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Abstract

A multiple-order-parameter theory of ordering on a binary face-centered-cubic (FCC) crystal

lattice is developed, and adapted to provide a continuum formulation that incorporates the

underlying symmetries of the FCC crystal in both the bulk and gradient-energy terms of the

free energy. The theory is used to compute the orientation dependence of the structure and

energy of interphase and antiphase boundaries. The structure of these interfaces compares

favorably with previous lattice calculations by Kikuchi and Cahn. Anisotropy is a natural

consequence of the lattice calculation and the multiple-order-parameter continuum formulation

presented here. This is in contrast to the ad feoc fashion in which anisotropy is often introduced

into a single-order-parameter continuum theory.

’Permanent address: Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
^Permanent address: Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton S017

IBJ, UK.
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1. Introduction

In many eontinuum theories of phase ehange, sueh as spinodal deeomposition and ordering reaetions,

the interfaee between the two phases is regarded as being diffuse rather than sharp, with a finite

thiekness over whieh properties vary smoothly from one set of bulk values to another. Sueh diffuse

interfaee theories arise naturally in the equilibrium deseriptions of eritieal phenomena (Stanley

1971), where the interfaee thiekness seales with the eorrelation length and diverges as the eritieal

temperature is approaehed. Reeently this approaeh has been extended to other phase ehanges, sueh

as solidifieation, with signifieant eomputational advantages for deseribing sueh eomplex behavior

as dendritie growth.

Crystalline anisotropy is an important eomponent of many of these phase ehanges. There have

been a variety of methods for introdueing the anisotropy into the theory. Some of these arise from

physieal prineiples, while others are ad hoc and ean be the origin of ineonsisteneies. Some types of

anisotropy are assoeiated with the interfaees, while others, such as anisotropic elastic effects, are

associated with the volumes, even when they arise from coherency constraints at interfaces (Cahn

1961).

One method for treating diffuse interfaces is to use a free energy functional for the system in

terms of continuum parameters that are spatially varying. The functional is written as the integral

of the sum of two kinds of terms; bulk energies that are multiple weU functions of these parameters

that have minima, or common tangents, at values that characterize the adjacent phases, and gra-

dient energies that are functions, commonly the square, of the gradients of the order parameters.

Both terms contribute to the energy in the transition regions that separate bulk phases. Such

gradient energy models date back to work by Rayleigh (1892) and Van der Waals (1893), and are

useful in a variety of contexts.

One such use is for dynamical calculations in which evolution equations for the system are

derived by using variational arguments on these free energy functionals. When there is a single

nonconserved scalar order parameter, the usual form of the resulting equation is the Cahn-Allen

equation (Cahn and Allen 1977; Allen and Cahn 1979) describing antiphase boundary motion

between domains of an ordered phase, as described in more detail below. For a single conserved

parameter, such as the composition, the result is the Cahn-HiUiard equation (Cahn 1961 and Hilliard

1970) used to describe the spinodal decomposition of a binary alloy. Phase-field descriptions of the
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solidification of binary alloys have been developed recently by Wheeler et al. (1992,1993a), Caginalp

and Xie (1993), and Warren and Boettinger (1995); they can be viewed as combining elements of

the Cahn-AUen model and the Cahn-Hihiard model. In many cases gradient energy models can be

viewed as mean field approximations to models that provide atomic-level descriptions; examples of

such mean field theories are given by the Landau theory of a second-order phase transition (Landau

1937) or density functional theories (see, e.g., Evans 1979 or Oxtoby 1991).

Phase-field models can be particularly useful for numerical computation in situations in which

the interphase boundary is expected to be geometrically compHcated. For example, during the

dendritic growth of a pure material into its undercooled melt, the generation and propagation of

sidebranches along the primary branch of the dendrite leads to a wide range of length and time

scales, and phase-field models have been employed to provide numerical tests of theories of tip

selection (Kessler et al. 1988, Gheksman and Marsh 1993, Wheeler et al. 1993b). During dendritic

growth an important role is played by the crystalline anisotropy of the growing solid phase, which

selects the growth direction of the dendrite, the symmetry of the sidebranch structure, and the

velocity of the dendrite tip.

