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Abstract

Numerous network application programming interfaces (APIs) have been developed to

assist programmers in developing distributed applications. Both IEEE PlOOS.lg and Com-
mon Programming Interface for Communications (CPI-C) are examples of network APIs.

This report provides an overview of the P1003.1g and CPI-C specifications. An overview of

the basic functionality of PlOOS.lg and CPI-C calls is given, along with a simple program-

ming example for each API. This report does not contain sufficient detail needed to develop

distributed applications using these network APIs, however, a list of references is provided.
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1 Introduction

Over the past decade, as computer networks have been designed and implemented, it has

become desirable to re-engineer local applications into distributed applications. Many ap-

plication programming interfaces (APIs) have been developed to assist the programmer in

developing applications. Network APIs have been developed to assist the programmer in

developing applications that can be ported across a disparate range of operating systems.

With the recent move towards open systems, networks are becoming more diverse in the

variety of equipment from which the network is implemented. As heterogeneous computing

environments have evolved, it has become desirable for distributed applications to be capable

of running over a variety of platforms and protocols.

Over the past several years, the range of APIs being developed for data communication

services has broadened. This paper^ introduces the PlOOS.lg (formerly known as P1003.12)

and Common Programming Interface-Communications (CPI-C) specifications. An overview

of each of these specifications is provided.

The Introduction presents the underlying concepts behind the P1003.1g and CPI-C in-

terfaces. Sections 2 and 3 provide an overview of the P1003.1g and CPI-C specifications.

Sections and 4 and 5 take a closer look at the P1003.1g Detailed Network Interface (DNI).

Section 3 describes CPI-C 2.0, from which the latest IBM and X/Open versions of CPI-C

are based. Appendices A, B, and C provide programming examples using the XTI, Sockets

and CPTC interfaces [11].

1.1 Distributed Applications

Before computer networks became popular, applications were developed and run locally (e.g.

on a mainframe). Applications, that previously were only run locally, can be distributed to

take advantage of remote resources. Interprocess communication (IPC) involves the transfer

of data between processes. IPC can occur between processes on the same system as well as

between processes on different systems. Most facilities for interprocess communication are

designed such that data is transferred between one or more end-points within each process.

This allows a process to use more than one interprocess communications channel per process.

A distributed application is a program that is partitioned among multiple processes, and

possibly spread across multiple machines. Common characteristics among distributed appli-

cations include local components, communications components, and remote components. A
local component of a distributed application consists of the end-user, programmatic inter-

faces to the application, functions that access local input/output resources (e.g. a disk), and

access to computing resources of the local system. A communications component consists

of the entity that provides distributed communications capabilities to the distributed appli-

^Because of the nature of this report, it is necessary to mention vendors and commercial products.

The presence or absence of a particular trade name product does not imply criticism or endorsement by the

National Institute of Standards and Technology, nor does it imply that the products identified are necessarily

the best available
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cation. The communications component provides the ability to transfer data between the

local systems and one or more remote systems. A remote component consists of functions

that access input/output resources and computing resources of a remote system.

Examples of distributed applications are file transfer applications and applications which

facilitate the exchange of mail. A goal of distributed applications is that the use of multiple

autonomous systems remain transparent to the user.

1.2 Client/Server Model

The client/server model of communications is a model of interaction in a distributed system

in which one process contacts another process to request a service. The process requesting a

service is called a client The process satisfying client requests is called a server. A server can

also be a client. In such cases, the process is referred to as a client/server. Quite frequently,

a system which provides services to other systems is called a server node. Since this report

deals with interprocess communication among multiple processes on multiple systems, some

of which will be clients and some of which will be servers or client /servers, the terms client

and server will be used to refer to processes rather than nodes.

1.3 Protocols and Layering

The Open System Interconnection (OSI) Reference Model is commonly used for describing

network architectures. The idea behind the OSI Reference model is to group functions into

layers to make the implementation of protocols more manageable. The OSI Reference Model

provides a framework in which standards can be developed for the services and protocols at

each layer. Each layer is based upon the previous layer.

OSI, the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite (also

know as the Internet Protocol Suite), and Systems Network Architecture (SNA) each have

their own network architecture. Figure 1 shows one interpretation of how the SNA and

TCP/IP architectures compare to the OSI reference model [9]. Note that layers of the SNA
and TCP/IP architectures do not map cleanly to the OSI architecture. For example, the

Internet Protocol Suite specifies only 5 layers, combining the functions of the OSI application,

presentation, and session layers into a single application layer. See references [9], [11], [12]

and [13] for more information on these architectures.

Each network architecture tends to have its own terminology and definition of the services

provided by each layer. In very general terms, communications can be viewed as consisting

of three relatively independent layers: network access layer, transport layer, and application

layer. The network access layer is concerned with the exchange of data between a system and

the network to which it is attached. The specific software used at the network access layer

depends on the type of network to be used. The transport layer is a common layer shared

by all applications and is responsible for the reliable exchange of data between different

processes in different systems. The transport provider or communications provider is the set

of routines on the host system that provide communication support for a user process. The

2
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Figure 1: A Comparison of Communications Architectures

application layer contains the logic needed to support user applications. For each different

type of application, a separate module is needed. This report will focus on the services

provided by the transport layer. The transport layer provides the basic service of reliable,

end-to-end data transfer needed by applications and higher layer protocols.

1.4 Data Transfer

A transport protocol is responsible for transferring data between two communicating end-

points. Data includes both user data and control data. Full-duplex and half-duplex are two

modes of data transfer. For half-duplex data transfer, only one of the communicating pro-

grams has the right to send data at any time. Send control must be transferred to the other

communication endpoint before that endpoint can send data. For full-duplex data transfer,

both communicating endpoints can send and receive data simultaneously.

1.5 Type of Service

Two basic types of communications service are possible: connection-oriented or connection-

less service. Connectionless service is commonly used by applications that involve short-term

communication, such as request/response interactions. Connection-oriented communication

3



Figure 2: Simplified Communications Architecture

service is commonly used by applications that require relatively long-lived, data stream-

oriented interactions.

Connectio ^ss service, also known as datagram service, is message oriented and supports

data transfer in self-contained units called datagrams. Since datagrams are transmitted

independently, each datagram must contain all the information required for its delivery.

Connection-oriented service requires that two end-points establish a logical connection

with each other before communication can take place. There is some overhead associated

with establishing the connection. This overhead is more than made up for during the data

transfer phases. Some systems have a limit on the number of connections they can support.

A connection-oriented data exchange involves three steps: connection establishment, data

transfer, connection termination. Connection establishment is client/server oriented. One
process acts as a server that passively waits for incoming connections, while the other process

acts as a client that actively initiates a connection.

Connection-oriented service generally implies that service is reliable. Flow control, error

control, and sequenced delivery are examples of connection-oriented features. For each con-

nection, it is possible to negotiate the parameters and options that govern the data transfer.

1.6 Blocking v.s. Non-blocking Mode
Blocking mode is a mode of execution in which functions wait for requested operations to

complete before returning control to the calling application. Non-blocking mode is a mode
of execution in which functions do not wait for protocol events to occur before returning

control to the calling application. In non-blocking mode, functions must either complete an

operation without blocking, or return an error noting that the operation would have blocked.

