
Unified Teierobotic Architecture

Project (UTAP)

Standard interface Environment (SIE)

Ronald Lumia*
John Michaloski

Robert Russell

Thomas Wheatley
Intelligent Systems Division

and

Paul Backes
Sukhan Lee
Robert Steele
Jet Propulsion Laboratory

NASA
Pasadena, CA 91109

U.S. DEPARTMENT OF COMMERCE
Technoiogy Administration

Nationai Institute of Standards

and Technoiogy

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC

100

.056

NO. 5658

1995

iMisr



Ronald Lumia is currently working at the University of New Mexico
in the Mechanical Engineering Department. His address is:

The University of New Mexico

Albuquerque, NM 87131



NISTIR 5658

Unified Teierobotic Architecture

Project (UTAP)

Standard Interface Environment (SIE)

Ronald Lumia*
John Michaloski

Robert Russell

Thomas Wheatley
Intelligent Systems Division

and

Paul Backes
Sukhan Lee
Robert Steele
Jet Propulsion Laboratory

NASA
Pasadena, CA 91109

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

May 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





UTAP/WD Standard Interface Environment

Contents

Foreword viii

1 Scope 1

2 References 1

3 Definitions 2

3.1 Standards Terminology 2

3.1.1 defined 2

3.1.2 may 3

3.1.3 shall 3

3.1.4 should 3

3.1.5 supported 3

3.1.6 undefined 3

3.1.7 unspecified 3

3.2 General Terms 3

3.2.8 API 3

3.2.9 build 4

3.2.10 channel 4

3.2.11 connection 4

3.2.12 component 4

3.2.13 data encapsulation 5

3.2.14 interface 5

3.2.15 message 5

3.2.16 module 6

3.2.17 open system 6

3.2.18 protocol 6

3.2.19 telerobotics 7

4 Abbreviations 7

5 Conformance requirements 8

5.1 Implementation Conformance 8

5.2 Environment Conformance 9

5.3 Documentation Conformance 9

6 Application Architecture 9

6.1 Hardware Architecture 11

6.2 Software Architecture 12

6.2.1 Software Module Functional Types 13

6.2.2 Application Program 15

7 Interface Environment 17

7.1 Viewpoints 19

iii



UTAP/WD Standard Interface Environment

8 UTAP Information Models 20

8.1 Shape Geometries . 20

8.2 Patterns 21

8.3 Features 21

9 Integration and Configuration Management 22

9.1 Identification 22

9.2 Classification 23

9.3 Configuration File Format 23

9.4 Module Specification 23

9.4.1 Scaling 24

9.4.2 Timing 24

10 UTAP Interface Framework 25

10.1 Interface Types 25

10.1.1 Control Interface Type 25

10.1.2 Query-Response 26

10.1.3 Peer-to-Peer 27

10.2 Syntactics 27

10.2.1 Variable Length Arrays Resolution 27

10.3 Semantic Meaning 28

10.3.1 Control Mode Sequencing 29

10.3.2 Keywords 29

10.3.3 Designating Subordinate Selections 31

10.3.4 Synchronization 32

10.4 Extensibility 32

10.4.1 State Context Naming 32

10.4.2 Scaling Control Dimensions 33

10.4.3 Integration 34

10.4.4 New Messages 34

Annexes

A Bibliography 38

B Component Analysis 40

B.l Application Architecture 40

B.2 Hardware Architecture 44

B.3 Software Components 46

B.3.1 System Software Components 46

C Environment Profile Suite 54

C. l Application Environment Profile 54

C.2 Interface Environment Profile 55

D Examples 68

D. l API Interface Example 68

IV



UTAP/WD Standard Interface Environment

D.1.1 Tool Manipulation 69

D.1.2 Sensor Programming Example 70

D.2 Channel Interface Example 71

D.3 Configuration File Example 71

D.4 Example of Message Flow for Sample UTAP Scenario 71

E Related Standards 78

E. l RS274D 78

E.2 RS441 78

E.3 POSIX 78

E.4 lEC 1131-3 78

E.5 ANSI/RIA R15-06-1992 79

E.6 EIA Standard RS-267-A 79

E. 7 XDR 79

F Target Applications 80

F. l Paint Stripping 80

F.2 Telerobotic Surface Finishing 81

F.3 Telerobotic Advanced Cutting System 82

G API Issues 83

G. l Messages, Macros and Naming 83

G.2 Integration 83

G.3 Definition Style 83

G.4 Variable Length Arrays 84

G.5 Units and Representation 84

G.6 Selection 85

G.7 Parameterization 85

G.8 Aggregation Model 86

H Interface Descriptions 88

H. l Interface List 89

H.2 Sorted Interface List 92

H.3 Interface Source Listings . 95

H.3.1 Disclaimer 95

H.3.2 Generic Definitions 95

H.3.3 Classification 98

H.3.4 Protocol 99

H.3.5 Information Model 100

H.3.6 Interfaces 109

H.4 Interface API Source 147

Index 158

Figures

1 Commercial robotics components hierarchy xiii

V



UTAP/WD Standard Interface Environment

2 Robot system hierarchy xiv

3 Telerobot architecture for aircraft maintenance and remanufacturing 10

4 Hardware Architecture 11

5 Software Architecture 13

6 Software Grouping 14

7 Software to Hardware Map Options 15

8 Module Specification Model 24

9 Object Knowledge Parameter List 26

10 Heap Applied to Message Handling 28

C. l Module Profile Specification 56

D. l Superior use of API Interface to Command Subordinate 69

D.2 Example 01 Control Panel 74

Tables

1 Module Classification 36

2 Message Type Identification Table of Contents 37

C.l System Profile 54

C.2 System Environment Profile 54

C.3 Processor Board Profile 55

C.4 Generic Message Profile 57

C.5 Data Knowledge 58

C.6 Errors 58

C.7 Axis Servo Command Profile 59

C.8 Axis Servo Data Profile 60

C.9 Tool Control Profile - Spindle 61

C.IO Tool Control Profile - Coolant 62

C.ll Generic Sensor 63

C.12 Sensor - Image 64

C.13 Subsystem Task Level Control . 65

C.14 Subsystem Task Level Control - cont. 66

C. 15 Subsystem Task Level Control . . 67

D. l Example Remote System Configuration File 72

VI



UTAP/WD Standard Interface Environment

D.2 Example Local System Configuration File 73

D.3 Sample Session - init 75

D.4 Start Teleoperation 76

D.5 Start Automated Process 77

G.l Parameter and Units 85

vii



UTAP/WD Standard Interface Environment

Foreword

Under the sponsorship of the Air Force MateriaJ Command (AFMC) Robotics and Automation

Center of Excellence (RACE) at Kelly Air Force Base, San Antonio, TX, the Unified Teler-

obotic Architecture Project was funded to define an open architecture to improve the efficiency

and productivity of the maintenance operations. The UTAP specifies an open architecture for

telerobotics along with specific implementation options designed to assist the work at Air Force

maintenance facilities.

The status of the UTAP Standard Interface Environment - SIE - has progressed to the point

that the architecture remains stable and the project has seen the interfaces evolve significantly

after several Design Reviews. To date, the emphasis of review effort has been on the remote

interfaces containing the real-time control elements. Additional work remains to validate the

functionality of the interfaces, resolve configuration and integration issues, solidify the interface

environment and substantiate the validation and conformance process.

Disclaimer

No approval or endorsement of any commercial product by the National Institute of Standards

and Technology is intended or implied.

Any software source code contained herein was produced in part by the National Institute of

Standards and Technology (NIST), an agency of the U.S. government, and by statute is not

subject to copyright in the United States. Recipients of this software assume aR responsibility

associated with its operation, modification, maintenance, and subsequent redistribution.

Electronic Access to Document

A compressed copy of this document in Postscript format and the related source code in

shar format is available electronically. Access to the UTAP report and UTAP source code

is available through the Internet standard File Transfer Protocol (ftp) . The ftp site name
is “giskard.cme.nist.gov”. Directions for an ftp session to retrieve the report and source code

follow.

First, change directory to your local destination directory. Next use the command “ftp” to

remotely login using “anonymous” for the name, and give your email address for the password.

This will aRow you reading and copying privUeges.

you[l]X cd your_local_directory
you[2]% ftp giskard.cme.ni8t.gov

Connected to giskard.cme.nist.gov.

220 giskard FTP server (Version bu-2.3(1) Wed Apr 6 14:21:22 EOT 1994) ready,

lame (giskard. erne. nist. gov
:
youmame ) : anonymous

331 Guest login ok, send your complete e-mail address as passuord.

PassHord: "your complete e-mail address"

230- Welcome to the FTP server for the Intelligent Systems Division
230- lational Institute of Standards and Technology
230- Gaithersburg, HD

230-

230-Please read the file README
230- it uas last modified on Hon Dec 6 11:57:23 1993 - 136 days ago

vui
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230 Guest login ok, access restrictions apply.

Once connected, change into the “utap” directory containing the desired files.

ftp> cd pub/utap

250 CWD command successful

.

To get everything at once, a compressed tar version of the documentation and a shar bundle of the

source files is in the main directory. ALWAYS USE BINARY/IMAGE MODE TO TRANSFER
THESE FILES! Text mode does not work for tar files or compressed files.

ftp> mget utap. doc. tar. Z utap . src . shar

Terminate the ftp session with the quit command.

ftp> quit

Assuming a UNIX environment, one wiU be required to unbundle the files. For the documenta-

tion, uncompress and extract the documentation files with tar. The source is in shar format, so

use unshar to unbundle files.

you[l]y, (mkdir doc; cp utap. doc. Z doc; cd doc; \

uncompress utap.doc.tar .Z; tar -xf utap. doc. tar; )

you[2]% (mkdir src; cp utap. src .shar src; cd src; \

unshar utap . src .shar ;

)

The documentation is in Postscript format (*.ps).

Introduction

This introduction is not considered part of the proposed standard.

The purpose of this Working Draft Standard Document is to define a common architecture for

telerobotics systems for use in Air Force applications with great duaJ-use potential for civilian

applications. There are various Air Force applications, such as paint stripping and painting,

surface finishing, and skin cutting which can benefit from the integration of telerobotics systems

tools.

Telerobotics systems wiU enable human operators, who now execute these tasks manuaUy, to

operate telerobots to execute the tasks faster, safer, and with higher quality. Telerobotics aims

at the integration and fusion of the strengths of machine and human to extend the capabiUties

of either. Telerobotics transcends the human barriers of space, time, power, speed, accuracy,

and safety as weU as the machine barriers of cognition, understanding, reasoning, and planning.

Besides the conventional applications of telerobotics technology to space, underwater, nuclear,

and mining operations, telerobotics technology may be appUed to the semi-automation of in-

dustrial processes where the fuU robotic automation is difficult to implement but the manual

operation is too costly to practice. The Air Force appUcation domains of aircraft maintenance

and remanufacturing are good candidates for successful telerobotics insertion due to their smaU

batch sizes, partiaUy modeled task environment, and physicaUy chaUenging and hazardous work

environments. In aircraft maintenance and remanufacturing appUcations the operator may pro-

vide the high level cognitive planning and sensory perception, which are currently difficult to

provide in a robotic system, while the robot provides precise control and works in dangerous

environments.
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It is intended that commercial telerobotics applications will become feasible due to the speci-

fication of an architecture and standardizing the components of the systems. This will allow

systems to be built from standard hardware and software modules which, rather than being cus-

tom developed, can be reused from other applications or purchased. The architecture therefore

provides a framework for design and implementation of telerobotics systems for different teler-

obotics applications while utilizing a common architecture and hardware and software modules.

The customization in developing a system will be in the selection of which modules to use rather

than in development of all the modules. This wiU allow both minimal, i.e., inexpensive, and

complex, i.e., expensive systems to be built using the same architecture.

Maintenance of systems developed with standard modules will likely be less expensive and cause

less system down time than for custom systems. Service personnel will be easier to find since

their skills will have wider applicability than those of people who are famihar with a custom

system.

An important feature of the architecture from the operator’s viewpoint is a common operator

interface across different applications. The various application interfaces will be easier to learn,

remember, and use. This will reduce training time and costs, as well as provide more skillful

and reliable operators.

Audience

The intended audience that this Working Draft Standard Document has been developed for:

a) Air Force Maintenance System Designers

b) Control System Designers/Engineers

c) Control System Integrators

d) Telerobotic Control Applications Programmers

e) Hardware and Software Purchases

f) End-users operating a SIE controller

Organization of the Working Draft Document

The Working Draft Standard Document is divided into 9 parts.

- Scope

- References

- Definitions and global concepts

- Conformance

- Architecture Reference Model

X
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— Interface Environment

— Information Models

— Configuration and Integration

— Interface Framework

A series of annexes follow the Working Draft Standard Documentthat contain normative and

informative reference material.

Background

The UTAP architecture definition utilized telerobotics research and development results from

universities and national laboratories, previous studies, and current robotics off-the-shelf capa-

bilities. Most of the required capabilities have been demonstrated in prototype systems, but

without a common architecture approach. The unified architecture specifies the hardware and

software modules so that telerobotics systems can be built from standard commercial compo-

nents.

The architecture described in this report is a refinement of the architecture described in an earlier

study [JPL]. That study provided a high level description of the unified architecture and its

components. The unified architecture is an integration of many open architecture technologies.

At NIST, the unifying architecture for system development has been the Real-time Control

System (RCS) [RCS] that has evolved from cerebral models of brain behavior into a general

theory of intelligence. In addition to the RCS architecture, a methodology accompanies the

architecture for the analysis, design and implementation of control systems. The importance of

the RCS lies in the abstractions and generalizations it forwards in pursuit of open solutions that

apply beyond the demands of any one application.

Another related architecture is the architecture associated with the Next Generation Controller

(NGC) project [SOSAS]. It is intended that this UTAP architecture be an Application Archi-

tecture for an NGC system. The modules of the system are therefore described as components

of an NGC system with specified responsibilities and interfaces. A specific NGC profile is not

specified since that would be selected for a specific Application System.

Purpose

Several principles guided the development of this Working Draft Standard Document.

Open Architecture Technology:

Openness provides benefits and savings through flexibility and extensibility but does not ad-

dress portability. Interfaces under one vendor’s open architecture generally wiU not run under

another vendor’s system. Openness is the first step towards standardization. Requirements

for a standard “open solution” include the ability to allow the development of controllers

by users or system integrators who want to piece together their own systems component by

component, modify the way their controller does certain things, apply their modifications to
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another controller, or start small and upgrade as they grow. These basic open architecture

requirements include:

Modularity: Refers to the ability of controls users and system integrators to purchase

and replace components of the controller without unduly affecting the rest of the con-

troller.

Extensibility: Refers to the ability of intelligent users and third parties to incrementally

add functionality to a module without replacing it completely.

Portability: Refers to the ease with which a module can run across platforms Standards

such as ANSI C and POSIX are required to serve as a reference to which programmers

adhere.

Scalability: Like portability, refers to the ease with which a module can be made to

run in a controller based on another platform, but unlike portability, scalability allows

different performance based on the platform selection. Scalability means that a controller

may be implemented as easily by systems integrators on a high-speed processor, as a

distributed multi-processor system, or on a standalone PC.

Applying Today’s Technology:

The UTAP is intended as a SIE for immediate use. One could overestimate the real-potential

of systems in developing the scenarios, and become mired in the range of possibilities and

expectations of an architecture. For the UTAP architecture and interfaces, it is assumed that

a reasonable level of effort and Commercial Off The Shelf (COTS) equipment are immediately

available and can be used to solve the apphcations tasks.

Another assumption was that innovation would be minimized. Innovation affects both the

“how-to” and “what is in” when defining interfaces. For the how-to, should the interfaces

use established, but sometimes flawed, approaches, or should the interface adapt newer but

evolving and unproven approaches? There are established efforts for interface definitions that

are very elegant (e.g., [STEP], [CORBA]), but are either not cost-effective or still suffering

growing pains. The UTAP will start with a baseline of a simple strategy and concentrate on

the “what is in” the interfaces instead of dwelling on the “how-to” pass information within

an interface. It will be assumed that at some point an industry-standard for manufacturing-

based application interface communication and infrastructure will have evolved.

Another question is the amount of scientific pioneering of new technology expected within the

interfaces, e.g., “What are the functions that should be incorporated into the next generation

of commercially available sensors?” For instance, should an array sensor - such as a range

sensor - return curvature identification? For the UTAP interfaces, we did not attempt to

innovate new definitions, but rather, attempted to standardize on established technology.

However, the level of innovation within an interface is not compromising since the UTAP
modules and interfaces are scalable.
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Focus on Interface Content, Not Interface Transport:

An interface has two critical issues. One issue is the method, or “How-to-pass,” which

describes how one will represent the language and the perform the communication. The

other issue is interface knowledge or the “What-to-pass” within the interface. The interface

knowledge is tied to the application requirements and must match the needs for the command,

control, status and synchronization of the system. The “How-to-pass” issue is guaranteed

to wrap one around the axle. Obviously, one cannot be blind to the how-to-pass elements

of the interface - protocols, configuration and language style greatly impact the Interface

Framework.

Test Validation

The first validating implementation of the architecture will be done using a commercial con-

troller. The hierarchy of components associated with major commercial robotics systems for

robot control is shown in figure 1. Higher level components are supported by lower level com-

xiii
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ponents. The Servo Control component provides servo control of the joint angles. It has joint

angle commands for inputs. The Inverse Kinematics component transforms task level commands
into joint commands, e.g., pose of the tool into joint angles which result in that tool pose. The

Controller provides the task level control including merging Cartesian trajectories with task

level sensor based control. The Trajectory Planner generates the planned trajectory, e.g., us-

ing a trajectory generator to generate Cartesian setpoints for the tool to pass through. The
Interpreter interprets and sequences the task program commands. The Translator translates

language source commands into intermediate p-code commands which are more efficient to exe-

cute than the language commands. The Language is a general purpose robotics task description

language which provides all capability needed to support the desired appHcations. The Tools

are software packages specific to application domains which provide macro commands which can

be used to efficiently develop application programs. The Tools may also provide an environment

for developing application programs. The Application is the application program for a specific

application. It will be developed with commands from the Tools package(s) and the supporting

language. Ideally, the application program will be developed using only the Tools packages and

Tools supporting development environment. Another way to envision this hierarchy of com-

ponents is by combining components into components which are commonly separate parts of a

robotic system, as shown in figure 2. The controller is the robot controller, e.g., Fanuc, Adept, or

Trellis. The language is the robot language, e.g., Karel, SIL or V-|-. The Tools and Applications

are the same as the Tools and Applications above.

Conformance

In publishing this Working Draft Standard Document, the Working Group intends to provide a

yardstick against which various control implementations can be measured for conformance. It

is not the intent of the Working Group to measure or rate any products, or reward or sanction

any vendors of products for conformance or lack of conformance to this standard, nor will any

attempt to enforce this standard by these or any means.
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It will be assumed that individuals who are evaluating the product will be able to attach and

run a test and verification harness for a particular module. An entire controller would be tested

and verified for conformance through the process of harness rewiring to accept one, two, ... n

modules.

Extensions

Activities to extend this Working Draft Standard Documentfor additional requirements are

anticipated. This is an overview of how extensions to the standard will be done and how users

of the standard can keep track of that status.

Extensions are provided as Supplements to this document. Supplements may contain either

required functions or optional facilities. Supplements may add additional conformance require-

ments defining new classes of conforming systems or applications.

Supplements are not used to provide a general update of the standard. Standard revisions are

done through the review procedure as specified by the standard body. Supplements currently

under consideration at this time include:

- COREA Interface

— IDL or ASN.l Interface Definitions

Typographic Conventions

This Working Draft Standard Document uses the following typographic conventions:

a) The italic font is used for the initial appearance of defined terms; and cross references

to defined terms within the definitions terminology.

b) The bold font is used for C and C-f+ language types; references to other sections or

chapters.

c) The constant-width font is used to illustrate examples of code.

Related Standard Work

This Working Draft Standard Document was prepared by a Working Group under the leader-

ship of the RACE with the intention to standardize this effort within a Technical Standards

Committee. At the time this working draft was distributed, the membership of the Working

Group was as follows:

Working Group

Paul G. Backes John L. Michaloski Robert Steele

Michael Leahy Scott Petrosky Albert Wavering

Sukan Lee Francois Pin Thomas Wheatley

Ronald Lumia

XV
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Unified Telerobotic Architecture Project
Standard Interface Environment —
Working Draft Document

1 Scope

This Working Draft Standard Documentis intended to serve as a guide in the system design

and implementation of telerobotic systems, to minimize the variety of system interfaces and to

promote a unified approach to building telerobotic systems and to foster the interchangeability

of telebrobotic architecture components. It is intended to provide scalable complexity to ac-

commodate simple systems and at the same time be systematically extensible to accommodate

more complex systems.

The standard presents a reference model architecture and SIE for telerobotic applications. The

standard contains general-purpose concepts and presents terminology definitions for the archi-

tecture and the interface between components.

2 References

[JPL] NASA JPL, “A Generic Telerobotics Architecture for C-5 Industrial Processes,” Final

Report Prepared for Air Force Material Command (AFMC), Robotics and Automation Center

of Excellence (RACE), San Antonio Air Logistics Center, Kelly AFT, TX 78241.

[ASN.la] Information Processing - Open Systems Interconnection - Abstract Syntax Notation

One (ASN.l); International Organization for Standardization and International Electrotechnical

Committee, 1987, International Standard 8824.

[ASN.lb] Information Processing - Open Systems Interconnection - Abstract Syntax Nota-

tion One (ASN.l) - Draft Addendum 1: Extensions to ASN.l; International Organization for

Standardization and International Electrotechnical Committee, 1987, International Standard

8824/DAD 1.

[CORBA] Object Management Group. Object Management Architecture Guide, Document

92.11.1, Framingham, MA, 1991.

[EIA274] “EIA Standard - EIA-274-D, Interchangeable Variable, Block Data Format for Posi-

tioning, Contouring, and Contouring/Positioning Numerically Controlled Machines,” Engineer-

ing Industries Association, Washington, D.C., February 1979.
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[EIA441] “EIA Standard - EIA-441, Operator Interface Functions of Numerical Controls,” En-

gineering Industries Association, Washington, D.C., January 1979.

[MMSl] ANSI/EIA-511 part 1, 1989 - Manufacturing Message Specification (MMS) - Service

Definition.

[MMS2] ANSI/EIA-511 part 2, 1989 - Manufacturing Message Specification (MMS) - Protocol

Definition.

[MMS 1924] ANSI/EIA Standard Proposal No. 1924 - A Proposed New Companion Standard

to EIA-511, “Numerical Control Message Specification,” (if approved, to be published as ANSl-

19506-4/EIA-566).

[OSI] “Open Systems Interconnection: definition of common application service elements,” In-

ternational Standards Organization.

[POSIX] “POSIX (Portable Operating System Interface), ANSI/IEEE Std 1003.1-1988” or

FIPS-PUB-151-1.

[RS441] “EIA Standard 441, Operator Interface Functions of Numerical Controls,” Electronics

Industries Association, Washington, D.C., January 1979 (Reaffirmed.July 14, 1992).

[RS274D] “EIA Standard - EIA-274-D, Interchangeable Variable, Block Data Format for Posi-

tioning, Contouring, and Contouring/Positioning Numerically Controlled Machines,” Engineer-

ing Industries Association, Washington, D.C., February, 1979.

[STEP41] “ISO 10303-41 Industrial Automation Systems and Integration Product Data Repre-

sentation and Exchange - Part 41: Integrated Resources: Fundamentals of Product Description

and Support.”

[STEP42] “ISO 10303-42 Industrial Automation Systems and Integration Product Data Repre-

sentation and Exchange - Part 42: Integrated Resources: Geometric and Topological Represen-

tation.”

[SOSAS] National Center for Manufacturing Sciences, “Next Generation (NGC) Specification

for an Open System Architecture Standard (SOSAS), Revision 2.5”, August 1994.

3 Definitions

3.1 Standards Terminology

3.1.1 defined: A value or behavior is defined if the implementation defines and documents the

requirements for correct program construct and correct data.

2
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3.1.2 may: With respect to conformance, the word may is to be interpreted as an optional

feature that is not required in this standard but can be provided.

3.1.3 shall: With respect to conformance, the word shall is to interpreted as a requirement on

the implementation for strict conformance.

3.1.4 should: With respect to conformance, the word should is to interpreted as not a strict

requirement, but interpreted as a necessary courtesy for explaining non-standard additions and

extensions.

3.1.5 supported: Certain functionality in this standard is optional, but the interfaces to that

functionality are always required. If the functionality is supported, the interfaces work as specified

by this standard (except that they do not return the error condition indicated for not-supported

case). If the functionality is not supported, the interface shall always return the indication

specified for this situation.

3.1.6 undefined: A value or behavior is undefined ii the standard imposes no portability and

interoperability requirements on applications for erroneous program construct, erroneous data,

or use of an indeterminate value. Implementations (or other standards) may specify the result

of using that value or causing that behavior.

3.1.7 unspecified: A value or behavior is unspecified if the standard imposes no portability

requirements on applications for correct program construct
,
correct program data, or correct

program interoperability.

3.2 General Terms

3.2.8 API: The term API refers to a type of interface in which one has a data representation

and set of functions associated with the data representation. By contrast for example. Postscript

is an interface language for printers. For an API, the data and function abstraction (in Smalltalk

00 lingo, class and methods) hides the underlying physical representation or implementation

from the programmer. As an example, C is a general-purpose language (CPU interface) which

contains many application-specific API libraries, such as math, or a socket library as an API
abstraction for TCP/IP communication. For the math library, one has a representation of the

data (a double in IEEE floating point, a set of functions (e.g., sin, cos, atan, etc.) which hide

whether the computation is done on FPU hardware or in software.

The environment is important in specifying options. Through the use of compiler switches one

can specify an platform environment for a FPU or not.

3.2.9 build: An open-architecture controller is built from modules and component parts. The

operation to build a controller from module components is multi-faceted and includes the fol-

lowing:

- User defines “initial conditions” such as hardware, peripherals, (i.e., computing resources

in general)

3
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— Platform supplies system low-level services (e.g., file-mgmt, etc.)

— Integrator wires selected modules together

— Modules need to support user-specification of timing requirements

— Supply of “dummy” or minimal modules where user has not selected any

— Desirability to have convenient ways to experiment; reconfigure modules quickly and

(not required) capture their results in order to organize your experimentation

3.2.10 channel: A channel (or transport) is the abstract connection between communicating

modules along which the message is transferred, e.g. network, shared memory, local procedure

caU, remote procedure caU, software interrupt, event, signal, network, stream, mailbox, etc.

3.2.11 connection: A connection requires two (or more) processes to communicate via a con-

nection. One module is the sender (or writer) and one (or more) module is the receiver (or

reader). A good analogy to this paradigm is a telephone conversation. When you initiate a

telephone call, you are initiating a connection. The other party hears the telephone ring, and

then answers the phone to complete the connection. How the connection is actually made is the

responsibility of the lower-layer service (the telephone companies handle the underlying hard-

ware and communication protocol). The conversation consisting of an agreed upon language and

dialogue protocol is equivalent to the application session layer or Open System Interconnection

(OSI) [OSI] layer 7.

3.2.12 component: A component definition will adopt the NGC SOSAS [SOSAS] concept

of a reference architecture consisting of primitive and aggregate components. Components are

defined as abstract building block elements that describe functionality and communication.

The application architecture is built from these components. Components have the following

attributes:

— responsibility;

— peer-to-peer or collaborative relationships;

— behavior (specific functionality encapsulated by the component);

— messages, that is, the complete set of specific instructions necessary for invoking all of

the behaviors encapsulated by the component;

— Application Program Interface(s) or the interfaces a component uses specifically to ac-

cess services provided by the SOSAS notion of an Open Systems Environment.

3.2.13 data encapsulation: API is a part of the notion of data and functional encapsulation

and the concept of data hiding. Data encapsulation refers to the object-oriented idea of grouping

the data and functions into a class container (or black box.) Thus, a queue class specification

offers the user a general data representation (e.g., circular list) with a set of functions (create.
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add, remove, delete, front, ...) bundled under the QUEUE class. More interesting is the notion

of abstracting the queue elements (say a queue of integers vs. a queue of floats) allowing a user

to specify the element type since the functions are identical (e.g., which could be implemented

with an ADA generic or C++ templates.)

3.2.14 interface: An interface is a connection between modules. The interface is defined by

the language the communicating modules use to exchange information. The language is the

formal system of signs and symbols and rules for formulation (syntax) and transformation of

admissible expressions. For terms of this Working Draft Standard Document, two types of

interfaces will be discussed, programmable interface and published interface. A programmable

interface describes messages as programs passed between modules that would exphcitly contain

data structure declarations, data definition, program flow and actual data. Published interfaces

describe data size and ordering (or data structure) a priori as the method to specify the syntax

of the language.

NOTE 1 - Programmable interface languages contain special keywords or primitives to simplify

the process. For example, the Postscript U language contains special-purpose keywords that denote

drawing primitives. An appropriate list of primitives is critical to the success of an interface. For a

Postscript interface, instead of sending a thousand points to define a shape, one invokes a Postscript

primitive shape function with specific parameters. In this case, you send textual “programs” across

the interface (e.g., those written in Postscript) instead of raw data. Extending the language with

user-defined primitives (e.g., subroutines or macros) is also available within a programmable inter-

face. Within Postscript, one can extend the interface by defining user-shape functions and invoking

them with a subroutine calls and a parameter list.

The programmable interface is a powerful, yet costly technique. It requires a high computational

overhead to interpret messages. Time is a luxury that cannot be afforded in much of the UTAP
architecture. To achieve high performance, many interfaces limit messages to raw data consisting of

a keyword and parameter list, formatted according to a published interface definition or Application

Programming Interface (API). Such interfaces have a low-overhead and are simple to interpret. The
published interface would list acceptable keyword and parameter syntax describing the module func-

tionality and data representation for an interface. Such interfaces can be as simple as a subroutine

keyword and parameter list. Distributed interfaces require an additional level of packaging - a sender

prepares a message for transport along a channel to the receiver module.

3.2.15 message: A message is an instance (or program) written in the interface language. The

receiver interprets the message from the sender.

3.2.16 module: A module is a collection of similar computational services. Modules contain

software components such as C++ classes or ADA packages. A module consists of more than a

box of functionality with an explicit Application Programming Interface. Modules consist of:

— A set of functions

— API’s for those functions

— A registration process that can be invoked wherein the module registers with the system

^^Postscript is a registered trademark of Adobe System, Inc.
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being configured what its capabilities are

— An auxiliary store/database containing the specifications for the current instantiation

of a module.

3.2.17 open system: IEEE Controls Magazine defines an open system standard as “a specifi-

cation developed by a consensus process to which any vendor can build products”. The following

features are characteristics of “openness”:

- Products are implemented to internationally agreed standards. Ideally, internationally

agreed de jure standards are preferred to de facto standards, but the latter are often used

in practice. To be appropriate, a de facto standard must have a large base of independently

developed applications available, be supported on a range of different hardware, can be

licensed for use by anyone, and have international support.

— Standards are nonexclusive, nonproprietary, and vendor independent. A standard sat-

isfies this requirement if an agreed definition is publicly available, the specification is not

owned or controlled by a company or group of companies with vested commercial interests,

and no restrictions are imposed on its use.

- Applications can be moved as necessary between systems of different makes and sizes.

This is more than a simple matter of application portability. It is also a means of ensuring

that data and user experience is also portable between the same application on different

hardware systems.

- Usable information can be exchanged when required between different systems. This en-

sures that data is usable by different applications thereby ensuring that different applications

can work together.”

3.2.18 protocol: The protocol describes the message passing mechanism and the method in

which each module acknowledges receipt of a message, e.g. ack/nack, guaranteed delivery, in-

order, blocking/non-blocking, time-out, buffering, queuing, persistent, dynamic. The connection

defines the configuration of the interface, e.g., point-to-point, broadcast, blackboard.

3.2.19 telerobotics: Telerobotics methods can be separated into three types: manual control,

supervisory control, and fuUy automatic control. The distinction between these methods is

briefly described here. The term teleoperation may be used generically to describe all telerobotics

methods but is used here in its more common connotation of manual control. In manual control,

all robot motion is specified by continuous input from a human, with no additional motion

caused by a computer. In supervisory control, robot motion may be caused by either human
inputs or computer generated inputs. In fully automatic control, all robot motion is caused by

computer generated inputs.

There are two primary subsets of supervisory control: supervised autonomy and shared control.

The distinction between them is the nature of the inputs from the operator. In shared control,

operator commands are sent during execution of a motion and are merged with the closed loop
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motion generated automatically. Therefore, in shared control, all inputs from the operator

are not known a priori to execution of a motion since inputs during execution are also used. In

supervised autonomy, autonomous commands are generated through human interaction, but sent

for autonomous execution. A command can be sent immediately or iteratively saved, simulated,

and modified before sending it for execution on the real robot. Also, individual commands can

be complete descriptions of the motion or module commands specifying only modifications to

the control or monitoring of a specific module of the remote system.

4 Abbreviations

For the purposes of this standard definition, the following abbreviations apply.

ADS Analysis and Diagnosis Module

API Application Programming Interface

CORBA Common Object Request-Broker Architecture

COTS Commercial Off The Shelf

DCE Distributed Computing Environment

DB Data Base

DLL Dynamically Linked Library

OC Object Calibration

01 Operator Input Devices

OM Object Modeling

OK Object Knowledge

OSF Open Software Foundation

POSIX Portable Operating System Interface for Computer Environments

PTPS Parent Task Program Sequencer

RSC Robot/Axis Servo Control

SC Sensor Control
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SGD Status Graphics and Displays

SIE Standard Interface Environment

SOSAS Specification for an Open System Architecture Standard

ss Subsystem Simulators

TC Tool Control

TD Trajectory Description

TDS Task Description and Supervision

TK Task Knowledge

TPS Task Program Sequencer

TLC Subsystem Task Level Control

TRD Trajectory Description

VS Virtual Sensor

XDR External Data Representation

5 Conformance requirements

5.1 Implementation Conformance

A conforming implementation shall meet aU of the following criteria;

a) The system shall support all required interfaces defined within the standard. These

interfaces shall support the behavior described herein. The algorithms or other internal

mechanisms used to achieve these behaviors is not specified by the standard.

b) The system may support additional features or facilities not required by this standard.

Nonstandard extensions should be identified as such in the documentation. Nonstandard ex-

tensions, when used, may improve the behavior of functions or facilities defined by this

standard, but shall maintain basic performance behavior. In the case of nonstandard ex-

tensions, the documentation shall define an environment in which an application can be

run with the behavior specified by the standard. In no case shall such environment require

modification of a strictly conforming application.
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5.2 Environment Conformance

A module shall conform to the environment as indicated by the configuration file. The envi-

ronment definition shall conform to the profile specification as defined in C that comphes with

the NGC Open System Environment framework [SOSAS]. Other conformance issues remain to

be resolved.

5.3 Documentation Conformance

A document with the following information shall be available for an implementation claiming

conformance to the standard.

This document shall contain a conformance statement that indicates the full name, number and

date of the standard that applies.This document shall contain a conformance section that hsts

other software standards used to satisfy the infrastructure.

This document should specify the behavior of the implementation of the standard where imple-

mentation may vary.

This document should specify the time-based performance of the implementation of the standard

where implementation may vary.

Modules complying with this standard will supply a document that describes the environment

profile as given the NGC Open System Environment framework [SOSAS] which is defined in

Annex C.

6 Application Architecture

The UTAP application architecture is defined so as to avoid point solutions to specific appli-

cations. Instead, the UTAP architecture accommodates different types of robotic manipulators

with different degrees of freedom, accommodate different part materials and part geometries,

new tasks in the workplace, and provide a facility to upgrade/change equipment, sensors, and

feedback mechanisms as technology advances.

A reference model architecture is a guide as to how to structure the components in a system.

Depending on the application, a similar, but not necessarily duplicate instance of the reference

architecture may be developed. The goal of the reference model architecture is to model the re-

lationships among elemental components that may exist in any system. The goal of the reference

model is to provide a framework as to how to organize system components. Figure 3 shows the

UTAP application architecture in terms of its elemental components. The architecture includes

both implementation and execution features although implementation and execution would be

done at different times by different people. Central to the architecture is the application pro-

gram. This is the program which is run by the operator to execute the telerobotic task. The

application program is separated into subsystem task programs and a parent task program. A
subsystem is characterized by having a separate task program. There may be separate task

programs running on separate controllers for different robots or mechanisms, or separate task

programs running on the same controller hardware. Coordinated control between separate task
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programs is achieved by direct communication between the subsystem task programs and/or

through communication with a parent task program which communicates with the subsystem

task programs to coordinate their control.

The generic architecture actually has separate hardware and software architectures since for dif-

ferent implementations, software of a specific functionality may reside on different computational

hardware. For example, servo control software could reside on a special servo control board or

on the same cpu board as task level control. The software module has a clear functionality, but

where it is located is application dependent.

The NGC terminology for components is expanded here to separate components into three types

of components: architecture components (AC), hardware components (HC), and software

components (SC). Architecture components are the components consistent with NGC which are

not hardware or software specific, but are functionality specific, and describe the application

architecture. Hardware and software components are used in this report to specify the unique

hardware and software modules of the system. This distinction is made because it is desired

that’ the components be replaceable and software can be replaced independently of hardware

and vice-versa. The architecture components are described in Annex A.

6.1 Hardware Architecture

The hardware architecture is shown in figure 4. The hardware components are separated

Figure 4 - Hardware Architecture

into physical hardware items that might be purchased. Hardware compatibility is a critical

feature of an open architecture controller. Hardware compatibility implies physical connection

between pieces of hardware. The connection can be communication lines such as serial, parallel,

and ethernet cables, and the backplane which cards can plug into. These connection standards

are not separate components, but are features between hardware components to make them

11



UTAP/WD Standard Interface Environment

compatible in an open system.

A common backplane for computer cards to plug into is a critical feature for hardware com-

patibility. Candidate backplanes for standardization include VME, ISA, EISA, and VISA. The

backplane must support multiple processors and have sufficient throughput. It is important that

the backplane specification is rigorous, complete, and unambiguous. A weU specified backplane

allows suppliers to develop boards for the backplane knowing the constraints for a board and

for each pin, thereby ensuring safety for the hardware. The allowable power per board needs to

be specified. Each pin that might be used by multiple boards needs to be well specified. If a

pin is not well specified, then a supplier may not know how another board in a system might

use the pin and therefore not be able to guarantee safety if the pin is used.

