the system may not be fully ready from an operator's viewpoint for actual use. It will need experiments, tests and verification, and operator training.

In conclusion, then, it seems worthy to seriously consider the development of a realistic demonstration system to adjust and verify technology for practical applications, including the experience of the operators in the control station.

LARGE VOLUME MANIPULATION - TECHNOLOGY OPPORTUNITIES AND LESSONS LEARNED FROM THE APPLICATION OF REMOTE MANIPULATION SYSTEMS IN NUCLEAR ENVIRONMENT

by

Dr. H. Lee, President, TeleRobotics International, Inc.

Manipulation of tasks via total or selective autonomy poses significant challenges for the technical and economic implementation in real-world applications. In many forms, the nuclear industry has implemented remote manipulation for maintenance and decommissioning activities. Since construction faces similar challenges (e.g., heavy loads to be manipulated) tested concepts established in the areas of fundamental design, system integration, performance, and reliability related to the successful implementation of manipulation systems in unconstrained environments. In addition, the increased complexity of the tasks provides fosters many emerging technologies for manipulation and sensing.

/

Different Approaches With Same Ultimate Goal	• Totally flexible, totally autonomous operation !	• Elusive, expensive, near term unobtainable	 Real world decision drivers: Cost Throughput/Size of Task Safety Operating Environment 	

Entry Expense is Sizable in Either Case	 Relative advantages of Autonomy Consistency Labor savings Speed of operation 	 Relative advantages of Teleoperation Flexibility Environmental adaptation 	

Choice of Approach Is Guided by Ultimate Goals	 Environment Less structure> Teleoperate 	 Task Complexity/Diversity More complex> Teleoperate 	 Speed Faster> Automate 	 Safety Eliminate human error>Automate 	

R&D Should Have Application/Customer in Mind to Retain Relevance	 KISS - Keep It Simple, Stupid! 	Reliability is not an option	 Start small and application focused 	 Don't reinvent existing subsystems 	 Success: functional results not significant efforts 	• Few, if any, easy, inexpensive results	

,

D

Ū

-

C

D

Strongly Suggest Retrofit of Existing Devices to Rapidly Demonstrate Feasibility	 Caterpillar, Deere, Case, Komatsu invest extensively to deliver reliable platforms Teleoperated migrating to Automation 	measurable results

Cross-over Technologies Exist, Key Is Goal Directed Applications	 Case Study: Omniview 	- Goal: - Confined Directed Viewing	 Problems: Volumetric Constraints Complexity of Cabling/Drives Limited response & view field 	- Approach: Eliminate Mechanisms	

Omniview Result: Breakthrough that Will Effect Numerous Viewing Applications	 Approach: Electronic Video Pan and Tilt with Distortion Correction 	 Many advantages No moving parts Instantaneous response Multiple simultaneous views from one Simple and compact, no control leads 	 Applications - Robotics - Security - Endoscopy

Support Application Driven Research with Clearly Defined Benefits	 Well defined opportunity Labor, safety, or quality the driver? Labor, safety, or quality the driver? Start simple, continuous improvement Steek a broadly applicable result Seek a broadly applicable result Leverage existing systems and techniques Total automation >> diminishing returns Teleoperation defines performance objectives 	

DESIGN OF HUMAN-MACHINE INTERFACES IN NEW HIGHWAY CONSTRUCTION AND MAINTENANCE EQUIPMENT

by

H. McIlvaine Parsons Manager, Center for Human Factors, Human Resources Research Organization (HumRRO), Alexandria, Virginia

The following statements focus more on the development as a driver of research than on human factors/ergonomic research itself. A few years ago, in a project for the Army's Human Engineering Laboratory, a survey was conducted to assess design aspects related to human-machine interfaces in remote control centers and test beds for teleoperated vehicles(Parsons, 1989). Though the total of 32 organizations studied was not exhaustive, it showed the extent to which such interfaces were already proliferating; the number today is surely much greater, with mobile teleoperators installed in ground (interior and exterior), underwater, air, and space environments or being planned for these. Problems with operator interface have always existed, however, it is receiving increasing attention from the science and engineering community concerned with robotics and teleoperation.