I/O (input/output) multiplexing can be done on multiple file descriptors. A technique

called asynchronous I/O allows the kernel to notify a process with a signal when a descriptor

is ready for I/O. When using a technique called I/O multiplexing, a list is built of descriptors

that a user is interested in. A function (e.g. select() or pollQ is then invoked and does not

return until one of the descriptors is ready for I/O.

4



2 IEEE P1003.1g

P1003.1g [1], titled Protocol Independent Interfaces, is being developed as one of the IEEE
Portable Operating System Interface (POSIX) projects. The full title of IEEE PlOOS.lg is

Information Technology - Portable Operating System Interface (POSIX) - Part xx: Protocol

Independent Interfaces (PII). P1003.1g was previously named POSIX. 12.

POSIX P1003.1 defines a standard operating system interface to support application

portability at the source code level. The P1003.1g protocol independent interfaces, which

are extensions to PI 003.1, allow portable applications to communicate independent of the

underlying protocols. The P1003.1g interfaces are intended to be used by application devel-

opers and systems implementors.

P1003.1g specifies a transport layer API. An application performs process-to-process

communication by using P1003.1g to access the underlying Communication Services. Com-
munications Services include network facilities such as protocol stacks (e.g. TCP/IP, OSI)

which provide access to the underlying network. The protocol independence provided by

P1003.1g insulates the application from the specifics of the underlying protocol stack which

provides the communication services.

When the P1003.1g working group began developing its draft, the Sockets Interface and

the X/Open Transport Interface (XTI) were submitted as base documents. A poll of users

and developers indicated that a new transport layer interface to address the shortcomings

of each of the pre-existing transport layer interfaces was not desired. There were strong

proponents of both Sockets and XTI, making an either/or choice unfeasible.

P1003.1g currently consists of a low-level interface called the Detailed Network Interface

(DNI). This low-level interface specifies both XTI and Sockets. The approach of a dual DNI
interface was taken in an attempt to preserve the current investment in existing practice and

to promote application portability. Both XTI and Sockets have been in use for many years

and there are a large number of XTI and Socket programs.

The P1003.1g specification is proceeding through the IEEE ballot process. The first

ballot closed October 1993. An approved standard is expected in 1996. The current draft is

Draft 6.0 dated January 1995.

A P1003.1g conformant system will be required to support both XTI and Sockets. This

requirement is important to ensure support for the large installed base of existing XTI
and Sockets applications. Although XTI and Sockets provide similar functionality, the two

interfaces are not identical. Sections 4 and 5 describe DNI/XTI and DNI/Sockets in more

detail. There are many operating systems which currently provide both XTI and Sockets.

Vendors which support both XTI and Sockets include Sun Microsystems, IBM, DEC, OSF,

HP, and X/Open.

It is likely that a high-level interface called the Simple Network Interface (SNI) and a

Naming Interface will be added in the future. The P1003.1g working group has postponed

this work in order to complete the DNI work.

The DNI provides access to protocol-specific features of the underlying network by al-

lowing the use of optional features unique to specific protocol families. Both connectionless
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and connection-oriented transport services are supported. The current P1003.1g standard

defines interfaces which provide access to the Internet family of protocols, the ISO/OSI
family of protocols, and local interprocess communication (IPC). Since P1003.1g is protocol

independent, P1003.1g may be used to access additional transport providers if the mappings

to those protocols are defined.

Use of a P1003.1g API does not in itself guarantee interoperability between communicat-

ing processes. Interoperability is provided by matching communication stacks implemented

beneath the 1003. Ig API’s, as well as the application protocol used above the 1003. Ig API’s.

P1003.1g specifies language independent interface (LIS) mappings to local interprocess

communication (IPC), ISO Transport Protocols, and Internet Transport Protocols. For both

DNI interfaces, P1003.1g specifies C binding interface mappings to ISO Transport Protocols

and Internet Transport Protocols. For DNI/Sockets, there is also an interface mapping for

local interprocess communication (IPC). Other language bindings may be defined in the

future.
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3 Common Programming Interface for Communica-
tions

In the 1980’s, SNA provided a set of communications protocols for hierarchical communi-
cations between specific devices. The device types, known as Logical Unit (LU) types, are

software that handle data communications. To support the distributed processing required

by client/server applications, new LU types were developed. LU 6.2 was designed in 1984

as a generic protocol to support distributed peer-to-peer processing between different types

of computers. The term APPC, which stands for Advanced Program-to-Program Commu-
nication, is commonly used instead of the term LU 6.2.

APPC is a communications protocol that enables programs on different computers to

communicate. APPC lies between application programs and the network. The APPC ar-

chitecture did not specify a common API for implementing functions. As a result, each

operating system supporting APPC developed its own set of verbs. Programmers devel-

oping client/server applications for different operating systems were required to learn how
to use two or more different sets of verbs. Common Programming Interface for Commu-
nications (CPI-C) was announced in 1987 as an easier to use, higher level, more tightly

controlled interface to APPC. CPI-C, which sits on top of LU6.2, provides a consistent API
for program-to-program communications across different platforms.

Both IBM and X/Open have published version of the CPI-C specification. Section 3.1

provides a listing of CPI-C 1.0, CPI-C 1.1, X/Open extensions to CPI-C 1.1, and CPI-C
1.2 functionality. The functionality added to each version of CPI-C is listed, but will not be

described in this report. Consult one of the CPI-C documents listed in section 7 for more

information.

IBM initiated the CPI-C Implementors’ Workshop (CIW) to help guide and define future

enhancements to the CPI-C specification. All users and implementors of CPI-C are encour-

aged to participate in the workshop. CPI-C 2.0 was developed in conjunction with the CIW.
As of CPI-C 2.0, IBM and X/Open CPI-C specifications will be aligned. CPI-C 2.0 includes

mappings for OSI Transaction Processing (TP) as well as LU 6.2. Similarities between SNA
LU 6.2 and OSI’s Transaction Processing (TP) services are well documented [17]. The OSI

TP work is contained in the ISO/IEC 10026-series of standards for distributed transaction

processing [6].

Section [4] describes CPI-C in more detail and highlights CPI-C 2.0 enhancements.

Unlike P1003.1g/DNI, CPI-C is not a transport layer interface. In the OSI Reference

Model, CPI-C resides above the transport layer. In addition to providing the basic transport

of data, CPI-C also provides numerous advanced functions. As a result, CPI-C is much more

complex than the P1003.1g transport layer APIs. CPI-C functionality which provides more

than the basic reliable end-to-end data transfer includes:

• Synchronization and control

• Conversation security

7



• Distributed directory service

• Distributed security service

• Resource recovery

Although P1003.1g/DNI and CPI-C provide many similar services, CPI-C does not pro-

vide access to protocol specific features. CPI-C by itself does not provide transport inde-

pendence. CPI-C is commonly used for distributed databases and is designed to support a

large number of clients in a single program.

CPI-C is language neutral. CPI-C provides one standard set of verbs, known as CPI-C

calls, for all platforms that support CPI-C. This set of verbs is similar to a language in-

dependent specification. The calls can be made from most languages without any changes.