To allow a spectrum of common architecture controllers, multiple backplane options should

be allowed, corresponding to lesser capability inexpensive systems and greater capability more

expensive systems. Perhaps one low end backplane and one high end backplane should be

selected. As with the NGC concept, the backplane is not specified here. The controller developer

selects the backplane from a standard list for their specific profile. It is felt that a small number’

of backplanes will emerge. It is felt that presently the VME backplane is the desired backplane

for high end, more expensive, systems and ISA and EISA for lower end, less expensive, systems.

The VME bus meets the backplane criterion the best of the backplanes considered. It specifies

the allowable power draw per board. It’s Pi bus is completely defined. The P2 bus has some

defined lines and some lines left open to the user. The lines left open to the user must be further

specified for use in an open architecture system. The other backplanes are less expensive and

could be used in less demanding, or diverse, applications than the VME bus.

The hardware components are separated into types of hardware components as described in

Annex A. There may be one (e.g., interface controller) or more (e.g., device controller) hardware

components in the system for each type of hardware component. Also, the hardware component

types apply for various device types including tools, sensors and manipulators.

6.2 Software Architecture

The software architecture is separated into functional types of software modules, the software

modules themselves, and the application programs. Software modules are described in this report

as modules, components and agents. The software modules, or components, can actually be

aggregates of multiple software modules which collectively have specified responsibility, input and

output. Modules and components both imply a software entity with a specific responsibility and

inputs and outputs. The term agent also implies a software entity with a specific responsibility

and inputs and outputs, but it also implies that this software entity runs as a separate thread

of execution. An agent is likely to be an aggregation of software modules running as a separate

thread of execution with a specified interface. Agent based systems have the benefit of being

highly modular and reconfigurable with easily replaceable individual agents. Consistent with an

NGC architecture, the software modules can be implemented as agents, i.e., as separate threads

of execution. But, agent based systems have not been demonstrated sufficiently in real-time

applications to justify a requirement for the use of agents. Therefore, the software modules of

the system will be described as components with well defined responsibilities, inputs and outputs,

but with the implementation details, e.g., the use of agents or not, left to the application system
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implementation

.

The software module types and organization are first described followed by their interaction for

supervisory and shared control and then by descriptions of the software modules as components.

6.2.1 Software Module Functional Types

The software architecture is shown in figure 5. Figure 5 distinguishes the types of software

Figure 5 — Software Architecture

modules, or equivalently, components, for execution of an application program. A second fig-

ure, 6, shows how software modules are grouped and communication is constrained. The

ovals indicate which components can communicate directly with each other; modules within the

same oval can communicate directly. It is a goal to separate the different types of software com-

ponents and specify their interfaces so that these can be developed independently. Libraries of

application programs, macro commands, or task control modules could then be selected, perhaps

purchased, as needed for a specific application.

The components of the architecture correspond to the components shown in figure 1, but the

modules of figure 5 indicate the modules for task execution whereas the modules of figure 1 show

components for both development and execution. The operator interface together with the ap-

plication program represent the Application module of figure 1. The task control represents the

Interpreter, Trajectory Planner and Controller and the task-device map represents the Inverse

Kinematics of figure 1. The device control together with the device driver represents the Servo
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Control of figure 1. The language is an integral part of the architecture but is not a component

since it does not process information. The architecture does not specify a translator module

although one would be needed if the language for task description is different from the language

of the commands sequenced in task execution. The macro commands and task program editor

of the architecture represent the Tools component of figure 1.

The groupings of software modules given in figure 6 are functional. Where the specific software

modules reside will depend on the profile of the system selected. The options for mapping

software module types onto the hardware is given in figure 7.

The types of software modules that will be in a controller are described below, followed by

descriptions of the actual software modules.

6.2. 1.1 Operating System

The operating system is not one of the modules of the architecture. Rather it is a common service

to the modules. There is likely to be separate operating systems for the planning and real-time

control parts of the system - running on the interface controller versus running on the task

controller computers. Standard operating systems would be very useful for development of an

open architecture controller. Then all software modules could be developed and independently

tested against given versions of an operating system. This would simplify software integration.

If specific operating systems are not specified, then the constraints on the allowable operating
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Hardware Software

Figure 7 — Software to Hardware Map Options

system options should be specified, e.g., POSIX compatibility. The selected operating systems

will be part of the architecture profile.

6.2. 1.2 Operator Interface

The operator interface is the group of software which controls the inputs and outputs to the

operator. This includes interaction with the application developer and the operator. The oper-

ator interface may be implemented in various forms, but a goal is to have a common method

of interacting with systems across multiple applications. There will likely be multiple common
interface methods, e.g., iconic systems with graphics simulation, or simpler (and less expensive)

ASCII based inputs.

The operator interface software wiU run on the operator interface computer hardware. In some

cases the operator interface computer wiU be the same system as the task controUer hardware.

This computer would then have to support the operator interface and task control software

systems.

6.2.2 Application Program

An appUcation program is the stored program which, when executed, wiU perform a task. An
appUcation program may consist of subsystem task programs and a parent task program. A
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subsystem task program can have multiple threads of execution, e.g., one for task control and

another for status update to the operator interface. Application programs consist of sequences

of macro commands and a limited set of conditionals and math operations.

6.2.

2.1

Macro Commands

Macro commands encapsulate an algorithm which provides a type of capability, e.g., free motion

command or grinding command. Macro commands wiU have a given set of parameters, but may

have various internal implementations. Macro commands are automatically decomposed and

translated into commands to control the task level control.

6.2.2.

2

Task Control

Task control occurs when the task programs are executed. The task programs make calls to

the task control modules. There will be many task control modules including force control,

trajectory generator, visual servoing, monitoring, and motion command modules. By specifying

the interfaces of the modules, modules can be acquired from different sources. The various

sources of motion wiU generate motion commands which the motion fusion module will merge

into a command to the device to be controlled.

6.2.2.3 Task-Device Map

The task level command is transformed into the actuator coordinates, e.g., joint angles, velocities

or torques, with a task-device map module. A separate module is used to transform measured

data from the device coordinates to the task space coordinates. This module is mechanism

dependent. Sensor commands also go through a task-device functional module to transform the

command to the coordinates of the sensor, and when read, from the sensor frame to the task

control frame.

6.2.2.4 Device Control

The device control software modules provide the control of the axes of the mechanism or interface

to sensors. It also provides the interpolation of setpoints for the device servo control since this is

likely running faster than the task level control and thus has multiple cycles between commands

from the task level control. Servo control of joints would be done by device control software

modules. The device control software modules might reside on the task controller or device

controller hardware. For example, a controller may allow joint servo control software to reside

on the task controller board with the task control software. The device controller hardware

might then just be a D/A card. Alternatively, a servo control card could be used for the device

controller hardware which would have the servo control device control software on it. The device

control module communicates with the power interface to the device, e.g., PWM commands to

PWM drives, analog commands to analog drives, signal interfaces to sensors.
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6.2.2.5 Device Driver

The device driver software is hardware dependent, residing on the device controller hardware.

This component sends commands and receives status from the device amplifier hardware, e.g.,

voltage or PWM signals.

6.2.2.6 SW Architecture for Supervisory and Shared Control

A unified supervisory and shared control telerobotic system has the same architecture for all

modes of control: teleoperation, shared control and supervised autonomy. The fundamental

system provides task description and task program sequencing. The commands in a sequence

can imply autonomous execution or a mix of autonomy and teleoperation inputs. There are

two basic paths for operator inputs. The inputs can be incorporated into parameters in the

command path from the operator interface to the task execution system, or hand controller

inputs from the operator can be treated as sensory input to the real-time task level control.

In both cases they have similar form as other types of information. The system is therefore

essentially an autonomous control system which allows operator inputs during execution.

Different components of the system might run synchronously, asynchronously or upon request.

For example, in the real time control, the closed loop control components might run asyn-

chronously at different rates, reading available data, and producing data to be read. Slowly

changing information can be computed at a slower rate than it is used. Alternatively, these

components could be synchronized and called in a given order. The task planning components

will not be called at the high rates that the task control components are run. Therefore, they

could more readily be implemented as agents, responding only when their services are needed.

There may be multiple sources for motion of the tool, and therefore the manipulator, including

hand controller, trajectory generator, and closed loop sensor based control such as force control

and proximity control. Motion commands from each of these sources can be generated by specific

software components associated with the motion source. These motion commands then have to

be merged. This merging is done by the motion fusion component. There are many ways that

motion can be merged, or fused, with motion commands of various types, e.g., disturbance forces,

incremental motion, velocities and absolute positions. The motion source components therefore

have to generate motion commands which are consistent with the motion fusion component

input types.

7 Interface Environment

The UTAP architecture is a modularized arrangement of control services. As a result, a mod-

ularized system reduces complexity and makes it easier to understand, design, and implement

the system. The complementary result of the modularization of a system into components are

interfaces. An interface provides access to a module’s services where each interface is defined

by a language that specifies the tokens (or keywords), syntax (or format), and semantics (or

legitimate values and interpretation) that are acceptable to a module. Indeed, one could have

several interface languages to the same module of computational services. The goal of a generic
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interface is to unify similar computational services under one, general-purpose, access mechanism

supporting a wide range of uses.

The major observation within the UTAP Interface Environment is that an interface is composed

of two elements, a language and a protocol. This observation can be represented by the following

equation;

Interface = Language -}- Protocol (1)

Which is equivalent to saying that an interface is defined as “What-to-pass” plus “How-to-Pass.”

In order to realize the hard real-time processing demands of motion control, one requires that

UTAP interface languages must be efficient and allow timely transmission and interpretation

of data. A modeling schism develops attempting to meet the desire for generality and the

requirement for performance. A more expressive language is desirable but suffers the penalty

of an increased performance requirement. The UTAP Interface Environment is framed by the

assumptions made in order to resolve conflicting notions of interface definition. (See Annex G
for further discussion of these issues.)

NOTE 1 - Ultimately, the following assumptions were made for this Working Draft Standard Doc-

ument. The first assumption was to focus on what-to-pass, not how-to-pass. The second assumption

was to minimize complexity and adopt a simple definition style. A simple language strategy would

appeal to a greater audience. Initial attempts at an elegant software solution were confusing and

drew attention away from the focus of the problem - defining the language primitives. The third as-

sumption was that a “published” interface would be necessary. A published interface would require

minimal interpretation and allow shared memory schemes. The fourth assumption was to allow

both measurement units and computer representation to be adjustable. The environment would

explicitly define message primitives for different units and representation. The fifth assumption was

to provide for symbolic manipulation of data, in that, although the message definitions were in a

raw format, textual information would be required also.

The definition of interfaces consists of two elements: Configuration and Language Framework.

Configuration deals with naming, system identification, narrowing the scope of the problem

through labelling, and system scaling. Naming includes acronyms, message naming conventions

and communication channel naming conventions. Configuration includes classification, resolving

duplicate module types, dynamic configuration and attachment of a protocol to channel. A
service directory is associated with each module that describes the permissible set of messages

into/outof the module. This capability allows scaling of the system.

The Language Framework covers Information Models and the Interface Language.

Information Models define the data representation within the messages. A substantive infor-

mation model is required for interoperability. One could define everything as tokens, but this

offers little in helping with the standardization process. The Information Model includes 1)

domain-independent items or generic data definitions; 2) feature-based definitions such a ge-

ometry, topology, shape, and patterns; and 3) object knowledge. Object knowledge covers the

devices, parts, modules, and general system state information. Object knowledge is defined with

attributes, and access to information is through query/response connection.

The UTAP Interface Language was defined as a set of messages. The C/C-1-+ language was used

to define messages. There is a trade-off between interface language complexity and performance.

The distributed and real-time nature of the UTAP predicated an explicit, simple approach to

defining messages. The UTAP message defining style uses #defines to enumerate message name
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and id, plus gives data structures to each message id. The information models (data declarations)

and messages were defined within C/C++ header files. The information models and messages

are compilable. A more abstract Application Programming Interface is defined and was derived

by running a filter on the message definitions.

Generic messages were defined that are applicable to aU modules in the UTAP architecture.

Mode and state change commands are covered by the generic messages. Such state change

commands include: start, halt, hold, resume, suspend, etc. Extensibility and customization are

provided with the MACRO, and PLAN set of messages. Synchronization of messages is provided

with the BLOCK and EVENT set of messages.

The UTAP framework provides for these major styles of messages - sensor/effector control

and query/response. The UTAP sensor/effector (S/E) control interfaces apply programming

concepts from servo control, programmable input/output and the programming format RS274

[EIA274]. The S/E control interfaces divide communication into 1) mode and 2) action messages.

The mode messages provide for event sequencing (e.g., start, halt, abort, etc.), set-up, algorithm

selection (e.g. PID, FEEDFORWARD, etc.) and provide for loading control parameters. The

action messages either write a command or initiate a sensor reading. Action messages treat

communication as clocked data flow. Query/Response (Q/R) interfaces adopt a similar strategy

but one generally assumes one cycle per clocked data flow. The Q/R data can be of the form of

a query message from the superior to the subordinate, or as a reading from the subordinate to

the superior and/or Object Knowledge module.

7.1 Viewpoints

Some interfaces do not need to have an innate understanding of the control domain and wiU be

merely performing symbolic manipulation of the interface data. For example, an Object Knowl-

edge Base or Operator GUI do not need to understand the application in order to store/retrieve

or display the information. Instead, these modules must have a systematic (and symbolic) means

of receiving system information and capabilities, and then organizing this information for either

the user or other modules in the system. For example, I as a user may wish to override the feed

rate for a particular task if I observe chatter. The GUI cannot understand why Pm changing

the feed rate. Instead, the GUI may have limits on the acceptable range of numeric values, and

pass the new value to the control system which makes the determination for the validity of the

new data value.

Likewise, when one module requests the value of the feed rate from the Object Knowledge

Module, the data manager doesn’t need to know the purpose of the feed rate, but rather, it

needs to know its computer representation (double), its range of legal values, and possibly all

the users of this information throughout the system.

The UTAP interfaces will provide a capability, tasking, and data framework for the modules

that may only require symbolic manipulation of data. The capability framework specifies what

resources are in the system, e.g., robots, tools and sensors. The tasking framework will provide

the necessary knowledge about how the capabilities can be used. The data framework provides

an all-encompassing description of the potential data that the system has at its disposal. It is

foolish for the system to pass every conceivable variable to the Object Knowledge Base. Instead,

we win assume that configuration of data posting, data viewing and data modifying is possible.
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For instance, various configurations could define what values are periodically posted to the object

knowledge base, what values are visually presented to the user, what presentation style the user

prefers to view data, etc.

8 UTAP Information Models

The UTAP applications operate on such parts as wings, fuselages, and other plane related parts.

These parts can be described as a combination of geometry, topology and shape to derive UTAP
features. These features are used to identify the focus of attention for the tooling operation.

For the initial phase of the UTAP, features will be described as simple shapes that are filled by

motion patterns.

The UTAP framework will use information models to describe part features and system at-

tributes. Currently, the information models include generic types, part information models,

and system data definitions. Generic information models cover domain-independent types. The

generics include basic data types including: mode directive, generic-directives, user type, mode
states, results, and a state-type. The part information models define measurement units, repre-

sentation units, features and object attributes required of the system. System data definitions

are intended to cover sensing and control attributes.

The sum of these information models describe the Object Knowledge and are preliminary. The
files generic-defs.h, utapinfo-model.h and utap-data-defs.h in Annex H.3 present the current

state of these definitions. Presently, the feature-based information model is relatively modest.

We have provided for an evolutionary path to allow for growth of potential part shape geometries.

The ISO STEP Part for Geometrical Shape and Material Information Models [STEP42] covers

a more complete range of data modelling.

NOTE 1 - A translation from EXPRESS Part Model into a C-f-f language information model can

be done, and was done to derive the current set of data definitions. To provide for a broader set of

part description, the STEP Part 42 geometrical models could be substituted for the current data

definitions - but is beyond the scope of the current level of effort.

8.1 Shape Geometries

For the sake of clarity only the range of part shapes that are foreseen within the scenarios will

be addressed. These parts are of course a small subset of the realm of potential parts shapes.

The major assumption to the current definition of the UTAP part geometry is that the operator

will define or choose the workpart geometry from a set of prescribed shape models.

The UTAP interfaces have a preliminary geometric shape model that describes the shapes re-

quired within the application scenarios. Such shapes can be one, two or three dimensional. The

shape dimensionality specifies the geometric form of a topological or geometric entity. Edges

(curves). Faces (surfaces) and shells(volumes) have dimensionality of 1, 2, and 3 respectively.

By convention a Vertex (point) has dimensionality of 0. These geometric shapes required of the

UTAP interfaces include:

— ID - surface, planar or curvilinear edge
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— 2D - rectangle, circle, polygon or connected edge list

- 3D - box, cylinder.

The features can be embedded within each other. This capability allows us to define circu-

lar/rectangular obstacles within our workarea feature.

8.2 Patterns

A type of motion within the work volume wiU be termed the motion pattern. Some patterns are

merely shorthand notation for a larger set of motions. For example, a raster motion sweep can be

composed of a set of linear motions. But, it is more intuitive to the operator (and programmer)

to define a raster pattern within a rectangle workarea. Patterns can be shape fill patterns or

edge patterns. One is either applying a motion pattern to the face of a part or to the edge of a

part.

The edge patterns are:

— exact or within some tolerance along edge

— sine or square-wave weave (e.g., for arc-welding) The fill patterns are:

— horizontal and vertical raster

— orbital type motion

— dithered or chaotic motion

— concentric circle fiU.

Of course, these definitions are not complete but appear to handle the task scenarios. New
pattern definitions can easily be added by a systems programmer as the need arises.

8.3 Features

A UTAP feature is a combination of a geometrical shape and pattern to describe the motion

applied to that shape. For the UTAP application domain, the primary features will be pattern

motions within faces of different geometrical shape - e.g., flat surfaces with rectangular and

circular features or, curved surfaces with conic features. In this case the faces (and their con-

stituent edges, vertices, surfaces, etc.) are the primitives that can also be operated on. Given

the shape we must then describe the motion pattern that will be applied to the feature. Thus,

we define a feature with the following equation:

FEATURE = shape -|- pattern (2)

Features are constructed using the following base definitions:

- GEOMETRY: gpoint, vector, pose, transform, arc
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- TOPOLOGY: tpoint, vertex, edge, edgeJist, loop, face

- SHAPE: box, rectangle, helix

- PATTERN: edge.pattern, blend-pattern, face-pattern, sheU-pattern.

The part shape geometry determines the work volume. The topology is used to define bound-

aries. Shape is derived from geometry and/or topology. Most of the application scenarios involve

tooling the surface area or face of a part. To cover the surface a series of motion patterns will

be required.

9 Integration and Configuration Management

The UTAP architecture emphasizes telerobotic control. Because of this, the UTAP architecture

is divided into a REMOTE teleoperated partition and a LOCAL motion and tooling control par-

tition. Although the REMOTE topology of the UTAP architecture is a static arrangement (i.e.,

they is only one instance of many of the modules), the LOCAL topology will vary between ac-

tual systems. For the LOCAL partition, the UTAP architecture describes a topology framework

for composing modules. Identical modules can exist as subordinates to the same superior. For

these modules to be configured in a complete topology, an identification or naming convention

is required. With a naming convention, a directive will be sent to the proper subordinate.

A classification framework helps bound the range of module capabilities and to provide for a

smooth evolutionary path. For comparison, the term “printer” - although descriptive - can

be vague. One can have a color printer, a dot matrix printer, a laser printer, ad infinitum.

Without a classification framework, one cannot accurately determine the expected capabilities

of the modules. Before one can define interfaces one must categorize the range of modules in a

UTAP system. In turn, proper categorization of UTAP systems wiU provide a more coherent

framework for defining the interfaces.

9.1 Identification

The UTAP describes an architecture that can vary in size and complexity. For some of these

modules, only a single-instance of the module exists in a system. These modules include 01,

OM, OC, TD, TDS, TK, FTPS, SGD, AD, and SS. For the remaining modules (i.e., TPS,

TLC, SC, RSC, TC, and VS), multiple-instances can exist in the system simultaneously. The

variability of the number and scope of the module members means the system architecture can

vary. To quantify the size and scope of the architecture, one is required to 1) enumerate the

active single-instance modules in the system and 2) identify and categorize the multi-instance

modules.

To define the multi-instance modules, the identity, the grouping, and the relationship of modules

must be defined. The multi-instance modules must be declared and linked to the relevant supe-

rior/owner/parent. Multi-instance modules require a unique naming convention. The proposed

syntax for module naming is the following:

module-list ;= module { module-list }
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module module.name : identifier

This syntax enables a system to be described as a tree. Some modules are capable of controlling

multiple subordinates of the same module type. Each subordinate of identical module type must

have an instance identifier. For example, there can be multiple Task Level Control modules i.e,

TLC:A, TLC:B. In turn, each of these modules is capable of controlling a subsystem, e.g.,

TLC:A:TOOL:A, TLC:A:TOOL:B.

9.2 Classification

The UTAP architecture contains a list of 20 modules. This architecture has the potential to

describe a broad range of systems. The realm of possibilities should be narrowed to allow

ranges of compatibility. To achieve compatibility, one needs to attach labels to identify the

types of modules. Table 1 describes a naming scheme that classifies modules with type labels

and illustrates the operational relationship among modules. Those types that have a preceding

asterisk will not be considered in the UTAP at this time.

9.3 Configuration File Format

The System Configuration Files will be responsible for defining the architectural tree. The

System Configuration Files are a combination of 1) the multiplicity of modules, and 2) the

classification labeling scheme. Examples are given in Annex annexrexample. The purpose of the

tables is to assist in determining module interconnections and interface naming convention. The

exact format of these file is not currently defined. There is great potential for the configuration

file that will not be addressed here.

9.4

Module Specification

The conceptual model forms a framework for the required functionality required of a UTAP
module interfaces. The UTAP conceptual interface framework will be described as with a set of

component units. Figure 8 illustrates a conceptual model of the UTAP module and the com-

ponent units. In this conceptual model, the UTAP will adopt the strategy that a module must

publish a SERVICE PROFILE of accepted messages and postable data. The SERVICE PRO-
FILE is the umbrella under which a module declares its capabilities. The SERVICE PROFILE
unit contains a slot for defining the timing of the module. A conceptual module contains a CLI

or command line interface unit that receives either transmitted command messages or has the

ability to read programs or commands from disk. The CLI is responsible overseeing the set up of

modes and PARAMETERS for a given module. The POST unit within the conceptual model is

responsible for maintaining the module output updates. These output updates are periodically

sent to either the Object Knowledge module or the SUPERIOR module. The PROG MACROS
unit allows aggregating and naming of parameter or command sets.

Annex C contains boilerplate Service Profile checklists for the remote modules.
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QFMPme omumwc*

BEGIN BLOCK, END BLOCK
BEOW.HACftO. END UACNO, USE.UACRO
BEGIN PLAN. END PLAN, USE PLAN
BEGB4_EVENT, END EVENT
USE SELECTION ID. USEJUOS.UASK

STARTUP BHUTDOWN.ftESET^ULT

B4ABL£(W). DISABLE(1tf>. ESTOP

BIIT.81ART.8T0PAB0RT
SUSPEND,RESUNE,

(BEG1N.NEXT.CLEAR) BMGLE STEP,

Figure 8 - Module Specification Model

9.4.1 Scaling

The system should allow scaling. The set of UTAP messages is quite extensive. It is not

expected that all modules should accommodate every interface message. Further, some systems

will specialize in certain aspects of control or sensing, and completely ignore some aspects of a

UTAP module interface. The goal of the UTAP was to scale options through the message list.

Many of the messages could be combined under a broader message category but this creates a

problem. How do you say that I accept this message but not a certain part of the message?

It was felt that scaling would be best accomplished if maintained under a single concept of

reference.

The UTAP interface definitions are designed to remain constant whatever the system capability.

The UTAP module SERVICE PROFILE is defined to provide a scaling mechanism. For each

module, the SERVICE PROFILE describes the set of acceptable UTAP messages and data

posting capabilities.

9.4.2 Timing

The timing deadline element within the interfaces will be done in a worst case manner. The

module will specify the worst-case time duration that it can receive expects new message. The

modules must publish this value.
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10 UTAP Interface Framework

10.1 Interface Types

Not every interface in the system is identical conceptually. Communication interfaces will be

categorized into the following groups: 1) control for superior/subordinate command-status in-

terfaces, 2) query/response, and 3) peer-peer event synchronization.

10.1.1 Control Interface Type

A superior/subordinate control interface type applies to either Sensor or Effector (S/E) behavior.

Each control interface is part of a larger chain of command. The objective of the control interface

is to make the subordinate do something for the superior. The subordinate may be a simple

slave that simply obeys the orders from the superior and translates these instructions into

some machine physical format. The subordinate may contain some intelligence and add some

functional transformation of which it is the expert. See Albus [RCS] for more insight into this

command and control theory. The UTAP control interfaces will adopt a format that draws from

concepts used in Servo Control, Programmable I/O chips (PIO), and the RS274D language.

The UTAP control interface mimics servo control with communication from a superior to a

subordinate module treated as clocked data flow. Of note, the clocked data flow may only last

one cycle. The clocked data flow can be either control commands or status readings. For control

commands, response to the command is not an answer, but a servoing action and status report.

For status readings, response is either a status report or a sensor interpretation.

The UTAP control interface strategy adopts command, status and mode concepts of PIO chips.

A programmable I/O chip (PIO) has operational modes and parameters that must be initialized

before the chip is functional. Further PIO chips allow for combinations of selection modes.

Selection vectors are of extreme relevance to teleoperated robotics - for example, the application

of force control in one axis, while using position control in the other axes. UTAP interface

format applies the PIO programming paradigm requiring to first initialize the subordinate with

the appropriate mode and control parameters, and then initiate data exchange. The ability

to combine modes and load parameters creates the potential for errors - either over or under

specifying of the desired control/sensing strategy. These error cases have associated UTAP
messages.

The blocking sequence and synchronization concept of RS274 were used and extended to ac-

commodate other needs. Although the UTAP set of messages for BLOCK, MACRO, PLAN,
and EVENT are primitive computer language constructs, they are helpful in reducing the com-

plexity of an interface. Each of these language primitives is discussed further in a later section.

The BLOCK messages allow for synchronizing concurrent events. The MACRO messages allow

a series of mode and parameter settings to be grouped and named. This allows for easy con-

text switches among operational modes. The EVENT messages are designed to augment the

BLOCK messages and offer more robust synchronization of operation. The PLAN messages are

for grouping and naming a set of data commands, e.g., naming a SAFE motion or zone.
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10.1.2 Query-Response

The query response interface is more closely associated with state knowledge or sensor reading

updates. One form is the client/server which provides a dialogue or question/answer interface.

The client asks the server (in many cases a subordinate or expert) to periodically post status or

state information. This posting can go to the superior or to the object knowledge module.

Obviously, one doesn’t want every conceivable piece of system state information flowing through

the system at every clock cycle. One would prefer that under certain circumstances, relevant

state information is posted in the timely manner desired. For example, under normal operation,

it would be desirable to post the current position as status every 10 milliseconds. For gain

tuning, one may require position readouts every millisecond. Under maintenance operation, it

might be desirable to post the current position and encoder readings so that a problem can

be tracked down. The interface must be flexible and allow a range of state information to be

posted.

The ROUTE data structure defined below was intended to provide a contextual-based mecha-

nism for posting state information. A module would receive a get-info query and then post the

desired state information. Depending on the type of get, the state information could be posted

once or periodically updated. The same mechanism can be used to read state information data

from the Object Knowledge module.

struct ROUTE {

enua { .STATUS = 1

,

_WRITE_T0_0I = 2

,

_READ_FR0N_0K = 4

,

_DELTA_0FFSET = 8

,

.ALTER = 8

,

} type;

int times;

TIHE npdate.period;

};

The range of potential Object Knowledge attributes is formidable. As a basis, the following

generic attributes have been designated. These attributes cover both sensor/effector control

and part modeling information. The baseline UTAP data dictionary of parameters is given in

Figure 9.

// post response to questioner

// posting response values to ok

// read from ok

// use data as delta offset

// alter cmd dx,dy ,dz,rx,ry,rz

// Bitmask for response dest

// -1= continuous, 0=stop, 1=1,...

// frequency of update

acceleration jerk pressure

attributeJiame luminance roughness

clevice-units(e.g.,encoderJicks) mass temperature
flow material time

force materialjiame torque

geometry objectjiame velocity

hardness orientation viscosity

hiunidity pose others

Jacobian position

Figure 9 - Object Knowledge Parameter List

The concept of max, min, avg, real (current), desired, last, and timed historical reading (e.g.,

2nd to last) will be used as attribute modifiers within the message interface. Thus, one can

get and post desired position and real position. The attribute in this case is position, and the
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modifiers are desired and real.

10.1.3 Peer-to-Peer

Peer-to-peer may be necessary for synchronization of modules. Cases such as awaiting the com-

pletion of fixturing by an operator or awaiting the completion of a tool change before moving

are examples of synchronization events. Synchronization of this type can be avoided by syn-

chronizing events at a higher level in the architecture. We will assume this can be done, and

will not address peer-to-peer synchronization within the UTAP at this time.

10.2 Syntactics

Interfaces will have the following naming conventions. The C preprocessor directive ^define

will be used to define message names and assign a unique system numeric id. Each mes-

sage name will be in capital letters. Each message name will be prepended by a US for

Unified System. The US part will be followed by the module name - unless the message is

a generic message - e.g., US-ModuleName. Then, the actual message name will follow - e.g.,

US_ModuleName_MessageName. The data type naming convention will use lower-case letters

and in general merely append a _msg_t to signify message type, e.g.,

us_modulename_messagename_msg_t.

Table 2 gives a summary table of contents for the message numbering.

Annex H summarizes the set of messages. Within Annex H.3, the file utapJnterfaces.h contains

the message id and associated message structure. Below are two examples from this file. The
presentation style has a ^define message id preceding each message structure. So far, there are

approximately 250 messages.

•define US.HALT 102

struct U8_halt_m8g_t {

int asgid;

} ;

•define US_AXIS_SERVO_LOAD_PID_GAIIS 210

struct u8_axis_servo_load_pid_gains_m8g_t {

int msgid

;

double p;

double i;

double d

;

};

10.2.1 Variable Length Arrays Resolution

One of the difficulties that arises defining interfaces concerns the problem of handling variable

length arrays. Unless one rejects the notion of flexibility, an interface should not preordain a

fixed array size for any interface. One would find pzissing 7 joint values to a 3-ajds mill less than

intuitive. Generally, array pointers are used to overcome this problem.

The UTAP interfaces shall use the following strategy: 1) if necessary, declare the degrees of

freedom as a mode parameter, and 2) reference data array information indirectly into a heap

mechanism (i.e., a zone of memory in which multi-linked nodes of variable size are allocated) that
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MESSAGE

msg id

— pos *

— vel *

pos 1 pos 2 pos 3 pos 4 pos 5 pos 6— vel 1 vel 2 vel 3 vel 4 vel 5 vel 6 }
HEAP

Figure 10 - Heap Applied to Message Handling

follows the message. Figure ?? illustrates the concept when passing an array of joint positions

and velocities to a 6 DOF robot. Should one pass to a 3D0F machine tool, the message would

still have the position and velocity contents, but the heap would only contain three elements for

each field.

Overall, the message structure can be represented with the following equation:

MESSAGE = HEADER + CONTENT + HEAP (3)

where the HEADER contains protocol or “how-to” specific information, the CONTENT defines

“what-is” or the message information, and the HEAP contains the variable-length data contents.

10.3 Semantic Meaning

At this point, the exact semantic meaning of many of the UTAP messages has not been explicitly

spelled out in English. For now, the intent and meaning of UTAP API messages should be

apparent from the message name.

One simplification was the use a special keywords and a keyword convention to specify the

semantic intent. The keyword convention provides consistent message naming which leads to

easier comprehension. The UTAP naming convention follows a generic flow plan that categorizes

control, data, parameter and mode message traffic. Figure 8 illustrates the flow of information

and the naming convention relationships. The flow of traffic is divided into 1) control sequence,

2) modes, 3) algorithm selections, 4) parameter settings, 5) real-time data, 6) information

requests and 7) information responses. The information flow is equivalent for superior as well as

subordinate connections, except that there can be multiple instances of subordinate information

flow. Although conceptually demarcated, the information flow would most likely require only

one or two connections to the superior, and to each subordinate - one for command and possibly

another for status. (The bi-directional arrows for many of the categories was used to convey the

notion that one wire is for commands and the other wire is for errors or acknowledgment.)

The naming convention uses keywords to delineate mode/goal/state information. These key-

words are embedded within the messages to categorize the semantic interpretation of a message.

The keywords are grouped by type:

- MESSAGING (i.e., BLOCK, MACRO, PLAN, EVENT, SELECTION)

- SEQUENCING CONTROL: generics (i.e., STARTUP, SHUTDOWN, ENABLE, DIS-

ABLE, etc.)
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- MODALITY: USE, START, STOP, COMPUTE

- PARAMETRIC: LOAD, INCREMENT, SELECT

- DATA COMMAND: SET, ADJUST, GET

- STATUS: POST

Annex C provides a module by module profile of the UTAP flow plans. These profiles are blank

templates that can be used to specify the requirements of a desired system. These profiles

provide a complete list of all the potential inputs and outputs of a module. The annex fists

input and output entries by flow category. Some categories have cross-references to other flow

plans.

10.3.1 Control Mode Sequencing

Most module control sequencing is done with generics. The sequencing generics are grouped

by levels of operation - module operation, sensor/effector operation, and software operation.

STARTUP, RESET and SHUTDOWN are module power-cycle sequencing operations. EN-

ABLE DISABLE, HOLD, and ESTOP are sensor/effector power sequencing operations. INIT,

START, STOP, PAUSE, HALT, ABORT, are software basic program sequencing commands.

BEGIN_SINGLE_STEP, NEXT^INGLE-STEP, CLEAR_SINGLE_STEP,
MARK-BREAKPOINT and MARK-EVENT are generic keywords that deal with more ad-

vanced program execution. The only generic not commonly found is MARK-EVENT which is

used as a reference marker for an EVENT primitive.

A typical sequencing operation consists of the following steps. First, the control sequence key-

word STARTUP brings the module into a safe state. Second, one programs the module with

the appropriate control, mode and parametric settings. Once programmed, the sensor/effectors

are powered on with the control sequence keyword ENABLE. Finally, the software program

is executed by issuing the control sequence keyword START. At this point, clocked data flow

commences.

10.3.2 Keywords

For mode messages, the words USE, START, STOP, COMPUTE are used to convey the notion

of parameter setting or algorithmic selection. The word LOAD and INCREMENT are used for

parameter values. The words SET, GET, and ADJUST are used to denote a commanded action.

USE:
The USE keyword conveys the notion of modal or a mutually exclusive algorithm selection.

Modal commands stay in effect until cancelled. The COMPUTE keyword is a synonym for

the USE keyword and exists since some messages aren’t as apparent with the USE keyword,

e.g., USE-GREY-VALUE versus COMPUTE-GREY-VALUE.

START/STOP:
It was decided that the UTAP interfaces must support simultaneous multiple actions. The
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terms START and STOP convey the notion for initiating/terminating simultaneous or mul-

tiple selections. Thus, one can START one or multiple algorithms when necessary. Then, the

command STOP is used to discontinue the algorithm. For example, gravity compensation can

be used to augment many servo algorithms. Thus START-GRAVITY-COMPENSATION
remains in effect until terminated with a STOP-GRAVITY-COMPENSATION.

LOAD, INCR(EMENT), ZERO:
The LOAD keyword signifies parametric value setting. Load implies that one presets a

parameter during initialization, or can dynamically change the value during clocked data

updates. For example, velocity can be fixed or dynamically updated with each motion.

The INCREMENT keyword is used to denote an incremental (or decremental) update to a

parameter. For example, INCREMENT is useful for relative increases of desired velocity.

INCR may be used as shorthand for INCREMENT. The ZERO keyword means to use the

current reading as the origin. Thus, ZERO is often used to initialize a relative coordinate

frame. The SELECT keyword is used with a parameter setting for choosing from a set of

established parameters.

SET, ADJUST:
The SET and ADJUST keyword signify instructional command messages. These messages

provide a goal for the module to achieve. The verb SET signifies a goal for the subordinate

to attain or maintain.. The verb ADJUST is used to convey incremental or decremental

changes. Such changes are useful for tuning the commanded goal state. Conceptually, this

is equivalent to moving to a position, zeroing the position as a relative position and then

moving a small relative offset - but ADJUST is conceptually simpler. A joystick -f /- button

interface is an example of interface that requires the ADJUST concept where positional

change is relative.

GET:
The verb GET is used to initiate a response - either a status report, or a sensor reading.

GET has a corresponding response POST. The GET is part of the Query-Response interface

connection. Each GET message contains routing, attribute and modifier information. For

example, the generic message US-GET-VALUE requires routing, an attribute and a modifier.

tdefine US-GET-VALUE S5

struct us-get-value-msg-t {

int msgid

;

ROUTE r;

Attribute-t items;

Nodifier-t modifiers;

};

The routing information (i.e., ROUTE) describes the return destination of the response.

The Attribute-t entry contains the query identifier. For common attributes, the attribute

information is explicit to the message name, e.g. US-ATTRIBUTE-GET_POSITION. The

Modifier-t describe state information about the attribute, e.g. real, desired, max, min, etc.

GET-LIST is available to query information about data collections.
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POST:
The verb POST is used to convey the notion of an output reading. This output reading

could be either a status report, or a sensor reading. Further, the output reading could be

posted to the superior or to the Object Knov^'ledge module. Within the GET, a field is set

aside to designate the destination of the subsequent POST - either to the superior. Object

Knowledge module or both. The POST messages use this information for return routing.

INPUT/OUTPUT:
Interfaces that support query or posting services and provide the same interface to numerous

modules wiU adopt the following naming convention: for input and output, append either

JNPUT or -OUTPUT to the server module name, e.g., OKJNPUT.