The above mentioned survey covered the entire range of pertinent design aspects: vehicle and manipulator characteristics, sensors, personnel positions, configuration/layout, reconfigurability and adjustability, control devices (hand-, finger-, foot-, and voice-operated), display elements (CCTV monitors, computer-associated screens, other displays, special displays/inputs to the operator), audio elements, and communications. All of these varied considerably among control centers and test beds, suggesting some uncertainty about what was superior as well as what might need improvement through applied research. Although much development and installation can now proceed with off-the-shelf components, each new system requires systematic study of its particular requirements.

One should also consider the human-machine interface in industrial robotics (Parsons, 1988, 1992). In addition to off-line programming, the principal interface device is a remote control unit called a teach pendant. In on-line programming this controls a manipulator much as though it were being teleoperated. Also for the Army's Human Engineering Laboratory I surveyed the designs of teach pendants used by ten major U.S. and Japanese robot manufacturers. The designs of these have differed so greatly that the Robotic Industries Association, with my participation and help from pendant engineers, and drawing both on my survey and on MilStd 1472C, developed ANSI standard ANSI/RIA R15.02/1-1990 for Industrial Robots and Robot Systems--Hand-Held Robot Control Pendants--Human Engineering Design Criteria.

A study sponsored by the National Institute of Aging investigated how often older people might make mistakes simply in pressing pushbuttons. The error frequencies of most of the 18 participants 65 to 88 years old in an observational study raised some doubts about the feasibility of using teleoperators for household tasks, even if interface designs were optimized.

Design guidelines and simple prototype testing can be helpful in developing human-operator interfaces, along with task analyses, workload analysis, review of enduser characteristics, and study of safety considerations and environmental conditions. Any operational testing of equipment and software should embody human factors components, including representative future operators, maintainers, and programmers.

Indeed, at the start of system development such eventual end-users should be queried methodically about their experience with current equipment, and they should be consulted as the new system is installed.

References:

Parsons, N.M. (1988). Robot programming. In M. Helander (Ed.), <u>Handbook of human-computer interaction</u>. Amsterdam: Elsevier.

Parsons, H.M. (1989). Teleoperator interfaces for remote control centers/test beds. In <u>Proceedings of the Human Factors Society 33rd Annual Meeting</u>. Santa Monica, CA: Human Factors and Ergonomics Society.

Parsons, H.M. (1992). Remote-control units for industrial robots. In M. Rahimi and W. Karwowski (Eds.), <u>Human-robot interaction</u>. London: Taylor & Francis.

Session #4

-

Automated Sensing and Inspection

Chaired by:

Avi Kak, Purdue University

Participants:

Michael Skolnick, Rensselaer Polytechnic Institute Mohamed Kaseko, University of California William Herr, Phoenix Scientific, Inc.

Technologies for Inspection of Bridges and Road Surfaces, Automated Surveying, "As Built" Databases, Site Positioning and Quality Assurance

> Avi Kak Purdue University

ĥ

Concept Drawing for a National Demonstration Project For the Automation of Bridge Decking

-

đ,

Figure 1

Rolling-Ball Contact Data Gathering

5

5

Robot Vision Lab. Purdue University

Figure 2

X-scan Range Data Gathering

Robot Vision Lab. Purdue University

•

Figure 5

ĥ

Z as intensity

Figure 7

Robot Vision Lab, Purdue University

•

Robol Vision Lab. Purdue University

.

-

.

_

Intensity image

Figure 10

11

Ì

Robot Vision Lab. Purdue University

95

1

1

1

.
rolling_ball(intensity)

Figure 12

Robot Vision Lab, Purdue University

Purdue Robot Vision Lab's Neuro-Morph Architecture For Surface Inspection at Multiple Levels of Resolution

Figure 13

Robot Vision Lab, Purdue University

Use of Mathematical Morphology for analysis of pavement images Presented by Michael M. Skolnick Dept. of Computer Science R.P.I. Troy, N.Y. 12180

Abstract

Image processing algorithms based on the transformations of mathematical morphology are applied to the problems of pavement inspection. Mathematical morphology holds out some promise to these problems since it was developed out of the applications of materials analysis and pavement surfaces can be considered as particle/phase structures. The task is to classify pavement images into various distress categories, with the major components of distress involving the detection of cracks and changes in surface texture. A pavement image is processed as if it consists of various kinds of particle size distributions. Such size distributions are shown to be sensitive both to cracks and to changes in the expected texture of the pavement images. The system can be configured to have sensitivity to a wide range of expected textures via the use of a normalizing function applied to the raw size distribution data. Also, due to the reduction of image data into particle size distribution data there is a significant computational advantage to this approach. Finally, the sensitivity to phenomena beyond simple crack measures distinguishes this approach from the current state of the art.