Languages that can call on CPI-C include C, Cobol, Fortran, PL/1, Pascal, the CSP appli-

cation generator, the REXX procedures language, and RPG.
Applications can obtain the services of CPI-C as implemented in AIX, CICS/ESA, DOS,

IMS/ESA, MVS/ESA, OS/2, OS/400, and VM/ESA. Although CPI-C is available for most

IBM systems, only a few other vendors have implemented CPI-C on their platforms.

3.1 Previous Versions of CPI-C

3.1.1 CPI-C 1.0

CPI-C Version 1.0 was originally published in 1988. This version contained dialogues and pro-

vided access to the conversation specific functionality of IBM’s LU 6.2. CPI-C 1.0 provided

a standard base for conversational communications including the following functionality:

• Ability to start and end conversations

• Support for program synchronization through confirmation flows

• Error processing

• Ability to optimize conversation flow

3.1.2 CPI-C 1.1

CPI-C 1.1 [8] was published in 1990 and added the following four areas to CPI-C 1.0:

• Support for resource recovery

• Automatic parameter conversion

• Support for communication with non CPI-C programs

• Local/remote transparency

8



3.1.3 X/Open CPI-C

CPI-C was first adopted by X/Open in 1990. The X/Open XPG4 version of CPI-C [3] is

based upon IBM’s CPI-C 1.1 and is know as X/Open Extensions to CPI-C. X/Open CPI-C
was included within X/Open’s Common Applications Environment (CAE).

CPI-C was primarily included within X/Open’s CAE to define a standard basis for main-

frame interworking. X/Open CPI-C was intended to provide an API that allows X/Open-
compliant systems to communicate with systems that have implemented the IBM LUO.

2

protocol [5].

Support for resource recovery was excluded from X/Open’s XPG4 CPI-C definition.

X/Open’s version of CPI-C included several new functions not found in CPI-C 1.1:

• Support for non-blocking calls

• Ability to accept multiple conversations

• ASCII and EBCDIC conversions

• Support for security parameters

X/Open’s Peer-to-Peer SnapShot was published as a requirements document for the CPI-

C Implementor’s Workshop. This document provides a detailed mapping of the Peer-to-Peer

interface to the OSI TP Services.

3.1.4 CPI-C 1.2

CPI-C 1.2 consolidates CPI-C 1.1 and the X/Open extensions added to CPI-C 1.1. CPI-C

1.2 includes the following:

• Support for non-blocking calls

• Support for data conversion

• Support for specification of security parameters

• Ability to accept multiple conversations

As of CPI-C 1.2, IBM agreed to remove all licensing requirements for CPI-C specifications.

3.2 Current Version of CPI-C

The current version of CPI-C is Version 2.0. As of CPI-C 2.0, IBM and X/Open versions of

CPI-C will be aligned. CPI-C 2.0 provides the following enhancements to CPI-C 1.2 [4]:

• Support for full-duplex conversations and expedited data

9



• Enhanced support for non-blocking processing with the addition of queue-level pro-

cessing and a callback function

• Support for OSI TP applications

• Support for use of a distributed directory

• Support for use of a distributed security service

• Support for secondary information to determine the cause of a return code

10



4 DNI/XTI
In the mid-1980s, AT&T introduced the Transport Layer Interface (TLI) with Release 3 of

the System V UNIX operation system [7]. XTI is an adaptation of TLI and was originally

defined in the X/Open Portability Guide, Issue 3 (XPG3). XPG3 was published in late

1988. XTI, which is very similar to TLI, removes the system dependencies from TLI. The
current DNI/XTI work is based on the XPG4 January 1992 version of the X/Open CAE
Specification; X/Open Transport Interface. It is the goal of the P1003.1g Working Group

to keep DNI/XTI and X/Open XTI aligned.

XTI defines a protocol independent interface to the transport layer. XTI was designed

primarily for use with the ISO Transport Service Definition, but has also been adapted for

use with Internet protocols such as TCP and UDP. Unlike Sockets, XTI does not provide

direct local interprocess communication or access to layers beneath the transport layer.

There is much support for XTI in the Unix community. Support for XTI includes Sun, Sys

V, Unix International, and the Open Software Foundation, whose members include Apollo,

DEC, HP, and IBM.

4.1 Overview of XTI Communication

Before data transfer can take place, a series of XTI function calls are needed to establish

the communications endpoint. Figure 3 shows the sequence of XTI function calls for a client

and server communicating in connectionless mode.

Server

Figure 3; XTI Function Calls Using Connectionless Mode
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Server

Figure 4: XTI Function Calls Using Connection-oriented Mode

Using connection-oriented communications, before data transfer can take place, a series of

XTI function calls is needed to establish the connection between the two endpoints. Figure 4

shows the sequence of XTI function calls for a client and server communicating in connection-

oriented mode. Sections 4.6 and 4.7 provide an overview of connection establishment and

connection release.

Sections 4.2 and 4.3 provide a high level summary of the function calls shown in fig-

ures 3 and 4. These sections do not contain sufficient detail needed to write XTI programs.

Section 7 provides a list of references, that provide XTI programming examples. Note that

TLI functions are very similar to DNI/XTI functions, but may deviate slightly. Consult the

P1003.1g specification for detailed information on XTI functions.

4.2 Basic XTI Functions For Connectionless Mode Communica-
tion

A connectionless mode communications service has two phases of communication: initial-

ization/de-initialization and data transfer. The following functions are used for basic con-

nectionless mode communications.

1 . Initialization/de-initialization phase

12



• t_open()

The t_open() function creates a communications endpoint and returns protocol-

specific information associated with that endpoint. This function also returns a

file descriptor that serves as the local identifier of the endpoint.

• t_bind()

The t_bind() function associates an address with a communications endpoint. Ap-

plications can either explicitly specify a end-point’s address or permit the system

to assign one.

• t_alloc()

The t_alloc() function dynamically allocates memory for various communications

function argument structures.

• t_close()

The t_close() function informs the communications provider that the user is fin-

ished with the communications endpoint. Any local resources associated with

that endpoint are freed.

2. Data transfer

• t_sndudata()

The t_sndudata() function enables communications users to send a self-contained

data unit to the user at the specified protocol address.

• t_rcvudata()

The t_rcvudata() function enables communications users to receive data units

from other users.

• t_rcvuderr()

t_rcvuderr() function enables communications users to retrieve error information

associated with a previously sent data unit.

4.3 Basic XTI Functions For Connection-oriented Mode Com-
munication

A connection-oriented communications service has four phases of communication: initialization/de-

initialization, connection establishment, data transfer, and connection release. The following

functions are used for basic connection-oriented mode communications. Each endpoint has

certain characteristics associated with the communication. Section 4.8 lists communications

options.

1 . Initialization/ de-initialization

13



• t_open()

The t_open() function creates a communications endpoint and returns protocol-

specific information associated with that endpoint. This function also returns a

file descriptor that serves as the local identifier of the endpoint.

• t_bind()

The t_bind() function associates an address with a communications endpoint.

