
Mathematics

Division

Computing and Applied Mathematics Laboratory

Parallel and Serial

Implementations of

SLI Arithmetic

Daniel W. Lozier

Peter R. Turner

June 1995

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

QC

100

.U56

NO. 5660

1995

Nisr





NISTIR 566

Parallel and Serial

Implementations of
SLI Arithmetic

Daniel W. Lozier

Peter R. Turner

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Computing and Applied Mathematics Laboratory

Gaithersburg, MD 20899

June 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





PREPRINT

This paper has been submitted to Theoretical Computer Science, a techni-

cal journal published by Elsevier Science, Amsterdam, The Netherlands, for

a planned special issue on computing with real numbers. The paper is sub-

ject to revision for compliance with the recommendations and requirements of

referees and editors.





PARALLEL AND SERIAL IMPLEMENTATIONS
OF SLI ARITHMETIC

DANIEL W. LOZIER AND PETER R. TURNER

May 5, 1995

Abstract. This paper describes the various algorithms and software imple-

mentations of the Level-Index LI and Symmetric Level-Index SLI arithmetic

schemes. After a brief introduction to the munber representations and the

arithmetic algorithms, we describe the original precompiler for including LI

and SLI variables cuid their arithmetic in a Fortran 77 program. The Turbo

Pasceil unit for SLI arithmetic includes several extended real operations and,

also, complex operations using a modulus-argument representation. The For-

tran 90 implementation avoids the need for a precompiler and includes ex-

tensive testing of the basic algorithms. Finally, we describe the parallel SIMD
implementation of SLI arithmetic on a MasPar MP-1 using a massively parallel

version of C.

1. Introduction

This paper is concerned with the software implementations of the level-index LI

and symmetric level-index SLI arithmetic schemes which are available for experi-

mental computing on various architectures. Earlier versions of some of these have

been described elsewhere, and in those cases only a summary of their features is

included here. Before describing the paper in more detail and introducing the LI

and SLI systems, we discuss very briefly some of the motivation for this and other

arithmetic systems.

One of the primary drawbacks of the binary floating-point system for real-number

representation and arithmetic in a general computational environment is its suscep-

tibility to overflow and underflow. Several suggestions have been made and studied

to either alleviate or overcome these difficulties, and to address the related problem

of the “spacing” between successive representable numbers in the floating-point sys-

tem. In binary floating-point arithmetic the difference between successive machine

numbers is a step function which doubles with every unit increase in the exponent

value. The systems which attempt to overcome the overflow problem necessarily

address this problem too since greater range within a given wordlength can only be

achieved by allowing this spacing to erode gradually.

There have been several suggestions for extended floating-point systems which

are mostly modifications of the tapered floating-point proposal of Morris [26]. Pro-

posals for eventual hardware systems have included Matsui and Iri’s [25] which

uses not only variable lengths for its mantissa and exponent but also allows the

1



2 D. W. LOZIER AND P. R. TURNER

possibility of extending to further “levels” once the basic representable range is

exceeded. However these additional levels were not implemented in their work.

The system introduced by Hamada [15] and extended in [16] and [39] modified the

scheme of Matsui and Iri in using only its level 0 and changing the way in which the

“pointer” (the indicator as to how many bits are used by the exponent) is stored.

This pointer becomes part of the exponent information. A different modification

of the floating-point scheme was proposed by Hull and his coworkers (see [17], for

example) using a scheme which allows variable range and precision for its decimal

floating-point arithmetic.

In all of these schemes overflow remains a possibility, although a much reduced

one. The step-function nature of the spacing between successive numbers remains

although the relative precision of the representation is eroded monotonically as the

range increases for all except for Hull’s scheme, in which precision is increased with

the allowable range.

One other approach to the overflow problem is logarithmic arithmetic. Algo-

rithms for this have been discussed in, for example, [2] and [3], error analysis in

this system is introduced in [4], and potential hardware designs are described in

[18, 19] and [20]. The basic principle of the logarithmic scheme is that a real num-

ber is represented by the logarithm of its absolute value relative to some fixed base.

A second sign is used for the sign of the original real number. Thus A > 0 is

represented by Ex such that

X =

where r is the fixed radix (usually 2) and Ex is a fixed-point exponent. The number

of fractional bits in the representation of this exponent dictates the (constant)

relative spacing between successive numbers in this system.

The level-index LI system of number representation and computer arithmetic

was first introduced by Clenshaw and Olver in [9]. The representation is based on

the use of a generalized logarithm function. In that sense the system can be viewed

as a natural extension of the ideas of the logarithmic number systems. It is also

a generalization of the Matsui-Iri representation in using even more “levels” than

they envisage for extending the binary floating-point system. The details of the

system and its symmetric counterpart SLI are detailed in subsequent sections but

an introduction to the basic idea and some of the notation will be helpful here.

The representation of a large positive number can be achieved by taking its

natural logarithm repeatedly until a result is obtained in the interval [0, 1). The
number of times the logarithm has been taken is called the level while the final value

in [0, 1) is called the index. Since the level is an integer, no ambiguity is created by

representing the original large number by the sum of its level and its index. This

representation function is called a generalized logarithm and is denoted here by

Its inverse function is called a generalized exponential function and is denoted by

<j>. We refer to a generalized logarithm and a generalized exponential function since

there are many such functions. They have been studied extensively in [8] while

their properties for computer arithmetic have been the subject of a series of papers

several of which are cited in the references. A good introduction to the subject can

be found in [11].

In the level-index scheme, a real number is represented by its sign together with

the LI representation of its absolute value. Thus X is represented by ±x where the
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sign is the sign of X and

(1) x = ^(|Xl),

or equivalently,

(2) \X\ = 4>{x).

The generalized exponential function most commonly used for the LI arithmetic

system is defined by

(
3

)
(j>{x)

X if 0 < a: < 1,

The corresponding generalized logarithm is given by

(
4

)
^{X) = X

l + V’(ln(X))

if 0 < < 1,

if X > 1.

Thus, if a: = / + / where I is the integer part of x is the LI representation of

X > 0, it follows that

.f

X ^(f>{x)^e^''
,

a: = V’(^) = i + ln(ln(...ln(X)))

where the exponentiation or logarithm is performed I times.