/

Benselaer Polytechnic Institute	Chakravarthy Bhagvati‡	†Civil and Environmental Engr. Dept. ‡Computer Science Dept.
USE OF MATHEMATICAL MORPHOLOGY	Dimitri A. Grivas†	Rensselaer Polytechnic Institute
FOR ANALYSIS OF PAVEMENT IMAGES	Michael M. Skolnick [‡]	Troy, NY 12180

J,

 Ar Ar Ar anine Ar anine anine
--

2

-

ł

•

k

Problem Description

DISTRESS SCALE

DISTRESS TYPE	SEVERITY	DESCRIPTION	EXTENT	RATING
Slab Cracking	None	No Cracks	All Slabs	z
	Small	Tight Cracks	1 or 2 Slabs	SL
		Gen. Spall free	≥ 3 Slabs	SG
(N type)	Medium	Full depth	1 or 2 Slabs	ML
		Asphalt Repairs	≥ 3 Slabs	MG
	Large .	Open Cracks	1 or 2 Slabs	
		Gen. Spall free	≥ 3 Slabs	P
	Total	Wide Spalled Cracks	1 or 2 Slabs	٦L
			≥ 3 Slabs	TG

The alphabet code N is used to abbreviate notation for slab cracking

Rensselaer Polytechnic Institute

Problem Description

DISTRESS SCALE...

DISTRESS TYPE	SEVERITY	DESCRIPTION	EXTENT	RATING
Shoulder Defects	None	No Cracks	Entire Section	Z
		Longitudinal Cracks	Occasional	SL
	Small	or		
		Transverse Cracks	Frequent	SG
			Occasional	ML
(G type)	Medium	Alligator Cracks		
			Frequent	MG
		Material Loss or	Occasional	LL
	Large	Potholes or		
		Patches(all types)	Frequent	ΓC

The alphabet code G is used to abbreviate notation for shoulder defects

Rensselaer Polytechnic Institute

Analysis of Pavement Images Other Defects: Particles different from the normal pavement Normalize opening distributions to increase sensitivity to defects, ANALYSIS OF PAVEMENT IMAGES USING Use morphological opening distribution for size distributions Particle size distributions reveal cracks and other distresses Pavement Surface: Aggregate of particles of different sizes MATHEMATICAL MORPHOLOGY o Cracks: Linear particles of large dimensions Rensselaer Polytechnic Institute texture

Intuitions:

"Roll" SE about interior of set to define new set removes "peninsula" of images

Analysis of Pavement Images

MORPHOLOGICAL OPENING

- Opening by a structuring element removes all objects in an image inside which the structuring element cannot fit
- Removes all objects smaller than the structuring element
- Functions like a sieve

Analysis of Pavement Images

OPENING DISTRIBUTION

Opening distribution of an image I

- Open the image I with a series of structuring elements of same shape with sizes (x) increasing from '0' to ∞
- Plot the area of the image I after opening (A(x)) vs. the size of the structuring element (x)

Note: The plot of A(x) equals original area of the image when x = 0and decreases to 0 when the size (x) exceeds the largest objects in the image.

Rensselaer Polytechnic Institute

-

opening distributions

IODisk(0)

IODisk(2)

IODisk(1)

Figure 5. Opening Distributions for selection of 3 images in distress class N. The x-axis values - for all distribution graphs - are the lengths of horizontal lines used to open the three binary images. The y-axis is the percentage area remaining after each opening operation. The distress categories of the curves are displayed in grey-scales such that small (ns_1.13) distress is darkest, large (nl_1.34) distress is medium dark and total (nt_1.10) is lightest; visualize the grey-scales as representing increasing levels of pavement deterioration from darkest to lightest.