• t_alloc()

The t_alloc() function dynamically allocates memory for various communications

function argument structures.

• t_close()

The t_close() function informs the communications provider that the user is fin-

ished with the communications endpoint. Any local resources associated with

that endpoint are freed.

2. Connection establishment

• t.connect0
The t-connect () function requests a connection to the communications user at a

specified destination and waits for the remote user’s response.

• tJisten()

The tJisten () function enables the passive communications user to receive connect

indications from other communications users.

• t .accept

0

The t.accept () function is issued by the passive user to accept a particular connect

request after an indication has been received.

3. Data transfer

• t.snd()

The t.snd() function enables communications users to send either normal or ex-

pedited data over a connection.

• tj-cvO

The tj'cvO function enables communications users to receive either normal or

expedited data over a connection.

4. Connection release

• t.snddis()

The tjsnddis() function can be issued by either communications user to initiate

the abortive release of a connection.

14



• t_rcvdis()

The t_rcvdis() function identifies the reason for the abortive release of a connec-

tion, where the connection is released by the communication provider or another

communications user.

• t_sndrel()

The t_sndrel() function can be called by either communications user to initiate

an orderly release. The connection remains intact until both users call t_sendrel()

and t_rcvrel().

• t_rcvrel()

The t_rcvrel() function is called when a user is notified of an orderly release

request, as a means of informing the communications provider that the user is

aware of the remote user’s actions.

4.4 Modes of Service

DNI/XTI supports both connectionless and connection-oriented communication. One of the

parameters to t-open() specifies the type of service provided by the transport provider. Three

types of service that can be offered by a transport provider are: connection-oriented service,

without orderly release; connection-oriented service, with orderly release; and connectionless

service. Section 4.7 explains the concept of orderly release. DNI/XTI provides full-duplex

data transfer.

4.5 Execution Modes

XTI calls are made in one of two execution modes: blocking, or non-blocking. The desired

mode is specified through the 0_N0NBL0CK flag. This flag may be set with t-open() when
the communications provider is initially opened. The 0_N0NBL0CK flag may also be set

using the fcntl() function. When the 0_N0NBL0CK flag is clear, the function blocks until

the processing associated with the function either completes or is interrupted by an event.

When the 0_N0NBL0CK flag is set, the function does not block and initiates the processing

associated with the function.

4.6 Overview of Connection Establishment

The function t-open() is called as the first step in the initialization of a communications

endpoint. This function returns a file descriptor that is used by all other XTI functions.

Information regarding the transport provider is returned to the caller.

After the communications endpoint has been created, the t-bind() function assigns an

address to the endpoint. Consult the PlOOS.lg specification for detailed information on ad-

dressing. The t-alloc() function is used to dynamically allocate memory for communications

function argument structures. The t-open(), t-bind(), and t-ollocQ functions are called for

both connectionless and connection-oriented communication.
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For connection-oriented mode, the connection establishment phase enables two commu-
nications users to establish a connection between them. One process is considered active and

initiates the conversation. The other process is considered passive and waits for a connection

request. The process initiating a connection issues a t-Connect() call. The process accepting

a connection issues a tJisten() and then a t.accept() call. After the connection has been

established, user data can be transferred.

4.7 Overview of Connection Release

Section 4.3 lists functions that support connection release for connection-oriented ?^’ode. The

functions tsnddisQ and t-rcvdis() are used for abortive release and the function jndrel()

and t-rcvrel() are used for orderly release.

When an abortive release is issued, there is no guarantee of delivery of user data. A
communications user may initiate an abortive release either in the connection establishment

phase or the data transfer phase. When issued in the connection establishment phase,

the abortive release rejects a connection request. The communications provider may also

initiate an abortive release, in which case both users are informed that the connection no

longer exists.

The procedure for orderly release prevents the loss of data that may occur during an

abortive release. If supported by the communications provider, orderly release may be

invoked from the data transfer phase to enable two users to gracefully release a connection.

The orderly release is an optional feature of TCP. The ISO Connection-oriented Transport

Service Definition only supports abortive release.

4.8 Use of Options

Some options are general XTI options while others are specific for each communications

provider. All options have default values, however the values can be negotiated by an

application. Many of the XTI functions contain an argument which is used to convey options

between an application and the communications provider. The t.optmgmtQ function enables

an application to retrieve, verify or negotiate protocol options with the communications

provider. There are six XTI level options. Consult the P1003.1g specification for descriptions

of XTI options and information regarding their use.

5 DNI/Sockets

A socket is a general-purpose interprocess communication (IPC) mechanism useful for both

network and stand-alone applications. Current DNI/Socket work is based on the 4.4BSD
Socket interface from the University of California, Berkeley. The sockets mechanism was

initially introduced in BSD 4.2 in Unix in 1981. The sockets model generalizes standard I/O

functions. Sockets have been widely implemented in several environments. In BSD Unix,

sockets are built into the kernel and are accessible by way of system calls. Non-BSD Unix
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systems, as well as other operating systems such as MS-DOS, MacOS, DOS/Windows, and
OS/2, provide sockets in the form of libraries.

Although sockets are used widely on a number of different systems, sockets interfaces

are not necessarily consistent across all systems. The PlOOS.lg DNI/Sockets specification is

important because it promotes alignment of implementations with variations to the Sockets

interface.

DNI/Sockets provides interfaces to Internet and ISO Transport protocols. This API
provides transport layer access as well as access to lower layers.

5.1 Overview of Sockets Communication

Before data transfer can take place, a series of Sockets function calls are needed to establish

the socket. Figure 5 shows the sequence of Sockets function calls for a client and server

communicating in connectionless mode. Section 5.2 provides a brief description for each

function call shown in figure 5.

Server

Figure 5: Sockets Function Calls Using Connectionless Mode

Using connection-oriented communications, before data transfer can take place, a series

of Sockets function calls is needed to establish the connection between the sockets. Fig-

ure 6 shows the sequence of Sockets function calls for a client and server communicating

in connection-oriented mode. Section 5.3 provides a brief description for each function call

shown in figure 6. Sections 5.6 and 5.7 provide an overview of connection establishment and

connection release.
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Server

Figure 6: Sockets Function Calls Using Connection-oriented Mode

Sections 5.2 and 5.3 provide a high level summary of the function calls shown in figures 5

and 6. These sections do not contain sufficient detail needed to write Sockets programs,

however, section 7 provides a list of references that provide Sockets programming examples.

Note that although the P1003.1g Sockets interfaces is very similar to existing Sockets in-

terfaces, some of the functions may slightly deviate. Consult the P1003.1g specification for

detailed information on XTI functions.

5.2 Basic Sockets Functions for Connectionless Mode Commu-
nication

Sockets communicating in connectionless mode are know as datagram sockets. The datagram

socket type supports connectionless data transfer which is not necessarily acknowledged or

reliable. The following list contains functions that are used for datagram sockets. There is no

requirement for connection establishment. Each message includes the destination address.

1. Socket creation

• socket()

The socket() function is used to create an endpoint for communication.
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• bind()

The bind() function may be called before the first data transmission to set a

particular local address.