The SLI system [12] uses a similar representation function for “large” quantities,

that is |X| > 1. However for “small” numbers the LI representation of its reciprocal

is used; this reciprocal need not be formed, this is just a convenient way to describe

the representation. Thus a real number X is represented in the SLI system by

(5) X = ±<P{xf^

where x > 1. The principal sign is the sign of X and the reciprocation sign is +1
if |X| > 1 and —1 otherwise. It follows that for the SLI representation

(6) x= l + V’(|ln|X||).

The basic properties of the LI and SLI systems including representation, arith-

metic and analysis have been extensively discussed in [9, 10, 11, 12, 22], and [27].

Possible hardware algorithms were the subject of [28] and [33]. Applications using

this system have been detailed in [13, 21, 23], and [24].

The next section of this paper is devoted to a brief introduction to the SLI

arithmetic algorithms. This is followed in §3 by a description of the first software

implementation using a Fortran 77 precompiler. This implementation uses an older

version of the arithmetic algorithms but has the virtue of allowing existing For-

tran 77 code to be run with just a change of variable declarations. In §4, a Turbo

Pascal implementation is described. This was the first implementation to use the

algorithms described in §2. It also has been augmented with various extended real

operations, complex SLI arithmetic, and mixed operations for integer-SLI arith-

metic. The representation and arithmetic adopt the internal wordlengths obtained

in the various error analyses. The implementation described in §5 relates to devel-

opment of Fortran 90 code which eliminates the need for a precompiler. This code

also allows the internal wordlengths to be varied, making experimentation with the
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arithmetic algorithms easier. The last implementation is written in MPL, a mas-

sively parallel version of ANSI C, for a MasPar MP-1 system. This takes advantage

of the parallelism to reduce the time-penalties associated with any software arith-

metic. It also allows exploration of potential parallelism in any future hardware

designs.

2. LI AND SLI Arithmetic Algorithms

Algorithms for the basic arithmetic were first presented in [10] and [12]. In

the LI algorithms, there are special cases to be treated when one or more of the

arguments has level 0. Because these special cases do not arise in SLI arithmetic,

they are omitted from the following description; the missing details can be found

in [10]. The resulting LI algorithms are simplified, and they form the basis of the

fundamental SLI arithmetic operations.

LI multiplication and division can be achieved by taking logarithms (or decre-

menting the levels) of the arguments and using the addition or subtraction algo-

rithms. We concentrate therefore on LI addition and subtraction in which we seek

the LI representation <i>{z):

(
7

) <t>{z) = z^x±Y = 4>{^)±4>{y)

where we shall assume that

® ^ 2/ ^ 1 S’Hd z >1.

Denote the levels and indices of these representations by

X = I + f, y = m-\- g, and z — n + h

Now, dividing (7) by the larger argument, we obtain

(8) 1 ± bo.

The LI algorithms are based on computing bo by using a (short) recursive sequence

and then obtaining z from cq using another recursive sequence. One characteriza-

tion of this algorithm is that
(f>

(z) is being computed as a relative perturbation of

the larger operand 4> (x).

To compute bo, we use a recurrence relation for

(9) ^ fori = m-l,m-2,...,0.
<P(® - 3)

The starting value for this recurrence is

1 —
9^(1 + ff)

exp (ff
- (j){x - m)) =

7 if m = /,

ifm</<j){x — m -h 1)

where am = — m) is obtained from another recurrence relation for

(
10

)
a, =

(f>{x-j)
for j = / - 1, / - 2, . . ., 0.
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The recurrence for this a-sequence begins with a(_i = 1/ f) — e ^ and is then

given by

(11) aj_i = exp for - 1, / - 2, 1.

The corresponding recurrence for the 6-sequence is

(12) 6j_i = exp ^ ^
^ for j = m — 1, m — 2, . .

. ,
1.

Both of these are easily verified using the definitions. For example, for 0 < J < /,

“j-i - 77 =
TaJ 77 = exp{-(f){x - j)) = exp ( -—

)

.

(I){x-j + l) exp [<f>{x - j)) \o.j J

It is apparent from (11) and (12) that 0 < Oj, bj < 1 for every j. (Only bj can equal

1 and that only if i = y.) We observe that, from j — m — 1 onwards, these two

recurrence relations can be computed in parallel on a machine with even minimal

parallelism.

Before completing the description of the LI algorithm, we discuss briefly the

modifications that are needed for SLI arithmetic. Full details of these algorithms

and their analysis are included in [12]. The most important difference is that one

or both of the operands may be “small”, that is, in reciprocal form. In the case of

“mixed” arithmetic we seek

(13) <f>{z) = Z = X±Y = (f>{x)±(f>{y)-^

and, dividing by the larger argument, we get

1

Co = 1 ± ,, s,, X = 1 ± aoQo
(f>{x)(f>{y)

where cq = l/<j>{x) is computed as before and ao = l/<p{y) is also computed using

an a-sequence but with y in place of x.

In the “small” case, we require

(15) <j>{z)-^ =Z = X±Y = cl>{x)-^±<l>{y)-^

and dividing by l/<l>{x) yields

(16) Co
' - 1 ±^ = 1 ± 6o

' = 1 ±/3o

where the quantity /3o can be computed by a recurrence similar to, but slightly

more complex than, (12).

In all cases, we conclude the first phase of the algorithm by computing either

Co or its reciprocal. These are essentially equivalent for the purpose of the SLI

algorithm. There are exceptional cases for the remaining part of the algorithm

which are detailed in [12] but are not discussed here. These relate to the possibility

that the difference between two “large” numbers (or between a large one and a

small one) may be “small” or the sum of tv/o small numbers may be large. These

flipover cases can be treated by minor variations of the algorithm described here.
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Otherwise the large and mixed operations are identical from this point. We
define members of the c-sequence by

c-
- ~ ^

^ - 3

for j = 0, 1, ...,min(n, /). Now the condition Cj < aj is equivalent to cj){z - j) < 1,

and so n = j and h = <f>{z—j) = Cj /aj which will complete the computation. There

is a simple recurrence for most of this c-sequence which is essentially the reversal

of the direction of (12):

(18) Cj+i = 1 -H a^+i Incj

for j not greater than I
— 2, with the recursion terminating if the above condition

is satisfied. If necessary, the final member of this sequence is replaced by

hi = f -\- lncj_i

and at most one further logarithm is needed in the eventuality that hi > 1. (One

additional logarithm is always sufficient since 2<f){x) < exp(^(x)) = (j){x + 1) so

that a sum can never have a level that exceeds that of the larger argument by more

than 1.)