Figure 9. Four selected opening distributions from distress class G which illustrate the difficulties in using the raw opening distributions to realize the distress types. Note the crossing over of medium and large distress categories at linear structuring element size of 22.

.

るの

Ħ		textures hased
T APPROACI	els	<i>deal</i> or non-defective
CURREN	I-priori morphological mod	Models are developed for i

Uses

Size distributions are computed for a given texture using opening and closing distributions size distributions

uo

- Deviations in the extracted distributions from the ideal distributions predicted by the model are identified as defects
- The magnitude of the deviations provides information on the severity of the defects
- Rough indication of the location of defects (as well as texture inhomogeneities) is obtained from centroid movements

MORPHOLOGICAL MODELING • The Gaussian Number of Particles (GNOP) model: • The number of particles exhibit a gaussian distribution with a mean scale <i>T</i> with μ_T particles at scale <i>T</i> i.e. $N_t = \mu_T \cdot e^{-\frac{(t-T)^2}{2\sigma^2}}$ where N_t is the number of particles at scale <i>t</i>	selaer Polytechnic Institute
--	------------------------------

-

Analysis of Pavement Images - Normalization Scheme

Gauss Normalizing Function (Opening Dist.) \Rightarrow Normalized Dist.($\eta_G(x)$)

$$\eta_G(x) = \begin{cases} \frac{A(0)}{\sqrt{2\pi}\sigma\mu_T \cdot T}, & \text{if } x = 0\\ \frac{A(x) - A(x-1)}{\mu_T x e^{-\frac{(x-T)^2}{2\sigma^2}}}, & T - 3\sigma \le x \le T + 3\sigma\\ \frac{A(x) - A(x-1)}{\mu_T x e^{-\frac{(x-T)^2}{2\sigma^2}}}, & T - 3\sigma \le x \le T + 3\sigma \end{cases}$$

Rensselaer Polytechnic Institute

Ì

Analysis of Pavement Images Normalization Scheme

Analysis of Pavement Images Normalization Scheme

Analysis of Pavement Images Normalization Scheme

0
hand
-
1
-
H
0
Z

- Applications of Pavement Distress Evaluation
- o Characterization of different textures and their relation to pavement condition
- Characterization of inhomogeneities in texture and their relation to different types of pavement distress 0
- o Efficient implementation of algorithms for distress surveys

Rensselaer Polytechnic Institute

5
Z
$\overline{\mathbf{O}}$
H
5
\Box
5
4
0
\mathbf{O}

- The current approach provides overall severity measures and discriminates between different types of distresses
- Particle Distributions provide information about pavement distresses
- o Reveal cracking and other types of distress
- Provides a single technique to analyze different types of distresses unlike many existing algorithms; results in significant computational savings 0

Rensselaer Polytechnic Institute

FUTURE WORK

- Test the algorithm on more images from different pavement types, with different types of distresses
- Discriminate between different types of cracking longitudinal, transverse, alligator etc.
- Analyze distresses other than cracking to discriminate between pitting, spalling, milling etc.
- Derive numeric indices that estimate the condition of the pavement, and subsequently provide useful information for project level

analysis

A Neural Network-Based Methodology for Automated Detection and Classification of Highway Pavement Surface Cracking

Mohamed Kaseko and Stephen Ritchie Institute of Transportation Studies University of California Irvine, CA 92717

One of the most important elements of an effective pavement management system is the collection and interpretation of pavement surface distress data. Current procedures for carrying out this process typically involve on-site visual inspection and condition evaluation by field personnel. This method is a subjective, slow process that is also labor-intensive, tedious and often dangerous.

Recent developments in automation of this process have principally been based on the application of machine vision and conventional image processing techniques. Although these developments have considerably advanced the state-of-the-art of automated pavement distress evaluation, their performance has been limited by the inherent shortcomings of conventional image processing techniques applied to pavement images.

The objective of this research was therefore to develop and demonstrate the feasibility of an alternative methodology that is based on integration of conventional image processing techniques and artificial neural network (ANN) models. The research focused on application of ANN models as pattern classifiers for image interpretation and classification, resulting in the development of approaches for automatic thresholding of the images, and for detection and classification of surface cracking in each image, using a multi-layer feed-forward (MLF) neural network model. About 250 of the asphalt concrete pavement images acquired by the firm PASCO USA INC. for the US Strategic Highway Research Program (SHRP) were used in this research.