2. Data Transfer

• sendto(), sendmsg()

The sendto() and sendmsg() function may be called to send a message from a

socket. These functions may be used regardless of whether a peer address has

been prespecified.

• recvfrom(), recvmsg()

The recvfrom() and recvmsg() function may be called to send a message from a

socket. These functions may be used regardless of whether a peer address has

been prespecified.

If the connect() function is used to specify a peer address, the send() and recv() functions

may also be used during the data transfer phase.

5.3 Basic Sockets Functions for Connection-Oriented Mode Com-
munication

This section provides a high level summary of functions employing connection-oriented com-

munication. A connection-oriented communications service has four phases of communica-

tion: initialization/de-initialization, connection establishment, data transfer, and connection

release. The following functions are used for basic connection-oriented mode communica-

tions.

1. Initialization

• socket

0

The socket() function is used to create a communications endpoint.

• bind()

The hind() function is used to bind an address to a socket.

2. Connection Establishment

• connect0
The connect() function requests a connection to the communications user at a

specified destination and waits for the remote user’s response.

• listen()

The listen() function enables the passive communications user to receive connect

indications from other communications users.
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• accept

0

The accept() function is issued by the passive user to accept a particular connect

request after an indication has been received.

3. Data transfer

• recv()

The recv() function enables communications users to receive data over a connec-

tion.

• send()

The send() function enables communications users to send data over a connection.

4. Discarding Sockets

• close()

The close() function informs the communications provider that the user is finished

with the communications endpoint. Any local resources associated with that

endpoint are freed.

• shutdown()

The shutdovm() function causes all or part of a full-duplex connection to be shut

down. The connection may be shutdown so that either further receives will be

disallowed, further sends will be disallowed, or further sends and receives will be

disallowed.

5.4

Modes of Service

DNI/ Sockets supports connectionless mode and connection-oriented mode. Local interpro-

cess communication (IPC) is also supported. Local IPC involves the transfer of data between

processes within the same system. Parameters to the socket() function calls specify the type

of service desired. Section 5.6 briefly describes how types of sockets are selected.

5.5

Execution Modes

Like DNI/XTI, DNI/Sockets calls are made in either blocking or non-blocking mode. The
desired mode is specified through the 0_N0NBL0CK flag. This flag may be set when the

communications provider is initially opened. The 0_N0NBL0CK flag may also be set using

the fcntlQ function.

5.6

Overview of Connection Establishment

The function socket() is called as the first step in the initialization of a socket. This function

returns a file descriptor that is used by all other Sockets functions. A socket is created with
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a specific type^ which defines the communication semantics and which allows the selection of

aji appropriate communications protocol. Four types of sockets are:

• SOCK_DGRAM (datagram socket)

The SOCK_DGRAM socket type supports connectionless data transfer. Datagrams
may be sent to a peer named in each output operation, and incoming datagrams may
be received from multiple sources.

• SOCK_STREAM (stream socket)

The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams

between the socket and a peer to which the socket is connected. A socket of type

SOGK_STREAM must be in a connected state before any data may be sent or re-

ceived.

• SOGK-SEQPACKET (sequenced packet socket)

The SOGK_SEQPACKET socket type is similar to the SOGK_STREAM type, and

is also connection-oriented. The only difference between these types is that record

boundaries are maintained using the SOGK-SEQPACKET type.

• SOCK-RAW (raw socket)

The SOCK-RAW socket type is similar to the SOCKJDGRAM type. It differs in that

it is normally used with communication providers that underly those used for the other

socket types. For example, a SOCK_DGRAM socket can be used to access the network

layer instead of the transport layer.

After the socket has been created, the bind() function assigns an address to the endpoint.

Consult the PlOOS.lg specification for detailed information on addressing. The socket() and

bind() functions are called for both connectionless and connection-oriented communication.

For connection-oriented mode, the connection establishment phase enables two sockets

to establish a connection between them. One process is considered active and initiates the

conversation. The other process is considered passive and waits for a connection request. The
process initiating a connection issues a connect() call. The process accepting a connection

issues a listen() and then an accept() call. After the connection has been established, user

data can be transferred.

5.7 Overview of Connection Release

Section 6 lists sockets functions used for discarding sockets. Section 4.7 describes abortive

and orderly release.

In the socket connection establishment phase, closing a socket with the close () function

causes any queued but unaccepted connections to be discarded. In the data transfer phase,

if the socket being closed is associated with a protocol that promises reliable delivery of data

(i.e. orderly release), the socket must attempt to transmit the data.
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A socket can be marked explicitly to force the application process to attempt to transmit

pending data. If the socket is connection-oriented, the socket is connected, the SOJLINGER
option is on with a non-zero linger time, and the 0_N0NBL0CK option is not set for the

socket, the close ()
function will block until the disconnect completes or until the linger time

expires. If the linger time expires before the disconnect is complete, any pending data is

discarded.

The shutdown() function causes all or part of a full-duplex connection to be shut down.

The connection may be shutdown so that either further receives will be disallowed, further

sends will be disallowed, or further sends and receives will be disallowed.

5.8 Use of Options

There are several socket options which either provide useful information or specialize the

behavior of a socket. Socket options are manipulated by two functions, getsockopt() and

setsockoptQ. These functions allow an application program to customize the behavior and

characteristics of a socket to provide the desired effect. There are 15 socket level options.

Consult the PlOOS.lg specification for descriptions of XTI options and information regarding

their use.
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6 CPI-C 2.0

Both IBM and X/Open have published version of the CPI-C specification. Section 3.1

provides a listing of CPI-C 1.0, CPI-C 1.1, X/Open extensions to CPI-C 1.1, and CPI-C
1.2 functionality. The functionality added to each version of CPI-C is listed, but will not be

described in this report. Consult one of the CPI-C documents listed in section 7 for more
information.

CPTC 2.0 was developed at the CPI-C Implementor’s Workshop and was published in

1994. As of CPI-C 2.0, IBM and X/Open versions of CPI-C will be aligned. This section

provides an overview of CPI-C 2.0, similar to the overviews provided for P1003.1g DNI/XTI
and P1003.1g DNI/Sockets.

6.1 Overview of CPI-C Communication

The part of a communications application that initiates or responds to APPC communica-

tions is called a transaction program. Transaction programs use verbs to communicate with

each other. The verbs are used to start, stop, and control conversations. APPC verbs make
up the API for APPC. These verbs represent the interface between the transaction program

and the APPC software.

CPTC is connection oriented. Connectionless mode communications is not supported.

Before data transfer can take place, a series of CPI-C function calls is needed to establish the

connection between the two endpoints. Figure 7 shows the sequence of CPI-C function calls

for a client and server communicating in connection-oriented mode. Section 6.2 provides a

brief description for each function call shown in figure 7. Sections 6.6 and 6.7 provide an

overview of connection establishment and connection release. Function names correspond

to CPI-C verbs. As displayed in the CPI-C code shown in appendix C, function names

such as Initializc-Conversation are not used in CPI-C programs. Instead, CPI-C programs

use six-character short names. For example, the function name cminit() is used instead of

the function name Initialize-Conversation(). Short function names are used because CPI-C

calls are designed to be the same across multiple languages, platforms, and programming

environments, some of which have name-length restrictions.