The completion of the small arithmetic algorithm is similar. The biggest differ-

ence arises from the fact that we do not have cq but Cq It follows that (18) must

be modified so that

C]^ 1 ^1 1^

after which the rest of this sequence can be computed using (18). The only other

difference is that more than one additional logarithm may be necessary in order to

obtain the final /i-value. (The difference of two small numbers can be much smaller

than either operand and so its (reciprocal) level can exceed those of the operands

by more than 1.)

The various quantities involved in (all the variants of) this algorithm are uni-

formly bounded and can be computed to fixed absolute precisions. These working

precisions are examined in [10] and [12].

3. Fortran 77 Implementation

An unpublished implementation in Fortran 77 was developed in the mid-1980’s

by D. W. Lozier. Its purpose was to provide a test vehicle which would allow

Fortran programs to be re-interpreted and re-executed in LI or SLI arithmetic.

This was accomplished by embedding into the language new data types for LI and

SLI variables, and extending to these most of the standard operations and functions

for data of type REAL. This implementation was used, for example, in [21] to solve

a graphics problem that arose in a model of turbulent combustion; see [29, 30] for

the physical and chemical details.
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3.1. Approach. A very important potential audience for LI and SLI arithmetic

is in scientific computing. Particular emphasis was placed on Fortran in this imple-

mentation because it seemed clear in the early and mid 1980’s that it was the pre-

dominant language of scientific computing. Since then other languages and systems

have gained importance but the choice of Fortran as a vehicle for an implementation

of LI and SLI arithmetic is still justified.

The main argument against Fortran 77 was that it offers no direct support for the

introduction of data types (this objection is removed in Fortran 90; see §5 below).

The same objection had been raised and overcome in the 1970’s with respect to

other nonstandard arithmetic systems. For example, multiple-precision systems,

which extend floating-point arithmetic to arbitrary precision, are described in [5]

and [38]. The software described in the first of these references is known as MP
(Multiple Precision), and in the remaining reference as SP (Super Precision). The
new SP and MP data types are introduced indirectly by means of a precompiler,

i.e. a language compiler that accepts a Fortran-like program as input and generates

a standard Fortran program as output. This output is then compiled, linked and

executed just like any other Fortran program.

A precompiler is included with SP as a necessary part of a general multiple-

precision computing facility. Originally MP had no precompiler but later it was

linked to Augment [14]. This linkage is described in [7]. All SP and MP operations,

including arithmetic, assignment, comparison, function evaluation, input, output

and type conversion, are performed by ordinary Fortran subprograms of either

subroutine or function type. The task of the precompiler is to recognize declarations

of nonstandard variables and to connect each operation that involves them to the

appropriate subprogram. The precompilers operate by reading an input file that

details all of these connections, then reading and translating the input Fortran-like

program.

Since the precompiler approach had been successful for multiple-precision arith-

metic, it was decided the same approach should be used to develop a Fortran-like

LI and SLI facility.

3.2. Slitran. A Fortran-like language, identified in this paper as Slitran, was im-

plemented using Augment [14] to provide three new numerical data types:

LEVEL INDEX

SYMMETRIC LEVEL INDEX

FLOATING POINT

Variables of these new types are carried in standard variables of type DOUBLE

PRECISION, and operations with them are simulated by algorithms using double-

precision floating-point arithmetic operations.

Operators and functions are provided for each new type:

Unary operators + and -

Arithmetic operators +, -, *, /, and **

Logical operators .EQ., .NE., .GT., .GE., .LT.,and .LE.

Assignment =

Absolute value and square root functions ABS and SQRT

Exponential and logarithmic functions EXP and LOG

Maximum and minimum functions MAX and MIN
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Where an operator or function has more than one operand or argument, all must

be of the same type. With the obvious exception of the logical operators, all

the operators and functions, including assignments, produce a result of the same

type as the operands. Explicit functions are provided for type conversion among all

combinations of these types and the three Fortran types INTEGER, REAL and DOUBLE

PRECISION. The remaining three Fortran types, COMPLEX, LOGICAL and CHARACTER

are recognized and processed by Slitran but they do not interact with the new

types.

The new type FLOATING POINT was introduced for two reasons. First, it pro-

vides a simulation of IEEE-standard floating-point formats and arithmetic opera-

tions on non-IEEE computers. This was felt to be desirable to enable comparisons

to be made of new arithmetic systems against the best available system for general

scientiflc computing. It is usually conceded that the IEEE standard is a close-to-

optimal speciflcation of floating-point arithmetic, at least for a 32-bit binary format.

Second, the new type incorporates symbols for underflow, overflow, and “infinite”

and “indefinite” numbers, allowing computation to proceed in the face of floating-

point exceptions in a manner analogous to computing with “Not-a-Numbers”, or

NaNs, in IEEE arithmetic. This is important because comparisons will be wanted

between IEEE arithmetic and the new arithmetic systems in problems where IEEE

arithmetic leads to underflow or overflow.

Slitran usage is similar, up to a point, to ordinary Fortran usage. Variables

are declared as in Fortran, and arithmetic expressions and function invocations are

coded in the usual fashion, but input and output of variables of the new types

require special coding. No special facilities other than type conversion functions

are provided for input, since input will almost always be within the normal floating-

point range. Input is read into variables of Fortran type, then converted explicitly

to one of the new types.