The results obtained have shown that MLF was able to detect and correctly classify about 98% of the images with transverse and longitudinal cracking, and 86% of those with alligator and block cracking. A method for computation of severity and extent measures was also developed. These results have clearly demonstrated the potential for application of the neural network-based approach in detection and classification of pavement surface cracking.

This research was part of an effort aimed at developing an AI-based system that would automate much of the pavement data acquisition, interpretation, and evaluation process, and capture the experience and judgment of expert pavement engineers in performing condition assessments and identification of appropriate maintenance and rehabilitation strategies. One of the basic elements of the system already exists in prototype form. It is a microcomputer-based knowledge-based expert system known as Pavement Rehabilitation Analysis and Design Mentor (PARADIGM), which takes as input pavement distress and other data and performs condition assessment and recommends repair, maintenance and rehabilitation strategies.

PHOENIX SCIENTIFIC INC.

William J. Herr, President of PHOENIX SCIENTIFIC INC. 2353 Terraza Salvo, Carlsbad, CA 92009 619) 431-2935

LASER MEASUREMENT TECHNOLOGY CURRENT PRACTICE AND THE POTENTIAL OF

REQUIREMENTS,

pavement measurement scanning laser based

PSI is developing

explains the basis for these new products.

This presentation

systems.

DIMENSIONAL MEASUREMENT

NSF/NIST/FHWA Workshop on April 28, 1993

THROUGHOUT LIFECYCLE OF

PAVEMENT STRUCTURES

NSF/NIST/FHWA Workshop on April 28, 1993

PAVEMENT STRUCTURES LIFE CYCLE STAGES

- Site and Route Survey
- background for evaluation of the measurement in each of these The next 5 viewgraphs outline pavement life cycle stages as potential of applying laser the status of dimensional scanning technology.
- Site and Route Preparation
- **Construction and Commissioning**
- Maintenance and Refurbishment
- **Resurfacing and Replacement**

PHOENIX SCIENTIFIC INC. 2353 Terraza Salvo, Carlsbad CA 92009 -- (619) 431-2935

NSF/NIST/FHWA Workshop on April 28, 1993

SITE AND ROUTE SURVEY

REQUIREMENTS

- Minimize Cost: cut and fill operations
- Optimize Drive Path Quality: grade and curvature
 - CURRENT PRACTICE
- **Traditional Survey Techniques**
- Aerial: gross routing decisions: topographic efforts limited and costly
- **MODERNIZATION STATUS**
- Available: Geometric Design Computing Technology
- Needed: Topography Sensing and Interface to S/W

PHOENIX SCIENTIFIC INC. 2353 Terraza Salvo, Carlsbad CA 92009 -- (619) 431-2935

NSF/NIST/FHWA Workshop on April 28, 1993

SITE AND ROUTE PREPARATION

- REQUIREMENTS
 - Excavation
 - Fill
- Leveling/Smoothing
 - Compaction
- CURRENT PRACTICE
- Traditional Surveying
 - Laser Grader Control
- Roller vibrational sensing for compaction
 - MODERNIZATION STATUS
- Ongoing: Real-time on-line assessment using laser grade control
 - Needed: Topography Sensing and Interface to S/W

PHOENIX SCIENTIFIC INC.

2353 Terraza Salvo, Carlsbad CA 92009 -- (619) 431-2935
CONSTRUCTION AND COMMISSIONING

REQUIREMENTS

- Sublayers and Asphalt Compaction
- Material Deposition Paving Machines
- CURRENT PRACTICE
- Contracts performed on basis of material volume specified
- Automatic screed control for grade and crossfall using guide wires or laser plane sensing
 - Profilograph 24 Hrs after deposition
 - MODERNIZATION STATUS
- Automatic screed control for grade and crossfall using laser plane sensing