6.2 Basic Calls for CPI-C Communication

CPI-C programs communicate by making program calls. CPI-C is connection-oriented and

CPI-C programs exchange data using a conversation. Program calls are used to establish

the characteristics of the conversation and to exchange data and control information. CPI-C

maintains a set of characteristics for each conversation used by a program. Characteristics

are established for each program on a per-conversation basis.

CPI-C calls can be categorized into two groups of functions, starter-set calls and advanced-

function calls. The starter-set group of calls consists of six functions. These calls are used

for simple communication of data between two programs. Programs using the starter-set of
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Server Client

Figure 7: CPI-C Function Calls Using Connection-oriented Mode

calls do not require values for CPI-C conversation characteristics that vary from the initial

values. The advanced-function group of calls consists of over 40 functions. These calls are

used to do more specialized processing. Characteristic values other than the default values

may be specified. The advanced-function calls can be used to provide careful synchronization

and monitoring of data.

The following is a list of starter-set calls. A brief description of each call is provided.

The actual syntax used to program the calls depends on the programming language used.

Consult the CPI-C specification for detailed information on CPI-C functions.

• Initialize_Conversation()

A program issues the Initialize-Conversation call to prepare to start the conversation.

• Allocate()

The program initializing a conversation uses the Allocate call to start the conversation.

Depending on the conversation-type characteristic, either a basic or mapped conversa-

tion is established.

• Accept _Conversation()

The partner program uses the Accept-Conversation call to initialize values for the con-

versation characteristics on its end of the conversation. When a Accept-Conversation

call is issued, the partner program receives a unique conversation-ID.

• Send_Data()

The Send-Data call is used to send data between programs. When this call is issued

during a mapped conversation, one data record is sent to the partner program. When
this call is issued during a basic conversation, data sent to the partner program consists

of logical records.

24



• Receive0
The Receive call is used to receive information from a given conversation. The in-

formation received can be data, a data record, conversation status, or a request for

confirmation or for SAA resource recovery services.

• Deallocate()

The Deallocate call is used to end a conversation.

CPI-C supports two modes for sending and receiving data on a conversation: half-duplex

and full-duplex. For half-duplex conversation, only one of the programs has the right to

send data at any time. Send control must be transferred to the other program before that

program can send data. For full-duplex conversation, both programs can send and receive

data at the same time. The sending and receiving mode for a conversation is determined at

the time the conversation is established.

6.3 Conversation Characteristics

CPI Communications maintains a set of characteristics for each conversation used by a

program. These characteristics are established for each program on a per-conversation

basis, and the initial values assigned to the characteristics depend on the program’s role

in starting the conversation. Initial values for conversation characteristics are set by the

Initialize-Conversation, Accept-Conversation, Initialize-ForJncoming, and Accept-Incoming

calls. There are over 40 different conversation characteristics. There are even more calls to

set and extract conversation characteristic values. Examples are Extract-Conversation^Type

and Set-Conversation-Type. Consult the CPI-C specification for descriptions of conversation

characteristics and information on their use.

6.4 Modes of Service

Both SNA LU6.2 and OSI TP are connection-oriented. CPI-C only supports connection-

oriented communication. Two types of conversations are supported:

• Mapped conversations allow programs to exchanged data records in data formats

agreed upon by the application programmers.

• Basic conversations allow programs to exchange data in a standardized format.

CPI-C 1.2 only supported half-duplex conversation and did not support full-duplex con-

versation. CPI-C 2.0 supports both half-duplex and full-duplex conversation. In CPI-

C 2.0, a new conversation characteristic, send-receive-mode is defined with two values,

CMJFULL_DUPLEX and CM_HALFJDUPLEX. A programmer specifies either full-duplex

or half-duplex conversation by using the SetSend-Receive-mode call.
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6.5

Modes of Execution

CPI-C calls can be made in either blocking or non-blocking mode. CPI-C 2.0 extends non-

blocking support beyond the conversation level, to the queue level. Queue-level non-blocking

means: the processing mode is set on a queue basis, only one outstanding operation is allowed

per conversation queue. Conversation queues are logical communication channels between

the program and CPI-C. Conversation queues are introduced in CPI-C 2.0 to allow: the

independent operations required for full-duplex conversations, more than one outstanding

operation on a conversation. The concept of conversation queue applies to both full-duplex

and half-duplex conversations.

6.6 Overview of Connection Establishment

The Initialize^Conversation call is used to establish a conversation. The program initiating

a conversation uses the syrri-dest-name 'parameter to designate a program partner and re-

ceives a unique conversation identifier, the conversation-ID. The Initialize^Conversation call

initializes values for various conversation characteristics before the conversation is allocated.

6.7 Overview of Connection Release

The Deallocate call is used to end a conversation. When the conversation is deallocated,

the conversation.ID is no longer associated with the conversation. The default use of the

Deallocate call is for CPI-C to return immediately to the program without waiting for the

partner to acknowledge that it’s ready to end the conversation. One Deallocate call ends the

conversation for both sides. The Deallocate call can be used in conjunction with the Confirm

call to perform a confirmation at the end of the conversation.
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7 Summary

The P1003.1g APIs and CPI-C are capable of process to process communications. This

section characterizes the types of applications that make use of each of these APIs. Some of

the advantages and disadvantages of using each of the APIs are presented. Figure 8 compares

general features of P1003.1g and CPI-C.

Because sockets have been available longer than XTI, most existing network applications

use sockets. Furthermore, the majority of these applications use TCP or UDP rather than

ISO transports since TCP/IP was available about 10 years before ISO transport. As a result

of the large installed base of network applications implemented with sockets, there is a large

community of programmers with expertise in socket programming.

The majority of network applications that are implemented with XTI use TCP or UDP.
Applications requiring ISO transport tend to use XTI rather than sockets.

There are strong proponents for both XTI and Sockets and there are vast numbers of

existing XTI and Sockets programs. Many application developers have a preference for one

of the two interfaces. Although many systems support both Sockets and XTI, some systems

do not fully support both interfaces. Programmers are likely to use the interface supported

by their system. P1003.1g compliant systems will be required to fully support both Sockets

and XTI.

P1003.1g CPI-C

Type of API transport layer above transport layer

Type of data transfer full-duplex half or full-duplex

Type of Service connection-oriented or connectionless connection-oriented

Protocol Independent? Yes not by itselft, but can be in conjunctior

with IBM’s MPTN

Advanced functions?
No Yes

Figure 8: Comparison of P1003.1g and CPI-C Features

IBM’s APPC programs implementing SNA’s LU6.2 were introduced in 1982. The user

base for LU6.2 has been slowly growing since 1982. CPI-C was announced in 1987. CPI-C

2.0 sits on top of LU 6.2 and OSI TP. CPI-C is commonly used for distributed databases

and transaction processing.
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The P1003.1g APIs are transport layer APIs. They provide the basic service of reliable,

end-to-end data transfer needed by applications and higher layer protocols. CPI-C resides

above the transport layer. In addition to providing the basic transport of data, CPI-C also

provides numerous advanced functions such as synchronization and control, conversation

security, distributed directory service, distributed security service, and resource recovery.