10.3.3 Designating Subordinate Selections

The UTAP architecture allows multiple subordinate modules to be controlled by one superior

module. In Figure 3 for example, the Task Level Control module is controUing 6 submodules

- pairs of robot, tool and sensor modules. Because of the existence of alternatives, a robot

command issued to the Task Level Control can be ambiguous as to which robot the command
is intended. Additionally, generic messages such as LOAD-SAMPLING-RATE are applicable

across many of the subordinate modules. Thus, an interface mechanism is required to resolve this

confusion. Naming resolution of identical module types was addressed within the configuration

section. This section describes a message set to enable selections.

The generic messages GET, POST, USE-SELECTION and USE_AXIS-MASK are UTAP pro-

gramming primitives enabling the interface to specify selections. The GET-SELECTION is a

primitive to request a read of the configuration table, and subsequent mapping of a symbolic

name into a system id number. The POST-SELECTION returns the id number. The message

USE-SELECTION and appropriate numeric id designates the destination of the future messages.

USE-SELECTION is a modal command and stays in effect until changed. USE_AXIS-MASK
is a programming convenience for modules with multiple servos under coordinated control. The

AXIS-MASK message contains a bitmask enumerating the selected axis.

The following code illustrates the use of the SELECTION message set. First, one does the sym-

bolic mapping with GET-SELECTION to retrieve the appropriate ids for robotl and robot2.

(It is assumed that the Object Knowledge modiile responds with a POST-SELECTION, but

is hidden in this example.) Then one alternates between robot selections to describe the co-

ordinated motion. The addition of the BEGIN-BLOCK and END-BLOCK message primitives

illustrates a mechanism to do concurrent motion control.

robotl = GET-SELECTIOI("TLC:A:ROBOT:A")

;

robot2 = GET-SELECTI0I("TLC:A:R0B0T:B")

:

robots = GET_SELECTI0I("TLC:B:R0B0T:A'*) :

BEGII-BLOCKO ;

USE-SELECTIOKrobotl)

;

SET_P0SITI0I(lO. 0,20. 0,10. 0,0.0, 90.0, 0.0);

USE-SELECTI0I(robot2)

;

SET-P0SITI0I(2O. 0,20. 0,10. 0,0.0, 90.0, 0.0);

EID-BLOCEO ;

The SELECTION message set is intended for multiple subordinates that are in need of pro-
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grammatic control. It may be an option of the system to let the module itself designate the

recipient of a set of messages. For example, suppose a system has a right and left arm that are

functionally equivalent, then selection of the left or right subordinate can be context-driven or

situation-dependent. If the superior is privy to some future knowledge that impacts the selection,

it may select the best-fit. Otherwise, the subordinate could select a first-fit or random-fit.

10.3.4 Synchronization

Control systems require synchronization of devices within the system. For example, one would

like for a tool change to complete before initiating the next tooling motion. Another possibility

is that one desires that a series of motions be treated as one continuous motion without any

interruption - or some dwell could occur.

Within the UTAP framework, synchronization is achieved with BEGIN.BLOCK and

END-BLOCK generic messages. This construct is similar to the block concept in RS274. Mes-

sages that arrive between the BEGIN and END BLOCK messages are treated as a unit. It is

assumed that the receiving module understands/describes how a set of operations are synchro-

nized. The BLOCK set of messages is especially valuable for coordinating actions within the

Parent Task Program Sequencer module in the UTAP.

The EVENT set of messages provides event-driven command sequencing. This is useful for

operations that are sequenced to begin or end at some specified time within a BLOCK of com-

mands, or begin or end when a concurrent operation reaches some state. The BEGIN-EVENT
is embedded within a BLOCK construct and provides for an event to occur within the BLOCK
either FROM-START, FROM-END, ERROR, or AT a specified time t. The ERROR event

would call the currently loaded SAFE motion plan should some limit or error be encountered.

(See following section for more details on this concept.) It is hoped to allow further exception

handling and event triggered callbacks within the EVENT primitive at some future point in

time.

10.4 Extensibility

The ability to broaden, shrink, or advance a system’s functionality is required by the UTAP
architecture and must be supported by the interfaces. This flexibility and extensibility must

be achieved through explicit mechanisms. Extensibility within UTAP Interface Framework

features 1) state context and parameter aggregating and naming, and 2) scalable and 3) seamless

integration of sensors.

10.4.1 State Context Naming

The ability to aggregate and name a set of messages based on some state context information

can greatly simplify programming. One of the small enhancements to the messaging system was

the inclusion of the MACRO and PLAN set of messages.

The MACRO set of commands allow one to group and name a set of parameter messages. One
sends a BEGIN-MACRO with a name, a set of parameter messages and then the END-MACRO
message to define the macro. One uses the USE-MACRO command to invoke these parameter
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settings. Below is an example set of messages that may be grouped to describe a fragile or rigid

parameter setting. Then, depending on the type of object, one selects the correct parameter

context. For china, use delicate. For steel, use rigid.

US_BEGII_MACRO (requires name, e.g., fragile or rigid)

US_L0AD_TLC_D0F

US_LOAD_TLC_FEED_RATE

US_LOAD_TLC_TRAVERSE_RATE

US_LOAD_TLC_COITACT_FORCES

US_LOAD_TLC_STIFFIESS_PARAMETERS

US_LOAD_TLC_JOIIT_GAII_THRESHOLD

US_LOAD_TLC_JOIIT_SIIGULARITY_THRESHOLD

EID.NACRO

USE.MACRO fragile

Similarly, the PLAN set of commands allow one to aggregate and name a set of motions. This

feature would be useful if one wanted to name a “SAFE” motion zone as a fallback motion in

case of an error.

10.4.2 Scaling Control Dimensions

One peril involving generic interfaces is the requirement to satisfy a broad performance range.

For example, some systems can provide a cost-effective solution with minimal complexity and

were not intended for more sophisticated applications. One cannot require a simple but cost-

effective module to accommodate the entire realm of interface possibilities. To be effective, the

ability to scale the interface is needed.

Scaling within the Task Level Control module implies that its generic interface must accom-

modate simple position control as well as hybrid force-control with multi-device sensor fusion.

Previous discussion illustrated the concept of scaling mode and parameter selection vectors.

This section will discuss the use of option levels. The following message illustrates the levels one

can have when defining the trajectory kinematic ring [BACKES2].

fdefine US_TLC_USE_KIIEHATIC_RIIG_P0SITI01IIG_M0DE 626
struct us_tlc_use_kinomatic_ring_in8g_t {

int id

;

};

Neasurement.units.type units;

enun { BASE = 0x0000001

TOOL = 0x0000002
SEISOR.FUSIOI = 0x0000004

// RHS

DELTA = 0x0000010

OBJECT = 0x0000020

OBJECTBASE = 0x0001000

0BJECT0FFSET2 = 0x0002000

0BJECT0FFSET3 = 0x0003000
0BJECT0FFSET4 = 0x0004000

} ring.mask

;

A selection mask is provided to allow the sophistication of the Task Level Control module to

vary. The selection mask provides for one to define levels of positioning control - from simple

position updates, to allowing sensor fusion and specifying transform models for the base, tool,

object base. This range of specificity allows a broader range of modules to use the same generic

interface without unnecessary expectations of a simpler control module.
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10.4.3 Integration

An extension that one might desire is the ability to do on-line configuration and assignment of

communications. For example, when you add a new sensor to your system, and you may wish

to pump this data into an existing module. This can be especially difficult if real-time readings

impact the control behavior. How do you accompUsh this task? Generally, one would have a

sensor fusion hook that allows sensors to pump readings into the sensor fusion slot.

One would desire the abihty to say to a subordinate, “I want you to input readings from the

so-and-so sensor and use this reading to calculate-an-offset/postmultiply/alter/delta-frame and

modify the nominal goal action into an altered goal action.” The use of the MACRO, GET
message with the USE-SELECTION message enables this capability. Within the GET message,

one specifies the routing information as a delta offset destination. Thus, the module uses a sub-

ordinate reading to modify its nominal goal with a delta offset. The following code demonstrates

this concept. The code embeds a SELECTION and GET message within a MACRO message

that will instruct a subordinate to use one of its subordinates readings as a delta offset value.

us_begin_macro("Sen8or Integration")

;

u8_u8e_8election(us_get_8eloction("R0B0T. A;SEIS0R.B"))

;

us_get_value(ROUTE . _DELTA_0FFSET

,

-1
, // forever

.002, // every 2 milliseconds

0); // in delta offset location 1

us_end_macro("Sensor Integration")

;

us_ase_select ion (u8_get_8elect ionC'ROBOT .
A" ) )

;

us-Use-macro("Sensor Fusion");

10.4.4 New Messages

The UTAP interfaces define a great many messages. Yet, it would be impossible to anticipate and

explicitly enumerate every possible control and sensing algorithm and parameter. For example,

suppose a better servo control algorithm is developed, how will the interface permit the selection

of this algorithm? Further, suppose an additional compensation parameter could be specified

within the servo control. How will the system adapt to the additional parametric capability?

Although it is hoped that the current set of messages do indeed satisfy the needs of the UTAP
task scenarios, a mechanism is required for extending the scope of the interfaces. There exist

many possibilities to extending the message set. Providing new definition construct (such as

/‘name’ ... def in Postscript) within the interface language is one solution but greatly complicates

the interface. For statically defined and published interfaces, the extensibility problem is inherent

since the interface language does not provide general programming constructs. Without general

programming constructs, supporting the requirements of portability and extensibihty is difficult.

Adhering to a simple strategy for now, the current UTAP solution is to provide slot-holder

messages to handle new messages. For comparison, the part description language RS274 pro-

vides macro slot holders, M80-M89, as a means of customization in a constrained manner.

The UTAP extension will use the letters “EXT” to signify non-standard message extension.

The extension messages include US-USE_EXT_ALG0RITHM, US_LOAD_EXT_PARAMETER,
US-SET_EXT_DATA_VALUE, US-GET-EXT-DATA_VALUE
and US-P0ST_EXT_DATA_VALUE. Each message uses a numeric id to specify the extension
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instance. For example, id=l specifies extension one, id=2 specifies extension two, etc.

The flexibility to add new messages comes at a cost. Complete interoperability can no longer be

guaranteed. For example, RS274-deflned parts that use the M80-89 macros contain implemen-

tation specific descriptions. These macros are rarely portable. UTAP extensibility will allow

for technology to evolve, so that if an algorithm or feature extension becomes popular enough

- so that more than one vendor is supporting it - then it can be transformed into a “regular”

supported message in a later revision of the UTAP interfaces.
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Table 1 - Module Classification

Module Class Type Examples

01 POS Joystick

Force Reflecting Joystick

Pendant

Panel

Windows

SpacebaU

6D0F F/R Joystick

PIO: Screen, Buttons, Dials, Switches

X-Windows, Windows

OM, OC, OK
TD, TK, TDS Teach

Scripted

Programmable

Record/Playback Motions

Save/Load Parameters, Scripts

Save/Load Program

TPS Manipulation

Navigation

Tooling

Machining

Assembly (Not covered)

TPS: Transport Teleop

Guided

Autonomous

Lift

Tracked

overhead gantry

TPS: Tooling Contact

Non-contact

Finishing

Spraying

TPS: Machining Horizontal

TLC: AXIS-SERVO SLM
*SCARA
GANTRY
STEWART.PLATFORM

Serial Link Manipulator

TLC: SENSOR FTS
IMAGE
PROBE
SWITCH

JR3 force torque sensors

camera images

LVDT
beam-break, open/close gripper

TLC: TOOL SPRAY
FINISH

GRASP
SQUEEZE

coolant, paint, wash

sand, grind, chamfer, debur - compliant

grasp

squeeze
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Table 2 — Message Type Identification Table of Contents.

GENERIC: 101 - 199

ERROR: -100 - -200

REMOTE
AXIS-SERVO: 200 - 299

TOOL: 300 - 399

SENSOR: 400 - 499

PIO: 500 - 599

TLC: 600 - 699

DB: 700 - 799

VS: 800 - 899

LOCAL
TDS: 1000 - 1099

TK: 1100 - 1199

TRD: 1200 - 1299

FTPS: 1300 - 1399

TPS: 1400 - 1499

01: 1500 - 1599

OK: 1600 - 1699

SGD: 1700 - 1799

ADS: 1800 - 1899

SS: 2000 - 2099
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Annex A
(informative)
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Annex B
(normative)

Component Analysis

The National Center for Manufacturing Sciences sponsorship of the Next Generation Controller

project which defined the Specification for an Open System Architecture Standard (SOSAS)

document [SOSAS]. This document provides an overview of philosophy and structure of the

NGC. The SOSAS describes a reference architecture that is comprised of primitive components.

From the reference architecture an application architecture is constructed that captures the func-

tionality of the end systems at an abstract level. The selection of implementation components

determines the final system.

Each component is an abstract encapsulation of funcionality

B.l Application Architecture

AC 1 - Object Modeling:

RESPONSIBILITY: Object modeling provides for modeling of objects. This includes

initial off-line description of objects and run-time model building.

INPUT: Object types, attributes, sensor data, operator input

OUTPUT: Updated object types, attributes, sensor data, operator input

AC 2 - Object Calibration:

RESPONSIBILITY: Calibration of an object’s actual properties, e.g., position

INPUT: Object initial calibration properties

OUTPUT: Updated object calibration properties

AC 3 - Trajectory Description:

RESPONSIBILITY: Specify a trajectory for use in an application program

INPUT: Path information such as starting and end points, continuous inputs such as from

a hand controller, preferred path segments

OUTPUT: Trajectory for insertion into task program
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AC 4 - Object Knowledgebase:

RESPONSIBILITY: Store information about objects in the task environment including

geometry and task information

INPUT: Object information

OUTPUT: Object information

AC 5 - Operator Input Devices:

RESPONSIBILITY: Transform operator input information into data for software mod-

ules and provide feedback to operator via input mechanisms

INPUT: Operator interaction and feedback data

OUTPUT: Operator input data to system modules, e.g., keyboard, audio, and handcon-

troller

AC 6 - Status & Graphical Display:

RESPONSIBILITY: Display system status including geometry, sensor data and task ex-

ecution status

INPUT: Object status, task execution status, system status

OUTPUT: Status and geometry displays to operator, e.g., task execution status and geo-

metric graphical display

AC 7 - Task Description Supervision:

RESPONSIBILITY: Interactive task sequence (application program) generation and run-

time interaction with operator for sequencing and sequence modification

INPUT: Information to generate application programs, e.g., task commands, macros, task

sequences, object information, trajectories

OUTPUT: Application program including task programs

AC 8 - Analysis Sz Diagnosis:

RESPONSIBILITY: Analyze and diagnose task execution status
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INPUT: Task execution status and task information on what and how to monitor

OUTPUT: Execution status and execution control commands such as stop

AC 9 - Subsystem Simulation:

RESPONSIBILITY: Provide a simulation of the task execution

INPUT: Task program commands

OUTPUT: Simulated subsystem control data

AC 10 - Task Knowledgebase:

RESPONSIBILITY: Provide task sequence building blocks such as macro commands and

sequences

INPUT: Requests for commands or command types

OUTPUT: Macro commands and sequences with unbound parameters

AC 11 - Subsystem Task Program Sequencing:

RESPONSIBILITY: Sequence the subsystem task program commands

INPUT: Task programs and execution status

OUTPUT: Task level control commands and execution status

AC 12 — Parent Task Program Sequencing:

RESPONSIBILITY: Sequence the parent task program commands

INPUT: Parent task program and execution status

OUTPUT: Next command to execute

AC 13 - Subsystem Control:
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INPUT: Task program commands and command sequences and data from sensors, tools

and mechanisms

OUTPUT: Status and commands to sensors, tools and mechanisms

AC 14 - Sensor Control:

RESPONSIBILITY: Provide control of a sensor

INPUT: Sensor commands and raw sensor data

OUTPUT: Processed sensor data and low level sensor commands

AC 15 - Sensing:

RESPONSIBILITY: Gather raw sensor data

INPUT: Low level sensor commands

OUTPUT: Raw sensor data

AC 16 - Tool Control:

RESPONSIBILITY: Control a tool

INPUT: Tool control commands and tool status

OUTPUT: Processed tool data and low level tool commands such as analog voltage

AC 17 — Tool Motion:

RESPONSIBILITY: Generate the tool motion such as by driving a motor

INPUT: Low level tool commands such as analog voltage

OUTPUT: Tool status

AC 18 - Robot Servo Control:

RESPONSIBILITY: Provide joint level servo control
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INPUT: Robot configuration commands and status

OUTPUT: Joint status and low level robot joint commands such as voltage and status

AC 19 - Robot Motion:

RESPONSIBILITY: Generate the joint motion of the robot such as by driving a motor

INPUT: Low level robot joint commands

OUTPUT: Robot joint status

AC 20 - Virtual Sensor:

RESPONSIBILITY: Compute information as if it came from a real sensor, but using

available data, such as for multiple sensor fusion

INPUT: Sensor commands and data

OUTPUT: Computed viitual sensor data

B.2 Hardware Architecture

HC 1 - Interface Controller:

RESPONSIBILITY: The interface controller is the computer which the operator uses to

interact with the application programs. The supported interface may be simple, e.g., ascii

inputs and outputs, or more complex, e.g., iconic interface with multiple input devices. The
actual input devices such as voice input/output and hand controller, are treated as individual

devices with their control programs.

INPUT: Inputs from operator input devices and status from task controller

OUTPUT: Status to operator, e.g., visual or audio, and task commands to task controller

HC 2 - Task Controller:

44
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INPUT: Task commands from the interface controUer and status from the device controllers

OUTPUT: Commands to the device controllers and status to the interface controUer

HC 3 - Device Controller:

RESPONSIBILITY: The device controUer hardware receives the device commands from

the task controUer hardware. These commands wiU vary depending on the configuration

(profile) of the controUer. There are various options for the hardware profiles. The device

controUer could be a microprocessor card which has servo control software on it. It could

take joint positions as input commands and output, to the device ampUfier, analog or digital

commands such as velocity or torque. Parameters for the servo control wiU also be com-

municated to the servo control. This same functionality could also be provided by buying

a motion control card. For sensors, the device controUer converts commands to low level

sensor signals. When reading the sensor, the device controUer processes the sensor data and

provides it to the task controUer. For tools, the device controUer converts task controUer

tool commands to the low level device ampUfier signals and returns to the task controUer the

tool status.

INPUT: Device commands from the task controUer and status from the device ampUfier

OUTPUT: Device ampUfier signals to the the device ampUfier and status to the task con-

troUer

HC 4 - Device Amplifier:

RESPONSIBILITY: The device ampUfier provides the analog or digital control signal to

the device. This could be analog voltage or a PWM signal to a motor drive or power to a

sensor. A device ampUfier iriodule also generates the raw feedback data from the device.

INPUT: Device ampUfier commands from the device controUer and status from the device

OUTPUT: Control signals to the device and status to the device controUer

HC 5 - Device:

RESPONSIBILITY: The device is the hardware that is being controUed or the sensor

that is being used

INPUT: Control signals from the device ampUfier

OUTPUT: Device action, e.g., motion or sensing
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B.3 Software Components

The types of software modules in the system were described. Software modules in the system

will now be described as software components with specified responsibilities, inputs and outputs.

Some of the components could be further decomposed into multiple software modules. The

application programs are treated here as software components and are given below.

B.3.1 System Software Components

SC 1 - Object Modeling:

RESPONSIBILITY: Provide functionality for modebng objects. This includes initial off-

line description of objects and run-time model building.

INPUT: Object types, kinematics, attributes, operator input

OUTPUT: Updated object types, kinematics, attributes

SC 2 — Object Calibration:

RESPONSIBILITY: Calibration of an object’s actual properties, e.g., position

INPUT: Object initial calibration properties, data on actual properties

OUTPUT: Updated object calibration properties

SC 3 - Trajectory Description:

RESPONSIBILITY: Generate a trajectory for use in an appbcation program

INPUT: Path information such as starting and end points, continuous inputs such as from

a hand controller, preferred path segments

OUTPUT: Trajectory for insertion into task program

SC 4 - Object Knowledgebase:

RESPONSIBILITY: Store information about objects in the task environment including

geometry, task information and functions to call to acquire data

INPUT: Object information
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OUTPUT: Object information

SC 5 - Operator Input Device Control:

RESPONSIBILITY: Transform operator input information into data for software mod-

ules and provide feedback through input devices, e.g., force reflection

INPUT: Operator inputs, e.g., keyboard, audio and handcontroller and feedback data

OUTPUT: Data to system modules and feedback to operator through input devices

SC 6 - Status Graphical Display:

RESPONSIBILITY: Display system status including geometry, sensor data, and task

execution

INPUT: Object status, task execution status, system status

OUTPUT: Status and geometry displays to operator

SC 7 - Task Program Editor:

RESPONSIBILITY: Provide an interactive interface to program developer for task se-

quence (application program) generation and modification

INPUT: Information to generate application programs, e.g., task commands, macros, task

sequences, object information, trajectories, rules

OUTPUT: Application program including task programs

SC 8 - Task Program Supervisor:

RESPONSIBILITY : Provide operator based sequence execution control. Allows for single

stepping commands, sending complete sequences and backing up. AUows task program editor

to modify sequence.

INPUT: Application task programs, status, and operator inputs

OUTPUT: Task program commands or sequences to task program sequencers

47



UTAP/WD Standard Interface Environment

SC 9 - Analysis & Diagnosis:

RESPONSIBILITY: Analyze and diagnose task execution status such as checking for

collisions

INPUT: Task execution status and task information on what and how to monitor

OUTPUT: Execution status and execution control commands such as stop

SC 10 — Subsystem Simulation:

RESPONSIBILITY: Provide a simulation of the task execution with same inputs and

outputs as the the real system

INPUT: Task program commands

OUTPUT: Simulated task level control system data

SC 11 - Task Knowledgebase:

RESPONSIBILITY: Provide task sequence building blocks such as macro commands and

sequences

INPUT: Requests for commands or command types

OUTPUT: Macro commands and sequences with unbound parameters

SC 12 - Subsystem Task Program Sequencing:

RESPONSIBILITY: Sequence the subsystem task program commands

INPUT: Task programs and execution status

OUTPUT: Task level control commands and execution status

SC 13 - Parent Task Program Sequencing:

RESPONSIBILITY: Sequence the parent task program commands

INPUT: Parent task program and execution status

OUTPUT: Coordination commands to the subsystem task program sequencers
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SC 14 - Subsystem Task Level Coordinated Control:

RESPONSIBILITY: Execute non-closed loop control of task programs

INPUT: Task program commands and data from sensors, tools and mechanisms

OUTPUT: Commands to task level closed loop control, sensors, tools and mechanisms and

status

SC 15 - Subsystem Task Level Closed Loop Control:

RESPONSIBILITY: Execute closed loop control of task programs

INPUT: Commands to closed loop control modules and data from sensors, tools and mech-

anisms

OUTPUT: Commands to sensors, tools and mechanisms and status

SC 16 — Task Control Database:

RESPONSIBILITY: Store and provide information relevant to the task execution system

such as status to be sent periodically to the object knowledgebase and actual data to be used

which is associated with symbolic parameters

INPUT: Status data and database commands

OUTPUT: Status data

SC 17 — Sensor Control:

RESPONSIBILITY: Provide control of a sensor

INPUT: Sensor commands and raw sensor data

OUTPUT: Processed sensor data and low level sensor commands

SC 18 - Tool Control:

RESPONSIBILITY: Control a tool

INPUT: Tool control commands and tool status
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OUTPUT: Low level tool commands such as analog voltage and tool status

SC 19 - Robot Servo Control:

RESPONSIBILITY: Provide joint level servo control

INPUT: Robot configuration commands and status

OUTPUT: Low level robot joint commands such as voltage and status

SC 20 - Virtual Sensor:

RESPONSIBILITY: Compute information as if it came from a real sensor, but using

available data, such as for multiple sensor fusion

INPUT: Sensor commands and data

OUTPUT: Computed virtual sensor data

SC 21 - Motion Fusion:

RESPONSIBILITY: Combine the various sources of motion into a task level motion

command for the mechanism

INPUT: Motion commands from the various motion control components, e.g., force control,

visual servoing, trajectory generator, teleop motion; parameters specifying weights for each

axis of control for each motion source

OUTPUT: A combined task level motion command for the mechanism. This is taken by

the task-device map component and transformed into commands to the mechanism servoed

axes.

SC 22 - Teleop Motion:

RESPONSIBILITY: Read hand controller inputs and generate motion commands for

hand controller

INPUT: Hand controller motion input data from hand controller device control

OUTPUT: Motion command associated with teleoperation
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SC 23 - Force Control:

RESPONSIBILITY: Perform closed loop force control and generate motion commands

for force control

INPUT: Sensed force data, force setpoints, force control parameters

OUTPUT: Motion command associated with force control

SC 24 - Task Space Trajectory Generator:

RESPONSIBILITY: Generate task space pose trajectory and provide associated motion

commands from trajectory generator

INPUT: Trajectory parameters, goal position, obstacle information

OUTPUT: Trajectory setpoints representing motion inputs from trajectory generator

SC 25 - Proximity Servo:

RESPONSIBILITY: Perform closed loop proximity control and generate motion com-

mands for proximity control

INPUT: Sensed proximity data, proximity setpoints, proximity control parameters

OUTPUT: Motion command associated with proximity control

SC 26 - Orientation Servo:

RESPONSIBILITY: Perform closed loop orientation control and generate motion com-

mands for orientation control

INPUT: Sensed orientation data, orientation setpoints, orientation control parameters

OUTPUT: Motion command associated with orientation control

B.3.1.1 Application Program Components

SC 27 - Mobile-Platform-Control:

RESPONSIBILITY: This program is for positioning the mobile platform in an appro-

priate location relative to the surface targeted for paint stripping. The mobile platform
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can be placed to the desired location and posture automatically by the system using the

preassigned data or manually by the operator using the hand controller. The selection of

automatic control mode in turn provides options for designating the platform location and

posture. Manual control can share control with automatic control, as desired. The platform

is fixed upon the completion of the task. A more advanced future system may have coor-

dinated platform and manipulator control, but this would require accurate platform control

and real-time platform-manipulator combination position information relative to the aircraft

which wiU probably not be available in the first implementation.

INPUT: - PARAMETERS LIST -

— The final desired pose of the mobile platform in case of the automatic control mode

— The desired platform pose increment in case of the manual control mode

OUTPUT: - PARAMETERS LIST -

- The system state including current pose of the mobile platform

— The execution state, e.g., completion state for automatic control

SC 28 - Worksite-Registration:

RESPONSIBILITY: This program is for configuring the manipulator in an appropriate

position of the worksite to start the desired tool (gun) motion. The position of the manipu-

lator base relative to the aircraft skin area to be stripped is determined. The data required

for the worksite registration should be provided as input, which include the distance of tool

separation, the orientation of tool with respect to the surface, and the landmarks or features

of targeted surface (such as the surface curvature that can be measured by the force/torque

or tactile sensor). The manual mode of control combined with the sensor-based distance and

orientation servos can accomplish this task. This program and the mobile-platform-control

can be used together for two consecutive paint-stripping operations.

INPUT: - PARAMETERS LIST -

- The data for worksite registration, including the stand-off distance and the orienta-

tion of the tool with respect to the targeted surface

- The priority setting between manual and sensor-based automatic operation

OUTPUT: - PARAMETERS LIST -

— The measured data from the sensors

— The current manipulator pose
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SC 29 - Paint-Stripping-Operation:

RESPONSIBILITY: This program is for stripping paint off the skin of a large aircraft

based on supervisory and shared telerobotics control. Prior to running this program, the

following initialization is required:

— Setting up the mobile platform to an appropriate position.

- Configuring the manipulator at the initial pose for worksite registration.

Upon execution of this program the operator is asked whether the initial set-up by mov-

ing the mobile platform to the desired location and configuring the manipulator at the

start position are done. If not, the operator should open the mobile-platform- control and

worksite-registration programs by clicking the corresponding icons and execute them for the

initialization. Once the initial set-up is completed, the operator is asked to assign the system

parameters and control modes.

INPUT: - PARAMETERS LIST -

— Off line generated tool path

— Run time generated tool path

— The desired separation/stand-off of the tool from the target surface

— The desired tool orientation relative to the target surface

— The constraints on tool path such as the constrained motion imposed on individual

axes

— Tool speed

- PMB (Plastic Media Bead) pressure

— The selection of the motion input sources affecting the tool (which will indicate the

desired control mode)

OUTPUT: - PARAMETERS LIST -

— Commands to the task control including equivalent commands associated with the

application command inputs above

— Status of execution including manipulator status, sensors’ status, and current sub-

task status for use in analysis and display to the operator

53



UTAP/WD Standard Interface Environment

Annex C
(normative)

Environment Profile Suite

Annex C contains a list of the profiles that can be used to generate a UTAP system specification.

Each module in the system would be required to fill out one, maybe several, generic, error and

data knowledge profiles - depending on the number of upper and subsystem links in the system.

For now, only the local modules have been specified.

C.l Application Environment Profile

A UTAP module shall conform to the environment which includes system profile that names

each hardware device and device profile in the system. A device could be a computer or control

device. The system profile runs under a system environment which is also profiled. This system

environment profile

Computer boards have a device profile that includes CPU type, CPU characteristics and the

CPU performance characteristics. Included profile is the operating system support for the CPU.

Controller boards are devices that would have a application-specific profile.

The system environment describes the infrastructure support (such as communication mecha-

nisms) and resources (disks, extra memory, etc.) available to system devices.

Table C.l — System Profile

DEVICE Device Profile Platform

Table C.2 - System Environment Profile

Bus:

Memory:
Disk:

Disk Memory:
Floppy Disk:

Floppy Size:

Floppy Density:

Compact Disk :

LAN Cabling:

LAN Protocol:
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Table C.3 - Processor Board Profile

Board Id

CPU Type
Memory:
OS Type:

OS Version:

OS Release:

BUS Support

lO Support

Peripheral Support
Special:

C.2 Interface Environment Profile

A universal format is assumed in developing the message interfaces. It is assumed that each

module displays a similar flow of messages. Figure C.l iUustrates the message flow of a module. A
message naming convention is used for improved comprehension. Within a messages, a keyword

is used to delineate between mode/goal/state information. The keywords are grouped by type:

- MESSAGING (i.e., BLOCK, MACRO, PLAN, EVENT, SELECTION)

- SEQUENCING CONTROL: generics (i.e., STARTUP, SHUTDOWN, ENABLE, DIS-

ABLE, etc.)

- MODALITY: USE, START, STOP, COMPUTE

- PARAMETRIC: LOAD, INCREMENT, SELECT

- DATA COMMAND: SET, ADJUST, GET

- STATUS: POST
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POST
(usa DATAKNOKWLEOGE Profile)

MODE PARAMETER - USE, START, STOP
CONTROLPARAMETER: - LOAD, INCREMENT,
DATA RIVRAMETER:- SET, ADJUST, JOG,
REQUEST DATA - use DATAKNOWLEDGE Profile (GET)
GENERIC PRORLE
STARTUP, SHUTDOWN, RESET
ENABLE(ld), DISABLE(id), ESTOP
INR,START,STOPJVBORi;
SUSPEND,RESUME,
{BEOIN,NEXT,CLEAR)_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

il

STATUS
or

DATA READINGS

GOALCOMMAND
or

OBJECT KNOWLEDGE REQUEST

jiauejq
CONRG:
• upper system (link)

- functions

(IMtpsystema used (list)

- parameters needed for

Mnptibdata (for

imttpa) data (from

irlotfoliRequest data
- output request

•Ivadata

STATUS
RECEIVE DATA

ATT
COMMAfO
REQUEST DATA

[STATUS
RECEIVE DATA

COMMAND
REQUEST DATA

POST (usa DATA KNOWLEDGE Profile)
mrr

MODE PARAMETER - USE, START STOP
CONTROLPARAMETER • LOAD, INCREMENT,

DATAPARAMETER - SET, ADJUST, JOG,
REQUEST DATA - use DATA KNOWLEDGE Profile (GET)

GENERIC PRORLE
STARTUP, SHUTDOWN, RESET

ENABLE(ld), DiSABLE(id), ESTOP
INrTSTART,STOPJtBORT,

SUSPEND,RESUME,
{BEGIN,NEXT,CLEAR}_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

n-1 JM
POST (usa D/SA KNOWLEDGE Profile)

nirr

MODE PARAMETER • USE, START, STOP
CONTROLPARAMETER - LOAD, INCREMENT,
DATA PARAMETER- SET, ADJUST, JOG,
REQUEST DATA - use DATAKNOWLEDGE Profile (GET)
GENERIC PRORLE
STARTUP) SHUTDOWN, RESET
ENABLE(ld), OISABLE(id), ESTOP
INrT,START,STOPJtBORT
SUSPEND,RESUME,
{BEGIN,NEXT,CLEAR}_SINGL£_STEP,
MARK_BREAKPOINT,MARK_EVENT

Figure C.l - Module Profile Specification
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Table C.4 - Generic Message Profile

Configuration
N^l^le

Module Type

MESSAGE PRIMITIVES Comply
BLOCK
MACRO
PLAN
EVENT
USE^ELECTION

SEQUENCE Comply

Powerup STARTUP
SHUTDOWN
RESET

S/E ENABLE
DISABLE
ESTOP

Software START
STOP
HALT
HOLD
SUSPEND
RESUME
BEGIN^INGLE^TEP
NEXT_SINGLE^TEP
CLEAR^INGLE^TEP
MARK-BREAKPOINT
MARK.EVENT

Status LOAD-STATUS.TYPE
LOAD-STATUS-PERIOD
STATUS-REPORT

OBJECT DATA Comply
POSTJD
GET-OBJECT-ID
USE-OBJECT
GET-FEATURE
USE-FEATURE
GET.VALUE
POST-VALUE
GET.LIST
POST-LIST
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Table C.5 - Data Knowledge

Configuration

Name
Module Type

ATTRIBUTES Actual Desired Max Min Avg History

POSTJIESPONSE
GET-SELECTION
GET.TIME
GET-POSITION
GET.ORIENTATION
GET.POSE
GET.VELOCITY
GET-ACCELERATION
GET-IERK
GET.FORCE
GET-TORQUE
GET-MASS
GET-TEMPERATURE
GET-PRESSURE
GET-VISCOSITY
GET-LUMINANCE
GET-HUMIDITY
GET-GEOMETRY
GET-TOPOLOGY
GET-SHAPE
GET-PATTERN
GET-MATERIAL
GET-KINEMATICS

Table C.6 — Errors

Configuration
Name

Module Type

ERRORS Comply
POSIX ERRORS
CMD-NOTJMPLEMENTED
ERROR-COMMAND-ENTRY
ERROR-DUPLICATE-NAME
ERROR-BAD-DATA
ERROR-NO-DATA-AVAIL
SAFETY-VIOLATION
LIMIT-EXCEEDED
ERROR-OVER-SPECIFIED
ERROR-UNDER.SPECIFIED
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Table

Name
Module Type

Links-Up:

LinksJDown:

Other:

Interface:

Safety:

Units:

Reference:

Representation:

Compensation:

Gains:

Limits:

C.7 - Axis Servo Command Profile

Configuration Comply

USJVXIS^ERVO
TASKXEVEL.CONTROL
PIO

GENERICS
DATA KNOWLEDGE
ERRORS

MODES
SET-BRAKES
CLEAR.BRAKES

MODES
INPUT
USE-ANGLES
USE-RADIANS
USEJ^BSOLUTE
USE-RELATIVE
USE-POSITION
USE-VELOCITY
USE-CURRENT
USE-VOLTAGE
USE-FEEDFORWARD-TORQUE

SELECTIONS Comply
USE-PID
USE-STIFFNESS
USEJMPEDANCE
USE-COMPLIANCE

AUGMENTATIONS
{START—STOP}-GRAVITY-COMP

PARAMETER LOADS Comply
LOAD-DOF
LOAD-CYCLE-TIME
LOAD-AXIS-MASK
LOAD-STATUS-UPDATE
LOAD-SAMPLING-PERIOD
LOAD-FREQUENCY-RESPONSE
LOAD-PID
LOAD-DAMPING-VALUES
LOAD-JOINT-LIMIT
LOAD-VELOCITY-LIMIT
LOAD-GAIN-LIMIT

Comply

Comply
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Table C.8 — Axis Servo Data Profile

Configuration
Input Command Data SET ADJ
POSITION
VELOCITY
TORQUE
VELOCITY
ACCELERATION
FORCES

Request Input/
Output Posted SET ADJ

Position: ACTUAL
DESIRED
MAX
MIN
HISTORY(-t,tO)

Velocity: ACTUAL
DESIRED
MAX
MIN
HISTORY(-t,tO)

Output Status

See - Data Knowledge

SUBSYSTEM LINK
Name:

Command Data
See - Subsystem Module Profile

Request Data
See - Data Knowledge

Receive Data
See - Data Knowledge

JOG

JOG
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Table C.