MAINTENANCE AND REFURBISHMENT

- REQUIREMENTS
- ISTEA Pavement Management
- Rutting, Roughness, Distress, Bearing Capacity
- CURRENT PRACTICE
- Rutting: 3 sensors, 1 reference & 1 per wheel path
 - **Roughness: Ride Meter**
- Distress: Visual surveys and Continuous photo
 - Deflection: Falling Weight Deflectometer
- MODERNIZATION STATUS
- Rutting: more single point sensors
 - Roughness: Inertial profilometer
- Distress: Video collection with machine assisted post processing Structured light with laser line illumination
 - Deflection: None

RESURFACING AND REPLACEMENT

REQUIREMENTS

- Threshold for selection
- Integrated PM data critical
 - Data for design of action plan
- **CURRENT PRACTICE**
- Budget driven prioritizing and planning
- MODERNIZATION STATUS
 - Design for planned service
- Geometric design for optimization

- Minimize grinding and new material

- PHOENIX SCIENTIFIC INC.

RANGE MEASUREMENT TECHNOLOGY

This is an overview of the sensing technology that can be applied to dimensional characterization of

- CONTACT
- Limited to static applications

pavements.

- NON-CONTACT
- ACOUSTIC
- Dominant in robot obstacle detection
- Low resolution due to acoustic wavelength
 - RADAR
- Dominant in military applications
- Moderate resolution at high cost of receiver array
 - Issues: Target impedance and EMI safety
 - OPTICAL
- Dominant in machine vision
- High resolution and bandwidth
- System optimization required

OPTICAL RANGING TECHNIQUES

TIME OF FLIGHT

- Data rate limited by laser pulse rate
- Leading edge detection requires large bandwidth (1/2t)
 - **TRIANGULATION**
- Point Sensor

This is an overview of the optical sensing technology that can be

characterization of pavements.

applied to dimensional

- Dominant in highway applications
 - MACHINE VISION
- Structured Light and Stereography
- INTERFEROMETRY
- Limited to surface with variations << λ of laser light
- AM PHASE & FM COHERENT DETECTION
 - No focus required
- Tolerant of wide range of ambient lighting and reflectivity

AM MODULATION PHASE MEASUREMENT

PAVEMENT APPLICATIONS SUMMARY

- Transverse Profile
- Wheel rutting, crossfall, overlay/grinding design (Maine DOT)
 - Distress (Potholes, cracks etc.)

PATENT APPLIED FOR

- Robust real-time automatic processing viable (vs. imaging)
 - Longitudinal Profile (Roughness)
 - Potential to extend maximum wavelengths: Grade
- Precise direct measurement of short wavelengths
- Suitable for new wet pavement QC & Machine control
 - Degree of compaction of sub layers and asphalt
 - Deflection from Rolling Wheel
 - Eliminate need for stopping traffic
- Realistic rolling wheel load
- 3D Topography (Longitudinal & transverse scan)
 - Survey and preparation (land or aerial vehicle)
 - Rehabilitation and replacement
- Robotic Automation

- PHOENIX SCIENTIFIC INC.

- PATENT APPLIED FOR -

STATUS

- TECHNOLOGY
- Electro-optics: Bandwidth and Precision Proven
 - Ongoing efforts with low-speed robotic sensors
 SHRP Automated Pothole repair
- Darpa ALV, bin picking
- Model, Systems Engineering and Patent Application Complete
 - **PROGRAM INITIATED**
- Plan: Model, Breadboard, Model Validation, Design and Test
 - Schedule: 1.5-3 years
- Detailed design and testing underway
- FOREIGN COMPETITION
- Japan: Komatsu, Pasco
- Sweden: IMS RST & RDT
 - UK: WDM Ltd.

PHOENIX SCIENTIFIC INC.

BRIDGES AND STRUCTURES

- REQUIREMENTS
 - Verify integrity
- Identify and rate corrosion severity

measurement technology being developed by PSI can be applied

The scanned laser topology

pavements. This brief summary

in many areas beyond

was provided to address the

broader interest of the NSF

vorkshop.

- CURRENT PRACTICE • Manual visualization
- MODERNIZATION STATUS
- Aerial and Manipulator Robotic Video Deployment Laser site line warning system
- OPTICAL RANGE SCANNING POTENTIAL
 - Robotic deployed
- Surface topography to rate corrosion severity
- Macro-topography to measure structural geometry

PHOENIX SCIENTIFIC INC.

Section 1