CPI-C is a much more complex interface the P1003.1g APIs. A fundamental difference

between the P1003.1g APIs and CPI-C is that the P1003.1g APIs provide a protocol in-

dependent interface. The P1003.1g APIs provide access to protocol- specific features of the

underlying network in a protocol independent manner.

An advantage of DNI/Sockets is that it offers defined transport, local IPC, and data

link access. A disadvantage of DNI/Sockets is that because of the variations with socket

support among vendors, many pr dsting socke applications are not directly portable

across platforms. For example, many Sockets implementations have different socket-length

fields (i.e, 8 bit or 16 bit).

An advantage of XTI is that users concerned about migrating their applications to ISO

transport may use DNI/XTI since DNI/XTI has similar semantics for both TCP/IP and ISO

transport specific features. A disadvantage of using DNI/XTI is that DNI/XTI is transport

specific, and currently does not provide support for local IPC.

The P1003.1g DNI/XTI and DNI/Sockets interfaces can be used for connection-oriented

and connectionless network programming. The DNI APIs are transport layer APIs and pro-

vide access to protocol specific features of the underlying network in a protocol independent

manner. Although both DNI APIs support migration between Internet and OSI protocols,

if an application wants to run easily over both Internet and OSI protocols, DNI/XTI is a

better choice. Applications which need to gain access to the Data Link layer or do local IPC
will use DNI/sockets. DNI/XTI does not provide such access because DNI/XTI is transport

specific.

CPI-C is the choice for applications using distributed databases. CPI-C is an application

layer API which does not provide access to protocol specific features of the underlying

network. CPI-C does not provide connectionless mode communication, but does include

more advanced functions such as security, synchronization, and error reporting. CPI-C by

itself does not provide transport independence.
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A XTI Programming Example

/*

* Example of client using TLI emd the TCP protocol.

* Example program was taken from reference [10]

*/

#include "inet.h"

main(argc, argv)

int argc;

char argv[]
;

{

int tfd;

char *t_alloc();

struct t_call *callptr;

struct sockaddr_in serv_addr;

pname = argv[0]
;

/*

* Create a TCP treinsport endpoint and bind it.

*/

if ( (tfd = t_open(DEV_TCP, O.RDWR, 0)) < 0)

err_sys ("client : Ccin't t_open */,s", DEV_TCP)
;

if (t_bind(tfd, (struct t_bind *) 0, (struct t_bind *) 0) < 0)

err_sys ("client : t_bind error");

/*

* Fill in the structure "serv_addr" with the address of the

* server that we want to connect with.

*/

bzero((char *) &serv_addr, sizeof (serv_addr))

;

serv_addr .sin_family = AF_INET;

serv_addr.sin_addr.s_addr = inet_addr(SERV_H0ST_ADDR)

;

serv_addr .sin_port = htons(SERV_TCP_P0RT)

;
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/*

* Allocate a t_call structure, eind initialize it.

* Let t.allocO initialize the addr structure of the t_call structure.

/

if ( (callptr = (struct t_call *) t_alloc(tfd,

err_sys ("client : t_alloc error");

callptr->addr .maixlen = sizeof (serv_addr) ;

callptr->addr . len

callptr->addr . buf

callptr->opt . len

callptr->udata . len

sizeof (serv_addr)

;

(char ) &serv_addr;

0; /* no options */

0; /* no user data with

T.CALL, T.ADDR)) == NULL)

connect */

/*

* Connect to the server.

*/

if (t_connect (tfd, callptr, (struct t_call *) 0) < 0)

err_sys ("client : can^t t_connect to server");

doit(stdin, tfd);

close(tfd)

;

exit (0)

;

}

/*

* Read the contents of the FILE *fp, write each line to the

* transport endpoint (to the server process) , then read a line back from

* the transport endpoint and print it on the standard output

.

/

doit(fp, tfd)

register FILE *fp;

register int tfd;

{

int n, flags;

char sendline [MAXLINE] , recvline [MAXLINE + 1] ;

while (fgets (sendline, MAXLINE, fp) != NULL) {

n = strlen(sendline)

;

if (t_snd(tfd, sendline, n, 0) != n)
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err_sys ("client : t_snd error");

/*

* Now read a line from the transport endpoint and write it to
* our stajidard output

.

*/

n = t_rcv(tfd, recvline, MAXLINE, ftflags)

;

if (n < 0)

err_dump("client : t_rcv error");

recvline [n] =0; /* null terminate */

fputs (recvline , stdout)

;

}

if (ferror (fp))

err_sys ("client : error reading file");

}

/*

* Example of server using TLI and the TCP protocol.

* Example taken from reference [10]

*/

#include "inet.h"

main ( argc , argv)

int argc;

char *argv[]
;

{

int tfd, newtfd, clilen, childpid;

struct sockaddr_in cli_addr, serv_addr;

struct t_bind req;

struct t_call *callptr;

pname = argv [0]

;

/*

* Create a TCP transport endpoint.

*/

if ( (tfd = t_open(DEV_TCP, O.RDWR, (struct t.info *) 0)) < 0)

err_dump( "server: can^t t_open “/.s", DEV_TCP)
;
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/*

* Bind our local address so that the client can send to us.

/

bzero((chax *) &serv_addr, sizeof (serv_addr) )

;

serv_addr .sin.family = AF_INET;

serv_addr . sin_addr . s_addr = htonl (INADDR_ANY)

;

serv_addr . sin_port = htons(SERV_TCP_PORT)

;

req. addr .maxlen = sizeof (serv.addr)

;

req.addr.len = sizeof (serv_addr)

;

req. addr. buf = (char *) &serv_addr;

req.qlen = 5;

/*

if (t_bind(tfd, &req, (struct t_bind *) 0) < 0)

err_dump( "server: can^t t_bind local address");

*/

if (t_bind(tfd, NULL, NULL) < 0)

err_duiiip( "server: cein’t t_bind local address");

/*

* Allocate a t_call structure for t_listen() and t_accept().

*/

if ( (callptr = (struct t_call *) t_alloc(tfd, T_CALL, T_ADDR)) == NULL)

err_dump ("server: t_alloc error for T_CALL")

;

printf ("beginning to wait for incomming connections\n")

;

for ( ; ; ) {

/*

* Wait for a connection from a client process.

* This is an example of a concurrent server.