Name
Module Type

Class:

Links.Up:

LinksJDown:

Other:

Interface:

Name:

— Tool Control Profile -

Configuration

US.TOOL.
“Spindle”

TASK_LEVEL.CONTROL
PIO

GENERICS
DATA KNOWLEDGE
ERRORS

MODES
SELECTIONS
START TURNING
STOP TURNING
LOCK-Z
UNLOCK.Z

AUGMENTATIONS
USEJORCE
USEJMO-FORCE

PARAMETER LOADS
LOAD.SPEED
SPINDLE.ORIENT

Input Data Accepted
SPINDLE-RETRACT.TRAVERSE
SPINDLEJRETRACT
SPINDLE-ORIENT

Output Status

See - Data Knowledge

SUBSYSTEM LINK

Command Data
See - Subsystem Module Profile

Request Data
See - Data Knowledge

Receive Data
See - Data Knowledge

Spindle

Comply

Comply

Comply

Comply
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Table C.IO — Tool Control Profile - Coolant

Configuration

Name
Module Type US_TOOL_

Class; “Spindle”

Links.Up: TASK-LEVEL-CONTROL
Links-Down: PIO

Other:

Comply

Interface; GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

SELECTIONS
START MIST
STOP-MIST
START-FLOOD
STOP-FLOOD

Input Data Accepted
See - Data Knowledge

Output Status

See - Data Knowledge

SUBSYSTEM LINK
Name;

Command Data
See - Subsystem Module Profile

Request Data
See - Data Knowledge

Receive Data
See - Data Knowledge
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Table C.ll — Generic Sensor

Configuration
Name

Module Type US-SENSOR-
Class: “Generic”

Links-Up: TASK.LEVEL.CONTROL
LinksJDown: PIO

Other:

Interface: GENERICS
DATA KNOWLEDGE
ERRORS

MODES
use: USEJdEASUREMENT.UNITS

SELECTIONS
START/STOP US-START-TRANSFORM
US-STOP-TRANSFORM
US-START-FILTER
US^TOP-FILTER

PARAMETER
load: US_LOAD_SAMPLING^PEED

USXOAD-FREQUENCY
US-LOAD.TRANSFORM
US_LOAD_FILTER

Input Data Accepted
set: POSITION

ORIENTATION

Output Status Posted

See Data Knowledge
post: SENSORJOST-READING

SCALAR-SENSORJ^OST-READING
VECTOR-SENSOR-POSTJlEADING

Output Status

See - Data Knowledge

SUBSYSTEM LINK
Name:

Command Data
See - Subsystem Module Profile

Request Data
See - Data Knowledge

Receive Data
See - Data Knowledge

get: GET-READING
GETJVTTRIBUTES-READING

Comply

Comply

Comply
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Table C.12 - Sensor - Image

Configuration
Name

Module Type US-SENSOR.
Ciass: “Image”

Links-Up: TASK-LEVEL.CONTROL
LinksJDown: PIO

Other:

Interface: GENERICS
DATA KNOWLEDGE
ERRORS

MODES
use: USJMAGE-USE-FRAME-GRABJVIODE

USJMAGE-USE-HISTOGRAM-MODE
USJMAGE.USE.CENTROID.MODE
USJMAGE-USE.GRAYXEVEL-MODE
USJMAGE-USE-THRESHOLD-MODE
USJMAGE-COMPUTE.SPATIAL-DERIVATIVES_MODE
USJMAGE.COMPUTE.TEMPORALJDERIVATIVESJVIODE
USJMAGE.USE-SEGMENTATATION-MODE
USJMAGE.USE-RECOGNITION-MODE
USJMAGE.COMPUTE.RANGE-MODE
USJMAGE-COMPUTE-FLOWJ^ODE

PARAMETER
load: USJMAGEXOAD.CALIBRATION

Input Data Accepted
set: POSITION

ORIENTATION
USJMAGE-ADJUST-POSITION
USJMAGE-ADJUST-FOCUS

Output Status Posted
See - Data Knowledge

post: US-2D^ENSOR-POST-READING
USJMAGE-POST-SPECIFICATION
USJMAGE-POST-PIXEL-MAP-READING
USJMAGEJ>OST-HISTOGRAM_READING
USJMAGE-POST-XY.CHAR-READING
USJMAGEJOST-BYTE-SYMBOLICJIEADING
USJMAGEJOST-THRESHOLD-READING
US-IMAGE-POST-SPATIAL-DERIVATIVE_READING
US-IMAGEJOST-TEMPORAL-DERIVATIVE-READING
USJMAGEJ^OSTJIECOGNITION.READING
USJMAGE-POSTJIANGE-READING
USJMAGEJOSTJLOWJIEADING

Request Data
- See Data Knowledge

get: GET-READING
GET-ATTRIBUTES.READING

Receive Data
See - Data Knowledge

Comply

Comply

Comply

64



UTAP/WD Standard Interface Environment

Table C.13 — Subsystem Task Level Control

Con'figuration

Name
Module Type US.TLC.

Class: “Generic”

Links.Up: TASK-PROGRAM^EQUENCER
LinksJDown:

Other:

Interface: GENERICS
DATA KNOWLEDGE
ERRORS

MODES
use: US.TLC.USE_JOINT.REFERENCE.FRAME

US.TLC-USE.CARTESIAN.REFERENCEJRAME
US.TLC.USEJIEPRESENTATION.UNITS
US-TLC-USEJVBSOLUTE-POSITIONING.MODE
US-TLC-USEJIELATIVEJ^OSITIONING-MODE
US.TLC.USE.WRIST.COORDINATE.FRAME
US-TLC.USE.TOOL.TIP.COORDINATE.FRAME
US.TLC.USEJVIODIFIED.TOOL-LENGTH.OFFSETS
US-TLC.USE-NORMAL.TOOL-LENGTH.OFFSETS
US-TLC.USE-NO-TOOL-LENGTH.OFFSETS
US.TLC.USEJ<INEMATIC.RINGJ»0SITI0NINGJV10DE

load: US.TLCXOAD-DOF
US-TLC-LOAD.CYCLE.TIME
US-TLC-LOADJIEPRESENTATION.UNITS
US.TLCXOAD-LENGTH-UNITS
US-TLC.LOADJRELATIVE.POSITIONING
US.TLC.ZERO_RELATIVE_POSITIONING
US.TLC-ZERO_PROGRAM.ORIGIN
US-TLC-LOAD-KINEMATIC-RING_POSITIONINGJVIODE
US.TLC.LOAD-BASEJ^ARAMETERS
US.TLC-LOAD-TOOL-PARAMETERS
US.TLC-LOAD.OBJECT
US.TLC-LOAD-OBJECT-BASE
US.TLCXOAD.OBJECT.OFFSET
US.TLCXOADJDELTA
US-TLC-LOAD-OBSTACLE-VOLUME
US-TLC-LOAD_NEIGHBORHOOD
US-TLC-LOADJEED-RATE
US.TLC-LOAD.TRAVERSE-RATE
US.TLCXOADJVCCELERATION
US.TLCXOAD_JERK
US.TLC.LOADJROXIMITY
US-TLC-LOAD-CONTACT-FORCES
US-TLC-LOAD-JOINT-LIMIT
US-TLC-LOAD.CONTACT.FORCE-LIMIT
US-TLC.LOAD.CONTACT.TORQUE.LIMIT
US-TLC.LOAD-SENSOR-FUSION-POS-LIMIT
US-TLCXOAD^ENSORJUSION.ORIENT-LIMIT
US.TLC-LOAD_SEGMENT.TIME
US.TLC-LOAD.TERMINATION.CONDITION
US-TLC-INCR-VELOCITY
US-TLCJNCR^CCELERATION

Comply

Comply
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Table C.14 — Subsystem Task Level Control - cont.

selections: US.TLC.START.MANUALJVIOTION
US.TLC.STOPJV1ANUAL.MOTION
US.TLC-START-AUTOMATIC.MOTION
US-TLC-STOPJ^UTOMATIC.MOTION
US-TLC.START-TRAVERSE_MOTION
US.TLC.STOP.TRAVERSE.MOTION
US-TLC-START.GUARDED-MOTION
US-TLC-STOP.GUARDEDJVIOTION
US-TLC-START.COMPLIANT.MOTION
US.TLC-STOP.COMPLIANT.MOTION
US-TLC.START-FINE-MOTION
US-TLC^TOP-FINE-MOTION
US.TLC-START-MOVE-UNTIL-MOTION
US-TLC-STOPJVIOVE.UNTIL-MOTION
US.TLC-START-STANDOFF-DISTANCE
US-TLC^TOP-STANDOFFJ3ISTANCE
US-TLC-START-FORCEJOSITIONING-MODE
US_TLC.STOPJORCE-POSITIONING-MODE

Input Data Accepted
US-TLC-SET.GOALJOSITION
US.TLC-GOAL-SEGMENT
US.TLC-ADJUST-AXIS

Output Status

See - Data Knowledge

SUBSYSTEM LINK
Name:

Command Data
See — Subsystem Module Profile

Request Data
See - Data PCnowledge

Receive Data
See - Data Knowledge
US-TLC-UPDATE-SENSORJUSION
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Table C.15 - Subsystem Task Level Control

Configuration
Name

Module Type US-TLC_
Cl^lss: “Generic”

Links.Up: TASK.PROGRAM-SEQUENCER
LinksJDown;

Other:

Comply

Interface: GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply
Task Level Generics

use: US.TLC_SELECT.PLANE
US.TLC.USE.CUTTER.RADIUS.COMPENSATION

load: US.TLCX0ADJ30F
selections: US.TLC^TART.CUTTER.RADIUS.COMPENSATION

US.TLC-STOP-CUTTER-RADIUS.COMPENSATION

Input Data Accepted
US.TLC-STRAIGHT.TRAVERSE
US.TLC-ARC.FEED
US-TLC^TRAIGHT-FEED
US-TLC-PARAMETRIC-2D-CURVE-FEED
US.TLC-PARAMETRIC.3D.CURVE.FEED
US.TLCJ^URBS-KNOT.VECTOR
US-TLCJMURBS.CONTROL.POINT
US-TLC-NURBS-FEED

Output Status

See - Data Knowledge

SUBSYSTEM LINK
N^lme:

Command Data
See - Subsystem Module Profile

Request Data
See - Data Knowledge

Receive Data
See - Data Knowledge
US.TLC-UPDATE-SENSORJUSION
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Annex D
(informative)

Examples

D.l API Interface Example

The UTAP message format provides the size and structure for the interfaces. The UTAP mes-

sages define the information that crosses the communication channel (or link or wire). This

message interface is supposed to be flexible, but not necessarily suitable for application pro-

gramming. One may require an API to sit between the message interface and the programmer,

much like a device driver hides the implementation details of a device. Figure D.l illustrates

the relationship between the superior and the subordinate in such a setup. An API exists in the

superior as a abstraction mechanism for communicating with the subordinate.

The programmer can use the UTAP isomorphic functional API or can use existing software that

has a customized middleware to map the application code into the UTAP message interface. This

section will present an example that illustrates the first possibility - using the UTAP isomorphic

functional API for servo control. The hope is that this functional API is similar to most existing

products and can be achieved by renaming keywords with new procedural names and reordering

the procedural parameters.

An example to control a IDOF servo from the task level control module will be developed. In

this example, the first point of illustration wiU be to use the API to define a hi-gain and a

low-gain mode. Within the example, the API subroutine calls still use the heap (or pointer to

the data) concept to pass parameters.

hi_gain(){
double p=100, i=200, d=20:

double iliniit=30;

us_begin_macro("hi_gain")

;

us_axis_servo_load_pid_gain(ftp,ti ,td)

;

limiti=250; us_axis_8ervo_load_integration_limit(ftilimit)

;

us_end_macro()

;

}

lo_gain(){

double p=50, i=200, d=20;

double ilimit=30;

us_begin_macro("lo_gaiii") ;

us_axi8_servo_load_pid_gain(tp,fti ,ftd)

;

ilimit=250; us_€uci8_servo_load_integration_limit(ftilimit)

;

us.end.macroO ;

Once we have the parameters and modes defined, we can then work on the process model.

Within the SERVO interface process, you would need to startup, run, and shutdown.

Servo_Interface_init() •(

us_axis_servo_load_dof (1) ; // assign dof for heap mgt

.

us_axis_servo_use_degree_units() ; // prefer degrees to radians

us_servo_init() ; // init servos

us_8ervo_enable() ; //

hi.gainO; // set up hi gain

lo_gain(); // set up lo gain

}
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Figure D.l — Superior use of API Interface to Command Subordinate

The actual process will be to initialize the servo, use hi-gain parameters with PID control

mode, and then move to a desired joint position. The concept of getting and updating readings

of the actual position will also be developed. The test fuzzy .equal was coined to provide an

approximately equal function.

Servo.InterfaceO {

double joint;

U8_use_selection(us_get_selection("D0FSERV01“))

;

us_axis_8ervo_load_absolute_positioning()

;

us.startupO

;

Servo_intorface_init()

;

u8_u8e_macro("hi_gain")

;

U8_u8e_pid()

;

us_ajcis_8ervo_home (); // reaet 8ervo8

us.startO; // nos the system sill move home

// One time move

joint = 10;

us_axis_servo_8et_po8ition( joint)

;

// Post actual readings

{ ROUTE p;

double noB;

p.type = ROUTE . STATUS

;

do { noH=us_axi8_8orvo_get_position(p , Modifier.t ..real)

;

Bhile( ifuzzy.equalCnoB
,
joint) )

;

}

}

us_ajcis_8ervo_disable() ;

u8_axis_servo_shutdoBn()

;

}

This example illustrated a simple servo interface. Although illustrative it presented an ad

hoc solution. One would prefer to use a more elegant internal control architecture (e.g., see

[RCS], [ONIKA], [CISC], [STELER], [TCA], among others cited in Bibliography) so that one has

better coordination of the sensing, world modeling and behavior generation aspects of intelligent

control.

D.1.1 Tool Manipulation

One can program the tool in several methods. A superior module can enable the tool in the

kinematic ring bitmask, and then send the tool transform. Another option is for the interface to

use CHANGE-TOOL and TOOL-OFFSET messages and override the kinematic ring selection
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mask.

The tool offset messages are more in line with traditional NC tool programming

(see [KRAMER]). Within the UTAP interface, it will be assumed that there is a table of 40 tool

length offset numbers, and one or more registers, each with a tool length offset modifier number.

There is a tool length offset mode which can be set to one of three values: NONE, NORMAL,
and MODIFIED. In the NONE mode, no tool length offsets are used. In the NORMAL mode,

the tool length offset value in the position of the table with the same index as the tool currently

in the spindle is used. In the MODIFIED mode, the value used for the tool length offset is the

modifier number in the currently selected modifier register added to the offset value for the tool

currently in the spindle. There are currently no commands for setting the values in the tool

length offset table or for setting the values of the modifier numbers in the modifier registers.

D.1.2 Sensor Programming Example

The sensor messages were categorized by dimensionality. The sensors were genericaUy grouped

as scalar, vector, and 2D array. Across each category, the GET_READINGS message is generally

universal. On the other hand, posting messages were customized according to expected sensors

readings. For example, although one can construct a force/torque query message from generic

building blocks, it is redundant since this sensor is so common. (For example one can use the

generic message GET_DATA_LIST with attribute = -force
|

-torque.) Wherever possible, sensor

readings that were anticipated to be common were given a distinguishing message name.

The following example outlines an interface to a force torque sensor.

ROUTE route

;

Attribute.t attr;

Nodifier_t modifier;

us_ft_sensor_po8t-reading-t reading;

double fx,fy,fz;

double tx,ty,tz;

// setup parameter attribute and modifier info

attr = Attribute-t .force I Attribute.t .torque

;

modifier=Hodifier.t . actual

;

// setup routing info

route. type = ROUTE . STATUS

;

route. times = 1

;

us_use_selection(us_get_selection("TLC:A;FORCE-TORQUE-SEISOR"))

;

us-load-dof(3)

;

us_load-sampling-speed(100Hz) ; //

us-load_frequency( .10) ; //

us_load-filter(us-sensor_load_filter_m8g-t .HI-PASS, 1000)

;

us-Start-filterO ; //

us-8tart()

;

//

uhile(l)

{ reading = us-8ensor-get-attributes-reading(route, attr,modifier)

;

fx=reading[0] ; fy= readingCl] ; fz=reading[2]

;

tx=reading[3] ; ty= reading [4] ; tz=reading[5]

;

// loB, do something with the values....

}

in Hertz

update every 100 milliseconds

start filter

// force

// torque
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D.2 Channel Interface Example

As suggested, the communication protocol is treated as a separate issue from language or mes-

saging strategy. Just like the C language file descriptor construct separates the concept of the

physical implementation of a file or a device from the program, one could adopt a communica-

tion message descriptor to separate the concept from the actual communication implementation.

The message descriptor could be used to implement:

— a piece of information that is shared in memory and cyclically updated,

— a streamed interface.

Below, one finds an example of a possible interface that combines the messaging with a protocol.

The set of data type cms_msg_t and corresponding functions cms_open, cms_send, cms.close

constitute a portion of a communication management system (cms).

moduleAO {

cins_msg_t msg;

us_tlc_set_travor8e_rate_m8g_t rate =

{ US_TLC_SET_TRAVERSE_SPEED,

0 } :

msg. name = "TPS_T0_TLC:T00L:A"

msg. protocol = SHNEN;

cms_open(Amsg)

;

speed. value =30; // rpm

cms_send(msg, rate);

cms_close(msg)

;

In the example, one opens a communication channel much like one opens a file descriptor within

C. In C, the file descriptor can be to a device or a file. Within UTAP Interface Framework, one

should assume that the communication descriptor should allow any number of communication

protocols, for example, shared memory or INET sockets.

D.3 Configuration File Example

Table D.l illustrates an example REMOTE configuration file. Within the REMOTE config-

uration, one can safely assume that single-instance modules are unique, but one may need to

establish existence. The enable field defines whether a module exists. For example, a REMOTE
system may only consist of an operator joystick interface to the LOCAL system. In this case,

most modules in the REMOTE system would be inactive.

The multi-instance modules require a superior/subordinate link to establish the grouping rela-

tionship. The multi-instance modules will implicitly be enabled if they are linked to subordi-

nates. The subordinates are grouped according to the UTAP architecture. That is, one cannot

expect to group REMOTE modules within a LOCAL subordinate group. Table D.2 illustrates

the format required for Figure 3 for the LOCAL system configuration.

D.4 Example of Message Flow for Sample UTAP Scenario

An example of message traffic in a sample scenario will help to verify the interface definitions

made about the tasks, sensors, object models and part features. Since UTAP applications
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Table D.l — Example Remote System Configuration File

Module Set Enabled Types

01 Y Panel

OM, OC, OK Y Vanilla

TD, TK, TDS Y Teach, Programmable

SGD Y see [SANCHO]

ADS N
ss N
PTPS:TPS:A Y Manipulation

PTPS:TPS:B Y Navigation

PTPS:TPS:C Y Tooling

stress operator-supervised, telerobotic activity, the operator panel is fundamental to assessing

strengths and weaknesses. A simple operator panel is given in Figure reffg: oipanel. This panel

visually depicts one of many possible operator interface paradigms. This operator paradigm

uses the display to do feature-based tooling. The operator chooses from the variety of feature

panels (shape, pattern, edge, force) to select the desired parameters. It is assumed that defaults

could already be registered on the screen for a particular task. The operator would then select

specific feature icons to modify and assist in developing the feature-based world model.

The panels match the object analysis. For example, in the Shape Panel, the panel items have

the following meaning - from the top left, clockwise around the panel: target select, 2D circle,

2D rectangle, straight-line, 3D cylindrical volume, 3D cubic volume, obstacle, and a 2D polygon.

The pattern panel items correspond to horizontal raster, vertical raster, concentric circular fill,

overlap, dither, and orbital. The nozzle panel items correspond to density of spray or flow rate

- in one possible data view. K one selects to do an edge instead of pattern fill, the edge panel is

available for this task. The edge panel allows exact motion along the curvilinear edge, a cosine

weave pattern along the edge (e.g., for welding), and dither correspond to the types of motion

along the edges of the part features discussed within the features analysis.

A UTAP sample session is described herein for a refurbishing task. The operator turns on the

system. The operator waits for a prompt from the system to proceed. The operator defines a

work area by teaching the robot points about the edges of the work area. The operator uses

the joystick and moves the robot to each desired location and presses a button to record the

location. The work area is usually a default geometry (circle, rectangle). The operator adjusts

the parameter settings that are specific to the process. Each process maintains a standoff

distance though it varies from process to process. The operator presses a button to start the

robot. The robot will move through the taught geometry. The operator observes the process for

correct execution. During this time the operator can adjust the parameters as needed. He can

pause the process if something is not operating properly (e.g., clogged sprayer). The operator

can also press an emergency stop button if something is very wrong. When the process is

complete, the operator inspects the results. If there are areas that were not done properly the

operator can do a touch-up operation. The operator can do the touch-up himself by moving the

robot and controlling the tool or he can define a work area around the bad region and have the

robot do it as it did the larger region. Once the work area or part is finished the operator moves
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Table D.2 — Example Local System Configuration File

Superior Module Path Subordinate Module Name Type

PTPS TPS:A Manipulation

TPS:B Navigation

TPS:C Toohng

TPS:A TLC:A Position, Force

or Compliance, Impedance

TPS:B TLC:B Teleop, Guided, Autonomous

TPS:C TLC:C Position, Force, Impedance

TLC:A ROBOT:A
ROBOT:B
SENSOR:A
TOOL:A

MANIPULATION

SENSORrB FTS, IMAGE, PROBE
TOOL:B
VS

SPRAY

TLC:A:SENSOR:B BEAM BREAK Switch

TLC:A:TOOL:B: GRIPPER grasp

TLC:A:ROBOT:A RRC position

TLC:A:ROBOT:B ACTIVE TOOL
TLC:A:SENSOR:A CAMERA
TLC:A:TOOL:A 3-FINGER GRIPPER
TLC:A:VS Proximity (don’t care if sonar or laser)

TLC:B: ROBOT TRANSPORT (Lift)

TLC:C TOOL:A, SENSOR:A
TLC:C:TOOL:A ORBITAL SANDER

TLC:C:SENSOR:A CAMERA (stationary)

TLC;C; ROBOT, SENSOR
TLC:C:ROBOT COMPLIANT_ROBOT
TLC:C:SENSOR WRIST FORCE SENSOR

to the next work area or part.

The following message flow summarizes the correspondence between a task steps and message

traffic during a refurbishing task. Within the following message flow summary, the channel

across which the message is transmitted is listed first. The transmission channel is labelled

source.to.destination, where source and destination correspond to the communicating modules.

Then, a UTAP message follows optionally requiring calling parameters. Messages that cause

recursive action and subsequent messaging before the next step can continue are indented.
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UTAP REFURBISHING SYSTEM

ESTOP

Figure D.2 - Example OI Control Panel
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Table D.3 — Sample Session - init

HUMAN.TO.OI
OI.TO.OC
OI.TO.OM
OM.TO.OK
OLTO-TD
OI.TO.TDS
TDS-TO.TK
TDS-TO-OK

TDS-TO.PTPS
PTPS.TO.OK

TDS.TO.TPS.A
TDS.TO.OK

TPS.A.TO.TLC.A
TLC.A.TO.OK

TLC.A.TO.OK

TLC.A.TO.OK

TLC.A.TO.OK

HUMAN.TO.OI
OI.TO.TDS

TDS.TO.TK
TK.TO.TDS

TDS.TO.PTPS

PTPS.TO.TPS.A

TPS.A.TO.TLC.A

TLC.A.TO.RSC.A

powerup
US.STARTUP(config)
US.STARTUP(config)
US.STARTUP(config)
US.STARTUP(config)
US.STARTUP(config)
US.5TARTUP(config)
TPS.A=US.GET.SELECTIONJD(“SUBSYSTEM.TPS.A”);
US.STARTUP(config)
TPS.A=US.GET.SELECTIONJD(“SUBSYSTEM.TPS.A");
US.STARTUP(config)
TLC.A=US.GET.SELECTION-ID(“SUBSYSTEM.TPS.A”);
RSC.A=US.GET.SELECTIONJD(“ROBOT A”):

TC.A=US.GET.SELECTION.ID(“TOOL A”):

TC.A=US.GET.SELECTION.ID( “SENSOR A”):

SC.B=US.GET.SELECTION.ID( “SENSOR B” ):

US.STARTUP(config)
RSC.A=US.GET.SELECTIONJD( “ROBOT A” ):

US.USE.SELECTION(RSC.A);
US.STARTUP(config)
TC.A=US.GETJSELECTION.ID( “TOOL A” )

:

US.USE..SELECTION(TC.A); US.STARTUP(config)
SC.A=US.GET-SELECTIONJD( “SENSOR A” )

:

US.USE.SELECTION(SC.A); US.STARTUP(coiifig)
SC.B=US.GET.SELECTION.ID( “SENSOR B” )

:

US.USE.SELECTION(SC.B); US.STARTUP(config)
enters Name and Passwd
US.TDSXOAD.USER{OPERATOR)
“ System Initialization”

US.USE.SELECTIONJD, US.TK.GETJRAMEWORK
USJ’OSTJRAMEWORK(...)
US.USE.SELECTION.ID(id for SUBSYSTEM.A)

;

US.USEJRAMEWORK( “defatilts”

)

US.USE.SELECTIONJD(id for SUBSYSTEM.A) ;

US.USEJ'RAMEWORK( “defaults”)
;

US-USE.SELECTION.ID(id for RSC.A)
US.BEGIN.MACRO( “default setup")

USXOADJDOF(6);
USXOADJlEPRESENTATION(EuIer);
USXOADXENGTH.UNITS{mm);
US.USE.CARTESIANJVIODE (ALL);

US.USE.KINEMATIC.RING(.BASE — .TOOL );

(
“same as” US.USE.TOOL.TIPJIEFERENCE.FRAME();)

USXOAD.BASEJARAMETERS(...);
US.USE.SELECTIONJD(id for TC.A);
USXOAD.TOOL-PARAMETERS(....);
US.END.SELECTION;
USXOAD.JOINTXIMITS(...);
USiOAD.VELOCITY.LIMIT(velmax);
USXOAD.ACCELERATION.LIMIT(accmax);
USXOAD.TRAVERSEJlATE(tr); USXOAD.FEEDJlATE(fr);

USJENDJvlACRO
US_USE.MACRO( “default setup”);

US.USE.SELECTIONJD(id for robot servos A);

US.BEGINJV1ACR0( “default setup”);

usj:.oad.jointximit(...);
USXOAD.VELOCITYXIMIT(...);
USXOADJ"ID.GAIN(p,i,d);
US.USEJVBSOLUTE.POSITIONJVIODE()
US.USEJIADIAN.UNITSO;
US.USEJIDO;
“Closed loop control - feedback every 10 milliseconds”

US.GETJOSITION(ACTUAL, 10ms);

usj:ndjviacro;
usj:nd.selection;
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Table D.4 - Start Teleoperation

HUMAN.TO.OI
OLTO.TDS
TDS.TO.TK

TK.TO.TDS
TDS.TO.PTPS

PTPS.TO.TPS.A

TPS.A.TO.TLC.A

HUMAN.TO.OI
OI.TO.TDS

TDS.TO.TPS.A
TPS.A.TO.TLC.A
TLC.A.TOJISC.A

TLC.A.TO.SEN.A

HUMAN.TO.OI
OI.TO.TLC.A

OI.TO.TLC.A
TLC.A.TOJISC.A
RSC.A.TO.TLC.A

HUMAN.TO.OI
OI.TO.OC
OC.TO.OK

OC.TO.OK

HUMAN.TO.OI
OI.TO.OC
OC.TO.OK

OC.TO.OK

HUMAN.TO.OI
OI.TO.TDS

TDS.TO.TPS
TPS.TO.TLC

“Assume lift in place”

“selects subsystem A to do shared control to teach positions”

US.SELECTJ^ODE(shared, x-axis)

US.USE.SELECTIONJD
US.TK.GETJ'RAMEWORK( “standoff teach”

)

USJOSTJ'RAMEWORK(...)
US.USE.SELECTIONJD(id for SUBSYSTEM.A);
US.USEJ'RAMEWORK( “standoff teach”

)

US.USE.SELECTIONJD(id for SUBSYSTEM.A);
US.USEJ^RAMEWORK(“8t£indoff teach”)

;

US.USE.SELECTIONJD(id for RSC.A)
US.BEGINJVIACRO( “standoff teach”

)

US.USEJVlACRO( “defaults” )

;

US.START.STANDOFFJVlOTION( “x”
, 300mm);

US.STARTJVlANUAL.MOTION(ALL XjVXIS);
USJINDJVIACRO
US.USEJ4ACRO( “standoff teach”);

push start button, waits for robot to home, then use joystick

US.START
US.START
USJIOME; US.START;
US.USEJVIACRO ( “default” )

;

USJIOME; // put values in, for eventual motion
USJ;NABLE(ALL); // enable servos

US.CLEAR.BRAKES(ALL);
US.START; // software start

US.START.MACRO( “range”

)

USXOAD.SAMPLING.SPEED(speed)
USXOADJREQUENCYCfreq)
“more sensor inits?”

USJINDJVIACRO
US.USEJ^ACRO( “range”

)

“Repeated Joystick Motion”
6 DOF joystick motion
US.BEGIN.BLOCK; US.ADJUSTJ\.XIS(ALL, values);

USJ;ND3L0CK;
“Monitors for standoff distance”

US.SETJ*OSITION (desired.values

)

US.SETJ’OSITION(desires.values);

USJ’OSTJOSITION(actual.values)

“Calibrate Comer of Rect”

marks comer of feature (where feature = shape + pattern)

US.SET.CALIB(featurejorigin, rect);

now=US.GETJ’OSITION(actual);
rect.x=now.y; rect.y= now.z;

obj=US.CREATE.OBJECT(name, part.t, rect, raster);

“Move to Second Point using Joystick Motion - see above”

“Define Second Comer”
marks 2nd comer of featme (where feature = shape + pattern)

US.SET.CALIB(featurejoffset, rect);

now=US.GETJ»OSITION(actual);
obj.xlength = rect.x - now.y;

obj.ylength = rect.y - now.z;

USJVIODIFY.OBJECT(obj);
“User finished teaching”

presses button to end teaching

US.STOP
US.STOP
US.BEGINJVIACRO( “standoff teach halt”)

US.STOPJtlANUAL.MOTION
US-STOP.STANDOFFJtlOTION
USJINDJVIACRO
US.USE.MACRO( “standoff teach halt”)
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Table D.5 - Start Automated Process

HUMAN.TO.OI
OI-TO.TDS
OI-TO.TDS
TDS.TO.TK
TK.TO.TDS

TDS-TOJTPS

PTPS.TO.TPS.A

TPS.A.TO.TLC.A

TLC.A.TO^EN.A

TLC.A.TO.TOOL.A

“Start Automated Process”

“human presses button to get into process control screen”

US^ELECTJVIODE(supervised, aU
)

US^ET.TDS-SELECT-OPERATION( “strip”)

US-USE^ELECTION-ID, US.TK.GET-FRAMEWORK( “strip”

)

US-POST-FRAMEWORK(...)
US.USE-SELECTION.ID(id for SUBSYSTEM.A)

;

US.USEJRAMEWORK( “standoff teach”

)

US-USE^ELECTION-ID(id for SUBSYSTEM.A)
;

US.USEJ'RAMEWORK( “standoff teach”)
;

US-USE-SELECTIONJD(id for RSC.A)
US_BEGIN_MACRO( “standoff teach”)

US.USEJVlACRO( “defaults” );

US^TART-STANDOFF-MOTION( “x”
, 300mm);

US^TART-MANUAL.MOTION(ALL X-AXIS);

USJIND-MACRO
US_USE_MACRO( “standoff teach”);

USJSTART-MACRO( “range”

)

US_LOAD.SAMPLING.SPEED(speed)
USJ:.OAD-FREQUENCY(freq)
US-ENDJVIACRO
US.USE-MACRO( “range”

)

US_FLOW_LOAD_PARAMETERS(flow_rate, beam, stream)

HUMAN.TO.OI
OI.TO-TDS

TDS.TOJTPS
PTPS.TO.TPS.A
TPS.A.TO.TLC.A

TLC.A.TO.SEN.A

TLC.A.TO.TOOL.A

TLC.A.TO.ROBOT.A

SEN.A.TO.TLC.A
TLC.A.TOJIOBOT.A
ROBOT.A.TO.TLC.A

“humein presses button on OI to start process”

USJSTARTO;
US.USE.SELECTION-ID(id for SUBSYSTEM.A)

;
US.START();

US.USE.SELECTIONJD(id for SUBSYSTEM.A)
;
US.START();

US-USEJSELECTIONJD(id for RSC.A)
USJSTARTO;
US.ENABLE()
US.START();
usj:nable();
US.START();
USJINABLEO;
US.CLEAR.BRAKES();
US.START();
“Subsystem TLC.A Series of commands to do raster path”

USJ’OST-READING( “r£inge reading”

)

USJ^XIS-SERVO-SETJOSITIONl “desired position”);

USJ*OST-READING( “actual position”)

US.GENERIC.STATUSJlEPORT(executing, progressing)

US.GENERIC.STATUS.REPORT(fuushed, succeeded);
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Annex E
(informative)

Related Standards

E.l RS274D

EIA/RS274D is a standard programming language that is intended to serve as a uniform interface

for command and control of numerically controlled machine tools.

E.2 RS441

The UTAP operator interfaces will use the RS441 existing standard to define operator control

and modes of operation.

E.3 POSIX

ISO/IEC 9945 and IEEE 1003 standard series are intended to define a standard portable op-

erating system interface and environment to support application portability at the source-code

level. Areas of POSIX standardization efforts include definitions for system services; user in-

terface (shell) and associated commands; real-time extensions; networking protocols; graphical

interfaces; data base management system interfaces; object and binary code portability; sys-

tem configuration and resource availability; behavior of system services for systems supporting

concurrency within a single process.

E.4 lEC 1131-3

Parent Task Program Sequencing input shall use IEC1131 Part 3 as a the interface language to

describe any parallel or simultaneous behavior.

lEC 1131 Part 3 specifies the syntax and semantics of a unified suite of programming languages

for Programmable Controllers (PCs). These consist of two textual languages, IL (instruction

lists) and ST (Structured Text) and two graphical languages LD (Ladder Diagram) and FED
(Function Block Diagram). Sequential Function Chart (SFC) elements are defined for struc-

turing the internal organization of PC programs and function blocks written in one of the 4

languages.

The SFC elements provide a means of partitioning a PC program organization unit into a set

of steps and transitions inter-connected by directed links. Associated with each step is a set of

actions, and with each transition is associated a transition condition. Because SFC elements

require storage of state information, the only program organization units which can be structured

using these elements re function blocks and programs. Configuration elements are defined which

support the installation of PC programs into PC systems and include configurations, resources,

tasks, global variables, and access paths. A configuration contains one or more resources (e.g.,

CPU) each of which may contain one or more tasks and programs
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E.5 ANSI/RIA R15-06-1992

The American National Standard (ANSI) for Industrial Robots and Robot Systems Safety Re-

quirements, ANSI/RIA R15-06-1992, Sponsor: RIA was approved - August 19, 1992. The

purpose of this standard is to provide guidelines for industrial robot manufacture, remanufac-

ture and rebuild; robot system installation; and methods of safeguarding to enhance the safety

of personnel associated with the use of robots and robot systems.”

E.6 EIA Standard RS-267-A

This standard comply with terminology defined in EIA/RS267-A for “Axis and Motion Nomen-

clature for Numerically Controlled Machines.”

E.7 XDR
Public-domain set of routines to allow C programmers to describe arbitrary data structures in a

machine-independent fashion. Data for remote procedure calls (RPC) are encoded and decoded

using XDR. Can be used for other heterogeneous platform communication as well.
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Annex F
(informative)

Target Applications

The architecture has been developed for general aircraft maintenance and remanufacturing ap-

phcations. Among the many applications in aircraft maintenance and remanufacturing, three

target applications were specifically addressed: stripping paint from the skin of an aircraft;

surface finishing; and advanced cutting. The potential application of telerobotics to these ap-

plications is described in this section.

F.l Paint Stripping

One way of stripping paint from the skin of an aircraft is to blast Plastic Media Bead (PMB)
on the painted surface of the aircraft. The operator applies PMB to a targeted surface area

with a certain pressure, using the blast gun located at a designated distance from the surface

with a certain orientation (relative to the tangential plane of the surface). To cover the entire

surface area of an aircraft, a mobile platform or a telecrane is used to move the operator around

the aircraft. More specifically, the paint stripping task requires the following subtasks and

considerations:

a) The positioning of the mobile platform at a location that allows the operator to cover

the new targeted area with sufficient dexterity.

b) The maintaining of the designated distance and orientation of the gun with respect to

the blasting surface, while following the proper trajectory.

c) The controlling of the speed of the gun based on the visual monitoring of the progress

of stripping. Due to the possible difference in paint thickness, without proper monitoring of

the progress of stripping for adjusting speed and pressure of blast, over-stripping as well as

under-stripping may result. The skill of the operator is important for this task.

d) The finishing up process to strip under-stripped areas.

It is expected that the application of telerobotics to the above paint stripping task can bring

forth the following advantages:

a) The operator can stay in a remote location protected from pollutant contamination

during operation, such that not only safety but also efficiency in task execution can be

enhanced.

b) The machine may be better in accuracy and consistency for maintaining the distance

and orientation of the gun with respect to the blasting surface.

c) The larger workspace of manipulators can be exploited.

d) The advanced visual sensors and displays may provide the operator with more effective

tools for inspecting the progress of stripping.
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Based on the above observations, we can construct the following telerobotics system for the

paint-stripping operation:

a) A dextrous manipulator replaces a human operator in the immediate worksite.

b) The human operator is able to manually control the manipulator.

c) The human operator is given visual displays for monitoring the progress of paint strip-

ping. The visual displays may be based on cameras mounted on the manipulator or based

on another manipulator carrying cameras and light sources and other sensors.

d) Sensor-based automatic operations are provided for maintaining the distance and ori-

entation of the gun automatically.

e) The manipulator trajectories can be determined by the human operator, or by the

system, or by a combination of both. The trajectories generated by the system can be from

the off-line interactive graphic simulation or from a functional form in relation to the known

geometric model of the target surfaces. The capability of combining the manual and system

trajectories allows the integration of the operator skill in reacting to the visual monitoring

of the task progress.

f) To execute the system generated trajectories, the manipulator should be registered on

a predetermined location or localized with respect to the geometric model of the surface.

g) The application program developer should be provided with an iconic and menu-driven

interface that allows easy programming. That is, programming is done by configuring the

existing software modules through an iconic and menu-driven interactive computer interface.

F.2 Telerobotic Surface Finishing

Surface finishing is an important task in aircraft maintenance and remanufacturing. The dam-

aged or corroded portion of the aircraft skin is patched or replaced. Uneven surfaces are

ground smooth. Telerobotics technology can be used for automatically controlling the con-

tact force/torque of a tool during surface finishing while maintaining the designated tool angles

with respect to the surface normal, without a priori knowledge of part geometry, through shared

control. The tool path may be generated either manually by the operator or from the preassigned

trajectory generated by off-line programming. The tool path may be subject to certain artificial

motion constraints. Note that, in the case of manual operation, the contact force/torque needs

to be guarded so as not to exceed the maximum allowable force/torque. Similar to the paint

stripping task, the operator should monitor the progress of surface finishing based on visual and

graphic displays, so that the operator can fine-tune or modify the tool path accordingly.

The surface finishing task seems quite different from the paint stripping task. However, a

common telerobotics architecture can be used. This is because both tasks are based upon

the shared and cooperative control between human and machine, in spite of the fact that the

surface finishing task depends on force/torque sensing whereas the paint stripping task depends

on proximity sensing for sensor-based automatic operations. The only major difference is that
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the path fusion in surface finishing requires consideration of the increment of force and torque

together with the increment of path.