Ordinary Fortran output normally requires a WRITE statement with a unit spec-

ifier, a format designator, and an output list:

WRITE (unit .format) expr_l, expr_2, .... expr_n

A new statement is provided for usage when new types are among the variables to

be output:

XWRITE(unit) = expr_l & expr_2 & . . . & expr_n

where each expression in the output list can have any one of the nine supported

types. The symbol & is an “operator” defined such that Augment can construct a

character string from the output list, and = is an “assignment” that causes Augment
to write the string to the unit. Technically, XWRITE is a special form of Fortran

function, called a “field function”, which can be used on the left side of an assign-

ment. In Fortran, the format designator either points to or is itself a character

string. A different method, using global parameters, is used in Slitran.

There are some 67 global parameters in Slitran that can be used for fine control

of its exact behavior. Each has an alphanumeric name, represented by a charac-

ter string, and a corresponding integer value. They are manipulated with a field

function named SYS (for system). For example, let I be a variable of type integer.

Then

I = SYS('SWIDTH')
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sets I equal to the current integer value of SWIDTH (the output field width in char-

acters for variables of type SYMMETRIC LEVEL INDEX), and

SYS ( ’SWIDTH') = I

changes the current value of SWIDTH to the value of I. Statements like

SYS (’SWIDTH’) = SYS (’SWIDTH’) + 10

are valid; this one increases the current value of SWIDTH by 10.

The global parameters associated with output operations specify the field width,

the number of decimals after the decimal point, and, in the case of floating-point

types, the number of decimals in the exponent. All have default values, e.g., 16,

8 and 2. Numbers are right-justified in the output field, and the field is blank-

filled on the left. Numbers of type REAL, DOUBLE PRECISION, or FLOATING POINT

are expressed in Fortran E format with one digit before the decimal point. When
a number of type FLOATING POINT is generated that is outside the representable

range, Slitran classifies it as underflow, overflow or the result of an indefinite op-

eration (such as division by zero). In these cases, an appropriate alphabetic string

is placed in the output field. Numbers of type LEVEL INDEX or SYMMETRIC LEVEL

INDEX are expressed in Fortran F format with one digit in the integer part to rep-

resent the level. The numbers are enclosed in square brackets, with the sign of the

number in front of the opening bracket. The reciprocation indicator in the case of

SLI variables is placed behind the opening bracket.

The direct output of LI and SLI variables using XWRITE displays the level and

index in decimal. Usually output will be wanted in a more familiar format. The
type conversion function FLP is useful in this regard. It takes an argument of any

type and converts it to type FLOATING POINT. If a number underflows or overflows,

a special bit pattern is stored, and this is recognized during output processing.

The internal format of the new types is also subject to control by global param-

eters. The default wordlength is 32 bits, and the default floating-point parameters

are those of the IEEE standard. Because these three types are carried internally in

variables of type DOUBLE PRECISION, the new types cannot be simulated to more

than 48 bits or so.

Three modes of abbreviation are supported for the new types: rounding, chopping

and unabbreviated. Rounding is done by adding a half-unit in the last bit position

of the significand or index, then truncating and storing the result. Chopping is

done by simply truncating and storing the result. The unabbreviated mode does

not modify the double-precision result before storing it. Rounding is the default

mode; the other modes can be selected by setting the appropriate global parameter.

For example, coding like

MODE = SYS(’ABBREV’)

SYS(’ABBREV’) = SYS( ’UNABBR’

)

code to be executed to full available precision

SYS(’ABBREV’) = MODE

can be useful in computations that require guard digits.

As was seen in §1, the generalized exponential function is determined by its

deflnition on the unit interval. Three different choices may be selected by setting

the appropriate global parameter. The simplest deflnition, and this is the default,

arises from the identity function; see eq. (3). It is continuous and continuously
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difTerentiable but higher derivatives are discontinuous. The alternative choices are

much smoother. They were provided for experimentation with alternative SLI

arithmetic algorithms based on surface fitting.

The remaining global parameters will not be described here. Most are used to

control the interception and processing of error conditions.

3.3. Algorithms. The algorithms used to perform arithmetic operations in Sli-

tran were a precursor to the ones described in §2. They are less efficient in that they

employ a doubly recursive computing process. They are described here as a neces-

sary part of the description of Slitran, and also because they afford an independent

check on the newer algorithms.

We begin with LI subtraction. It is sufficient to consider the equation

(19) (l>{z) - (j){x) - (f){y) {x >y > 0).

As in §2, we use the notation

(20) X = I + f, y = m + g, z = n + h

where l,m and n are the levels, respectively, of (f)[x),(f>[y) and ^( 2 ). Our task is to

compute 2
,

i.e. n and h, given and g. Toward this end, we introduce the

further equations

(21) 4>{zi) - - 4>{yi) (i = 0, l,...,m)

where

(22) Xi = I - m-\- i-\- f, yi-i + g, Zi-ni-\-hi.

An outer recursion generates the sequence 20 , 21 , . .
.

,

2^ = 2 . The ith term of this

sequence satisfies the equation

(23 )

where am-i = \/^{xi) is a term of the a-sequence defined in eq. (10) and

(24) = I - <t>{yi)/4>{xi).

Now, if Cq ^ < am-i, then = 0 and hi = /am-i- Otherwise, logarithms of

(j){zi) must be computed repeatedly until the result is in the interval [0, 1). This
constitutes the inner recursion. Assuming that we have

(
25

) 4>{zi) = !am-iJrj

,

then we can write

(26) ln'+' = c<(>,

where

(27) = 1 + am-i+j+i In .

The inner process ends with Ui - j and hi = cP/am-i+j when cP < Cm-i+j . The
c-sequence and c-recurrence of this section are analogous to the ones found in §2;

cf. eqs. (17) and (18).
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The outer recursion hinges on the determination of the starting value (24) for

the c-sequence. When i = 0, we have

(
0

) 1= 1 - amQ-

When z > 1, we can write

_ g(^(yi-l)-<^(ii-l) _ g-0(2i_i) _ \ .

4>{Xi) <f){l +

cf. eq. (21). The rightmost member of this equation is computed as an a-sequence

with index /ii_i in place of /; cf. eqs. (10) and (11). Then it is substituted into

eq. (24).

Turning now to LI addition, we continue with the assumption that x > y > 0.