*/

if (t_listen(tfd, callptr) < 0)

err_dump( "server: t_listen error");

if ( (newtfd = accept_call(tfd, callptr, DEV_TCP, 1)) < 0)

err_dump( "server: accept_call error");

if ( (childpid = forkO) < 0)
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err_dump ("server : fork error");

else if (childpid == 0) { /* child process */

t_close(tfd)
;
/* close original endpoint */

str_echo (newtfd) ; /* process the request */

exit (0)

;

}

close (newtfd) ; /* parent process */

}

}
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B Sockets Programming Example

/—
* Sockets "Hello, world" program

* Client side

*

*/

#include <stdio.h>

#include <sys/types .h>

#include <sys/socket .h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/errno .h>

#define ERROR (s) {fprintf (stderr, "'/,d-" ,ermo)
;
perror(s); return(-l);}

char *msg = "Hello World";

int errno;

main (argc , argv)

int argc; char *argv[]
;

{

int consocket; /* socket to connect into the socket */

struct sockaddr_in sa; /* mode, addr, and port data for the socket */

struct hostent *remote_host
;

/* internet numbers, names /

if (argc != 2) {

fprintf (stdout, "usage: '/,s hostname\n", argv[0]);

exit (-1)

;

}

/* create an internet style connection oriented socket */

if ((consocket = socket ( AF.INET, SOCK.STREAM, 0 )) < 0 )

ERROR ("socket")

;

/* set addressing information and port to use */

if ( (remote_host = gethostbyname(argv[l] )) == (struct hostent *)NULL )

ERROR("gethostbyname")

;

sa. sin_family = AF_INET;

(void) bcopy((chaj: *)remote_host->h_addr , (char *) &sa. sin_addr

,

remote_host->h_length )

;

sa.sin_port = htons(22222)

;
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/* connect to the other end-point */

if (connect (consocket , (struct sockaddr *)&sa, sizeof sa) < 0 )

ERROR ("connect")

;

/* write Hello World message to other process /
if ( write (consocket

, msg, strlen(msg) ) < 0 )

ERROR ("write");

/* all the socket connections are closed automatically */

exit (0)

;

}

#include <stdio.h>

#include

#include

#include

#include

<sys/types .h>

<sys/socket .h>

<netinet/in.h>

<netdb .h>

#include <sys/param.h>

#include <errno.h>

#define ERROR(s) {fprintf (stderr , "'/,d-" ,ermo) ;
perror(s); return(-l);}

main (argc, argv)

int argc;

char *argv[]

;

{

struct sockaddr_in sa;

struct sockaddr_in caller;

int s, msgsock, length;

int retval;

char buf[BUFSIZ], acknowledgement [BUFS I Z] ;

if ((s = socket (AF_INET,S0CK_STREAM,0)) < 0)

ERROR ("socket");

/* name socket, register the socket */

sa. sin_family= AF_INET;

sa. sin_addr . s_addr = INADDR_ANY

;

sa.sin_port= 22222;
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if (bind (s , (struct sockaddr_in *)&sa,sizeof sa) < 0)

ERROR ("bind") ;
/* bind address to socket */

/* get assigned port number and print it */

length = sizeof(sa);

if (getsockname(s , (struct sockaddr_in *)&sa, felength) < 0)

ERROR ("get sockname")

;

/* listen for connections on a socket */

listen (s , 5)

;

/* Use accept to wait for calls to the socket. Accept returns

a new socket which is connected to the caller, msgsock will be a

temporary (non-resuable) socket different from s */

if ((msgsock = accept (s , (struct sockaddr *)&caller ,&length)) < 0)

ERROR ("accept");

/* optional ack; demonstrates bidirectionality */

gethostname(buf , sizeof buf )

;

/* write into the msgsock; the "s" is _only_for_rendezvous_ */

if ( write ( msgsock, acknowledgement, sizeof acknowledgement ) < 1 )

perror(argv[0] ) ;

/* read lines until the stream closes */

retval = 1

;

while (retval !=0 ) {

bzero (buf , sizeof (buf) )

;

if( (retval = read (msgsock, buf, sizeof (buf))) < 0)

perror( "reading stream message");

if (retval == 0) printf ("ending connection\n")

;

else printf ("read— >'/,s\n" , buf);

close (msgsock)

;

close (s)

;
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C CPI-C Programming Example

/* —
* CPI-C "Hello, world" program

* Client side (file HELLOl.C)

*

* This code was taken from the book CPI-C Programming in C:

* An Application Developer’s Guide to APPC by John Q. Walker

* and Peter J. Schwaller, published by McGrawHill
/

#include <cpic,h> /* conversation API library */

#include <string.h> /* strings and memory */

#include <stdlib.h> /* standard library */

/* this hardcoded sym_dest_name is 8 chars long & blank padded */

#define SYM.DEST.NAME (unsigned char*) "HELLO IS "

/* this is the string we’re sending to the partner */

#define SEND_THIS (unsigned char*) "Hello ,
world"

int main (void)

{

unsigned char conversation_ID [CM_CID_SIZE]

;

CM_RETURN_CODE cpic_return_code

;

unsigned char * data_buffer = SEND_THIS;

CM_INT32 send.length =

(CM_INT32)strlen((char *)SEND_THIS)

;

CM_REQUEST_TO_SEND_RECEIVED rt s.received

;

cminit( /* Initialize_Conversation */

conversation_ID, /* 0: returned conversation ID */

SYM_DEST_NAME, /* I: symbolic destination name */

&cpic_return_code)
;

/* 0: return code from this call */

cmallc( /* Allocate */

conversation_ID, /* I: conversation ID */

&cpic_return_code)
;

/* 0: return code from this call */

cmsend( /* Send_Data */

conversation_ID , /* I: conversation ID */

data_buffer, /* I: send this buffer */
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&send_length

,

/* I: length to send */

&rts_received, /* 0: was RTS received? */

&cpic_return_code)
;

/* 0: return code from this call */

sal ( /* Deallocate /
conversation_ID

,

/ I: conversation ID */

&cpic_return_code)
;

/* 0: return code from this call */

return (EXIT.SUCCESS)
;

}

/+

* CPI-C "Hello, world" program

* Server side (file HELLOID.C)

* This code was taken from the book CPI-C Programming in C:

* An Application Developer^ s Guide to APPC by John Q. Walker

* and Peter J. Schwaller, published by McGrawHill

--*/

#include <cpic.h> /* conversation API library */

#include <stdio.h> /* file I/O /
#include <stdlib.h> /* standard library /

int main (void)

{

unsigned char

unsigned char

CM_INT32

CM_INT32

CM_RETURN_CODE

conversation_ID[CM_CID_SIZE]

;

data_buffer [100+1]

;

requested_length =

(CM_INT32) sizeof (data_buffer)-l

;

received_length = 0;

cpic_return_code

;

CM_DATA_RECEIVED_TYPE data.received

;

CM_STATUS_RECEIVED st atus.received

;

CM_REQUEST_TO_SEND_RECEIVED rt s.received

;

cmaccp( /* Accept_Conversation */

conversation_ID

,

/ 0: returned conversation ID */

&cpic_return_code)

;

/* 0: return code from this call */

cmrcv

(

/* Receive

conversat ion_ID

,

/* I : conversation ID */
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data_buffer

,

/* I : where to put received data */

&requested_length

,

/* I* ’ximum length to receive */

&data_received

,

/* 0 a complete or not? */

&received_length

,

/* 0 gth of received data */

&status_received, / D: jls status changed? */

&rts_received, /* 0: was RTS received? */

&cpic_return_code)

;

/* 0: return code from this call /

data_buffer [received_length] = »\0^; /* insert the null */

(void)printf ("%s\nPress a key to end the program. .. \n"

,

data_buffer)

;

(void)getchar()

;

/* pause for einy keystroke */

return (EXIT_SUCCESS)

;
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