F.3 Telerobotic Advanced Cutting System

The maintenance and remanufacturing of aircraft requires cutting of all types of material in many
different shapes and sizes. Telerobotics technology can provide shared control for generating the

tool trajectory in advanced cutting. The trajectory may be specified by prestored data generated

by off-line programming or by the operator through a hand controller or by visual servoing of

a marked path on the object surface. The system automatically regulates the surface stand-

off/separation and the tool orientation at the designated values, as well as imposing certain

artificial constraints on the trajectory. The change of tools and the initialization of system need

to be incorporated into the system.

The telerobotics architecture for advanced cutting is basically same as that of paint stripping

and surface finishing. A unique feature is the integration of visual servoing based on vision

sensors.
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Annex G
(informative)

API Issues

Defining the range of capability expected of the API mechanism is problematic. One cannot

arrive at the perfect solution that is exceedingly complex or prohibitively expensive. Instead,

compromises must be made in arriving at an API mechanism that resolve issues for flexibility

and extensibility. Issues that the UTAP API will have to resolve (noted by the (Unresolved)

after the item) or have been resolved (noted by the (Resolved) after the item) include

G.l Messages, Macros and Naming

The UTAP interfaces will define a broad API. Yet, it would be impossible to anticipate and

explicitly enumerate every possible control and sensing algorithm and parameter. For example,

suppose a better control algorithm is developed, how will the interface permit the selection

of this algorithm? Further, suppose an additional compensation parameter could be specified

within the servo control. How wiU the system adapt to the additional parametric capability?

Will macro programmability of an interface be allowed, and how would this be achieved?

G.2 Integration

One desires the ability to do on-line configuration and assignment of modules and connect the

module communication. The ability to CONNECT/DISCONNECT to actual devices (such as

actuators or sensors) or virtual devices (such as other modules) is provided by the UTAP API
definitions. Once connected, one must be concerned with communication data flow.

The connection for command communication (such as a superior-subordinate connection) is

straightforward. In this case, one sends goal-action commands to a subordinate and awaits

results. However, model-driven data communication (peer-to-peer) is not directly apparent. For

example, when you add a new sensor to your system, how do you pump this sensor data into an

Trajectory Generation module for dynamic path modification. Receiving data from a connection

is straightforward. One connects to the module, queries a variable and reads the updates that

the module provides. Unresolved is the application of external data within a module. UTAP
API provide externally-accessible model-driven variables within UTAP API modules for update

- such as overrides or offsets - to allow integration of user-customized or third-party sensor-based

control. (The question remains whether enough externally-accessible model-driven variables will

be defined.)

G.3 Definition Style

The style of the API definitions is of considerable importance. One could use ASN.l or the

STEP modeling language EXPRESS to develop a rigorous definition of the interfaces. For aU

indications from UTAP API members, this is be too cumbersome and approach. One could use

BNF, source headers files, or any syntax definition mechanism to define a grammar that each
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channel accepts. There is a trade-ofF between interface language complexity and performance.

This is an issue of major importance that has been discussed but every solution has baggage.

This Definition Style issue also must resolve the problem of differentiating between cyclically

executing processes (such as servo or discrete logic module or trajectory generator) and asyn-

chronous processes (such as Part Program Interpreter and the Task Coordination Module.) The

problem is that a definition consisting of a set of function calls alone is not sufficient to describe

the a cyclically executing or event-driven API. One needs to understand the trigger mechanism

that drives the event (such as an external clock or a synchronization trigger from a cooperating

module.) This issue has been discussed but no final resolution has been forwarded.

G.4 Variable Length Arrays

One of the problems that arises defining interfaces concerns the handling of variable length

arrays. Unless one rejects the notion of flexibility, an interface should not preordain a fixed

array size for any interface. One would find passing 5 axis values to a 3-axis miU less than

intuitive. Heaps wiU be used to resolve this problem.

G.5 Units and Representation

It is possible to mandate Standard International Units. Yet, this can cause problems since

one prefers to use units that are natural for the application (millimeters, inches, etc.) For

many robotics and automation applications, the millimeter is the natural and intuitive way

of thinking about a problem. There should be no reason to contradict the natural reasoning

process. Further, NASA mandates foot and pounds as the units of choice. Thus, one needs

conversion. One has to make the decision as to whether the conversion is done by the sender or

the receiver. In the vendor marketplace, a commercial product module should provide conversion

utilities.

UTAP modules shall state acceptable measurement units within its interfaces. The range of

acceptable measurements units may become broader as the application requirements dictate.

For example, an automated horse may require the addition of the furlong distance as an interface

measurement unit.

The default units shall be SI, and are:

From a standards aspect, data exchange between modules is designed to be in a neutral rep-

resentation. However, selection of the correct neutral representation is also problematic. The

UTAP modules shall support API definitions with selectable representation as a part of the

mode control.

NOTE 1 - The UTAP interfaces include the representation measurement units of an interface item.

Incompatibility among like-representation, dissimilar-units interfaces will be resolved by providing

use_measurement_units or use_representation_type messaging. If the module does not support the

measurement units or representation types that you desire, the programmer must perform the con-

version. It is assumed that more robust modules will be better able to handle a broader variety of

representation units and be ultimately more commercially viable. For example, a trajectory inter-

face may accept trajectory position descriptions in millimeters or meters or even inch length units.

Or the trajectory may accept orientation represented as Euler angles in degrees or radians or as

elements in a Homogeneous Matrix representation.
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Table G.l - Parameter and Units

Distance or Length or Position-

Velocity-

Acceleration-

Jerk-

Angular measurement-

Forces-

Torques-

Light-

Viscosity-

Humidity-

Temperature-

Noise-

Meters

Meters/Second

Meters/Second^

Meters/Second^

Radians

Newtons

NewtonMeter

Lumen
millipascalSecond (mPa S)

Grams/Meter^ “That’s grams of water”

Celsius

Decibel

G.6 Selection

Multiple subordinate modules to be controlled by one superior module is possible. Because

of the existence of alternatives, some messages to a subordinate can be ambiguous as to their

intent. In the case of multiple axes of control, one must resolve the destination for which axis

the command is intended. The framework will provide a device/module naming convention but

the selection mechanism is unresolved.

G.7 Parameterization

At opposite ends of the spectrum is a programming facility with a large set of functions and

fixed parameters versus a programming facility with small set of functions and a wider range

of arguments. The information content is the same. Yet, the presentation and programming is

different. As for comprehension, there are arguments for and against both styles. For example,

source is given below for the range of styles.

•define IHL_SERVO_SET_ABS_POSITIOI 251

struct nml_8ervo_8et_ab8_po8ition_in8g_t {

int msgid

;

double *joint_position;

};

•define IML_SERVO_SET_REL_POSITIOI 252

struct nml_8ervo_8et_rel_position_msg_t {

int msgid

;

double •joint_position

;

};

•define IHL.SERVO.JOG 257

struct nml_8ervo_jog_msg_t {

int msgid;

int axis;

double speed;

};

•define IHL.SERVO.ADJUST.AXIS 655
struct U8_tlc_adjust_axi8_msg_t {

int msgid

;
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int axis; // axis mask

double eincrement; //if amount^O, system decides

Style 2: Embed modes:

•define 1ML_SERV0_SET_P0SITI0I 251

struct nml_servo_8et_position_msg_t {

int msgid;

enum {absolute,

relative

,

incremental

,

jog, // may not belong

} mode

;

double •update;

};

To further cloud the issue one can turn both the mode and the parameter into arguments. For

example, one can set both the mode and parameter type be it position, velocity or acceleration.

Style 3: Arguments

•define IML.SERVO_SET_VALUE 251

struct nml_servo_set_msg_t {

int msgid;

enum {absolute,

relative

,

incremental

,

jog, // may not belong

} mode

;

enum {position,

velocity,

acceleration,

} parameter;

double ^update;

};

The last case is more concise, however, unless all combinatorial arguments states are valid, illegal

and illogical messages can be formed. For example, does jogging the acceleration make sense?

The UTAP interfaces are currently defined with a larger set of functions to allow scaling within

this mechanism, although discussions are ongoing as to the efficacy of this method.

G.8 Aggregation Model

One of the issues effecting the specification of open architectures is the approach to connecting

modules.

— Consistent approach wherein explicit module exists to translate from one level of func-

tionality to another level of functionality. This module may have zero (or phantom/hidden)

functionality, in that, its only capability is to translate from a representation at a higher

level of abstraction into representation at a lower level of abstraction.

The major benefit to this approach is a consistent paradigm that simplifies interfaces between

modules to a more manageable set and offers explicit scalability and interoperability, in that,

a direct swap of modules without “rewiring” can be used to improve performance.
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- Free-wiring allows interface traffic from a high level of abstraction to any low level of

abstraction. Thus, not all modules are necessary when building a system. However, this

method assumes that a higher level module understands the needs and representation of a

lower level module. The drawback is that upgrading the controlling by adding modules to

improve capability is not straightforward.
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Annex H
(normative)

Interface Descriptions

The interfaces were defined as a set of messages. Each message has an unique numeric identifier

and data structure defining parameter values. This annex contains the list of interface messages

sorted by module by type and alphabetically, as well as the current interface definitions.

The C/C++ language was used to define messages. This annex gives source listings of the

header files used to define the interfaces. The header files are given in the following order:

— utap-disclaimer.

h

— generic-defs.h

— utap-classification.h

— utap-info-model, h

— utap-protocol.

h

— utap-data-defs.h

— utap-interfaces.

h

— utap-api.h

The interfaces defined with API function calls were generated by a shell script that translated

the messages data structures into function prototypes. The enum and union C++ constructs

did not have direct mapping within the calling function, so placeholders were used.

The information models, messages, and function prototypes in the header files were compiled

with a GNU gcc version 2.5.8 a variant of C++. The code may look like C, but it is actually

C++.
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H.l Interface List

UTAP_IITERFACE_DEFIIITIOIS

GEIERIC
US.STARTUP

US.SHUTDOWI

US.RESET

US.EIABLE
US.DISABLE

US.ESTOP

US.START

US.STOP

US.ABORT

US.HALT

US.HIT
US.HOLD

US.PAUSE

US.RESUHE

US.ZERO

US.BEGH.SIIGLE.STEP
US.IEXT.SIIGLE.STEP

US.CLEAR.SIIGLE.STEP
US.BEGII.BLOCK

US.EID.BLOCK

US.BEGII.PLAI

US.EID.PLAI

US.USE.PLAI

US.BEGII.HACRO

US.EID.HACRO
US.USE.HACRO

US.BEGII.EVEIT

US.EID.EVEIT

US.MARK.BREAIPOIIT
US.NARK.EVEIT

US.GET.SELECTIOI.ID
US.POST.SELECTIOI.ID
US.USE.SELECTIOI

US.USE.AXIS.fUSK

US.USE.EXT.ALGORITHH

US.LOAD.EXT.PARAHETER
US.GET.EXT.DATA.VALUE

US_POST.EXT.DATA.VALUE
US.SET.EXT.DATA.VALUE

US.LOAD.STATUS.TYPE

US.LOAD.STATUS.PERIOD

US.GEIERIC.STATUS.REPORT

ERRORS

US.ERROR.COMfttlD.IOT.IHPLEHEITED

US.ERROR.CONHAID.EITRY

US.ERROR.DUPLICATE.IAME

US.ERROR.BAD.DATA
US.ERROR.IO.DATA.AVAILABLE

US.ERROR.SAFETY.VIOLATIOI

US.ERROR.LIMIT.EXCEEDED
US.ERROR.OVER.SPECIFIED

US.ERROR.UIDER.SPECIFIED

AXIS.SERVO

US.AXIS.SERVO.USE.AIGLE.UIITS

US.AXIS.SERVD.USE.RADIAI.UIITS
US.AXIS.SERVO.USE.ABS.PDSITIOI.MODE

US.AXIS.SERVO.USE.REL.POSITIOI.MODE

US.AXIS.SERVO.USE.ABS.VELOCITY.MODE

US.AXIS.SERVO.USE.REL.VELOCITY.MODE

US.AXIS.SERVO.USE.PID

US.AXIS.SERVO.USE.FEEDFORWARD.TORQUE

US.AXIS.SERVO.USE.CURREIT

US.AXIS.SERVO.USE.VOLTAGE

US.AXIS.SERVO.USE.STIFFIESS
US.AXIS.SERVO.USE.COHPLIAICE

US.AXIS.SERVO.USE.IMPEDAICE

US.AXIS.SERVO.START.GRAVITY.COHPEISATIOI

US.AXIS.SERVO.STOP.GRAVITY.COHPEISATIOB

US.AXIS.SERVO.LOAD.DOF

US.AXIS.SERVO.LOAD.CYCLE.TIHE

US.AXIS.SERVO.LOAD.PID.GAII

US.AXIS.SERVO.LOAD.JOIIT.LIHIT

US.AXIS.SERVO.LOAD.VELOCITY.LIMIT

US.AXIS.SERVO.LOAD.GAII.LIHIT
US.AXIS.SERVO.LOAD.DAMPIIG.VALUES

US.AXIS.SERVO.HOME

US.AXIS.SERVO.SET.BRAKES

US.AXIS.SERVO.CLEAR.BRAKES
US.AXIS.SERVO.SET.TORQUE

US.AXIS.SERVO.SET.CURREIT

US.AXIS.SERVO.SET.VOLTAGE

US.AXIS.SERVO.SET.POSITIOS

US.AXIS.SERVO.SET.VELOCITY

US.AXIS.SERVO.SET.ACCELERATIOI

US.AXIS.SERVO.SET.FORCES
US.AXIS.SERVO.JOG

US.AXIS.SERVO.JOG.STOP

TOOL

US.SPIIDLE.RETRACT.TRAVERSE
US.SPIIDLE.LOAD.SPEED

US.SPIIDLE.START.TURIIIG

US.SPIIDLE.STOP.TURIIIG

US.SPIIDLE.RETRACT

US.SPIIDLE.ORIEIT
US.SPIIDLE.LOCK.Z

US.SPIIDLE.USE.FORCE

US.SPIIDLE.USE.IO.FORCE

US.FLOW.START.MIST
US.FLOW.STOP.KIST

US.FLOW.START.FLOOD

US.FLOW.STOP.FLOOD

US.FLOU.LOAD.PARAHETERS

SEISOR

US.START.TRAISFORH

US.STOP.TRAISFORM

US.START.FILTER

US.STOP.FILTER

US.SEISOR.USE.HEASUREMEIT.UIITS
US.SEISOR.LOAD.SAMPLIIG.SPEED

US.SEISOR.LOAD.FREQUEICY

US.SEISOR.LOAD.TRAISFORM

US.SEISOR.LOAD.FILTER

US.SEISOR.GET.READIIG

US.SEISOR.GET.ATTRIBUTES.READIIG

US.VECTOR.SEISOR.GET.READIIG
US.FT.SEISOR.POST.READIIG

US.SCALAR.SEISOR.POST.READIIG
US.VECTOR.SEISOR.POST.READIIG

US_2D_SEIS0R_L0AD_ARRAY_PATTERI

US_2D_SEIS0R.USE_ARRAY_TYPE

US_2D_SEIS0R_GET_READIIG
US.2D.SEIS0R_P0ST_READIIG

US.HAGE.USE.FRAHE.GRAB.MODE
US.IMAGE.USE.HISTOGRAH.HODE
US.IHAGE.USE.CEITROID.HODE

US.IMAGE.USE.GRAY.LEVEL.HODE

US.IHAGE.USE.TRESHOLD.HODE

US.IMAGE.COMPUTE.SPATIAL.DERIVATIVES.MODE
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US_IMAGE_C0I1PUTE.TEMP0RAL_DERIVATIVES_M0DE

US_IMAGE.USE.SEGMEITATATIOI.HODE

US_IHAGE_USE_RECOGI ITIOl.MODE

US_ IMAGE_COMPUTE_RAIGE_MODE

US_IHAGE_COMPUTE_FLOW_HODE

US_IHAGE_LOAD_CALIBRATI 01

US_IMAGE_SET_P0SITI0H

US_IMAGE_ADJUST_P0SITI0S

US_IMAGE_ADJUST_FOCUS

US_IHAGE_POST_SPECIFICATIOI

US_INAGE_POST_PIXEL_HAP_READIIG

US_IMAGE_POST_HISTOGRAM_READIIG

US_II1AGE_P0ST_XY_CHAR_READIIG

US_IMAGE_POST_BYTE_SYMBOLIC_READIIG

US_IMAGE_POST_TRESHOLD_READIIG

US_IHAGE.POST_SPATIAL_DERIVATIVE_READIIG

US_IHAGE.P0ST_TEI1P0RAL_DEBIVATIVE_READIIG

US_IHAGE_P0ST_REC0GIITI0I_READIIG

US_IMAGE.POST_RAIGE_READIIG

US_IMAGE_P0ST_FL0W_READI1G
PROGRAMMABLE. 10

US.PIO.EIABLE

US.PIO.DISABLE

US.PIO.SET.MODE

US.PIO.COITROL.WRITE
US.PIO.LOAD.SCALE

US.PIO.DATA.HRITE

US.PIO.DATA.READ
US.PIO.BIT.READ

US.PIO.BIT.SET
US.PIO.TOGGLE.BIT

OS.PIO.POST.DATA
TASK.LEVEL.COITROL

US.TLC.USE.JOIIT.REFEREICE.FRAME
US.TLC.USE.CARTES IAI.REFEREICE.FRAME

US.TLC.USE.REPRESEITATIOI.UIITS

US.TLC.USE.ABSOLUTE.POSITIOIIIG.MODE

US.TLC.USE.RELATIVE.POSITIOIIIG.MODE

OS.TLC.USE.MRIST.COORDIIATE.FRAME

US.TLC.USE.TOOL.TIP.COORDIIATE.FRAME

OS.TLC.CHAIGE.TOOL

US.TLC.USE.MODIFIED.TOOL.LEIGTH.OFFSETS

US.TLC.USE.IORMAL.TOOL.LEIGTH.OFFSETS
US.TLC.USE.IO.TOOL.LEIGTH.OFFSETS

US.TLC.USE.KIIEMATIC.RIIG.POSITIOIIIG.MODE

US.TLC.START.MAIUAL.MOTIOI

US.TLC.STOP.MAIUAL.MOTIOI

US.TLC.START.AUTOMATIC.MOTIOI
US_TLC_STOP.AUTOMATIC.MOT 101

US.TLC.START.TRAVERSE.MOTIOI

US.TLC.STOP.TRAVERSE.MOTI 01
US.TLC.START_GUARDED.MOTI 01

US.TLC.STOP.GUARDED.MOTIOI

US.TLC.START.COMPLIAIT.MOTIOI

US.TLC.STOP.COMPLIAIT.MOTIOI

US.TLC.START.FIIE.MOTIOI

US.TLC.STOP.FIIE.MOTIOI
US.TLC.START.MOVE.UITIL.MOTIOI

US.TLC.STOP.MOVE.UITIL.MOTIOI
US.TLC.START.STAIDOFF.DISTAICE

US.TLC.STOP.STAIDOFF.DISTAICE

US.TLC.START.FORCE.POS ITIOIIIG.MODE
US_TLC_STOP_FORCE_POSITIOIIIG_MODE

US.TLC.LOAD.DOF
US.TLC.LOAD.CYCLE.TIME

US.TLC.LOAD.REPRESEITATIOI.UIITS

US.TLC.LOAD.LEIGTH.UIITS

US.TLC.LOAD.REUTIVE.POSITIOIIIG
US_TLC_ZERO_RELATIVE_POSITIOIIIG

US.TLC.ZERO.PROGRAH.ORIGII

US.TLC.LOAD.IIIEMATIC.RIIG.POSITIOIIIG.HODE
US.TLC.LOAD.BASE.PARAMETERS

US.TLC.LOAD.TOOL.PARAMETERS

US.TLC.LOAD.OBJECT

US.TLC.LOAD.OBJECT.BASE

US.TLC.LOAD.OBJECT.OFFSET

US.TLC.LOAD.DELTA

US.TLC.LOAD.OBSTACLE.VOLUME

US.TLC.LOAD.IEIGHBORHOOD

US.TLC.LOAD.FEED.RATE

US.TLC.LOAD.TRAVERSE.RATE

US.TLC.LOAD.ACCELERATI 01
US.TLC.LOAD.JERK

US.TLC.LOAD.PROXIMITY

US.TLC.LOAD.COITACT.FORCES

US.TLC.LOAD.JOIIT.LIMIT

US.TLC.LOAD.COITACT.FORCE.LIMIT

US_TLC_LOAD_COITACT_TOR(}UE_LIMIT

US.TLC.LOAD.SEISOR.FUSIOI.POS.LIMIT

US.TLC.LOAD.SEISOR.FUSIOI.ORIEIT.LIMIT

US.TLC.LOAD.SEGMEIT.TIME

US.TLC.LOAD.TERMIIATIOI.COIDITIOl

US.TLC.IICR.VELOCITY

US.TLC.IICR.ACCELERATIOI
US.TLC.SET.GOAL.POSITIOI

US.TLC.GOAL.SEGMEIT

US_TLC_ADJUST.AX I

S

US.TLC.UPDATE.SEISOR.FUS I01

US.TLC.SELECT.PLAIE

US.TLC.USE.CUTTER.RADIUS.COMPEISATIOI

US.TLC.START.CUTTER.RADIUS.COMPEISATIOI

US.TLC.STOP.CUTTER.RADIUS.COMPEISATIOI

US.TLC.STRAIGHT.TRAVERSE
US.TLC.ARC.FEED

US.TLC.STRAIGHT.FEED

US_TLC_PARAMETRIC_2D_CURVE_FEED

US_TLC_PARAMETRIC_3D_CURVE_FEED
US.TLC.IURBS.KIOT.VECTOR

US.TLC.IURBS.COITROL.POIIT

US.TLC.IURBS.FEED

US.TLC.TELEOP.FORCE.REFLECTIOI.UPDATE

TASK.DESCRIPTIOI

US.TDS.LOAD.USER

US.TDS.SELECT.PROGRAM

US.TDS.EXECUTE.PROGRAM

US.TDS.SELECT.OPERATIOI

US.TDS.SELECT.OPMODE

US.TDS.LOAD.SELECTIOIS

US.TDS.LOAD.REFEREICE.UIITS

US.TDS.LOAD.RATE.DEFAULTS

US.TDS.LOAD.ORIGII
US.TDS.LOAD.SEISIIG.DEFAULTS

TASK.KBOWLEDGE
US.TK.DEFIIE.FRAMEHORK

US.TK.MACRO.CREATE
US.TK.MACRO.DELETE

US.TI.MACRO.MODIFY

PAREIT.TASK.PROGRAM.SEQUEICIIG

US.PTPS.SELECT.AGEIT

US.TPS.SELECT.TOOL

US.PTPS.SELECT.SEISOR

US.PTPS.IITERP.ROI.PLAI
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US_PTPS_IITERP.HALT_PLAI

US_PTPS_IIPUT_REgUEST
US_PTPS_OUTPUT_EIABLE_SUBSYSTEM

TASR.PROGRAn.SEQUEKCIIG

US_TPS_FREESPACE_HOTIOI

US_TPS_GUARDED_MOTI 01

US_TPS_C0ITACT_M0TI 01

US_TPS_SET_SUPERVISORY_MODE

US_TPS_SELECT_FEATURE
US_TPS_SELECT_HATERIAL

US_L0AD_0BSTACLE

US.LOAD.PATTERB
US_TPS_MARK_EVEIT

US_TPS_EIABLE

OPERATOR. IITERFACE

US.BEGII.FRAMEWORK

US.EID.FRAMEWORK

US.CREATE.FRAMEWORK

US.DELETE.FRAMEWORK

US.ADD.SYHBOLIC.ITEM
US.DELETE.SYMBOLIC.ITEM

US.ADD_SYMBOLIC_ITEM.ATTR

US.DELETE.SYMBOLIC.ITEM.ATTR
US.SET.SYMBOLIC.ITEM.ATTR

OBJECT.MODELIIG
US.OM.CREATE

US.OM.DELETE
US.OM.MODIFY

OBJECT.CALIBRATIOI

US.OC.SET.CALIB

US.OC.GET.CALIB

US.OC.SET.ATTR
US.OC.GET.ATTR

OBJECT.KIOWLEDGE

US.OK.RECORD

US.OK.PLAYBACK
US.OK.CREATE.OBJ

US.OK.DELETE.OBJ

US.OK.MODIFY
US.OK.MODIFY.ATTRIBUTE

US.OK.ATTRIBUTE.QUERY

US.OK.OOTPUT.REGISTERED.OBJ.ID

US.OK.ATTRIBUTE.RESPOISE
TRAJECTORY.DESCRIPTIOI

US.TRD.OPEl

US.TRD.ERASE
US.TRD.RECORD

US.TRD.RECORD.OI

US.TRD.RECORD.OFF

US.TRD.FIID

US.TRD.IEXT
US.TRD.PREVIOUS

US.TRD.DELETE
US.TRD.IAME.ITEM

US.TRD.DELETE. ITEM

US.TRD.SET.JOIIT.MODE

US.TRD.SET.CARTESIAI.MODE

US.TRD.MODIFY

US.TRD.ADD.ELEMEIT
STATUS.GRAPHICS.DISPLAY

AIALYSIS.DIAGIOSIS.SYSTEM

US.ADS.COLLISIOI.DETECTED

SUBSYSTEM.SIMULATIOI

UTAP.DATA.DEFS

US.POST.ID
US.GET.OBJECT.ID

US.USE.OBJECT

US.GET.FEATURE
US.USE.FEATURE

US.GET.VALUE

US.POST.VALUE

US.GET.LIST

US.POST.LIST

US.ATTRIBUTE.POST.RESPOISE

US.ATTRI BUTE.GET.TIME

US.ATTRIBUTE.GET.POSITIOI

US.ATTRIBUTE.GET.ORIEITATIOI
US.ATTRIBUTE.GET.POSE
US.ATTRIBUTE.GET.VELOCITY

US _ATTR I BUTE.GET_ACCELERAT I 01

US.ATTRIBUTE.GET.JERK

US.ATTRIBUTE.GET.FORCE

US.ATTRIBUTE.GET.TORQUE

US.ATTRIBUTE.GET.MASS

US.ATTRIBUTE.GET.TEMPERATURE

US.ATTRIBUTE.GET.PRESSURE
US.ATTRIBUTE.GET.VISCOSITY

US.ATTRIBUTE.GET.LUMIIAICE

US.ATTRIBUTE.GET.HUMIDITY
US.ATTRIBUTE.GET.FLOW

US.ATTRIBUTE.GET.HARDIESS

US.ATTRIBUTE.GET.ROUGHIESS

US.ATTRIBUTE.GET.GEOMETRY
US.ATTRIBUTE.GET.TOPLOGY

US.ATTRIBUTE.GET.SHAPE

US.ATTRIBUTE.GET.PATTERI
US.ATTRIBUTE.GET.MATERIAL

US.ATTRIBUTE.GET.KIIEMATICS
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H.2 Sorted Interface List

US_2D_SEIS0R_GET_READIIG

US_2D_SEIS0R_L0AD_ARRAY_PATTERH

US_2D_SEIS0R_P0ST_READIIG

US_2D_SEIS0R_USE_ARRAy_TYPE

US.ABORT

US.ADD.SYHBOLIC.ITEM

US.ADD.SYMBOLIC.ITEM.ATTR

US.ADS.COLLISIOI.DETECTED

US.ATTRIBUTE.GET.ACCELERATIOI

US.ATTRIBUTE.GET.FLOW

US.ATTRIBUTE.GET.FORCE

US.ATTRIBUTE.GET.GEOMETRY

US.ATTRIBUTE.GET.HARDIESS

US.ATTRIBUTE.GET.HUHIDITY

US.ATTRIBOTE.GET.JERK

US.ATTRIBUTE.GET.KIIEHATICS

US.ATTRIBUTE.GET.LUHIIAICE

US.ATTRIBUTE.GET.MASS

US.ATTRIBUTE.GET.MATERIAL

US.ATTRIBUTE.GET.DRIEITATIOI
US.ATTRIBUTE.GET.PATTERI

US.ATTRIBUTE.GET.POSE

US.ATTRIBUTE.GET.POSITIOI

US.ATTRIBUTE.GET.PRESSURE

US.ATTRIBUTE.GET.ROUGHIESS

US.ATTRIBUTE.GET.SHAPE

US.ATTRIBUTE.GET.TEMPERATURE
US.ATTRIBUTE.GET.TIHE

US.ATTRIBUTE.GET.TOPLOGY

US.ATTRIBUTE.GET.TORQUE

US.ATTRIBUTE.GET.VELOCITY
OS.ATTRIBOTE.GET.VISCOSITY

US_ATTRIBUTE_POST_RESPOISE

US.AXIS.SERVO.CLEAR.BRAKES

US.AXIS.SERVO.HOME

US.AXIS.SERVO.JOG

US.AXIS.SERVO.JOG.STOP

US.AXIS.SERVO.LOAD.CYCLE.TIHE

US.AXIS.SERVO.LOAD.DAMPIIG.VALUES

US.AXIS.SERVO.LOAD.DOF

US.AXIS.SERVO.LOAD.GAII.LIHIT

US.AXIS.SERVO.LOAD.JOIIT.LIHIT

US.AXIS.SERVO.LOAD.PID.GAIl

US.AXIS.SERVO.LOAD.VELOCITY.LIHIT

US.AXIS.SERVO.SET.ACCELERATIOI

US.AXIS.SERVO.SET.BRAKES

US.AXIS.SERVO.SET.CURREIT

US.AXIS.SERVO.SET.FORCES

US.AXIS.SERVO.SET.POSITIOI

US.AXIS.SERVO.SET.TORQUE
US.AX IS.SERVO.SET.VELOCITY

US.AXIS.SERVO.SET.VOLTAGE

US.AXIS.SERVO.START.GRAVITY.COMPEISATIOI

US.AXIS.SERVO.STOP.GRAVITY.COHPEISATIOI
US.AXIS.SERVO.USE.ABS.POSITIOI.HODE

US.AXIS.SERVO.USE.ABS.VELOCITY.HODE

US.AXIS.SERVO.USE.AIGLE.UIITS
US.AXIS.SERVO.USE.COHPLIAICE

US.AXIS.SERVO.USE.CURREIT

US.AXIS.SERVO.USE.FEEDFORWARD.TORQUE

US.AXIS.SERVO.USE.IMPEDAICE

US.AXIS.SERVO.USE.PID

US.AXIS.SERVO.USE.RADIAI.UIITS

US.AXIS.SERVO.USE.REL_POSITIOI.HODE

US_AXIS_SERVO_USE_REL_VELOCITY_HODE

US.AXIS.SERVO.USE.STIFFIESS

US.AXIS.SERVO.USE.VOLTAGE

US.BEGII.BLOCK

US.BEGII.EVEIT

US.BEGII.FRAHEWORK

US.BEGII.HACRO

US.BEGII.PLAI

US.BEGII.SIIGLE.STEP

US.CLEAR.SIIGLE.STEP

US.CREATE.FRAMEWORK

US.DELETE.FRAHEMORI

US.DELETE.SYMBOLIC.ITEH

US.DELETE.SYHBOLIC.ITEM.ATTR

US.DISABLE

US.EIABLE

US.EID.BLOCK

US.EID.EVEIT
US.EID.FRAHEWORK

US.EID.HACRO

US.EID.PLAI

US.ERROR.BAD.DATA

US.ERROR.COMHAID.EITRY

US.ERROR.COHMAID.IOT.IHPLEHEITED

US.ERROR.DUPLICATE.IAME

US.ERROR.LIMIT.EXCEEDED

US.ERROR.IO.DATA.AVAILABLE

US.ERROR.OVER.SPECIFIED
US.ERROR.SAFETY.VIOLATIOI

US.ERROR.UIDER.SPECIFIED

US.ESTOP

US.FLOW.LOAD.PARAHETERS

US.FLOW.START.FLOOD

US.FLOW.START.HIST

US.FLOH.STOP.FLOOD

US.FLOW.STOP.HIST

US.FT.SEISOR.POST.READIIG

US_GEIERIC_STATUS_REPORT

US.GET.EXT.DATA.VALUE

US.GET.FEATURE

US.GET.LIST
US.GET.OBJECT.ID

US.GET.SELECTIOI.ID

US.GET.VALUE

US.HALT
US.HOLD
US.IHAGE.ADJUST.FOCUS

US.IHAGE.ADJUST.POSITIOI

US.IHAGE.COHPUTE.FLOW.HODE

US.IHAGE.COHPUTE.RAIGE.HODE

US.IHAGE.COHPUTE.SPATIAL.DERIVATIVES.HODE
US.IHAGE.COHPUTE.TEHPORAL.DERIVATIVES.HODE

US.IHAGE.LOAD.CALIBRATIOI

US.IHAGE.POST.BYTE.SYMBOLIC.READIIG

US.IHAGE.POST.FLOW.READIIG

US.IHAGE.POST.HISTOGRAM.READIIG

US.IHAGE.POST.PIXEL.MAP.READIIG

US.IMAGE.POST.RAIGE.READIIG

US.IHAGE.POST.RECOGIITIOI.READIIG

US.IHAGE.POST.SPATIAL.DERIVATIVE.READIIG
US.IHAGE.POST.SPECIFICATI 01

US.IMAGE.POST.TEMPORAL.DERIVATIVE.READIIG

US.IHAGE.POST.TRESHOLD.READIIG

US.IHAGE.POST.XY.CHAR.READIIG

US.IHAGE.SET.POSITIOI

US.IHAGE.USE.CEITROID.HODE
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US_ IMAGE.USE.FRAME.GRAB.HODE

US_IHAGE_USE_GRAY_LEVEL_MODE

US_IMAGE_USE.HIST0GRAF1_M0DE

US_IMAGE_USE_RECOGIITIOB_MODE

US_IMAGE_USE_SEGHEITATATIOI_MODE

US_IMAGE_USE_TRESHOLD_MODE

US.IIIT
US.LOAD.EXT.PARAMETER

US.LOAD.OBSTACLE

US.LOAD.PATTERI

US.LOAD.STATUS.PERIOD
US_LOAD_STATUS_TYPE

US.MARK.BREAKPOIIT

US.MARK.EVEIT

US_IEXT_SIIGLE_STEP

US_OC_GET_ATTR

US_OC_GET_CALIB

US_OC_SET_ATTR
US_OC_SET_CALIB

US.OK.ATTRIBUTE.QUERY
US_OK_ATTRIBUTE_RESPOISE

US_OK_CREATE_OBJ

US_OK_DELETE_OBJ

US_OK_llODIFY

US_OK_NODIFY_ATTRIBUTE

US_OK_OUTPUT_REGISTERED_OBJ_ID

US_OK_PLAYBACK

US_OK_RECORD
US_OM_CREATE

US_OM_DELETE

US_OH_MO0IFY

US.PAUSE
US_PIO_BIT_READ

US_PIO_BIT_SET

US.PIO.COITROL.HRITE

US_PIO_DATA.READ

US_PIO_DATA_HRITE

US_PIO_DISABLE

US.PIO.EIABLE
US_PIO_LOAD_SCALE

US_PI0_P0ST_DATA

US_PIO_SET_HODE

US.PIO.TOGGLE.BIT
US_PQST_EXT_DATA_VALUE
US_POST_ID

US_POST_LIST

US_POST_SELECTIOI_ID

US_POST_VALUE
OS_PTPS_IIPUT_REQUEST

US_PTPS_IITERP_HALT_PLAI

US_PTPS_IITERP_RUI_PUI
US_PTPS_0UTPUT_E1ABLE_SUBSYSTEM

US_PTPS_SELECT_AGEIT

US.PTPS.SELECT.SEISOR

US.RESET
US.RESUME

US_SCALAR_SEISOR.POST_READIIG

US_SEISOR_GET_ATTRIBUTES_READIIG

US_SEISOR_GET_READIIG

US_SEISOR_LOAD_FILTER

US_SEISOR_LOAD_FREQUEICY

US_SEISOR_LOAD_SAMPLIIG_SPEED

OS_SE1SOR_LOAD_TRAISFORM

US_SEIS0R_USE_HEASUREMEIT_U1ITS

US_SET_EXT_DATA_VALUE

US_SET_SYHBOLIC_ITEH_ATTR

US.SHUTDOWI

US_SPIIDLE_LOAD_SPEED

US_SPIIDLE_LOCK_Z

US.SPIIDLE.ORIEIT

US.SPIIDLE.RETRACT
US_SPIIDLE_RETRACT_TRAVERSE

US.SPIIDLE.START.TURIIIG
US_SPIIDLE_STOP_TURIIIG

US_SPIIDLE_USE_FORCE

US_SPIBDLE_USE_IO_FORCE

US.START
US.STARTUP

US.START.FILTER

US.START.TRABSFORH

US.STOP

US.STOP.FILTER

US.STOP.TRABSFORH

US.TDS.EXECUTE.PROGRAH

US.TDS.LOAD.ORIGIB

US.TDS.LOAD.RATE.DEFAULTS

US.TDS.LOAD.REFEREBCE.UBITS
US.TDS.LOAD.SELECTIOBS

US.TDS.LOAD.SEBSIBG.DEFAULTS

US.TDS.LOAD.USER

US.TDS.SELECT.OPERATIOB

US.TDS.SELECT.OPHODE

US.TDS.SELECT.PROGRAM
US.TK.DEFIBE.FRAHEWORK

US.TK.MACRO.CREATE

US.TK.MACRO.DELETE
US.TK.MACRO.MODIFY

US.TLC.ADJUST.AXIS

US.TLC.ARC.FEED

US.TLC.CMABGE.TOOL
US.TLC.GOAL.SEGMEBT

US _TLC_ I BCR.ACCELERATI OB

US.TLC.IBCR.VELOCITY
US.TLC.LOAD.ACCELERATIOB

US.TLC.LOAD.BASE.PARAMETERS
US.TLC.LOAD.COBTACT.FORCES

US.TLC.LOAD.COBTACT.FORCE.LIHIT

US.TLC.LOAD.COBTACT.TORqUE.LIHIT

US.TLC.LOAD.CYCLE.TIHE
US.TLC.LOAD.DELTA

US_TLC.LOAD.DOF

US_TLC.LOAD_FEED.RATE

US.TLC.LOAD.JERX

US.TLC.LOAD.JOIBT.LIMIT
US.TLC.LOAD.KIBEMATIC.RIBG.POSITIOBIBG.NODE

US.TLC.LOAD.LEBGTH.UBITS

US.TLC.LOAD.BEIGHBORHOOD
US.TLC.LOAD.OBJECT

US.TLC.LOAD.OBJECT.BASE

US.TLC.LOAD.OBJECT.OFFSET

US.TLC.LOAD.OBSTACLE.VOLUME

US.TLC.LOAD.PROXIMITY

US.TLC.LOAD.REUTIVE.POSITIOBIBG
US.TLC.LOAD.REPRESEBTATIOB.UBITS

US.TLC.LOAD.SEGMEBT.TIHE

US.TLC.LOAD.SEBSOR.FUSIOB.ORIEBT.LIMIT

US.TLC.LOAD.SEBSOR.FUSIOB.POS.LIHIT

US.TLC.LOAD.TERMIBATIOB.COBDITIOB
US.TLC.LOAD.TOOL.PARAMETERS

US.TLC.LOAD.TRAVERSE.RATE
US.TLC.BURBS.COBTROL.POIBT

US.TLC.BURBS.FEED
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US_TLC_IU11BS_KI0T_VECT0R

US_TLC_PARAMETRIC_2D_CURVE_FEED

US_TLC_PARANETRIC_3D_CURVE_FEED

US_TLC_SELECT_PUIE
US_TLC_SET_GOAL_POSITIOI

US_TLC_START_AUTOKATIC_HOTIOI

US_TLC_START_COHPLIAIT_MOTIOI

US_TLC_START_CUTTER_RADIUS_COHPaSATIOI

US_TLC_START_FIIE_I10TI0I

US_TLC_START_FORCE_POSITIOIIIG_HODE

US_TLC_START_GUARDED_MOTIOI

US_TLC_START_MAIUAL_I10TI0I

US_TLC_START_HOVE_UITIL_MOTIOI

US_TLC_START_STAIDOFF_DISTAICE

US_TLC_START_TRAVERSE_MOTIOI

US_TLC_STOP_AUTOMATIC_MOTIOI

US_TLC_ST0P_C0MPLIAIT_M0TI01

US_TLC_STOP_CUTTER_RADIUS_COI1PEISATIOI

US_TLC_ST0P_FIIE_(10TI0I

US_TLC.STOP_FORCE_POSITIOIIIG_IIODE

US_TLC.STOP_GUARDED_HOTIOI

US_TLC_STOP_MAIUAL_MOTIOI

US.TLC.STOP.NOVE.UITIL.HOTIOI

US_TLC_STOP_STAIDOFF.DISTAICE

US_TLC_ST0P_TRAVERSE_M0TI01

US_TLC_STRA IGHT.FEED

US_TLC_STRAIGHT.TRAVERSE
US_TLC_TELEOP_FORCE_REFLECTIOI.UPDATE

US_TLC_UPDATE_SEIS0R_FUSI01

US_TLC_USE_ABSOLUTE_POSITIOIIIG_HODE
US.TLC_USE_CARTESIAI_REFEREICE_FRAHE

US_TLC_USE_CUTTER_RADIUS_C0I1PEISATI01

US_TLC_USE_JOIIT_REFEREICE_FRAME

US_TLC_USE_KIIEMATIC_RIIG_POSITIOIIIG_HODE

US_TLC_USE_MODIFIED_TOOL_LEIGTH_OFFSETS

US_TLC_USE_I0RMAL_T00L_LE1GTH_0FFSETS
US_TLC_USE_IO_TOOL_LEIGTH_OFFSETS

US_TLC_USE_RELATIVE_P0SITI01IIG_I10DE

OS_TLC_USE_REPRESEITATIOI_U1ITS

US_TLC_OSE_TOOL_TIP_COORDIIATE_FRAIIE

US_TLC_USE_HRIST_COORDIIATE_FRAHE

US_TLC_ZER0_PR0GRA11_0RIGII

US_TLC_ZERO_RELATIVE_POSITIOIIIG

US_TPS_C0ITACT_H0TI0I

US_TPS_EIABLE
US_TPS_FREESPACE_HOTIOI

US_TPS_GUARDED_MOTIOI

US_TPS_HARK_EVEIT

US.TPS _SELECT.FEATURE

US_TPS_SELECT.HATERIAL
US.TPS.SELECT.TOOL
US.TPS.SET.SUPERVISDRY.HODE

US.TRD.ADD.ELEHEIT
US.TRD.DELETE

US.TRD.DELETE.ITEM
US.TRD.ERASE

US.TRD.FIID
US.TRD.HODIFY

US.TRD.IAHE.ITEM
US.TRD.IEXT
US.TRD.OPEI

US.TRD.PREVIOUS

US.TRD.RECORD
US.TRD.RECORD.OFF

US.TRD.RECORD.OI

US.TRD.SET.CARTESIAI.HODE

US.TRD.SET.JOirr.HODE

US.USE.AXIS.HASK

US.USE.EXT.ALGORITHH

US.USE.FEATURE

US.USE.MACRO

US.USE.OBJECT

US.USE.PLAI

US.USE.SELECTIOI

US.VECTOR.SEISOR.GET.READIIG

US.VECTOR.SEISOR.POST.READIIG

US.ZERO

94



UTAP/WD Standard Interface Environment

H.3 Interface Source Listings

H.3.1 Disclaimer

//================= utap.disclaimer.h ================:======

//

//

// Unified Telerobotic Architecture Project (UTAP)

II Interface Definitions

// Release: 1.0

// Revision 0.0

// Release Date: 24-May-1994

//

//

tdefine UTAP.VERSIOI 1.0

//

// DISCLAIMER:

//

// This softsare eas produced by the lational Institute of St 2aidards and

// Technology (IIST) , an agency of the U.S. government, and by statute is

// not subject to copyright in the United States. Recipients of this

// softsare assume all responsibility associated with its operation,

// modification, maintenance, and subsequent redistribution.