Define

In^ <l){z) - <f>{x - j) + dj {j - 0
,
1 ,..., 1)

Then either n = I and h — f+di (if f+di < 1), or n = /+! and h — ln{f+di). When
I — m = 0, do = g. Otherwise, the d-sequence is computed from the recurrence

dr = ln(l + aj_idj_i)

starting from

where

di
ln(l + aog) if m = 0,

ln(l + l/(/)(t + 1)) if m > 0

4>{t + 1) = = g0(x-l)-0(y-l)_

The subtraction procedure is called to compute t, and the term l/(j>{t + 1) is com-

puted by an a-sequence with the appropriate index.

Except for special cases when the levels of one or both operands are zero, LI

multiplication and division rely on the identities

^ g^(x-i)-0(y-i)^
(t>{x)<l){y)

-

the right sides of which are easily obtained with the aid of the LI addition and

subtraction procedures.

The SLI representation is slightly different in Slitran than in other implementa-

tions. An explicit reciprocation bit, as in eq. (5), is not used. Instead, a positive

number X is represented by the signed number

(28) E = 'J'(X) = ^>(33) — 1

1-V'(1/X)

if X > 1,

if 0 < X < 1

where V’ is the LI mapping (4). The inverse, in terms of the inverse LI mapping

(3), is

= |<»(1 + -)

1 1/^(1 — a:) if X < 0.

The identity

$(i)$(— x) = 1
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shows that changing the sign of an internal number corresponds to reciprocating

the (positive) external number that it represents. The actual sign of the external

number is carried separately, as it is in the other SLI implementations discussed in

this paper.

It is worth noting that two signs are used in the definition of fioating-point

numbers. The familiar device of biasing (adding a constant to) the exponent, so as

to avoid having to represent an explicit sign, is available also in SLI representation,

and indeed it is used (with a bias constant of 8) in Slitran.

The efficiency of Slitran suffers in comparison to the other implementations be-

cause (i) SLI operations are done indirectly by calling on LI operations; (ii) LI

operations do not take advantage of later algorithmic developments, such as the

singly recursive algorithms for addition and subtraction; and (iii) global parameter

control adds to the total run time. However, it is a close parallel to conventional

Fortran and it offers the user considerable control over the algorithmic details of

the simulated computer arithmetic. Furthermore, the inefficiencies are not inherent;

they could be reduced by re-coding.

4. Turbo Pascal Implementation

The original version of this implementation of SLI arithmetic was described in

[34]. Since then it has undergone a number of modifications, improvements and

extensions. This Turbo Pascal^ implementation was developed for experimental

computation on personal computers. It uses the arithmetic algorithms described

in §2 which avoid the doubly recursive aspect of the previous implementation. The

algorithms for SLI arithmetic are based directly on the definition of that represen-

tation rather than using combinations of LI operations and the rules of algebra.

The SLI representation is mapped into a conventional binary integer represen-

tation in an order-preserving manner. Indeed, the Turbo Pascal type slisingle is

identified with the 32-bit type longint. The machine representation consists of the

appropriate binary encoding of the two signs and of x which, as before, has an inte-

ger part, the levels of three bits. The order-preserving nature of this representation

is achieved by using a ones complement form for negatives, and complementing the

level and index of quantities in reciprocal form. The packing algorithm is detailed

in [34]

For this implementation, the precisions forecast by the error analyses of [10] and

[12] are the precisions used in the internal computation. The built-in exponential

and logarithmic functions are used internally. Proposals have been made for other

internal algorithms based on table look-up or modified CORDIC algorithms [28, 33]

but that is not the topic under present discussion.

The following subsections discuss some of the extensions that have been incor-

porated into the Turbo Pascal SLIUNIT. These include implementations of algo-

rithms for mixed integer-SLI arithmetic using the integer exactly; computation of

the elementary functions; extended arithmetic operations such as summation, scalar

products, vector norms and polynomial evaluation; and complex SLI arithmetic us-

ing the polar representation of complex numbers. All of these work directly with

the SLI representations of the various arguments. Some of these are described or

^ Turbo Pascal is a trademark of Borland International, Inc.
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outlined in [34, 35, 36, 37] although many of those descriptions have since been

improved upon. We simply summarize some of these features here.

The extended sums and related operations are performed using algorithms which

exhibit a natural parallelism, and they reduce the normal linear time-penalty which

is expected for serial computation. Some of these ideas re-emerge in the parallel

implementations — especially the massively parallel C implementation described

in §6.

4.1. Mixed Integer-SLI Arithmetic. One of the benefits of the mixed algo-

rithms lies in the fact that integers are used exactly. (Like any computing envi-

ronment, integer variables must be stored, represented and operated upon without

incurring error.) Apart from the basic arithmetic operations of integer-SLI ad-

dition, subtraction, multiplication and division, the integer power function and

integer-roots of any order are easily incorporated into the SLI arithmetic frame-

work.

We illustrate this by considering the operation of forming integer powers of SLI

variables. This has further application in the evaluation of polynomial functions

using a technique similar to that employed for the extended arithmetic operations

below.

We thus require z and the associated signs such that

Z = ±(l>{z)^^ = {±(i>{x)^^)^ =

where N is an integer. The two signs are easily resolved:

Z < 0 iff (X < 0) and {N mod 2 = 1),

|Z| >1 iff (W = 0) or (|X| > 1, JV > 0) or (|X| < 1, N < 0).

The problem thus reduces to forming positive integer powers of positive quanti-

ties greater than unity:

(t>{z) = 4>{x)^

with W > 0. Taking natural logarithms, we obtain

(j){z — 1) = N(f){x — 1)

from which it follows that

(29) Cl
(t>{z

-
1)

(f){x
- 1)

= N.

The algorithm is completed by generating the c-sequence as was done in §2; cf. eqs.

(17) and (18).

The modifications for the other mixed operations are mostly even simpler than

this. They all share the property that the integer is used exactly rather than being

first converted (promoted) to its SLI representation. Observe that this property is

not shared by other arithmetic systems - except perhaps for this power operation

if repeated multiplication is used.



14 D. W. LOZIER AND P. R. TURNER

4.2. SLI Algorithms for Elementary Functions. Algorithms for some of the

elementary functions are necessarily simpler in SLI than in other arithmetic formats.

Others, of course, are more complicated. Among the ones which are simplified, not

surprisingly, are the natural logarithmic and exponential functions. By definition.

In [(f>{x)^^) = ±<f>{x - 1)

and the only complication arises when x < 2 so that <j){x — 1) must be converted

back from its fixed-point fraction to its SLI representation by forming (perhaps

repeated) logarithms of this result. Thus, for example, for ^(x) = 2 = (^(1 -|- In 2)

we get

ln(<^(x)) = ln2 .= = ^(i - lnln2)-' = <^(1.3665...)-^

Functions such as absolute value, reciprocation, and negation are very simple

bitwise operations on the slisingle representation of the variable. Indeed, all

of these are implicit in the sign determination process for the basic arithmetic

algorithms.

From the integer power operation above, it should be apparent that evaluation

of monomial terms is also straightforward. Taking logarithms as in (29),

(f>{z) - (f>{y) * (f){x)^

yields

(30) Cl
<t>{z - 1

)

<f>{x
-

1)

= N + Hy-
1

)

<j){x - 1)

= N + bi

This can be made into an efficient algorithm for the evaluation of general polyno-

mials by using the extended operations described later.

The other elementary functions which are incorporated into the Turbo Pascal

implementation are the basic trigonometric functions. The only ones built into

Turbo Pascal itself are sin, cos and arctan. The SLIUNIT is restricted to these

same functions. The first two make no direct use of the SLI representation of their

arguments, but use instead conversion between floating-point and SLI representa-

tions. One reason for this choice is that for sufficiently large arguments, the real

interval represented by a specific floating-point or SLI number covers more than

a period of the function. There is, therefore, nothing to be gained by trying to

evaluate these functions to high accuracy for SLI numbers outside the range of the

floating-point system.

By contrast, the arctangent function does have a legitimate domain over the

whole real line. By using the identities

(31)

(32)

. TT 1
arctan |A

|

= arctan -—
2 |a|

arctan(—X) = — arctan(X),

J

the SLI arctangent algorithm is reduced to evaluation of arctan (ao) where, as usual,

ao = l/</'(a:).
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4.3. Complex SLI Arithmetic. Complex SLI arithmetic is incorporated into

the Turbo Pascal SLIUNIT using the polar representation

(33) Z =

where the modulus is represented in standard SLI form and the argument 6 is stored

as a fixed-point fraction in [—1, 1) of tt. The two parts can be packed conveniently

into the 64-bit integer Turbo Pascal type comp to facilitate their use in “in-line”

function and arithmetic calls.

The complex SLI arithmetic algorithms can be achieved without the need to

convert to real and imaginary parts, and to make multiple calls to the unde.^ying

real algorithms, by using the cosine rule for the appropriate “triangle” in the com-

plex plane. The algorithm for “large” addition proceeds much as for real arithmetic

using

(
34

)
Cq — 1 “h 6q “1“ 26o cos B

and then

(35) Cl = 1+ -ao In (cq)

where 6 is the angle between the two “position vectors”. Of course, since bo is

computed by evaluating the exponential function, 6q can be computed with no ad-

ditional difficulty. The computation of the modulus of the result can be completed

using the usual SLI algorithm. Modifications for the “mixed” and “small” cases

are similar.

Similarly, it turns out that A6, the difference between the argument of the result

and that of the larger operand Bq, is obtainable from

(36) AB = arctan
bo sin Bo

1 -h bo cos Bo

The derivation of these equations (34), (35) and (36) are given in [37], which also

includes an error analysis and observations on the implementation of the special

steps which are required by these equations. The important finding is that it

remains true that fixed-point internal computation is sufficient, with similar working

precisions to those required for the conventional real SLI algorithms.

Of course, the use of the polar form for complex arithmetic has the effect of

making complex multiplication equivalent to a single real multiplication for the

modulus and a fixed-point addition for the argument. This compares with the usual

six real operations for a conventional complex product. There is no compensating

additional cost since the algorithm just outlined is also cheaper than two real SLI

additions.

4.4. Extended SLI Operations. The potential for parallelism in the SLI ex-

tended operation algorithms is discussed in [23], and in [36] in which the algorithm

for extended summation is also detailed and analyzed. We content ourselves here

with an outline of the algorithm for extended summation and a description of its

uses in the Turbo Pascal implementation to compute scalar products and vector

norms.
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The basic problem of extended SLI summation is to find

N

1=0

where we shall assume that Xq - ±<f>{xo)^^ is the largest magnitude term. (Since

the binary representation is consistent with integer-order, identifying this largest

argument is a simple operation.) For the (usual) case where |Xo| > 1, the algorithm

can proceed as above after the computation of

Co = 1 + 51 ^*^0 ^ X] ®*“o“o
^

7-i= -(-l ri=-l

where Sj, represent the sign and reciprocation sign of Xi and = <f){xi)/^{xo),

ao = l/(^(xo), = l/<f)(xi). It is apparent that only one o-sequence and one

c-sequence are needed, together with either an a- or a fe-sequence for each of the

other terms. This represents a saving of about 67% of the work that would be

needed for the usual serial summation of the same terms. For the case where all

terms are “small” there is a similar modification.

The formation of scalar products can now be achieved with a two-stage pro-

cess. The first is the elementwise multiplication of the two SLI-vectors which is

followed by this extended summation. This, like the basic summation operation, is

incorporated into the Turbo Pascal implementation in just this way.

Similarly, the usual vector norms could be computed by first forming the appro-

priate powers of each element, then using this summation algorithm, and finally

taking the appropriate “root” of the result. However, this can be (and is) improved

further by observing that the largest term will also have the largest p-th power.

Thus, the definition of cq is adjusted so that

and then its p-th root is formed within the first logarithm of the c-sequence. The
details are not important here. The point is that it illustrates both the versatility

of the SLI algorithm for modification to more complicated computation and its

suitability to parallel implementation.