//

//

/•

Modification History:

06/18/94 jlm Public Release of Messages

05/23/94 jlm Modified definitions for greater consistency.

04/24/94 jlm Created

•/

H.3.2 Generic Definitions

//========== generic_types .h =~~~~=~==~=~ == ~

//

// FILE : generic_types .h

//

// PURPOSE : This file contains a list of domain-independent types

//

// DATE : lovemeber 17, 1993

//

//

tifndef UTAP.GEIERIC.DEFIIITIOIS

•define UTAP.GEIERIC.DEFIIITIOIS

//

// MODE.DIRECTIVES - class to define enumerated set of process modes
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//

class NODE.DIRECTIVE {

enuffl {

abort = 0x10001

halt = 0x10002

pause = 0x10004

resume = 0x10008

reset = 0x10011

estop = 0x10012

report = 0x10014

start = 0x10018

shutdown = 0x10020

hold = 0x10021

reinitialize = 0x10022

} :

//

// GE1ERIC_DIRECTIVES - class of enumerated set of

//

class GEIERIC.DIRECTIVES : public HODE.DIRECTIVE {

enum

{

no.change = 0x0000,

no.selection = 0x0001,

delegate.selection = 0x0002,

no_op = 0x0004

} :

};

// use same parameter

// parameter not required

// let subordinate decide parameter

// slot for commandless mode directive

//

// LOGICAL TYPE - enumerated list of logical states

//

typedef enum {

tif ! defined (TRUE)

TRUE = 1,

tendif

•if *defined(FALSE)

FALSE = 0 ,

tendif

ALL = -1 , // good for bitmask

} LOGICAL;

//

// USER.TYPE

//

typedef enum USER_TYPE {

ATTEIDAIT = 1

OPERATOR = 2

PROGRAMMER = 3

MAIAGER = 4

MAIITEIAICE = 5

SYSTEMS = 6

ROOT = 8

} USER.TYPE;

//

// HODE.STATE

//

typedef enum {

calibration

diagnostic
maintenance

normal.operation

safe

shutdown

= 0x40001,
= 0x40002,
= 0x40004,
= 0x40008,
= 0x40010,
= 0x40012,
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initialize

training

teleoperation

shared

}

= 0x40014,
= 0x40018,
= 0x40020,
= 0x40020

MODE.STATE;

//

// RESULT.TYPE -

//

typedef enum {

enumerated set of result possibilities

failed = -1,

incomplete = 0,

succeeded = 1

,

partial.sucess = 2

// exception = -2,

// exception is different kind of failure

} RESULT.TYPE

;

//

// STATE_TYPE - enumerated set of

//

typedef enum {

finished

,

ready

,

halted

,

suspended

,

aborted,

resetting

,

exception

,

executing

/* executing.forveu'd
,
/* future •/

/ executing.backward, /• future •/

}

//

// STATUS.TYPE - synonym of STATE.TYPE

//

typedef STATE.TYPE STATUS.TYPE;

//

// REQUEST.TYPE - enumerate set of request states

//

typedef enum {

request.started

,

request.pend ing

,

request.complete

,

request.blocked

,

request.failed

,

request.aborted

} REQUEST.TYPE;

//or is done better ? , see result.type

// same as running

STATE.TYPE

;

//

// TIME - get POSIX definition

//

typedef double TINE;

//

// TINELIIE - struct definition of time fr^une

//

struct TINELIIE {

TINE duration

;

// how long to take

TINE earliest.start

;

// earliest to start

TINE latest.start

;

// latest to start

TINE earliest.completion

;

// earliest to finish
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TIME latest.completion ; // latest to finish

};

//

// SEVERITY.TYPE - enumerated definition of severity types

//

typedef enum {

fatal

,

severe

,

sarning,

informative

} SEVERITY.TYPE;

//

// POSITIOSIIG_TYPE - enumerated definition of positioning types

//

typedef enum {

absolute

,

incremental

,

jog.

relative

,

} POSITIOIIIG.TYPE;

•endif

H.3.3 Classification

//================= utap_classification.h ===============:
// NODULES ACROIYHS:

//

//

// TDS - task description and supervision

// TPS - task program sequencer

// TPS - parent program sequencer

// TLC - task level control

// DC - device control

//

// 01 - operator interface

// OX - object knowledge

// TK - task knowledge

// TD - trajectory description

// SGD - status graphics displays

// SS - subsystem simulators

// AD - analysis and diagnosis

// VS - virtual sensor

// DB - data base

// SC - sensor control

// AC - axis servo control

//

// UTAP Classification Typing

//

tifndef UTAP.CLASSIFICATIOI

•define UTAP.CLASSIFICATIOI

enum { .JOYSTICK,

_F_R_JOYSTICK,

.PEIDAIT

,

.PAIEL,

.WIIDOWS

,
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}

eniim { .TEACH = 0x01

,

.SCRIPTED = 0x02,

.PROGRAHHABLE = 0x04

,

}

enum { .MAIIPULATIOI = 0x01

,

.lAVIGATIOB = 0x02,

.TOOLIIG = 0x04,

.HACHIIIIG = 0x08,

// obviously more

}

enum { .PICK.PLACE = 0x01

,

.DEXTROUS = 0x02,

//???

}

enum { .TELEOP = 0x01

,

.GUIDED = 0x02,

.AUTOIOMOUS = 0x04

,

//???

}

enum { .VERTICAL = 0x01

,

.HORIZOITAL = 0x02,

.TURIIIG = 0x04,

.EDM = 0x08

,

//???

}

enum { .COITACT = 0x01

,

.lOICOITACT = 0x02

,

}

0x01,

0x02,

0x03,

0x04,

enum { .DEIAVIT.HARTEIBURG =

.SCARA

.GAITRY

.STEHART.PLATFORM =

// obviously more

US.OI.MODULE.TYPES

;

US.TD.HODULE.TYPES

;

US.TPS.HODULE.TYPES

;

US.TPS.HAIIPULATIOI.TYPES

;

US.TPS.lAVIGATIOl.TYPES

;

US.TPS.MACHIIIIG.TYPES

;

US.TPS.TOOLIIG.TYPES

;

US.ROBOT.TYPES;

enujD { .SPRAY = 0x01,

.FIIISH = 0x02,

} US.TOOL.TYPES

:

enum .FTS = 0x1

,

.IMAGE = 0x2,

.PROBE = 0x3,

.SWITCH = 0x4,

.RAIGE = 0x5,

} US.SEISOR.TYPES

;

Bendif

H.3.4 Protocol
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//

// UTAP Protocol Typing

//

struct NsgTransmitHeader {

int byte_order; // big/little endian?

int command.num; // increment with every nee command

// any others??

};

struct NsgAckHeader {

int byte.order;

int echo.message.num;

int health

;

// any others??

MDDE.DIRECTIVE mode; // combine mode x command

// big/little endiain?

// acknosledge receipt

// health of device - mimics Lords Sensor

typedef enum {

read.only

,

write.only

,

read_urite

} ACCESS.TYPE

;

typedef int CHAIIEL ;

typedef enum {

SEID,

RECEIVE

} COHHUIICATIOI.DIRECTIOI.TYPE;

typedef enum { local_procedure_call

,

remote_procedure_call

,

sv.interrupt

,

event

,

signal

,

HNS,

netsork.comm,

shared.memory

,

message.queue

,

mailbox

,

SP_60

,

SERCOS

,

CAl,

} COIIECTIOI.TYPE;

H.3.5 Information Model

//========= •—=— utap_data_defs .h ==

•ifndef UTAP_DATA_DEFS
tdefine UTAP.DATA.DEFS

tinclude “generic.defs.h"

typedef

enum { X.AXIS = 0x01,

Y.AXIS = 0x02,
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Z.AXIS = 0x04,

POSITIOI.AXES = 0x07,

ROLL.AXIS

PITCH.AXIS

YAW.AXIS

ORIEITATIOl.AXES =

0x08,

0x10,

0x20,

0x38,

JOIITl.AXIS

J0IIT2_AXIS
J0IIT3_AXIS

J0IIT4_AXIS

J0IIT5_AXIS

J0I1T6_AXIS

J0IIT7_AXIS

J0IIT8_AXIS

J0IIT9_AXIS

JOIITIO.AXIS

0x01,

0x02,

0x04,

0x08,

0x10,

0x20,

0x40,

0x80,

0x100,

0x200

,

// Modifiers

ELBOW

WRIST

TOOLTIP

0x1000,

0x2000

,

0x4000

,

} AxisNask;

typedef

enum { unitless.u

moters.u
grams.u

litors.u

seconds.u

radians.u
angles.u
nestons_u

celsius.u

pascal.u

lumin.u

psi_u

rpm_u

Hz_u

cardinal.u

updown.u

0x00,

(1L«1)

,

(1L«2) ,

(1L«3) ,

(1L«4) ,

(1L«5) ,

(1L«6) ,

(1L«7) ,

(1L«8) ,

(1L«9) ,

(1L«10) ,

(1L«11) ,

(1L«12) ,

(1L«13) ,

(1L«14) ,

(OxlL « 33),

// lon-SI Modifier

nano.u =

micro.u =

milli_u =

kilo.u =

nonSI.Bodifier =

(1L«20)

,

(1L«21)

,

(1L«22)

,

(1L«23) ,

(OxFL « 20)

,

// lon-SI altogether

inches.u =

feet_u =

pounds.u =

English.units =

(1L«30)

,

(1L«31)

,

(1L«32) ,

(OxFL « 30),

} Measurement_unit8_type

;

typedef

enuin {

char_t

short.t

0x0100001

,

0x0100002

,
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int_t = 0x0100003,

long_t = 0x0100004

,

u_char_t = 0x0100005

,

u_8hort_t = 0x0100006,

u_int_t = 0x0100007

,

u_long_t = 0x0100008

,

float.t = 0x0100009,

double.t = OxOlOOOOA

,

array_t = 0x0200000

,

ptr_t = 0x0400000

,

cartesian_t S 0x1000000,

spherical_t = 0x2000000

,

cylindrical_t = 0x3000000,

H_niatrice_t = 0x4000000

,

// naop homogeneous transform matrix
transfonn_t = 0x4000000

,

// ibid

Euler_t = 0x5000000

,

// Euler Angles

ZYXEuler.t = 0x5000000

,

// ZYX Euler Angles
ZYZEuler.t = 0x6000000

,

// ZYZ Euler Angles

Quaternion_t = 0x7000000

,

// Quaternian Angles
Equiv_Angle_Axis_t = 0x8000000

,

// Equivalent Angle Axis
RPY.t 0x9000000

,

// Roll Pitch Yaw

geometry.t = 0x10000000,

topology_t = 0x20000000,
material.t = 0x30000000,

shape.t 0x40000000,
pattern_t = 0x50000000,

kinematics.t = 0x60000000,

bitmask.t s 0x100000000,

} Hepresentation.units.type

;

//

// Object type

//

struct Object_type {

int id;

.location. = 0x80000

.part. = 0x80001

.simple. = 0x80002

.robot. s 0x80003

.tool. = 0x80004

.list. = 0x80005

.module. = 0x80006

} type;

};

//

// Attribute Types - Enuneration
//

typedef enuin {

.object.name. = 0x0000001

.attribute.name. = 0x0000002

.material.name. = 0x0000004

.time. = 0x0000008

.position. = 0x0000040

.orientation. = 0x0000080

.pose. = 0x0000100

.velocity. = 0x0000200

.acceleration. = 0x0000400
-jerk. = 0x0000800
.force. = 0x0001000
.torque. = 0x0002000
.temperature. = 0x0004000



UTAP/WD Standard Interface Environment

.pressure.

.viscosity.

.luminemce.

.humidity.

.flow.

.hardness.

.roughness.

.mass.

.geometry.

.topology.

.shape.

.pattern.

.material.

.kinematics.

0x0008000

,

0x0010000,

0x0020000

,

0x0040000

,

0x0080000

,

0x0100000,

0x0200000

,

0x0400000

,

0x01000000,

0x02000000

,

0x04000000

,

0x08000000

,

0x10000000,

0x20000000

,

= 0x100000000,
= 0x200000000,
= 0x400000000,
= 0x800000000,
= 0x1000000000

// Bhere does this info belong?

.link.length.

.link.twist.

.link.offset.

.link.mass.

.link.encoder.ticks.

#if 0

// lot supported from hereon in

.elasticity,

.spring.constant.

,

.illumination.

,

.pitch.

,

.loudness.,

.intensity.

,

.amplitude.

,

.frequency

.count.

,

.period.

,

.phase.

,

•endif

} Attribute. t;

//

// State Modifier of Attribute

//

typedef enum {

all = -1,

translational = 0x00001,

rotational = 0x00002,

// sensing modifiers - more get oriented

actual = 0x00100,

desired = 0x00200,

meuc = 0x00400

,

min = 0x00800

,

last = 0x01000,

//

//

//

//

positiong modifier - more set oriented

absolute

relative

incremented

// jog

} Hodifier.t;

= 0x02000,
= 0x04000,
= 0x08000,
= 0x10000,

//

// Generic Attribute Data Storage

//

tinclude <sys/types .h>
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struct gonoric_value_a {

public

:

union {

char c

;

short s

;

int i

;

long 1;

u.char uc

;

u.short us

;

u.int ui

;

u.long ul;

float f

;

double d;

void * heap

;

} value, min, max;

// variable data folios in heap format

or get query routing destination

// post response to questioner

// posting response values to cental obj knosl

// get next values from obj knosl

// use data as delta offset

// to alter cmd dx,dy ,dz,rx,ry ,rz

// Bitmask to indicate destination for response

// 0 means continuous, 1= one read,...

// frequency of update

// optional delta offset position

//

// General Purpose

//

•define US.POST.ID 60

struct us_post_id_msg_t {

int msgid;

int id;

};

•define US_GET_OBJECT_ID 51

struct us_get_object_id_msg_t {

int msgid

;

char name [128]

;

};

//

// ROUTE - struct to define read

//

struct ROUTE {

enum { .STATUS = 1

,

_IIRITE_T0_0K = 2,

_READ_FR0M_0K = 4

,

_DELTA_OFFSET = 8

,

.ALTER = 8

,

} type;

int times;

TIRE update.period;

int offset

;

};

•define US.USE.OBJECT 52

struct us.use.object msg.t {

int msgid;

int id;

};

•define US.GET.FEATURE 63

struct us.get.feature msg.t {

int msgid;

char name [128]

;

ROUTE r;

};

•define US.USE.FEATURE 64

struct us.use.feature.msg.t {

int msgid;

int id

;
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#define US.GET.VALUE 55

struct U8_get_value_msg_t {

int nsgid;

ROUTE r;

Attribute.t items;

Modifier_t modifiers;

•define US_POST_VALUE 56

struct us_post_value_msg_t {

int msgid

;

int id;

Attribute.t item;

Hodifier.t modifier;

Representation.units.type rep;

Measurement.units.type units

;

generic.value.a value;

};

•define US.GET.LIST 57

struct us_get_list_msg_t {

int msgid;

ROUTE r;

Attribute.t items;

Modifier. t modifiers;

};

•define US.POST.LIST 58

struct us.post.list.msg.t {

int msgid;

Attribute.t items;

Nodifier.t modifiers;

generic.value.a *values

;

//

//

// Object Knosledge Specific Attribute Messages

//

//

•define US.ATTRIBUTE.POST.RESPOISE 1600

struct us.attribute.post.response.msg.t {

int msgid

;

int id

;

Attribute.t item;

Modifier.t modifier;

int size;

Representation.units.type rep;

Measurement.units.type units;

generic.value.a value;

•define US.ATTRIBUTE.GET.TIME 1601

struct us.attribute.get.time.msg.t {

int msgid;

int id;

ROUTE r;

Modifier.t modifier;

Measurement.units.type desired.units

;

};

•define US.ATTRIBUTE.GET.POSITIOl 1602

struct us.attribute.get.position.msg.t {

int msgid

;
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int id;

ROUTE r;

(lodifier_t modifier;

Representation_units_type rep = double_t

;

Neasurement_units_type units = meters.u;

tdefine US_ATTRIBUTE_GET_ORIEHTATIOI 1603

struct us_attribute_get_orientation_msg_t {

int msgid;

int id;

ROUTE r;

Hodifier_t modifier;

Heasurement_units_type desired.units = radians.u;

};

tdefine US_ATTRIBUTE_GET_POSE 1604

struct us_attribute_get_pose_msg_t {

int msgid;

int id;

ROUTE r;

Ilodifier_t modifier;

Measurement_units_type desired_pos_units

;

Measurement_units_type desired_rot_units

;

};

tdefine US_ATTRIBUTE_GET_VELOCITY 1605

struct us_attribute_get_velocity_msg_t {

int msgid;

int id

;

ROUTE r;

Hodifier_t modifier;
Measurement_units_type desired.units = meters.u;

};

tdefine US_ATTRIBUTE_GET_ACCELERATIOI 1606

struct us_attribute_get_acceleration_msg_t {

int msgid

;

int id;

ROUTE r;

Hodifier.t modifier;

enum { time_to_accel_u,

meters_per_sec_per_sec

} desired.units = meters_per_sec_per_sec ;

};

tdefine US_ATTRIBUTE_GET_JERK 1607

struct us_attribute_get_jerk_msg_t {

int msgid

;

int id;

Modifier_t modifier;

enum { meters_per_sec_per_8ec } units;

};

tdefine US_ATTRIBUTE_GET_FORCE 1608

struct us_nttribute_get_force_msg_t {

int msgid;

int id;

ROUTE r;

Modifier_t modifier;

Neasurement_units_type desired.units = nestons.u;

};

tdefine US_ATTRIBUTE_GET_TORQUE 1609

struct us_attribute_get_torque_msg_t {

int msgid

;
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int id;

ROUTE r;

Hodifier_t modifier;

enum { neBtons_per_meter } desired.units

;

define US_ATTRIBUTE_GET_MASS 1610

struct U8_attribute_get_mass_msg_t {

int msgid;

int id;

ROUTE r;

Modifier_t modifier;

int size;

Heasurement_units_type desired_units = grams.u;

};

define US_ATTRIBUTE_GET_TEMPERATURE 1611

struct us_attribute_get_temperature_msg_t {

int msgid;

int id;

ROUTE r;

Modifier.t modifier;

Neasurement_unit8_type desired.units = celsius_u;

};

define US_ATTRIBUTE_GET_PRESSURE 1612

struct us_attribute_get_pre8sure_msg_t {

int msgid

;

int id;

Nodifier.t modifier;

Neasurement_unit8_type desired.units = pascal.u;

};

define US_ATTRIBUTE_GET_VISCOSITY 1613

struct us_attribute_get_vi8cosity_m8g_t {

int msgid;

int id;

ROUTE r;

Modifier_t modifier;

enum { mPa.per.second} desired.units

;

};

define US.ATTRIBUTE.GET.LUHIIAICE 1614

struct us_attribute_get_luminance_m8g_t {

int msgid

;

int id;

ROUTE r;

Modifier_t modifier;

Neasurement_units_type desired.units = lumin.u;

};

define US_ATTRIBUTE_GET_HUI1IDITY 1615

struct u8_attribute_get_humidity_msg_t {

int msgid;

int id;

ROUTE r;

Nodifier.t modifier;

enum {grams_per_meter,cubed } desired.units

;

};

define US_ATTRIBUTE_GET_FLOU 1616

struct us_attribute_get_flow_m8g_t {

int msgid;

int id;

ROUTE r;
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Nodifier.t modifier;

Neasurement_units_type desired.units

;

fdefine US_ATTRIBUTE_GET_HARDIESS 1617

struct us_attribute_get_hardness_msg_t {

int msgid;

int id;

ROUTE r;

Modifier_t modifier;

Heasurement_units_type desired_units

;

};

#define US_ATTRIBUTE_GET_ROUGHIESS 1618

struct us_attribute_get_roughness_msg_t {

int msgid;

ROUTE r;

Modifier_t modifier;

Measurement_units_type desired_units

;

tdefine US.ATTRIBUTE.GET.GEOMETRY 1619

struct us_attribute_get_geometry_msg_t {

int msgid;

int id

;

ROUTE r;

Modifier.t modifier;

Heasurement.units.type desired_units

;

};

tdefine US.ATTRIBUTE.GET.TOPLOGY 1620

struct us_attribute_get_topology_msg_t {

int msgid;

int id;

ROUTE r;

Nodifier.t modifier;

};

tdefine US_ATTRIBUTE_GET_SHAPE 1621

struct us_attribute_get_shape_msg_t {

int msgid;

int id;

ROUTE r;

Hodifier_t modifier;

};

tdefine US_ATTRIBUTE_GET_PATTERI 1622

struct us_attribute_get_pattern_msg_t {

int msgid;

ROUTE r;

Nodifier_t modifier;

};

tdefine US_ATTRIBUTE_GET_MATERIAL 1623

struct us_attribute_get_material_t {

int msgid;

ROUTE r;

Hodifier_t modifier;

};

tdefine US_ATTRIBUTE_GET_KIIEMATICS 1624

struct us_attribute_get_kinematics_t {

int msgid;

ROUTE r;

Nodifier.t modifier;

};
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tendif

H.3.6 Interfaces

#ifndef UTAP.IITERFACE.DETIIITIOIS

tdefine UTAP_IITERFACE_DEFI>ITIOIS

finclude "generic_defs.h"

finclude "utap.info.model .

h"

tinclude "utap_data_defs .h"

// These types must be defined - there are stubbed out for nos

tinclude "undefined_types.h"

/**

This header file defines the interfaces for communication betaeen

modules in the Generic C5 Architecture.

Generic Telerobotic Architecture for C-5 Industrial Processes

contains modules of uhich the follosing have acronyms:

NODULES lANIIG/ACROIYNGS:

REMOTE

:

RSC - robot servo control

TOOL - tool control
SEISOR- sensor control

PIO - programmable io

TLC - task level control

CLC - closed loop control

DB - data base is part of TLC k CLC
VS - virtual sensor

LOCAL

:

TDS - task description and supervision
TK - task knowledge

TRD - trajectory description
PTPS - parent task program sequencer

TPS - task program sequencer
01 - operator interface

OK - object knovledge
OC - object calibration
ON - object modeling
SGD - status graphics displays
SS - subsystem simulators

ADS - analysis and diagnosis
*/

A little table of contents;

GENERIC

:

101 - 199

ERROR; -100 - -200

ROBOT.SERVO

:

200 - 299

TOOL: 300 - 399

SEISOR: 400 - 499

PIO: 500 - 599

TLC: 600 - 699

DB: 700 - 799

VS: 800 - 899

TDS: 1000 - 1099

TK: 1100 - 1199

TRD: 1200 - 1299

PTPS: 1300 - 1399

TPS: 1400 - 1499

01: 1500 - 1599
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OK 1600 - 1699

OC 1700 - 1799

ON 1800 - 1899

SGD: 1900 - 1999

ADS: 2000 - 2099

SS; 2100 - 2199

/
//

//

// Generic US messages to any Module

// To be verified against RIA Standard R15-06-1992

//

tdefine GEIERIC 100

// Hardvare State/Node Control

tdefine US.STARTUP 101

struct us_startup_msg_t {

int msgid;

};

tdefine US.SHUTDOHI 102

struct us_shutdoBn_msg_t {

int msgid

;

};

tdefine US.RESET 103

struct us_reset_msg_t {

int msgid

;

enum { HU = 1

,

SU = 2,

} type;

long mask

;

};

tdefine US.EIABLE 104

struct us_enable_msg_t {

int msgid

;

int axis;

tdefine US.DISABLE 105

struct us_disable_msg_t {

int msgid;

int axis;

tdefine US.ESTOP 106

struct us_estop_msg_t {

int msgid

;

};

//hardware powered up into safe state

// bit-map of units to reset

// sensor/effector(s) turned on

// sensor/effectorCs) turned off

// emergency sensor/effector off

// Software State/Node Control

tdefine US.START 107

struct us_start_nisg_t {

int msgid;

};

tdefine US_ST0P 108

struct us_stop_msg_t {

int msgid

;

};

tdefine US.ABORT 109

struct us_abort_msg_t {

int msgid;

};
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idefine US.HALT 110

struct U8_halt_m8g_t {

int msgid;

};

tdefine US.IIIT 111

struct us_init_msg_t {

int msgid;

};

fdefine US.HOLD 112

struct us_hold_msg_t {

int msgid

;

};

fdefine US.PAUSE 113

struct us_pause_msg_t {

int msgid

;

};

fdefine US.RESUHE 114

struct U8_resume_msg_t {

int msgid;

};

fdefine US.ZERO 115

struct u8_zero_m8g_t {

int msgid;

long mask; // bit-map of units to zero

};

fdefine US.BEGII.SIIGLE.STEP 116

struct U8_begin_8ingle_step_m8g_t {

int msgid;

// require more explicit info here

};

fdefine US.IEXT.SIIGLE.STEP 117

struct us_next_8ingle_8tep_msg_t {

int msgid;

// require more explicit info here

};

fdefine US_CLEAR_SIIGLE_STEP 118

struct us_clear_8ingle_step_msg_t {

int msgid

;

};

// Interface Programming Constructs

fdefine US.BEGII.BLOCK 119

struct us_begin_block_ra8g_t {

int msgid;

};

fdefine US.EID.BLOCK 120

struct us_end_block_m8g_t {

int msgid;

};

fdefine US.BEGII.PLAl 121

struct us_begin_plan_msg_t {

int msgid;

char name [128]

;
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•define US_EID_PLAI 122

struct U8_end_plan_msg_t {

int msgid;

};

•define US_USE_PLAH 123

struct us_use_plan_iiisg_t {

int DSgid;

};

•define US.BEGIB.NACRO 124

struct us_begin_macro_msg_t {

int msgid;

char name [128];

};

•define US_EID_NACRO 125

struct us_end_macro_msg_t {

int msgid

;

};

•define US_USE_MACRO 126

struct u8_execute_macro_msg_t {

int msgid;

char name [128]

;

};

•define US_BEGII_EVEIT 127

struct us_begin_event_msg_t {

int msgid;

char name [128]

;

enum { .FROM.START = 1,

_FR0H_EID = 2

,

_AT_TIHE = 3,

_AT_HARK = 4

,

_WITH_EXCEPTIOI = 5,

} type;

TIME t;

// require step number in block?

•define US_EID_EVEIT 128

struct us_end_event_m8g_t {

int msgid

;

};

•define US.HARK.BREAKPOIIT 129

struct u8_mark_breakpoint_msg_t {

int msgid; // softsare pause

};

•define US_HARK_EVEIT 130

struct us_mark_event_msg_t {

int msgid

;

char name[128]; // place event marker

};

•define US_GET_SELECTIOI_ID 131

struct U8_get_8election_id_msg_t {

int msgid

;

char name [128]; // if symbolic get device or module numeric id

};

•define US_POST_SELECTIOI_ID 132

struct U8_po8t_8election_id_msg_t {
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int lesgid;

int id;

tdefine US_USE_SELECTIOB 133

struct us_u8e_8election_msg_t {

int msgid;

int id; // ohich device or module, start with 1

};

•define US_USE_AXIS_MASK 134

struct U8_U8e_axis_ma8k_msg_t {

int msgid;

AxisMask axis

;

};

// lee Message EXTension Facility

tdefine US_USE_EXT.ALGORITHH 135

struct us_use_ext_algorithm_msg_t {

int msgid;

int slot ; // slot holder

};

tdefine US_LOAD_EXT_PARAMETER 136

struct us_load_ext_parameter_msg_t {

int msgid;

int slot ; // slot id

};

tdefine US_GET_EXT_DATA_VALUE 137

struct us_get_ext_data_value_msg_t {

int msgid;

int slot
; // slot id

ROUTE r;

};

tdefine US_POST_EXT_DATA_VALUE 138

struct us_post_ext_data_value_m8g_t {

int msgid;

int slot; // slot id

void • data; // pointer into heap

};

tdefine US_SET_EXT_DATA_VALUE 139

struct us_set_ext_data_value_msg_t {

int msgid;

int slot; // slot id

void • data; // pointer into heap

};

// Status

tdefine US_LOAD_STATUS_TYPE 140

struct us_load_statu8_m8g_t {

int msgid;

enum { SERVO

,

ALIVE,

ACK.IACK,

lOIE,

} type;

};

tdefine US_LOAD_STATUS_PERIOD 141

struct us_load_8tatu8_period_msg_t {

int msgid;

double time; // seconds
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};

tdefine US.GEEERIC.STATUS.REPORT 142

struct u8_generic_status_report_t {

int msgid;

STATUS.TYPE status;

double progress; // percent completion

enum {

exception = -2,

failed = -1

,

incomplete = 0,

succeeded = 1

,

partial.success = 2,

progressing = 3,

} type;

enum {

exception_process_lost = 10,

exception_deadlock = 11,

exception_resource_unavailable = 12,

exception_re80urce_tip_deunaged = 13,

exception_insufficient_capacity = 14,

} explanation;

void * command_echo

;

};

//

// Errors

// First 100 are negations of Posix errno.h convention

//

tdefine ERRORS -200

tdefine US_ERROR_COmAID_IOT_IHPLEMEITED -200

struct us_error_command_not_implemented_msg_t {

int msgid

;

};

•define US_ERRDR_C0»1AID_EITRY -201

struct us_error_command_ontry_msg_t {

int msgid;

int field.num;

};

•define US_ERROR_DUPLICATE_IAHE -202

struct us_error_duplicate_name_msg_t {

int msgid;

};

•define US_ERROR_BAD_DATA -203

struct us_error_command_bad_data_msg_t {

int msgid;

int field.num;

};

•define US_ERR0R_10_DATA_AVAILABLE -204

struct us_error_no_data_available_msg_t {

int msgid

;

int field_num;

};

•define US_ERROR_SAFETY_VIOLATIOI -205

struct us_error_8afety_violation_msg_t {

int msgid

;

int field.num;

};

•define US_ERROR_LIHIT_EXCEEDED -206
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struct us_error_limit_exceeded_rasg_t {

int msgid;

Attribute_t attr;

};

define US.ERROR.OVER.SPECIFIED -207

struct us_orror_over_8pecified_insg_t {

int msgid;

int axis_number:

};

define US_ERROR_UIDER_SPECIFIED -208

struct us_error_under_8pecified_msg_t {

int msgid

;

};

//

//

II US messages to ROBOT SERVO */

//

define AXIS.SERVO 200

// Hode Definitions

define US_AXIS_SERVO_USE_AIGLE_UIITS 201

struct us_axis_8ervo_u8e_angle_units_msg_t {

int msgid;

};

define US_AXIS_SERV0_USE_RADIAI_U1ITS 202

struct u8_axi8_servo_u8e_radian_unit8_msg_t {

int msgid;

};

define US_AXIS_SERV0_USE_ABS_P0SITI0I_(10DE 203

struct us_ajci8_8ervo_u8e_abs_position_mode_msg_t {

int msgid;

};

define US_AXIS_SERV0_USE_REL_P0SITI0I_H0DE 204

struct us_axi8_8ervo_use_rel_position_mode_msg_t {

int msgid;

};

define US_AXIS_SERV0.USE.ABS_VEL0CITY_M0DE 205

struct u8_axi8_servo_u8e_ab8_velocity_mode_msg_t {

int msgid;

};

define US_AXIS_SERVO_USE_REL_VELOCITY_MODE 206

struct us_axi8_8ervo_use_rel_velocity_mode_msg_t {

int msgid;

};

define US_AXIS_SERVO_USE_PID 207

struct us_axi8_servo_use_pid_msg_t {

int msgid;

int joint .mask;

};

define US.AXIS.SERVO.USE.FEEDFORWARD.TORQUE 208

struct us.axis.servo.use.ff.msg.t {

int msgid;

};

define US.AXIS.SERVO.USE.CURREIT 209
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struct u8_axis_servo_u8e_current_msg_t {

int msgid;

};

tdefine US_AXIS_SERVO_USE_VOLTAGE 210

struct us_axis_servo_u8e_voltage_in8g_t {

int msgid

;

};

// dof of in shich to apply springs

// spring gains

// max velocity due to springs

tdefine US_AXIS_SERVO_USE_STIFFIESS 211

struct us_ajcis_8ervo_use_stiffness_msg_t {

int msgid;

int spSelVect

;

double * gains

;

double * spMaxVel;

};

tdefine US_AXIS_SERVO_USE_COMPLIAICE 212

struct us_axi8_8ervo_u8e_compliance_msg_t {

int msgid;

};

tdefine US_AXIS_SERVO_USE_IMPEDAICE 213

struct us_axis_8ervo_use_impedance_msg.t {

int msgid;

};

tdefine US_AXIS_SERVO_START_GRAVITY_COMPEiSATIOI 214

struct us_axis_servo_start_gravity_compensation_msg_t {

int msgid;

};

tdefine US_AXIS_SERV0_ST0P_GRAVITY_C0HPEISATI0I 215

struct us_axis_servo_stop_gravity_compen8ation_msg_t {

int msgid;

};

tdefine US_AXIS_SERV0_L0AD_D0F 216

struct u8_axi8„8ervo_load_dof_m8g_t {

int msgid;

int dof;

};

tdefine US_AXIS_SERVO_LOAD_CYCLE_TIHE 217

struct u8_axis_8ervo_load_cycle_time_msg_t {

int msgid

;

double time;

};

tdefine US_AXIS_SERVO_LOAD_PID_GAII 218
struct u8_axi8_8ervo_load_pid_gain_msg_t {

int msgid;

int joint.mask;

double *p: // load proportional gain

double •i; // load integral gain
double •d; // load derivative gain

};

tdefine US_AXIS_SERV0_L0AD_J0IIT_LIHIT 219

struct us_axis_servo_load_joint_limit_msg_t {

int msgid

;

int axis_bit_mask

;

double *jmaxLimit; // maximum joint software limits

double *jminLimit ; // minimum joint software limits

};
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Wefine US_AXIS_SERVO_LOAD_VELOCITY_LIHIT 220

struct u8_axis_8ervo_load_velocity_limit_msg_t {

int msgid;

int axis_bit_mask

;

double •jvelLimit; // maximum joint velocity limits

};

•define US_AXIS_SERVO_LOAD_GAII_LIHIT 221

struct us_axis_servo_load_joint_gain_limit_mag_t {

int msgid;

double •jaGain;

};

•define US_AXIS_SERVO_LOAD_DAHPIIG_VALUES 222

struct us_axis_servo_load_damping_values_msg_t {

int msgid;

double ejaDeunp; // damping values for impedance

};

//

// Command Data Node

//

•define US.AXIS.SERVO.HOME 250

struct us_axis_servo_home_msg_t {

int msgid

;

int axis;

};

•define US_AXIS_SERVO_SET_BRAKES 251

struct u8_axis_servo_set_brakes_msg_t {

int msgid;

int axis_bit_mask

;

};

•define US_AXIS_SERVO_CLEAR_BRAKES 252

struct us_axi8_8ervo_clear_brakos_msg_t {

int msgid;

int axis.bit.mask

;

};

•define US_AXIS_SERVO_SET_TORQUE 253

struct u8_axis_8ervo_set_torque8_msg_t {

int msgid;

int axis.bit.mask

;

double *joint_torques;

};

•define US_AXIS_SERVO_SET_CURREIT 254

struct u8_axi8_8ervo_8et_current_m8g_t {

int msgid;

double ejoint.currents

;

};

•define US_AXIS_SERVO_SET.VOLTAGE 255

struct us_axis_servo_8et_voltage_m8g_t {

int msgid

;

double •joint_voltages

;

};

•define US_AXIS_SERVO.SET_POSITIOI 256

struct us_axi8_servo_8et_position_msg_t {

int msgid;

double ejoint.position

;

};

•define US_AXIS_SERVO_SET_VELOCITY 257
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struct U8_axi8_8ervo_8et_volocity_msg_t {

int msgid

;

double •joint_velocity

;

};

tdefine US_AXIS_SERVO_SET_ACCELERATIOI 258

struct us_axis_8ervo_set_acceleration_msg_t {

int msgid

;

double •joint_acceleration

;

};

#define US_AXIS_SERVO_SET_FORCES 259

struct us_axis_servo_set_force_msg_t {

int msgid;

double *joint_force

;

};

tdefine US_AXIS_SERVO_JOG 260

struct us_ajcis_8ervo_jog_m8g_t {

int msgid;

int axis

;

double speed;

tdefine US_AXIS_SERV0_J0G_ST0P 261

struct U8_axis_servo_jog_stop_msg_t {

int msgid;

int axis

;

};

//

//

// US messages to TOOL

//

tdefine TOOL 300

// Spindle

tdefine US_SPIIDLE_RETRACT_TRAVERSE 310

struct U8_8pindle_retract_traver8e_msg_t {

int msgid

;

};

tdefine US_SPIIDLE_LOAD_SPEED 311

struct u8_load_spindle_speed_m8g_t {

int msgid;

double r;

tdefine US_SPIIDLE_START_TURIIIG 312

struct us_8tart_8pindle_msg_t {

int msgid

;

enum {CLOCKWISE = 1

,

COUITERCLOCKWISE = 2

,

} direction;

};

tdefine US.SPIIDLE.STOP.TURIIIG 314

struct us_8top_8pindle_turning_m8g_t {

int msgid;

};

tdefine US„SPIIDLE_RETRACT 315

struct us_spindle_retract_msg_t {

int msgid;

};
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fdofine US.SPIIDLE.ORIEIT 316

struct u8_orient_8pindle_msg_t {

int msgid;

double orientation;

double direction;

};

tdefine US_SPI1DLE_L0CK_Z 317

struct u8_lock_8pindle_z_msg_t {

int msgid

;

};

#define US_SPIIDLE_USE_FORCE 318

struct UE_u8e_8pindle_force.msg.t {

int m8gid;

};

•define US_SPIIDLE_USE_IO_FORCE 319

struct us_u8e_no_8pindle_force_m8g_t {

int msgid;

};

// FIob Control: Hist/Coolant/Abrasive Spray

•define US_FLOW_START_MIST 320

struct us_floB_8tart_mi8t_msg_t {

int msgid;

};

•define US.FLOW.STOP.NIST 321

struct us_floB_8top_mi8t_msg_t {

int msgid

;

};

•define US_FL0«.START_FL00D 322

struct us_floB_8tart_flood_m8g_t {

int msgid

;

};

•define US_FL0M_ST0P_FL00D 323

struct u8_floB_8top_flood_msg_t{

int msgid;

};

•define US_FLOW_LOAD_PARAMETERS 324

struct u8_floB_load_parameters_m8g_t {

int msgid;

enum { none

,

floB_rate

,

viscosity

,

consistency,

thickness

,

temperature

,

} param;

double value.rate;

enum { beam = 0x1

,

mi8t=0x2

,

spray = 0x4

,

} floB;

enum { stream,

pulsed

,

} action;

//
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//

// SEISOR NODULE

//

tdefine SEBSOR 400

//

// Sensor Node Generics

//

•define US_START_TRAISFORN 401

struct us_start_transfonn_msg_t {

int msgid;

};

•define US.STOP.TRAISFORN 402

struct us_stop_transfonn_msg_t {

int msgid; // same as loading identity transform

};

•define US.START.FILTER 403

struct us_8tart_filter_msg_t {

int msgid

;

};

•define US_STOP_FILTER 404
struct us_stop_filter_msg_t {

int msgid; // same as loading no filter

};

•define US_SEIS0R_USE_NEASURENEIT_U1ITS 405

struct us_sensor_use_measurement_units_msg_t {

int msgid;

Neasurement_units_type array_units

;

};

//

// Sensor Parameter Generics

//

•define OS_SE1SOR_LOAD_SANPLIIG_SPEED 406
struct tts_8ensor_load_sampling_speed_msg_t {

int msgid;

double value

;

};

•define US.SEBSOR.LOAD.FREQUEICY 407

struct us_sensor_load_frequency_msg_t {

int msgid

;

double value

;

};

•define US_SE1S0R_L0AD_TRAISF0RN 408
struct us_8en8or_load_transform_msg_t {

int msgid

;

double x,y ,z,el ,e2,e3; // transforms

};

•define US_SEISOR_LOAD_FILTER 409
struct u8_8ensor_load_filter_m8g_t {

int msgid;

enum { BOIE = 0 ,

LOW.PASS = 1,

HI.PASS = 2,

} type;

double filter.frequency

;
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};

//

// Generic Coiiunands

//

•define US_SEISOR_GET_READIIG 410

struct us_8en8or_get_reading_m8g_t {

int msgid;

ROUTE r; // type of values: max, min, avg

// and Bhere it goes

};

•define US_SEISOR_GET_ATTRIBUTES_READIiG 411

struct us_sensor_get_attributes_reading_m8g_t {

int msgid;

ROUTE r;

Attribute_t attr; // reading attributes, e.g., force
| torque

};

// lot sure ¥6 need this

•define US_VECTOR_SEISOR_GET_READIIG 412

struct us_vector_8en8or_get_reading_msg_t {

int msgid

;

ROUTE r;

};

II Force Torque Sensor
•define US_FT_SEISOR_POST„READIIG 413

struct us_ft_8en8or_po8t_reading_msg_t {

int msgid;

int health;

double ef
; // force vector, based on dof

double *t ; // torque vector, based on dof

};

// Scalar Probe

•define US_SCALAR_SEISOR.POST_READIIG 414
struct u8_8calar_8ensor_po8t_reading_m8g_t {

int msgid;

double upper.limit;

double lo¥er_limit;

};

// ID Vector Probe

•define US_VECT0R_SE1S0R_P0ST_READIIG 415

struct us_VECT0R_8en8or_po8t_reading_msg_t {

int msgid;

double evector;

};

// Generic 2D Interface

// e.g.. Range or Tactile Array

//

// Node Control to Sensor

//

•define US_2D_SEIS0R_L0AD_ARRAY_PATTERI 416

struct us_2D_8en8or_load_array_pattern_m8g_t {

int msgid;

long array.pattem ; // bit-map of sensors enabled

float period; // period of sampling

};

•define US_2D_SEIS0R.USE_ARRAY_TYPE 417

121



UTAP/WD Standard Interface Environment

struct us_2D_8onsor_use_array_type_msg_t {

int msgid;

enum { OIE.SHOT = 1,

FLOOD = 2

,

} type;

};

//

// Input CoRunand to 2D Sensor

//

tdefine US_2D.SEBS0R_GET_READIIG 418

struct us_2D_sensor_get_reading_insg_t {

int msgid;

ROUTE r;

Nodifier.t mod;

};

//

// Output Data from 2D Sensor

//

#define US_2D_SEIS0R_P0ST_READIIG 419

struct us_2D_sensor_post_reading_msg_t {

int msgid;

int rovs

;

int cols;

double *array.values ; II array of values

};

// Specific 2D Image Processing Sensor Interface

•define US_IMAGE_USE_FRAI1E_GRAB_H0DE 420
struct us_image_sensor_use_frame_grab_mode_msg_t {

int msgid;

};

•define US_IHAGE_USE_HISTOGRAM_HODE 421

struct us_image_sensor_use_histogram_mode_msg_t {

int msgid

;

};

•define US_IHAGE_USE.CE1TR0ID_H0DE 422

struct us_image_sensor_use_centroidjnode_msg_t {

int msgid;

};

•define US_IIIAGE_USE_GRAY_LEVEL_HODE 423
struct us_image_sensor_use_gray_level_mode_msg_t {

int msgid;

};

•define US_IMAGE_USE_TRESHOLD_HODE 424
struct us_image_sensor_use_threshold_mode„msg_t {

int msgid;

double *threshold;

};

•define US_IHAGE_COHPUTE_SPATIAL_DERIVATIVES_HODE 425

struct us_image_sensor_compute_spatial_dorivativos_msg_t {

int msgid;

};

•define US_INAGE_COHPUTE_TEHPORAL_DERIVATIVES_HODE 426

struct us_image_sensor_compute_temporal_derivatives_msg_t {

int msgid

;

};

•define US.IMAGE.USE.SEGHEITATATIOB.HODE 427
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struct u8_iinage_sen8or_U8e_8eginentation_iBode_tn8g_t

int msgid;

};

#define US_IHAGE_USE_RECOGIITIOI_MODE 428

struct us_iinage_8ensor_u8e_recognition_raode_msg_t

int msgid;

OBJECT to_recognize

;

};

tdefine US_IHAGE_COMPUTE_RAIGE_HODE 429

struct u8_image_8en8or_compute_range_mode_msg_t {

int msgid;

};

define US_IMAGE_COHPUTE_FLOW_MODE 430

struct us_image_sensor_compute_floB_mode_msg_t {

int msgid;

};

define US.IMAGE.LOAD.CALIBRATIOl 431

struct us_image_8ensor_calibration_msg_t {

int msgid;

int calibration_8tate

;

int cur8or_value

;

float cx;

float cy;

float sx;

float ncx;

float nfX

;

float dx;

float dy;

float dxp;

float focal.length;

float distort;

};

//

// Data Node

//

define US_IHAGE_SET_POSITIOI 432

struct us_image_8et_8en8or_position_msg_t {

int msgid;

float x;

float y;

float z;

float pan;

float tilt;

float zoom;

};

define US_IHAGE_ADJUST_POSITIOI 433
struct us_image_adju8t_position_m8g_t {

int msgid;

enum { X=1

,

Y=2,

Z=4,

PAI=5

,

TILT=6,

Z00N=7

,

} axis

;

int i

;

double evalue

;

};

{

{

// cursor value

// X center of image plane

// y center of image plane

// uncertainty scale factor

// number of sensor elements in camera x direction

// resolution of image frame - x direction

// X sensing area (designated in camera specs)/ ncx

// 2* (y sensing area)/ncy

// dx(ncx/nfx) for camera

// focal length of camera

// distortion factor for camera

// camera position

// camera orientation

// joint => l=jointl, 2=joint2,4=joint3.

.

// Cartesian => l=x, 2=y, 4=z

// depends on mode whether world or tool

// note: no data entry

// l=increment, -l=decrement , 0=8et

// if amount=0, system decides
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•define US_IHAGE_ADJUST_FOCUS 434

struct u8_iinage_adjust_focus_iiisg_t {

int msgid;

int i

;

double increment

;

};

•define US_IMAGE.POST_SPECIFICATIOH 435

struct us_image_post_8pecification {

int msgid;

STATUS.TYPE status

;

int nuro_of.cameras

;

int calibration.state

;

int xpixels;

int ypixels;

enum {

STATIOIARY,

NOVIIG,

} type;

TRAISFORH * base;

};

•define US_IHAGE_POST_PIXEL.MAP_READIIG 436

struct us_image_post_pixel_map_reading {

int msgid;

STATUS.TYPE status;

TINE timestamp;

int num.cameras

;

int ross;

int cols;

int •image.data;

};

// l^increment, -l=decrement , 0=8et

// if araount~0, system decides

// reflect image data origin

// number of cameras

// image data vould follov here

•define US_INAGE_POST_HISTOGRAN_R£ADIIG 437

struct us_image_post_histogram_reading {

int msgid;

STATUS.TYPE status;

TINE timestamp;

int num.cameras

;

int ro8s

;

int cols;

int eimage.data;

};

// reflect image data origin

// number of cameras

// image data sould folios here

•define US_INAGE_POST_XY_CHAR_READIIG 438
struct us_image_po8t_xy_char_reading {

int msgid;

STATUS.TYPE status;

TINE timesteimp;

int num.cameras

;

int ross

;

int cols;

int *image_data;

};

// reflect image data origin

// number of cameras

// image data sould folios here

•define US_INAGE_POST_BYTE_SYNBOLIC_READIIG 439

struct us_image_post_byte_symbolic_reading {

int msgid;

STATUS.TYPE status;

TINE timestamp;

int num.cameras

;

int ross

;

int cols;

int eimage.data;

};

// reflect image data origin

// number of cameras

// image data sould folios here
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tdafine US_IMAGE_POST_TRESHDLD_READIIG 440
struct us_image_post_threshold_reading {

int msgid;

STATUS.TYPE status;

TIME timestamp; // reflect image data origin

int num_c^uneras ; // number of cameras
int rose

;

int cols;

int *image_data; // image data oould folios here

};

•define US.IMAGE_POST_SPATIAL_DERIVATIVE_READIIG 441

struct us_image_post_spatial_derivative_reading {

int msgid;

STATUS.TYPE status;

TIME timestamp; //

int num_cameras; //

int roBS

;

int cols

;

int *image_data; II

};

reflect image data origin

number of cameras

image data sould folios here

•define US_IMAGE_POST_TEMPORAL_DERIVATIVE_READIIG 442

struct us_image_post_torapor^d_derivative_reading {

int msgid;

STATUS.TYPE status;

TIME timestamp; // reflect image data origin

int num.cameras
; // number of cameras

int rose

;

int cols;

int *image_data; // image data sould folios here

};

•define US.IMAGE.POST.RECOGIITIOI.READIIG 443

struct us.image.post.recognition.reading {

int msgid

;

STATUS.TYPE status;

TIME timestamp; // reflect image data origin
int num.cameras; // number of cameras

int roBS

;

int cols;

int *image.data; // image data sould folios here

};

•define US.IMAGE.POST.RAIGE.READIIG 444

struct us.image.post.range.reading {

int msgid;

STATUS.TYPE status;

TIME timestamp; // reflect image data origin

int num.cameras; // number of cameras

int roBs

;

int cols;

int *image.data; II image data sould folios here

};

•define US.IMAGE.POST.FLOH.READIIG 445

struct us.image.post.floB.reading {

int msgid;

STATUS.TYPE status;

TIME timestamp; // reflect image data origin

int num.cameras; // number of cameras

int ross

;

int cols;

int *image.data; // image data sould folios here

};
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//

//

// PIO; SEISOR, ROBOT AXIS/JOIIT, TOOL

//

tdefine PROGRAHHABLE.IO 500

//

// Control

//

tdefine US_PIO_EIABLE 500

struct us_pio_enable_msg_t {

int msgid

;

int channel;

};

tdefine US.PIO.DISABLE 501

struct us_pio_disable_msg_t {

int msgid;

int channel;

};

tdefine US_PIO_SET_MODE 504

struct us_pio_set_mode_msg_t {

int msgid

;

enum { IIPUT=1

,

0UTPUT=2

,

} direction;

};

tdefine US_PIO_COITROL_WRITE 505

struct us_pio_control_urite_msg_t {

int msgid

;

enum { UII_2_HALF = 1

,

0II_2_HALF_IEG = 2,

BI_2_HALF = 3,

U1I_5 = 4,

0II_5_IEG = 5,

BI_5 = 6,

UII.IO = 7,

OTI.IO.IEG = 8,

BI_10 = 9,

ULL.RAIGE = 0,

} info

;

int bits.data;

enum { FREERUI = 1

,

lOFREERUI =2,

} run

;

enum { SIIGLE.EID = 1

,

DIFFEREITIAL = 2

,

lULL.REF = 0,

} ref ;

};

tdefine US_PIO_LOAD_SCALE 511

struct us_pio_scale_m8g_t {

int msgid;

int channel

;

double m ;

double b;

};

Programmable Interfaces

// -1 for all

// -1 for all

// similar to control.register

// set control information

// unipolar 0 to •'2.5 volts

// unipolar 0 to -2.5 volts

// bipolar -2.5 to 2.5 volts

// unipolar 0 to •5 volts

// unipolar 0 to -5 volts

// bipolar -5 to 5 volts

// unipolar 0 to *•10 volts

// unipolar 0 to -10 volts

// bipolar -10 to 10 volts

// lull entry

// 0,8,10,12,14,16,18,20,...

// volts to vlaue , scale factor

// offset value
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//

// Data

//

•define US_PIO_DATA_WRITE 506

struct us_pio_data_urite_insg_t {

int msgid;

enum { SCALE, RAW } type;

union {

double dvalue

;

int ivalue

;

};

};

•define US_PIO_DATA_READ 507

struct us_pio_data_read_insg_t {

int msgid

;

enum { RAW , SCALE } type

;

int channel;

};

•define US_PIO_BIT_READ 508

struct us_pio_bit_read_m8g_t {

int msgid;

int channel.num;

int bit

;

•define US_PIO_BIT_SET 509

struct us_pio_bit_8et_msg_t {

int m8gid;

int channel.num;

int bit

;

•define US_PIO_TOGGLE_BIT 510

struct us_pio_toggla_bit_msg_t {

int msgid;

int channel_num;

int bit

;

•define US_PI0_P0ST_DATA 512

struct u8_pio_input_data_m8g_t {

int msgid;

enum { RAW = 1

,

SCALED = 2,

} type;

union {

unsigned long data.register ; // data register read

double value;

};

unsigned long data.mask; // valid bits

};

//

//

//

//

TLC - TASK LEVEL COITROL Manipulation

•define TASK_LEVEL_COITROL 600

//

//

//

//

Task Level Control
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// Node Selections for Reference Frames and Coordinate Chains

•define US_TLC_USE_JOIIT_REFEREICE_FRAHE 601

struct us_tlc_use_joint_reference_frame_msg_t {

int msgid;

};

•define US_TLC_USE_CARTESIAI_REFEREICE_FRAHE 602

struct us_tlc_use_Cstf'te8ian_reference_frame_msg_t {

int msgid;

};

•define US_TLC_USE_REPRESEITATIOI_UIITS 603

struct us_tlc_use_representation_units_msg_t {

int msgid;

Neasurement_units_type units; // Euler vs. Matrix Transform

};

•define US_TLC_USE_ABS0LUTE_P0SITI0IIIG_N0DE 604

struct us_tlc_use_absolute_po8itioning_mode_msg_t {

int msgid; // aka sorld coordinate frame

};

•define US_TLC_USE_RELATIVE_P0SITI01I1G_H0DE 60S

struct us_tlc_relative_positioning_msg„t {

int msgid;

};

•define US_TLC_USE_miIST_COORDIIATE_FRAME 606
struct us_tlc_use_Brist_positioning_msg_t {

int msgid

;

};

•define US_TLC_USE_TOOL_TIP_COORDIIATE.FRAHE 607

struct us_tlc_U8e_tool_positioning_msg_t {

int msgid;

};

•define US_TLC_CHAIGE_TOOL 608
struct us_change_tool_m8g_t {

int msgid;

int i; // tool number
};

•define US_TLC_USE_MODIFIED_TOOL_LEIGTH_OFFSETS 609
struct us_tlc_u8e_modified_tool_length_offset8_msg_t {

int msgid

;

int r;

•define US_TLC_USE_IORHAL_TOOL_LEiGTH_OFFSETS 610
struct us_tlc_use_normal_tool_length_offsets_msg_t {

int msgid;

};

•define US_TLC_USE_IO_TOOL_LEIGTH_OFFSETS 611

struct us_tlc_use_no_tool_length_offsets_msg_t {

int msgid;

};

•define US_TLC_USE_KIIEMATIC_RIIG_POSITIOIIIG_HODE 612
struct us_tlc_use_kinematic_ring_msg_t {

int msgid

;

};
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// Notion Nodes

fdefine US_TLC_START_NAIUAL.NOTIOI 613

struct us_tlc_start_inanual_motion_m8g_t {

int nsgid;

AxisNask axis;

};

•define US_TLC_STOP_NAIUAL_NOTIOI 614

struct us_tlc_stop_inanual_motion_msg_t {

int msgid;

AxisNask axis

;

};

•define US_TLC_START_AUTONATIC_NOTIOI 615

struct us_tlc_start_automatic_inotion_msg_t {

int msgid;

AxisNask axis;

};

•define US_TLC_STOP_AUTONATIC_NOTIOI 616

struct us_tlc_stop_automatic motion_msg_t {

int msgid;

AxisNask axis;

};

•define US_TLC_START_TRAVERSE_NOTIOI 617

struct us_tlc_start_traverse_motion_m8g_t {

intjnsgid; // freespace

};

•define US_TLC_STOP_TRAVERSE_NOTIOI 618

struct u8_tlc_stop_traverse_motion_msg_t {

int msgid;

};

•define US_TLC_START_GUARDED_NOTIOI 619

struct us_tlc_8tart_guarded_motion_msg_t {

int msgid; // obstacle, constraints

};

•define US_TLC_STOP_GUARDED.NOTIOI 620

struct u8_tlc_stop_guarded_motion_m8g_t {

int msgid;

};

•define US_TLC_START_CONPLIAIT_NOTIOI 621

struct us_tlc_8tart_compliMt_msg_t {

int msgid;

AxisNask axis

;

double espring;

};

•define US_TLC_STOP_CONPLIAIT_NOTIOI 622

struct u8_tlc_stop_compliant_m8g_t {

int msgid

;

AxisNask axis;

};

•define US.TLC_START_FIIE_N0TI01 623

struct u8_tlc_8tart_fine_m8g_t {

int msgid;

AxisNask axis;

double errtolerance ;
// amt of tolerated error in motion

int proximity; // bow close do we come to goal point

};
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tdefine US_TLC_STOP_FIIE_HOTIOH 624

struct us_tlc_stop_fine_nisg_t {

int msgid;

AxisNask axis;

};

tdefine US_TLC_START_HOVE_UITIL_MOTIOI 625

struct us_tlc_start_inove_until_ii>sg_t {

int msgid;

AxisHask axis

;

double econtact.forces

;

};

tdefine US_TLC_STOP.MOVE_UITIL_MOTIOI 626

struct us_tlc_stop_move_until_msg_t {

int msgid;

AxisNask axis

;

};

tdefine US_TLC_START_STAIDOFF_DISTAICE 627

struct us_tlc_start_standoff_msg_t {

int msgid

;

AxisNask axis

;

double edistance;

};

tdefine US_TLC_ST0P_STA1D0FF_DISTA1CE 628

struct us_tlc_stop_standoff_m8g_t {

int msgid

;

AxisNask axis

;

};

tdefine US_TLC_START_FORCE_POSITIOIIIG_NODE 629

struct us_tlc_start_force_positioning_msg_t {

int msgid; // for force reflection

};

tdefine US_TLC_STOP_FORCE_POSITIOIIIG_NODE 630

struct U8_tlc_stop_force_positioning_msg_t {

int msgid; // for force reflection

};

//

//

// Parameter Settings

//

tdefine US_TLC_L0AD_D0F 631

struct us_tlc_U8e_dof_msg_t {

int msgid;

int dof; // motion DOF, i.e., 3D vs 6D

};

tdefine OS_TLC_LOAD_CYCLE_TINE 632

struct u8_load_cycle_time_msg_t {

int msgid

;

double time

;

};

tdefine US_TLC_LOAD_REPRESEITATIOI_UIITS 633

struct us_tlc_load_repre8entation_units_m8g_t {

int msgid

;

Neasnrement_unit8_type units; // Euler vs. Natrix Transform

};

tdefine US_TLC_LOAD_LEIGTH_UIITS 634

struct U8_tlc_load_length_unit8_msg_t {
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int nsgid;

Ne&surement_uiiits_type units; // Meters vs. mm vs. inches

tdefine US_TLC_LOAD_RELATIVE_POSITIOIIIG 635

struct us_tlc_load_relative_positioning_msg_t {

int msgid;

TRAISFORM * t;

};

tdefine US_TLC_ZERO_RELATIVE_POSITIOIIIG 636

struct u8_tlc_zero_relative_positioning_msg_t {

int msgid;

};

tdefine US_TLC_ZERO_PROGRAM_ORIGII 637

struct us_tlc_zerot_program_origin_msg_t {

int msgid;

TRAISFORM * t;

};

tdefine US_TLC_LOAD_KIIEMATIC_RIIG_POSITIOIIIG_MODE 638

struct us_tlc_load_kinematic_ring_msg_t {

int msgid;

Measurement.units.type units;

.Base s 0x0000001

.TOOL = 0x0000002

.SEISOR.FUSIOI S 0x0000004

// RHS

.DELTA = 0x0000010

.OBJECT 0x0000020

.OBJECTBASE 0x0001000

.0BJECT0FFSET2 = 0x0002000

.0BJECT0FFSET3 B 0x0003000

.0BJECT0FFSET4 S 0x0004000

} mask

;

tdefine US_TLC_LOAD_BASE_PARAMETERS 639

struct u8_tlc_load_base_parameters_msg_t {

int msgid;

TRAISFORM * trBase;

tdefine US_TLC_LOAD_TOOL_PARAMETEBS 640

struct u8_tlc_load_tool_parameter8_msg_t {

int msgid;

char name [128] ;

double dx, dy, dz

;

double ux , uy , uz

;

double normal.threshold

;

double tangential.threshold;

ORIEITATIOI.TYPE heading;

};

tdefine US_TLC_LOAD_OBJECT 641

struct u8_tlc_load_object_m8g_t {

int msgid;

OBJECT obj.id;

TRAISFORM * t

;

// tool name

// tooling added translation against edge

// Euler angles for tooling angle

// amount of normal force

// amount of tangential force

// Bhat is the heading of the tool tip

};

tdefine US_TLC_L0AD_0BJECT_BASE 642
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struct u8_tlc_load_object_baso_m8g_t {

int msgid;

TRAISFORM t;

};

#define US_TLC_LOAD_OBJECT_OFFSET 643

struct us_tlc_load_object_offset„rasg_t {

int msgid

;

int i;

TRAISFORM • t;

};

fdefine US_TLC_LOAD_DELTA 644

struct us_tlc_load_delta_msg_t {

int msgid

;

enum { _SIIE_WAVE_,

_DITHER_,

_IULL_

,

} delta;

double magnitude;

double frequency;

};

•define US_TLC_LOAD_OBSTACLE_VOLUME 645

struct us_tlc_load_ob8tacle_volume_msg_t {

int msgid;

int i

;

TRAISFORM « t

;

};

// Dynamical Control

•define US.TLC.LOAD.IEIGHBORHOOD 646

struct us_tlc_load_blending_msg_t {

int msgid;

double dist ; // error

BLEID.TYPE blend; // uhat

};

•define US_TLC_LOAD_FEED_RATE 647

struct us_tlc_load_feed_rate_m8g„t {

int msgid

;

double feed.rate;

Measurement_units_type units;

};

•define US_TLC_LOAD_TRAVERSE_RATE 648

struct u8_tlc_load_traver8e_rate_msg_t {

int msgid;

double traverse.rate

;

Heasurement_units_type units;

};

•define US_TLC_LOAD_ACCELERATIOI 649

struct us_tlc_load_acceleration_msg_t {

int msgid;

double accel;

Measurement.units.type units;

};

•define US_TLC_LOAD_JERK 650

struct us_tlc_load_jerk_msg_t {

int msgid

;

double jerk;

Measurement_units_type units

;

};

tolerance

is the blending algorithm
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tdefine US_TLC_LOAD_PROXIHITY 651

struct us_tlc_load_proxiinity_in8g_t {

int msgid;

AxisNask axis;

double distance;

};

tdefine US_TLC_LOAD_COITACT_FORCES 652

struct us_tlc_load_contact_forces_nisg_t {

int msgid;

TRAISFORM * tr;

Representation_units_type units;

int dof

;

long cfSelVect

;

long cfComplyVect

;

double ecfFtSetpoints;

double *cfFtGains;

double ecfNarFcVel;

};

tdefine US_TLC_LOAD_JOIIT_LIMIT 653

struct us_tlc_load_joint_limit_msg_t {

int msgid;

AxisNask axis

;

double •jtLimit;

};

tdefine US_TLC_LOAD_COITACT_FORCE_LIMIT 654

struct us_tlc_load_contact_force_limit_msg_t {

int msgid;

double *ctFLimit ; // contact force limit

};

tdefine US_TLC_L0AD_C0ITACT_T0RQUE_LII1IT 655

struct u8_tlc_load_contact_torque_limit_msg_t {

int msgid

;

double ectTLimit; // contact torque limit

};

tdefine US_TLC_LOAD_SEISOR_FUSIOi_POS_LimT 656
struct us_tlc_load_8en8or_fU8ion_po8_limit_m8g_t {

int msgid;

double efsPLimit; // position limit for sensor based motion

};

tdefine US_TLC_LOAD_SEISOR.FUSIOI_ORIEIT_LIMIT 657

struct U8_tlc_load_8en8or_fu8ion_orient_limit_msg_t {

int msgid;

double *fsOLimit ; // orientation limit for sensor based motion

};

tdefine US_TLC_LOAD_SEGHEIT_TIME 658

struct us_tlc_load_8egment_time_msg_t {

int msgid;

double time; // duration of segment

};

// transform from HERGE frame

// to FORCE frame

II transform rep.

// degrees of freedom

// hybrid selection vector for

// FORCE frame

// selection vector specifying

// vhich position DOFs of FORCE

// freune also have compliance

// force setpoints in force

// controlled DOFs of FORCE frame

// force gains in FORCE frame

// max velocities in DOF of

// force frame due to force control

// joint space limit

tdefine US.TLC.LOAD.TERMIIATIOI.COIDITIOI 659
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struct us_tlc_load_tennination_condition_msg_t {

int msgid;

enum { time.term = 0x01,

time.max = 0x02,

trans_del = 0x04,

ang_del = 0x08,

force.err = 0x10,

torque_err = 0x20,

vel_profile = 0x40,

} condition;

int select

;

double testTime

;

double endTime

;

double endTransDel

;

double endAngDel

;

double endTransVel;

double endAngVel

;

double endForceErr;

double endTorqueEff

;

double endForceVel

;

double endTorqueVel

;

};

tdefine US_TLC_IICR_VELOCITY 660
struct us_tlc_incr_velocity_insg_t {

int nsgid;

int i

;

double increment

;

};

tdefine US_TLC_IICR_ACCELERATIOI 661

struct us_tlc_incr_acceleration_msg_t {

int msgid

;

int i

;

double increment

;

};

//

// Task Level Control

//

// Command Data

//

tdefine US_TLC_SET_G0AL_P0SITI0I 662

struct us_tlc_set_goal_position_msg_t {

int msgid

;

double *data;

};

tdefine US_TLC_GOAL_SEGNaT 663

struct us_tlc_goal_segment_msg_t {

int msgid;

SEGHEIT.SELECT ^segment

;

};

tdefine US_TLC_ADJUST_AXIS 664
struct us_tlc_adjust_axis_msg_t {

int msgid;

AxisNask tucis;

int i

;

double evalue

;

};

// bit mask for termination condition

// time over ehich to avg ending condition

// variables

// maximum ending motion time

// total translation due to sensor based

// motion in MERGE frame

// total angular motion due sensor based motion
// motion in MERGE frame

// magnitude of rate of change of endTransDel

// magnitude of rate of change of endAngDel

// contact force error vector magnitude

// contact torque error vector magnitude

// magnitude of raet of change of endForceErr

// magnitude of raet of change of endTorqueErr

// l=increment, -l=decrement , 0=set

// if amount=0, system decides

// l=increment, -l=decrement , 0=set

//if amount=0, system decides

// segment type A description

// l=increment, -l=decromont , 0=set

// if amount=0, system decides
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// Status Data

fdefine US_TLC_UPDATE_SEISOR_FUSIOI 665

struct us_tlc_update_sensor_fusion.msg.t {

int msgid;

TRAISFORH * update;

};

//

//

// TLC: : task level control : cutting/machining

//

#dofine US_TLC_SELECT_PLAIE 666

struct us_tlc_8elect_plane_msg_t {

int msgid;

AxisMask axis;

};

tdefine US_TLC_USE_CUTTER_RADIUS_COMPEISATIOI 667

struct us_tlc_use_cutter_radius_compensation_msg_t {

int msgid;

double radius;

};

•define US_TLC_START_CUTTER_RADIUS_COMPEISATIOI 668

struct us_tlc_8tart_cutter_radiu8_compen8ation_msg_t {

int msgid;

double side;

};

•define US_TLC_STOP_CUTTER_RADIUS.COMPEISATIOI 669

struct U8_tlc_8top_cutter_radiu8_compen8ation_m8g_t {

int msgid;

};

•define US_TLC_STRAIGHT_TRAVERSE 670

struct U8_tlc_8traight_traver8e_m8g_t {

int msgid

;

double x;

double y;

double z;

};

•define US_TLC_ARC_FEED 671

struct U8_tlc_arc_feed_m8g_t {

int msgid;

AxisHask first.axis;

AxisMask second.axis;

double rotation;

double axis_end_point

;

•define US_TLC_STRAIGHT_FEED 672

struct us_tlc_8traight_feed_m8g_t {

int msgid

;

double x;

double y;

double z;

};

•define US_TLC_PARAMETRIC_2D_CURVE_FEED 673

struct u8_tlc_parametric_2d_curve_feed_m8g_t {

int msgid;

FUICTIOI.PTR f 1

;
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FUICTIOB.PTR f2;

double start.paraneter.value

;

double end_paraineter_value

;

tdefine US_TLC_PARAMETRIC_3D_CURVE_FEED 674

struct us_tlc_parainetric_3d_curve_feed_msg_t {

int msgid;

FUICTIOI.PTR xfcn;

FUICTIOB.PTR yfcn;

FUICTIOB.PTR zfcn;

double start.parameter.value

;

double end.paraneter.value

;

};

tdefine US.TLC.BURBS.KIOT.VECTOR 675

struct us.tlc.nurbs.knot.vector.msg.t {

int msgid;

int i; // which element, 0 = first

double k;

};

tdefine US.TLC.BURBS.COBTROL.POIIT 676

struct U8.tlc.nurbs.control.point.msg.t {

int msgid;

int i; // which CP, 0 = first

double x;

double y;

double z;

double w; // the weight

};

tdefine US.TLC.BURBS.FEED 677

struct us.tlc.nurbs.feed.msg.t {

int msgid;

double sStart

;

double sEnd;

};

tdefine US.TLC.TELEOP.FORCE.REFLECTIOB.UPDATE 678

struct ns_tlc.teloop.force.refloction.msg_t{

int msgid;

double *data;

};

//

//////////////////////////////////////////////////////////////////////////
//

//

// LOCAL
//

//

//////////////////////////////////////////////////////////////////////////

// *• DISCLAIMER II ••

//
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// The follosing LOCAL interfaces are preliminary. The LOCAL interfaces

// are an initial attempt at providing a solution. These interfaces have

// not undergone the necessary peer-review process. Please do not let the

// preliminary state of these interfaces reflect too negatively on the

// overall state of the UTAP interfaces. At some point in the future,

// these interfaces will undergo the scrutiny of a review panel and will

// receive the same level of discussion and revision that was given to

// the LOCAL interfaces . Comments concerning the LOCAL interfaces are

// welcome, and should be directed to the UTAP interface coordinator,

// listed on the disclaimer page.

//

// At some point the feature-based concepts of the APT Part Programming

// Language will be explicitly incorporated into the LOCAL interfaces,

// specifically the APT Tool Axis Control Language, and the APT Heasure

// Language. APT contains hooks for Robotics and Vision Commands (Rules 14xx)

.

//

II The current emphasis of the LOCAL definitions is to establish the

// framework in which the operator can make selections and have these

// selections registered in the control system.

n

//

// TDS - the task description module commands/controls task

•define TASK.DESCRIPTIOS 1000

•define US.TDS.LOAD.USER 1000

struct us_tds_load_user_msg_t{

int msgid

;

USER.TYPE user;

};

•define US_TDS_SELECT_PROGRAH 1001

struct us_tds_select_program_msg_t{

int msgid;

char filename [128]

;

};

•define US_TDS_EXECUTE_PROGRAM 1002

struct us_tds_execute_program_msg_t{

int msgid;

char filename [128]

;

};

•define US_TDS_SELECT_OPERATIOI 1003

struct us_tds_select_operation_msg_t{

int msgid;

_move = 1

,

_paint = 2,

.strip = 3,

.finish = 4,

.polish = 5,

.clean 6.