5. FORTRAN 90 Implementation

An implementation in Fortran 90 was published in the 1993 Ph. D. thesis [31] of

I. Reid. Its purpose coincides, at least in part, with that of the earlier Fortran 77 im-

plementation of D. W. Lozier; cf. §3 of this paper. Both provide for re-interpreting

and re-executing Fortran programs in SLI arithmetic through the introduction of

a new data type. The later implementation does not support level-index variables

and operations, but it uses the efficient, singly recursive algorithms of §2. Efficiency

is improved further when an operand is of type INTEGER by modifications that use

the integer representation directly, as was done in the Turbo Pascal implementa-

tion. Special emphasis is placed on simulating the exact bit-precision that is called

for in theory in the fixed-point generation of the a-, b-, c- and related sequences,

thereby providing for the possibility of justifying the theory experimentally. The
thesis includes a test program that was used for this purpose.
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As was noted in §3, Fortran 90 includes among its improvements over Fortran

77 the capability to introduce new data types, extend to them standard Fortran

operators and functions, and supply for them additional operators and functions.

Accordingly, there is no need for an approach using a precompiler.

5.1. Structure. Variables of the new data type SLI occupy two locations of type

LOGICAL (for the sign and reciprocation bits), a location of type INTEGER (for the

level), and a location of type DOUBLE PRECISION (for the index). This internal

organization is of no concern to the user, as the declaration

TYPE(SLI) var_l, var_2, ..., var_n

suffices to identify variables of the new type.

Operators and functions are provided:

Unary minus -

Arithmetic operators +, -, /, *, ** (with implicit type conversion)

Logical operators ==, /=, >, >=, <, <=

Assignment = (with implicit type conversion)

Absolute value and integer root functions SLIABS and INTJIOOT

Exponential and logarithmic functions SLIEXP and SLILN

Generalized distance GD

Reciprocal and set-reciprocal-bit functions RECIP and RECIP_TRUE

With the exception of the logical operators and the generalized distance, the result

of all operators and functions is of type SLI. Arithmetic operators and assignment

support implicit type conversion, i.e. an operand can be of type INTEGER, REAL or

DOUBLE PRECISION. In all other cases, the operands must be of type SLI. Logical

operators are supported only in the new-style Fortran 90 notation; the old-style

. EQ
. ,

etc., cannot be used with operands of type SLI. The set-reciprocal-bit function

forces the reciprocation sign to be -|-1.

The generalized distance was introduced to facilitate comparisons in the test

program. A problem with any computer arithmetic system is how to measure the

difference between computed results. In an LI system, it is customary to use the

norm
\\X-Y\\ = \^{X)-^{Y)\

where the generalized logarithm (4) is extended to the negative real axis by odd

symmetry. In an SLI system, we cannot just substitute the SLI-mapping (28)

because of the singularity at the origin. The function

gd(x,y) = |^(x)-^(y)|

is a meaningful measure if and only if X and Y are of like sign. Therefore, Reid

introduced the expanded definition

r37l edrx yj =
if signs same,

’

I
|^(|X|) -|- ^(|y I)

-|- 14| otherwise

together with the convention that ^(0) = —7. The constants 7 and 14 arise because

of the maximum level that is allowed in Reid’s implementation. In effect, Reid

replaces the SLI representation of zero (which would most naturally be defined as

zero) with the smallest representable SLI number. The expanded definition allows

small numbers of opposite sign to be “close” to each other.
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5 .2 . Testing. The expanded gd (generalized distance) function
(
37

)
is used to

compare a result computed in SLI arithmetic against a more accurate value com-

puted in higher precision. The 48-bit SLI format allocates 43 bits to the index.

Accordingly, with 70 denoting “machine epsilon”
,
we have

.V — 9-43
70 — 4

for abbreviated SLI arithmetic. The comparison values are computed in double

precision wherever possible, and where not possible in unabbreviated SLI. In either

case the machine epsilon 7 is the same,

7 =

for IEEE arithmetic.

The test program applies to the binary operations +, -, *, / and **. That is, a

function

Z = f{X,Y)

is being tested, where

X ^ iHix), Y = ^(y), Z = ^(2).

Now fix attention on a pair of operands x and y. Assume these are stored without

error in double precision in the test program. The fractional parts are truncated to

43 bits, and the resulting numbers i, y are stored in SLI format. Then the result

and generalized distance

i==/($(x),$(y)), d = gd{Z,Z)

are computed. For + and *, d < 70 is used as the acceptance criterion for accurate

results.

This criterion is too severe for other operations because their algorithms involve

subtraction with the attendant possibility of heavy, significance-losing cancellation.

Therefore, the inherent error due to a last-bit perturbation^ of the operands is

estimated by computing

gd{Z,Zi) + gd{Z,Z2 )

2

where

Zr = f ($(x + 70/2), $(y))), Z2 = f ($(x), $(y + 70/2))).

Then the acceptance criterion becomes d < d. These computations are done in

double precision or unabbreviated SLI, whichever is appropriate.

We have introduced the “machine epsilons” 70 and 7 corresponding to SLI arith-

metic with 43-bit index and “unabbreviated” SLI arithmetic on an IEEE computer.

Linearized perturbation theory has been applied to determine the required machine

epsilons for the o-, b-, c- and related sequences. After a review, Reid concludes that

the choices

To — 4 , 7l — 4 , 72 — 4

^Although the natural perturbation would appear to be 70 1
Reid uses half this value in his

thesis.
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are compatible with the theory, where the smallest machine epsilon, 72, is used for

o-sequences and 71 is used for all other sequences. His results of extensive testing

support the adequacy of these choices.

But Reid also observes that it would be advantageous in a hardware implemen-

tation to be able to reduce the wordlength implied by 72. Such a reduction for

72 and even for 71 might be possible, since the linearized theory does not produce

sharp bounds. Accordingly, he repeated the tests with

72-71, 7le{2-^2-'‘^2-^^}.

The tests passed the acceptance criteria for the two smaller values of 71, but not

when the largest value was used.

6. Massively Parallel C Implementation

The most recent implementation of SLI arithmetic is as a part of the Computer
Arithmetic Laboratory being developed for the MasPar MP-1 system. This project

has been outlined in [1]. The architecture of this machine is a rectangular SIMD
array of processors with nearest neighbor connections and toroidal wraparound.

The particular system being used has 4096 processors in a 64x64 array. There are

two languages available on this system: a variant of Fortran 90 with High Perfor-

mance Fortran extensions, and a parallel extension of ANSI C. The implementation

of SLI arithmetic uses the latter. In this section, we begin with a brief description

of the computer system and its suitability for this purpose. This is followed by a

description of the SLI arithmetic algorithms used which are further modifications of

those employed by the earlier implementations. The modified algorithm possesses

a greater degree of natural parallelism, especially for extended operations.

6.1. The MasPar MP-1 System. As is stated above, the system being used

is a 64x64 SIMD array. The individual processors are just 4-bit processors so

that all the built-in arithmetic is implemented in microcode. The power of the

system is derived from the massive parallelism that is available for appropriate

computations. Like all SIMD architectures, at any point in a program all processors

are either performing the same instruction (on their individual data) or are inactive.

The advantages of using such a system for implementing experimental arithmetic

systems arise out of its flexibility.

For example, the arithmetic can be implemented in serial in such a way that

the computation is spread across the processor array. This allows the computation

to take advantage of the parallelism to reduce the time-penalty which is otherwise

incurred by a software implementation. By implementing floating-point arithmetic

in a similar manner, reasonably fair comparisons between the execution times of

the two systems can be made.

The other great advantage is that minor adjustments in the algorithms can be

implemented with relative ease. This alleviates the need for building experimental

hardware until after extensive experimentation has been performed. In a similar

manner, the area-speed trade-off can be examined by restricting the amount of

parallelism allowed in a particular implementation.

The language being used is MPL [Massively Parallel Language) which is a paral-

lel extension of C. The primary augmentation of ANSI C comes form the inclusion

of •plural variables of all the standard and user-defined types; all such variables have
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an instance on each of the processors in the array. Each processor has its own

memory so that the system is a distributed memory machine. Each processor is

connected to its four nearest neighbors (in the North, East, South and West direc-

tions) through the Xnet while more distant communication is achieved through the

router hardware and software.

6.2. SLI Algorithm Modification. The underlying representation of SLI vari-

ables in this implementation is essentially similar to that of the Turbo Pascal im-

plementation described in §4. The algorithms used are modifications of those of

§2 and we highlight only the variations here. The principal modification is for the

basic SLI addition and subtraction algorithm. The b- and /3-sequences are replaced

by making further use of the a-sequence in a way which makes the parallelism of

the algorithm more evident.

Consider again the basic SLI arithmetic operation which we can describe as

finding z and its signs such that

(38) ± ^Z = X±Y = ±

where we shall assume for simplicity that X >Y > 0 so that (38) becomes

<^(z)±i = Z = X±Y = ±

The modified algorithm reduces to

Algorithm: Modified SLI Addition/Subtraction Algorithm

Input SLI representations <f){xy^ , 4>{yy^ oi X >Y >0.

Compute o-sequence: aj = l/(f){x — j),

a-sequence: Oj — l/<^(y — j),

if rx = ry — +1 then co = 1 ± ao/oio,

if Tx = —ry — -l-l then cq = 1 ± oocco,

if rx = ry = —1 then cq— 1 = 1 ± qo/oo-

Complete the algorithm exactly as described in §2.

Output SLI representation <f>{zy^ of Z > 0.

Once this modification is incorporated, the completion of the algorithm is sim-

plified and the corresponding adjustments to the multiplication, division and other

operation algorithms are easily obtained.

One of the important aspects to stress here is the great advantage that this

yields for a SIMD parallel algorithm. For example, extended summation where

the largest operand Xq > 1 now just requires the (simultaneous) computation of

the o-sequences for each operand followed by the extended fixed-point summation

Co = 1 + SiOo (ai)”’^’ where Si is the sign and ri denotes the reciprocation sign

of Xi, and Oi = l/^{xi). (The use of (ai)~^’ is purely a notational convenience; it

does not imply that this is an appropriate computational procedure.)

Clearly, the parallel array can be used to implement the simultaneous calculation

of all these a-sequences. The extended summation can be implemented using the

usual recursive doubling algorithm which is already available in MPL as reduceAddz

where the x is used to denote the appropriate variable type for the result. There

are several useful reduction algorithms built into the MPL language, including
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reduceMsix which will be of value in identifying the maximal element in the sum at

the beginning of this extended algorithm.

MPL also includes a 64-bit integer type long long which can be utilized for

this extended sum to avoid any complication in the algorithm to cope with the

possibility that cq requires several bits for its integer part. Indeed, the underlying

arithmetic of this implementation uses another aspect of the Computer Arithmetic

laboratory, fixed-point fractions of varying lengths. These are all embedded into

variables of type long long. The lengths used are measured in hexadecimal digits

(called “nibbles”) because these are the natural units for the 4-bit processors used

by the MasPar architecture.

All the other extended operations described previously can be similarly efficiently

implemented using the parallel array.

7. Future Developments

In this paper, we have described the current software implementations of LI and

SLI arithmetic. The most recent of these, the parallel implementation in MPL on

the MasPar MP-1 system, should also provide a good first step towards an eventual

hardware implementation. For SLI as for other alternative computer arithmetic

systems, the biggest obstacle is the transition from interesting mathematical idea

to practical hardware. In [28] and [33], some possible hardware algorithms were

explored. The next developments in the MPL implementation will involve further

numerical experimentation in a variety of applications and further development of

potential hardware designs.

One of the advantages of this massively parallel array is that it makes it possible

to simulate the components of a hardware algorithm, and to experiment with the

details of this algorithm without the need to build chips until extensive testing has

been conducted. Testing of the underlying hardware algorithm can be performed

by simulating CORDIC units for special forms of the exponential and natural log-

arithm functions. Similarly, the use of carry-save-adder trees, look-up tables and

other components can be evaluated through simulation. Such a simulated hardware

implementation will allow further experimentation on the working precisions that

are needed in order to deliver the required accuracy in final results, extending the

testing performed in [31]. By restricting the active set of processors, speed-area

trade-offs can also be assessed. All of these and other implementation details will

be the subject of continued research in this area.
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