.deseal = 7,

.seal = 8,

.inspect = 9,

.cut = 10

} task;

};

•define US_TDS_SELECT_OPMODE 1004

struct us_tds_select_opmode_msg_t{

int msgid;

enum {

TELEOP

,

// limit programming capabilities

// filename on disk

II filename on disk

// joystick motion
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SUPERVISED,

AUTOIOHOUS

,

TRADED,

SHARED

} type;

AxisNask axis;

};

tdefine US_TDS_LOAD_SELECTIOIS 1005

struct us_tds_load_solections_insg_t{

int msgid;

enum { select.agent

,

select_io

,

select.object

,

select.traj

,

}selection;

char name [128]

;

};

tdefine US_TDS_LOAD_REFEREBCE_UIITS 1006

struct us_tds_load_reference_units_msg_t{

int msgid;

Heasurement_units_type units;

};

tdefine US_TDS_LOAD_RATE_DEFAULTS 1007

struct us_tds_load_rates_msg_t{

int msgid;

enum {

8et_default_feed_rate

,

set_default_traver8e_rate

,

8et_ta8k_8pace_acceleration_limit

} selection;

enum { meters,

inches

,

millimeters } units;

// operator supervises actions

// controller makes crucial decision

// traded control of motion

// control of axis of motion is shared

// type of operator interaction

// per second

// per second

// per second per second

double rate;

};

tdefine US_TDS_LOAD_ORIGII 1008

struct us_tds_load_origin_msg_t{
int msgid;

enum { device.origin,

relative.origin,
zero_device,

device.vieu,

} selection;

char name [128]

;

};

tdefine US_TDS_LOAD_SEISIIG_DEFAULTS 1009
struct us_tds_load_sensing_msg_t{

int msgid;

enum {

set.default_sensor_limit

,

set_default_8ensor_orientation,

set_8ensor_limit_override

,

clear_sensor_override

} selection;

char 8ensor_name[128]

;

Attribute_t attr;

double setting;

// use current values of device

// device name
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//

//

// TK - The current state of the manipulation, end-effecting, and tooling

// systems is knosn and stored in the task knosledgebase and trajectory

// description modules

define TASK.KIOULEDGE 1100

define US_TK_DEFIIE_FRAMEWORK 1101

struct U8_task_framework.msg.t {

int msgid;

// -1 indicates that the user must fill in the field

enum { .move

,

.paint

,

.strip

,

.finish

,

.polish

,

.clean

,

.deseal

,

.seal

,

.inspect

,

} task;

int step.number; //

char macro.name [128]

;

//

USER.TYPE user; //

// Select Operation Method
enum { TELEOP, //

SUPERVISED, //

AUTOIOMOUS

,

//

TRADED

,

//

SHARED

,

//

} type; //

AxisMask axis;

int number.of.agents

;

char agent_class[l28] [100]

;

char agent_list[128] [100]

;

//

char tool.class [128]

;

//

char tool.name [128]

;

//

char object.class [128]

;

//

char object_n^une[128] ; //

int task.units; //

POSITIOI program.home

;

POSITIOI program.origin

;

POSITIOI relative.origin;

TRAISFORN • base.frame;

TRAISFORH • tool.frame;

TRAISFORH • zero.axes.force

;

TRAISFORH • zero.tool.force

;

int default.task.reference.units

;

int task.reference.units;

use step number or

task macro name

minimum programming capabilities

joystick motion

operator supervises actions

controller metkes crucial decision

traded control of motion

control of axis of motion is shared

type of operator interaction

number of agents agents defaults

class of potential tools

default tool

attribute class of potential objects

use selects/defines object

default units
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double set_task_space_acceleration_limit

;

double set_ta8k_space_acceleration_tiine

;

double feed_rate;

double feed_rate_units

;

double traverse.rate

;

int traver8e_rate_units

;

double default_force_8etting;

double guarded_proximity_8etting;

double vi8C08ity_setting;

double humidity.setting;

double desired.temperature

;

double temperature.limit

;

double noiee.limit

;

};

// define8 franevork

// definea atepsiae actiona

tdefine US_TK_MACRO_CREATE 1102

tdefine US_TK_NACRO_DELETE 1103

•define US_TK_HACRO_MODIFY 1104

atruct u8_tk_inacro_m8g_t {

int magid;

char frameuork.file [128]

;

char action_file [128]

;

char plan [128]

;

};

//

// FTPS/TPS

•define PAREIT.TASK.PROGRAN.SEQUEICIIG 1300

•define US.PTPS.SELECT.AGEIT 1301

atruct U8 _8elect_re80urce_m8g_t {

int magid;

TASK.ID tid;

RESOURCE.SELECT agent

;

SOBUSYSTEM.ID aaid;

enum { SOLO,

LH,

RH,

} type;

};

•define US_TPS_SELECT_TOOL 1302

atruct U8_8elect_tool_m8g_t {

int magid

;

TASK.ID tid;

EID.EFFECTOR.SELECT tool;

SUBUSYSTEM.ID aaid;

•define US_PTPS_SELECT_SEISOR 1303

atruct u8_8elect_8en8or_m8g_t {

int magid

;

TASK.ID tid;

RESOURCE.SELECT agent;

SUBUSYSTEM.ID aaid;

enum { SOLO

,

LH,

RH,

} type;
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};

tdofine US_PTPS_IITERP_RUI_PLAI 1303

struct us_interp_run_plan_msg_t {

int msgid;

SUBUSYSTEH.ID ssid;

enum { UTAP = 1,

RS274D = 2,

SIL = 3,

GSL = 4,

} type ;

char pl^m[128]
;

};

tdefine US.PTPS. IITERP.HALT.PLAI 1304

struct us_interp_halt_plan_insg_t {

int msgid;

SUBUSYSTEH.ID ssid;

};

tdefine US.PTPS.IIPUT.REQUEST 1305

struct us.ptps.input.request.msg.t {

int msgid;

SUBUSYSTEH.ID ssblocker;

SUBUSYSTEH.ID ssenabler;

peer.ack = 1

peer.done = 2

shared.resource = 3

type;

tdefine US.PTPS.OUTPUT.EIABLE.SUBSYSTEH 1306

struct us.ptps.output.enable.msg.t {

int msgid;

SUBUSYSTEH.ID ssblocker;

SUBUSYSTEH.ID ssenabler;

enum { peer.ack = 1

,

peer.done = 2,

shared.resource = 3,

} type;

};

//

// TPS

tdefine TASE.PROGRAH.SEQUEICIIG 1400

tdefine US.TPS.FREESPACE.HOTIOI 1401

struct us.tps.freespace.msg.t {

int msgid;

};

tdefine US.TPS.GUARDED.HOTIOB 1402

struct us.tps.guardede.msg.t {

int msgid;

};

tdefine US.TPS.COITACT.HOTIOI 1403

struct us.tps.constact.msg.t {

int msgid;

};

tdefine US.TPS.SET.SUPERVISORY.HODE 1404

struct us.supervisory.mode.msg.t {

int msgid;
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// need hybrid parameter stuff here

};

fdefine US_TPS_SELECT_FEATURE 1405

struct us_6elect_feature_msg_t {

int msgid;

FEATURE surface

;

double fx.fy.fz; // eorld to feature origin translation
double fol,fo2,fo3; // sorld to feature origin rotation

};

fdefine US_TPS_SELECT_MATERIAL 1406

struct us_8elect_material_msg_t {

int msgid;

MATERIAL.TYPE m;

double maxx ,maxy ,maxz

;

double minx,miny ,minz;

double fol,fo2,fo3;

double strength;

double minforce;

double maxforce;

};

fdefine US_LOAD_OBSTACLE 1407

struct us_load_obstacle_msg_t {

int msgid;

FEATURE obstacle;

};

fdefine US_LOAD_PATTERI 1408
struct us_load_pattern_msg_t {

int msgid;

GEOHETRY.PATTERI pattern;

};

fdefine US_TPS_MARK.EVEIT 1409

struct us_tps_mark_event_msg_t {

int msgid

;

enum {

peer.signal = 1,

// coordinate devices/io/sensed motion

} event

;

};

// type of material

// feature to operation max translation

// feature to operation min translation

// feature to operation max rotation

// maximum material strength

// min amount of surface contact?

// max amount of surface contact?

fdefine US_TPS_EIABLE 1410
struct us_ptp8_enable_msg_t {

int msgid;

enum { peer.msg = 1

,

shared.resource = 2,

}enable

;

};

//

// 01 - Operator Interface Messages
fdefine OPERATOR. IITERFACE 1500

fdefine US.BEGIl.FRANEUORE 1501

fdefine US.EID.FRAMEWORK 1502
fdefine US.CREATE.FRAMEMORK 1503

fdefine US.DELETE.FRAHEWORK 1504

struct us_frameBork_msg_t{

int msgid;
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char name [128] ;

};

#define US_ADD_SYMBOLIC_ITEM 1505

tdefine US_DELETE_SYMBOLIC_ITEH 1506

struct us_syinbolic_itein_msg_t{

int msgid

;

char name [128]

;

};

tdefine US_ADD_SYMBOLIC_ITEH_ATTR 1507

tdefine US_DELETE_SYMBOLIC_ITEM_ATTR 1508

tdefine US_SET_SYMBOLIC_ITEM_ATTR 1509

struct us_8ymbolic_item_attribute_m8g_t{
int msgid;

char name [128] ;

char attribute_name[128]

;

int size; // e.g. number of joints

int xdim;

int ydim;

Representation.units.type rep;

Measurement.units.type units;

generic_value_a values; // context-dependent values

};

//

// ON - object modeling module

tdefine OBJECT.NODELIIG 1600

tdefine US.OM.CREATE 1601

struct us_om_croato_m8g_t {

int msgid

;

enum { device_origin = 1,

relative_origin = 2,

zoro_device = 3,

device_viev = 4,

vorkarea = 5

,

target = 6

,

obstacle = 7

,

} type;

};

char name [128]

;

// Reference Frame - e.g., given in VDT relative coordinates

char device [128]; // use name for nos

GEONETRY data; // define shape

tdefine US_ON_DELETE 1602

struct us_om_delete_msg_t {

int msgid

;

enum { device.origin = 1

,

relative.origin = 2,

zero_device = 3,

device_vies = 4,

sorkarea = 5

,

target = 6,

obstacle = 7,

} type;

char name [128]

;

};

tdefine US_0M_M0DIFY 1603

struct u8_om_modify_msg_t {

int msgid;
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enun { device.origin = 1

,

relative.origin = 2,

zero_device = 3,

device.vieo = 4,

vorkarea = 5

,

target = 6,

obstacle = 7

,

}type;

char name [128]

;

// Reference Frame -

char device [128];

GEOMETRY data;

e.g., given in VDT relative coordinates

// use name for nos

// define shape

};

//

// OC - The object calibration module provides the operator with a means

// of updating knosledge on the object(s) positions and orientations

fdefine OBJECT.CALIBRATIOI 1700

•define US_OC_SET_CALIB 1701

•define US_OC_GET_CALIB 1702

struct us_oc_calib_msg_t {

int msgid

;

enum { device.origin = 1

,

relative_origin = 2,

2ero_device = 3,

device.vies = 4,

sorkarea = 5

,

target = 6,

obstacle = 7,

}type

;

char name [128]

;

// Reference Frame

char device [128];

GEOMETRY data;

};

•define US_OC_SET_ATTR 1703

struct us_oc_set_attr_msg_t {

int msgid

;

char name [128]; // device name
Modifier_t modifier;

Attribute.t attributes;

int size;

Representation_units_type rep;

Measurement_units_type units

;

generic_value_a value

;

};

- e.g., given in VDT relative coordinates

// use name for nos

// define shape

•define US_OC_GET_ATTR 1704

struct us_oc_get_attr_msg_t {

int msgid;

char name [128] ; // device name

Modifier_t modifier;

Attribute_t attributes;

};

//

// OK Input

•define OBJECT.KIOULEOGE 1800

•define US_0K_REC0RD 1801

•define US_OK_PLAYBACK 1802
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struct u8_ok_record_m8g_t {

int msgid;

char narae [128]

;

};

•define US_0K_CREATE_0BJ 1803

struct us_ok_create_m8g_t {

int msgid;

char name [128]

;

OBJECT Ob;

};

•define US_0K_DELETE_0BJ 1804

struct us_ok_delete_msg_t {

int msgid;

char name [128]

;

};

•define US_0K_H0DIFY 1805

struct us_ok_modify_m8g_t {

int msgid;

int obj_id;

int size;

void * data;

};

•define US_OK_HODIFY_ATTRIBUTE 1806

struct us_ok_modify_attribute_msg_t {

int msgid;

int obj_id;

Attribute_t attr;

int size;

void * data;

};

•define US_OK_ATTRIBUTE_QUERY 1807

struct us_ok_attr_query_msg_t {

int msgid

;

int obj_id;

Attribute_t attr;

};

// Output

•define US_OK_OUTPUT_REGISTERED_OBJ_ID 1808

struct U8_regi8tered_id_msg_t {

int msgid;

char name [128]

;

int obj_id;

};

•define US_OK_ATTRIBUTE_RESPOISE 1809

struct us_ok_attr_respon8e_msg_t {

int msgid;

int obj_id;

Attribute_t attr;

double evalues

;

};

//

// TRD - the trajectory description module suports the creation,

// deletion or modification of a trajectory

•define TRAJECTORY.DESCRIPTIOI 1200

•define US.TRD.OPEI 1200

struct u8_trd_open_msg_t{

int msgid;
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ch&r narae[128]

;

enuin { create = 1

,

append = 2

,

readonly = 3,

} type;

};

•define US_TRD_ERASE 1201

•define US_TRD_RECORD 1202

•define US_TRD_REC0RD_0i 1203

•define US_TRD_RECORD_OFF 1204

struct U8_trd_record_msg_t{

int msgid;

char nane[128]

;

};

•define US.TRD.FIID 1205

•define US_TRD_IEXT 1206

•define US_TRD_PREVIOUS 1207

•define US.TRD.DELETE 1208

struct us_trd_positioning_msg_t{

int msgid;

char name [128];

int num.element; // ~1

};

•define US.TRD.IAHE.ITEM 1209

struct U8_trd_name_item_msg_t{

int msgid;

char name [128];

};

•define US_TRD_DELETE_ITEM 1210

struct U8_trd_dolete_item_m8g_t{

int msgid;

int id

;

};

•define US_TRD_SET_JOIIT_I!ODE 1211

struct us_trd_set_joint_mode_msg_t{

int msgid;

double dof

;

};

•define US_TRD_SET_CARTESIAI_MODE 1212

struct us_trd_8et_Cartosian_mode_msg_t{

int msgid;

double dof

;

};

•define US_TRD_HODIFY 1213

struct us_trd_modify_msg_t{

int msgid

;

char name [128]

;

int num.element

;

double edata;

};

•define US_TRD_ADD_ELEHEIT 1214

struct us_trd_add_element_m8g_t{

int msgid;

double *data;

};

= current
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//

// SGD I ADS - Analysis and Device Simulator Modules. These modules serve

// a dual purpose: 1) operator can call the analysis menu, etner state

// data eoid end point data, and let the simulator establish the

// appropriate trajectory/path through teleoperation of the simulation

// 2) analyzes the exeuction of the system tabs sequence by examining

// the curernt state of teh system against predetermined constraints.

// SS - subsystem simulator

// SGD uses the same messaging as the 01

// ADS uses the same messaging as the SGD, 01

•define STATUS.GRAPHICS.DISPLAY 1900

•define AIALYSIS.DIAGIOSIS.SYSTEH 2000

•define US.ADS.COLLISIOI.DETECTED 2001

struct us_sgd_error_msg_t {

int msgid;

char name [128] ;

int obj_idl;

int obj_id2;

double x,y,z; II collision.spot

};

//

//

// SS uses the same messaging as the module it is simulating but replace

// a SS for the module name.

•define SUBSYSTEM.SIHULATIOI 2100

•end if

H.4 Interface API Source

•ifndef UTAP_IITERFACE_DEFIIITIOIS

•include "generic.defs .h"

•include “utap_info_model .h"

•include “utap_data_defs .h"

•include “undefined.types.h"
/•*

This header file defines the interfaces for communication betseen

modules in the Generic C5 Architecture.

Generic Telerobotic Architecture for C-5 Industrial Processes

contains modules of which the following have acronyms:

NODULES lANIIG/ACROIYNGS

:

REMOTE

:

RSC - robot servo control

TOOL - tool control

SEISOR- sensor control

PIO - programmable io

TLC - task level control

CLC - closed loop control

DB - data base is part of TLC A CLC

VS - virtual sensor

LOCAL:

TDS - task description and supervision

TK - task knowledge

TED - trajectory description

PTPS - parent task program sequencer

TPS - task program sequencer

01 - operator interface
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OK - object knoBledge

OC - object calibration

ON - object modeling

SGD - status graphics displays

SS - subsystem simulators

ADS - analysis and diagnosis

/
/•*

A little table of contents:

GEIERIC: 101 - 199

ERROR: -100 - -200

R0B0T_SERV0

:

200 - 299

TOOL: 300 - 399

SEISOR: 400 - 499

PIO: 500 - 599

TLC: 600 - 699

DB: 700 - 799

VS: 800 - 899

TDS: 1000 - 1099

TK: 1100 - 1199

TRD: 1200 - 1299

FTPS: 1300 - 1399

TPS: 1400 - 1499

01: 1500 - 1599

OK 1600 - 1699

OC 1700 - 1799

OH 1800 - 1899

SGD: 1900 - 1999

ADS: 2000 - 2099

SS:

*/

2100 - 2199

us.startupO

;

us.shutdounO ;

us_reset( int type,

long mask)

;

us_enable( int axis);

us_disable( int axis);

us_estop()

;

us_start()

;

us_stop()

;

us_abort()

;

us.haltO ;

us_init()

;

us_hold()

;

us_pause()

;

us.resumeO

;

us_zero( long mask);

us_begin_single_step()

;

us_next_single_step()

;

us_clear_single_step()

;

us_begin_block()

;

us_ond_block()

;

us_begin_pl«m( char naffle[128]);

us_end_plan()

;

us_use_plan()

;

u8_begin_macro( char name [128]);

us_end_macro()

;

us_execute_macro( char name[128]);

us_begin_event( char name [128],

int type

,

TIME t);

us_end_event ( )

;

us_mark_breakpoint()

;

us_mark_event( char name[128]);

us_get_selection_id( char name [128]);

us_post_selection_id()

;
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us_use_selection()

;

us_use_axi8_nask( AxisNask axis);

u8_u8e_ext_algorithm( int slot);

us_load_ext_parameter( int slot);

us_get_ext_data_value( int slot,

ROUTE r)

;

us_po8t_ext_data_value( int slot,

void * data)

;

us_8ot_oxt_data_value( int slot,

void * data)

;

us_load_8tatU8( int type)

;

us_load_status_period( double time);

us_generic_status_report_t ( STATUS.TYPE status,

double progress

,

int type,

int explanation,

void * command.echo)

;

us_error_command_not_implomented( )

;

U8_error_command_ontry( int f ield.num)

;

us_error_duplicate_name()

;

us_orror_command_bad_data( int field.num)

;

us_orror_no_data_availablo( int field.num)

;

us_error_safety_violation( int field_num)

;

us_error_limit_excoeded( Attribute_t attr)

;

us_error_over_specifiod( int axis.number)

;

us_error_under_specifiedO

;

us_axis_8orvo_use_angle_units()

;

us_axis_sarvo_u8e_radian_unit8()

;

us_axis_8ervo_U8e_abs_po8ition_mode()

;

us_axis_servo_U8e_rel_po8ition_mode()

;

us_axi8_8ervo_u8e_ab8_velocity_mode()

;

us_axi8_8ervo_use_rel_velocity_mode()

;

u8_axis_8ervo_u8e_pid( int joint.mask)

;

u8_axi8_8ervo_u8e_ff ()

;

us_axi8_servo_use_current()

;

U8_axi8_8ervo_U8e_voltage()

;

us_axi8_servo_u8e_8tiffne88( int spSelVect,

double • gains

,

double • spNaxVel);
us_axi8_8ervo_use_compliance()

;

us_axis_8ervo_u8e_iinpedance()

;

u8_axi8_servo_8tart_gravity_compensation()

;

us_axi8_8ervo_8top_gravity_corapen8ation()

;

U8_axis_8ervo_load_dof ( int dof);

us_axi8_servo_load_cycle_time( double time);

u8_axis_8ervo_load_pid_gain( int joint .mask,

double *p,

double *i,

double *d)

;

us_axis_8ervo_load_joint_limit ( int axis.bit.mask

,

double ejmaxLimit,

double ejminLimit)

;

U8_axi8_8ervo_load_velocity_limit( int axis.bit.mask

,

double ejvelLimit);

u8_axis_8ervo_load_joint_gain_limit ( double ejaGain)

;

us_axis_8ervo_load_dainping_values ( double ejaOamp)

;

us_axis_8ervo_home( int uis) ;

us_axis_servo_8et_brake8( int axis_bit_mask)

;

us_axis_8ervo_clear_brakes( int axis_bit_mask)

;

us_axis_8ervo_8et_torques( int axis.bit.mask

,

double *joint.torques)

;

u8_axis_8ervo_8et_current( double •joint.currents)

;

U8_axis_8ervo_set_voltage( double •joint.voltages)

;

u8_axis_8ervo_8et_po8ition( double ejoint.position)

;

U8_axi8_8ervo_set_velocity ( double •joint.velocity)

;

u8_axi8_8ervo_8et_acceleration( double •joint.acceleration)

;
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u8_axi8_8ervo_80t_force( double *joint_force)

;

u8_axi8 _8ervo_jog( int axi8 ,

double 8peed)

;

us_axi 8 _8ervo_jog_8top( int axis);

us_8pindle_retract_traver8e()

;

us_load_8pindle_8peed( double r)

;

us_8tart_ 8pindle( int direction);

us_8top_ 8pindle_turning()

;

us_8pindle_retract()

;

us_orient_spindle( double orientation,

double direction);

u8_lock_spindle_z()

;

us_use_spindle_force()

;

us_use_no_spindle_force()

;

us_floB_ 8tart_mist()

;

u8_floB_8top_mi 8t()

;

us_floB_start_flood()

;

us_floH_8top_flood()

;

us_floH_load_paraineter8 ( int paran,

double value.rate,

int flow,

int action)

;

u8 _8tart_transfonn()

;

u8_8top_transform( )

;

us_8tart_filtor()

;

us_stop_filter()

;

us_8en8or_u8e_mea8urement_unit8 ( (!easuroment_unit 8_type array_unit8 )

;

U8_8ensor_load_sainpling_8peed( double value);

us_8en8or_load_frequency( double value);

u8_8en8or_load_tran8fonii( double x,

y.

z>

el

,

e2,

e3) ;

u8_8en8or_load_filterC int type,

double filter_frequency)

;

U8_8en80r_get_reading( ROUTE r)

;

U8_8en80r_get_attribute8_reading( ROUTE r,

Attribute_t attr)

;

u8_voctor_8en8or_get_reading( ROUTE r)

;

u8_ft_sen8or_po8t„reading( int health,

double ef,

double *t)

;

u8_8calar_8en8or_po8t_reading( double upper.limit

,

double lover_limit)

;

us_VECT0R_8en8or_post_reading( double evector)

;

U8_2D_8en8or_load_array_pattern( long array.pattern

,

float period)

;

us_2D_8on8or_U8o_array_typo( int typo);

u8_2D_8on8or_got_roading( ROUTE r,

Nodifier_t mod)

;

us_2D_sensor_po8t_reading( int rose,

int col 8 ,

double •array_values)

;

U8_image_sen80r_u8e_frame_grab_mode ( )

;

u8_image_8en8or_u8e_hi8togram_mode()

;

u8_image_8en8or_u8e_centroid_mode()

;

u8_image_8en8or_u8e_gray_level_mode ( )

;

u8_image_8ensor_use_threshold_mode( double ethreehold)

;

us_image_8ensor_compute_8patial_derivatives()

;

us_image_8en8or_compute_tomporal_derivatives()

;

u8_image_8ensor_u8e„8egmentat ion.mode ( )

;

u8_image_8en8or_u8e_recognition_mode( OBJECT to.recognize)

;

u8_image_8en8or_compute_range_mode()

;

u8_image_8en8or_cofflpute_floB.mode ( )

;
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us_image_ 8en8or_calibration( int calibration.state

,

int cur8or_value

,

float cx,

float cy,

float ex,

float ncx,

float nfx,

float dx

,

float dy

,

float dxp,

float focal.length

,

float diatort )

;

us_image_ 8et_ 8ensor_position( float x,

float y,

float z,

float pan,

float tilt

,

float zoom)

;

u 8_image_adjust_position( int axis,

int i

,

double *¥8106);

us_image_adjust_focu8 ( int i,

double increment);

us_image_po8t_8pecification( STATUS_TYPE status,

int num_of.cameras

,

' int calibration.state

,

int xpixels,

int ypixels,

int type,

TRAISFORH * base)

;

us_image_post_pixel_map_reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras,

int rous

,

int cols,

int *image_data)

;

us_image_post_histogram_reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras,

int roBs

,

int cols,

int *image_data)

;

u8_image_post_xy_char_reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras

,

int rows

,

int cols,

int *image_data)

;

u8_image_po8t_byte_symbolic_reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras,

int rows

,

int cols,

int *image_data)

;

u8_image_po8t_thre 8hold_reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras,

int roBS,

int cols,

int *image.data)

;

us.image.po8t_spatial_derivative.reading( STATUS.TYPE status,

TINE timestamp,

int num.cameras

,

int roBS

,

int cols,

int *image_data)

;
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us_iiiiage_post_temporal_derivative_reading( STATUS_TYPE status,

TINE timestamp,

int nuffl.cameras

,

int rows,

int cols,

int eimage.data)

;

us_imago_post_recognition_roading( STATUS.TYPE status,

TINE timest^unp,

int num.ceuneras,

int rows

,

int cols,

int *image_data)

;

us_image_post_range_reading( STATUS_TYPE status,

TINE timestamp,

int num.ceuneras

,

int roes,

int cols,

int *image_data)

;

us_image_post_floB_reading( STATUS_TYPE status,

TINE timestamp,

int num.camereis

,

int rows

,

int cols

,

int eimage.data)

;

us_pio_enable( int channel);

us_pio_disable( int channel);

us_pio_set_mode( int direction);

us_pio_control_Brite( int info,

int bits.data,

int run

,

int ref )

;

us_pio_scale( int channel,

double m ,

double b)

;

us_pio_data_®rite( int type,

union( double dvalue

,

int ivalue);

);

U8_pio_data_read( int type,

int channel)

;

us_pio_bit_read( int channel.num,

int bit)

;

us_pio_bit_set( int channel_num,

int bit)

;

us_pio_toggle_bit( int channel.num,

int bit)

;

us_pio_input_data( int type,

union( unsigned long data.register

,

double value)

;

unsigned long data_mask)

;

us_tlc_u8e_joint_referonce_framo()

;

us_tlc_use_Cartesian_referonce_frameO

;

us_tlc_use_representation_units( Neasurement_units_type units);

us_tlc_use_absolute_positioning_mode()

;

u8_tlc_relative_positioning()

;

us_tlc_use_srist_positioning()

;

us_tlc_use_tool_positioning()

;

us_chemge_tool( int i)

;

us_tlc_use_modified_tool_length_off8et8( int r);

u8_tlc_use_normal_tool_length_offsets()

;

us_tlc_u8e_no_tool_length_offset8()

;

U8_tlc_use_kinematic_ring()

;

us_tlc_start_manual_motion( AxisNask axis);

us_tlc_stop_manual_motion( AxisNask axis);

us_tlc_start_automatic_motion( AxisNask axis);

us_tlc_stop_automatic motionC AxisNask axis)

;
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U8_tlc_start_traver8e_inotion()
;

U8_tlc_8top_traver8e_motion()

;

us_tlc_8tart_guarded_motion()

;

us_tlc_8top_guarded_motion( )

;

us_tlc_start_compliant( AxisNa8k axis,

double *spring)

;

us_tlc_8top_conipliant ( AxisHask axis);

us_tlc_start_fine( AxisHask axis,

double errtolerance

,

int proximity)

;

us_tlc_stop_f ine ( AxisHask axis);

us_tlc_start_move_until ( AxisHask axis,

double *contact_forces)

;

us_tlc_8top_move_until( AxisHask axis);

us_tlc_start_8tandoff ( AxisHask axis,

double *distance)

;

us_tlc_stop_standoff ( AxisHask axis) ;

us_tlc_8tart_force_positioning()

;

us_tlc_stop_force_positioning( )

;

us_tlc_use_dof ( int dof )

;

us_load_cycle_time( double time);

us_tlc_load_representation_unit8( Heasurement_units_type units);

us_tlc_load_length_units( Heasurement_units_type units);

us_tlc_load_relative_po8itioning( TRAISFORH * t);

us_tlc_2ero_relative_positioning( )

;

us_tlc_zerot_program_origin( TRAISFORH * t);

us_tlc_load_kinematic_ring( Heasurement.units.type units,

int mask) ;

us_tlc_load_base_parameter8( TRAISFORH * trBase);

us_tlc_load_tool_parameter8( char name[128],

double dx,

dy.

dz

,

double ux,

uy.

uz

,

double normal.threshold

,

double tangential.threshold,

ORIEITATIOI.TYPE heading)

;

us_tlc_load_object( OBJECT obj_id,

TRAISFORH • t);

us_tlc_load_object_ba8e( TRAISFORH * t);

us_tlc_load_object_off8et( int i,

TRAISFORH • t)

;

us_tlc_load_delta( int delta,

double magnitude,

double frequency)

;

us_tlc_load_obstacle_volume( int i,

TRAISFORH • t )

;

us_tlc_load_blending( double dist

,

BLEID.TYPE blend)

;

u8_tlc_load_feed_rate( double feed.rate,

Heasurement_units_type units);

us_tlc_load_traverse_rate( double traverse.rate

,

Heasurement_units_type units);

us_tlc_load_acceleration( double accel,

Heasurement.units.type units)

;

us_tlc_load_jork( double jerk,

Heasurement_units_type units)

;

us_tlc_load_proximity ( AxisHask axis,

double distance);

us_tlc_load_contact_forces( TRAISFORH * tr,

Representation.units.type units,

int dof,

long cfSelVect,

long cfComplyVect

,

153



UTAP/WD Standard Interface Environment

double *cfFtSetpoints

,

double ecfFtCains,

double ecfMaxFcVel)

;

us_tlc_load_joint_limit( AxisHask axis,

double ^jtLimit);

us_tlc_load_contact_force_liinit( double •ctFLimit);

us_tlc_load_contact_torque_liinit ( double •ctTLimit);

us_tlc_load_8en8or_fusion_pos_liiait ( double •fsPLimit)

;

us_tlc_load_8ensor_fusion_orient_limit( double fsOLimlt)

;

us_tlc_load_8eginent_tiine( double time);

us_tlc_load_termination_condition( int condition,

int select

,

double testTime,

double endTime,

double endTransDel,

double endAngDel

,

double endTransVel,

double endAngVel,

double endForceErr,

double endTorqueEff

,

double endForceVel,

double endTorqueVel)

;

us„tlc_incr_velocity( int i,

double increment);

u8_tlc_incr_acceleration( int i,

double increment)

;

u8_tlc_8et_goal_position( double edata)

;

us_tlc_goal_segment( SEGNEIT.SELECT esegment)

;

us_tlc_adjust_axis( AxisHask axis,

int i

,

double evalue);

us_tlc_update_sensor„fusion( TRAISFORH * update);

us_tlc_select_plane( AxisHask axis);

us_tlc_use_cutter_radiu8_compen8ation( double radius);

us_tlc_start_cutter_radiu8_compensation( double side);

us_tlc_stop_cutter_radius_compensation()

;

us_tlc_8traight_traver8e( double x,

double y,

double z)

;

us_tlc_arc_feed( AxisHask first.axis,

AxisHask second.axis,

double rotation,

double axis.end.point)

;

us_tlc_straight_feed( double x,

double y,

double z)

;

us_tlc_parametric_2d_curve_feed( FU1CTI0I_PTR f 1

,

FUICTIOI.PTR f2,

double start.parameter.value,

double end_parameter_value)

;

us_tlc_parametric_3d_curve_feed( FUICTIOI_PTR xfcn,

FUlCTIOR.PTR yfcn,

FUICTIOI.PTR zfcn,

double start.parameter.value

,

double end.parameter.value)

;

us_tlc_nurbs_knot_voctor( int i,

double k)

;

U8_tlc_nurbs_control_point( int i,

double X

,

double y,

double z

,

double s)

;

us.tlc.nurbs.feedC double sStart,

double sEnd);

us_tlc_teleop_force_reflection( double «data)

;

us.tds.load.userC USER.TYPE user)

;
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us_td8_8elect_progr«m( char filename [128] )

;

U8_td8_execute_program( char filename [128] )

;

U8_td8_8elect_operation( int task) ;

us_td8_8elect_opmode( int type,

AxisHask axis)

;

us_tds_load_8election8( int selection,

char name [128] ) ;

us_tds_load_reference_units( Measurement.units.type units);

us_tds_load_rates( int selection,

int units,

double rate)

;

us_tds_load_origin( int selection,

char name [128] )

;

us_tds_load_sensing( int selection,

char sensor.name [128]

,

Attribute.t attr,

double setting)

;

us_task_framevork( int task,

int step.number,

char macro_name[l28]

,

USER.TYPE user,

int type,

AxisHask axis

,

int number.of.agents

,

char agent_class[128] [100]

,

char agent.list [128] [100]

,

char tool_clas8[128]

,

char tool_name[128]

,

char object_clas8[128]

,

char object_name[128]

,

int task.units,

POSITIOI program.home

,

POSITIOI program.origin,

POSITIOI relative.origin

,

TRAISFORH * base.frame

,

TRAISFORN * tool.frame,

TRAISFORH * zero.axes.force

,

TRAISFORH * zero_tool_force

,

int default_task_reference_units

,

int task.reference.units

,

double set.task.space.acceleration.limit

,

double set_task_space_acceleration_time

,

double feed.rate,
double feed.rate.units

,

double traverse.rate

,

int traverse.rate.units

,

double default.force.setting,

double guarded.proximity.setting,

double viscosity.setting,

double humidity.setting,

double desired.temperature

,

double temperature.limit

,

double noise.limit)

;

u8_tk_macro( char framework.file [128]

,

char action.file [128]

,

char plan [128] )

;

us_8elect_resource( TASK.ID tid,

RESOURCE.SELECT agent,

SUBUSYSTEH.ID ssid,

int type)

;

us_select_tool( TASK.ID tid,

EID_EFFECTOR_SELECT tool,

SUBUSYSTEH.ID ssid)

;

u8_select_sen8or( TASK.ID tid,

RESOURCE.SELECT agent

,

SUBUSYSTEH.ID ssid.
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int type)

;

us_interp_run_plan( SUBUSYSTEM_ID ssid,

int type ,

char plan[128]);

us_interp_halt_plan( SUBUSYSTEM.ID ssid)

;

us_ptps_input_request( SUBUSYSTEN.ID ssblocker,

SUBUSYSTEH.ID ssenabler

,

int type);

us_ptps_output_enable( SUBUSYSTEN.ID ssblocker,

SUBUSYSTEM.ID ssenabler,

int type)

;

us_tps_free8pace()

;

us_tps_guardede()

;

us_tps_constact()

;

us_8upervisory_mode()

;

us„8elect_feature( FEATURE surface,

double fx,

fy.

fz

,

double fol

,

fo2,

fo3)

;

us.select.material ( MATERIAL.TYPE m,

double naxx

,

maxy

,

maxz

,

double minx,

miny

,

minz

,

double fol

,

fo2,

fo3,

double strength,

double minforce

,

double maxforce);

us_load_obstacle( FEATURE obstacle);

us_load_pattem( GEOHETRY.PATTERI pattern) ;

us_tps_mark_event( int event);

U8_ptps_enable( int enable)

;

us_fraffleeork( char name [128]);

ns_symbolic_item( char neune [128]);

us_symbolic.item_attribute( char name [128] ,

char attribute_name[128]

,

int size,

int xdim,

int ydim,

Representation.units.type rep,

Neasurement.units.type units,

generic_value_a values);

us_om_create( int type,

char name [128] ,

char device [128],

GEOMETRY data)

;

us_om_delete( int type,

char name [128]);

us_om_modify( int type,

char name [128]

,

char device [128],

GEOMETRY data)

;

us_oc_calib( int type,

char name [128]

,

char device [128],

GEOMETRY data)

;

us_oc_8et_attr( char name [128] ,

Modifier.t modifier,

Attribute.t attributes.
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int size,

Representation.units.type rep,

Neasurement_units_type units,

generic_value_a value)
;

us_oc_get_attr( char name [128]

,

Modifier.t modifier.

Attribute.! attributes);

us.ok.recordC char name [128]);

us_ok_create( char name [128]

,

OBJECT Ob)

;

us_ok_delete( char name [128]);

us.ok.modify ( int size,

void • data)

;

us.ok.modify.attributeC Attribute.! attr,

int size,

void * data)

;

us.ok.attr.query ( Attribute.! attr) ;

us.registered.id( char name [128]);

us.ok.attr.response( Attribute.! attr,

double *values);

us.trd.openC char name [128],

int type)

;

us.trd.record ( char njune[l28]);

us.trd.positioningC char name [128],

int num.element )

;

us.trd.name.item( char naffle[128]);

us.trd.delete.itemO ;

us.trd.set.joint.mode ( double dof )

;

us.trd.set.Cartesian.mode( double dof);

us.trd.modify ( char name[128],

int num.element

,

double edata)

;

us.trd.add.element ( double *data)

;

us.sgd.error( char name [128]

,

int obj.idl,

int obj.id2,

double X,

y.

z)

;

•endif
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tool manipulation 69

trajectory xiv, 13, 16, 17, 80-84
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undefined 3
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USE_AXIS_MASK 31
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