For a scalar order parameter, formulations that use the square of a gradient are inherently

isotropic. For a phase-field model to be of practical importance, it must include a description of

the anisotropic nature of the crystal, through such effects as the dependence of the solid-liquid

surface free energy (sometimes called the surface tension) on the interface orientation with re-

spect to the crystal lattice, and also the variation of the rate of attachment kinetics with interface

orientation. One way that anisotropic effects have been modeled is to allow the phenomenolog-

ical phase-field parameters (such as the gradient energy coefficient and the mobility coefficient

for temporal relaxation) to depend on the direction of the gradient of the phase field parameter

(Kobayashi 1993). It is possible to re-express the gradient energy term as the square of a function

of the gradient which is homogeneous of degree one (Taylor and Cahn 1994); these two forms for

the anisotropy are equivalent. This approach is an example where the anisotropy is introduced in

an ad hoc manner, and its connection with the underlying crystalline anisotropy is indirect. StUl, it

successfully generalizes the original isotropic phase-field methodology to allow the computation of

dendrites with the proper quahtative behavior, and leads to the proper anisotropic version of the

Gibbs-Thompson equation at the crystal-melt interface in the sharp interface Hmit (McFadden et
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al. 1993, Wheeler and MeFadden 1995). With this type of formulation, anisotropies with general

symmetries ean be treated using a single order parameter; for example, two-dimensional dendrites

with six-fold symmetry ean be eomputed using finite differenees on a reetangular mesh (Murray et

al. 1994; Warren and Boettinger 1995).

Anisotropy oeeurs naturally in diserete lattiee caleulations of interfaees (see, e.g.. Herring 1951,

Frank 1962). The symmetry of a erystal imposes symmetry eonstraints on the properties of both

bulk and interfaeial properties. For example, it is well known that for bulk diffusion proeesses the

second rank conductivity tensor is constrained to be isotropic for a cubic material. In contrast,

surface energies are generally not tensor properties, and even cubic crystals are expected to have

anisotropic interfacial properties. The symmetry constraints for surfaces between two crystalline

phases depends on both their symmetries and their relative positioning.

Anisotropy that is inherent in a lattice description can be lost when lattice models are approxi-

mated by continuum descriptions that employ gradient energy terms. For a single order parameter

(Cahn and Hilhard 1958), gradient energy coefficients become matrices or second rank tensors. For

cubic crystals this results in an isotropic tensor, and the gradient energy reduces to the square of

the gradient, leading to an isotropic surface energy. For crystals of lower symmetry a quadratic

gradient energy term can be made isotropic by a rescaling of the spatial coordinates, and so the

computed anisotropy in the physical system is restricted to a simple (elliptical) form.

Ordering reactions in crystalline solids provide a number of simple types of interfaces with

anisotropies that are constrained by symmetry arguments. We distinguish two general types:

interphase boundaries (IPBs) between two different ordered phases or between an ordered and

a disordered phase, and antiphase boundaries (APBs) between two domains of ordered variants

of the same phase. The elucidation of the symmetry properties in terms of Shubnikov groups

is particularly simple, if the inversion centers of both abutting phases fall on a common lattice

(Kalonji and Cahn 1982). In that case the dependence of the interface properties on the direction

of the interface normal are constrained by the intersection group of the two abutting domains.

Since the ordering reaction generally produces a phase with symmetry properties that form a

subgroup of those of the disordered phase, the symmetry properties for the IPB are those of the

ordered phase. For the APB, the symmetry depends on the relative positioning of the two domains;

symmetries that are no longer common to both domains are lost. For particular orderings in two
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cubic lattices, bee and fee, to give cubic ordered phases, general symmetry arguments (Kikuchi and

Cahn 1962, 1979) show that the APB between two cubic ordering domains has cubic symmetry

for ordering to the B2 and DOZ structures in bcc and tetragonal symmetry for ordering to the

LI 2 structure in fee. (The prototypes for these structures are respectively, CsCl (or (5 brass), BiFa

(or FeaAl) and CuaAu.) Thus the different orderings studied in these two cubic lattices illustrate

another distinct source of the interfacial anisotropy in lattice models.

Kikuchi and Cahn have performed discrete calculations for both bcc (Kikuchi and Cahn 1962)

and fee lattices (Kikuchi and Cahn 1979) for a limited set of orientations as a function of temperature

and composition. In the case of bcc, the lattice calc\ilations were compared with isotropic continuum

calculations.

In this paper we examine interfacial anisotropy between parallel cubic phases or domains using

a continuum formidation with multiple order parameters that preserves the underlying anisotropies

of the crystalline lattice. We will focus on binary alloy fee crystals in the context of the order-

disorder transition that give the tetragonal symmetry. We derive the continuum gradient energy

model and use it to obtain for aU orientations the orientation dependence of the structure and free

energy of static planar antiphase and interphase boundaries. We compare the results obtained with

those obtained for a hmited set of orientations by Cahn and Kikuchi (1985) using cluster variation

methods and by Landman et al. (1980,1981) and Cleveland et al. (1982) using molecular dynamics

simulations of solidification. We note the facetting and wetting transitions in these interfaces.

Interfacial energies can be used to compute equilibrium microstructural shapes, such as single

particles in a matrix (the Wulif shapes) and domain structures, which for CusAu have long been

known to show a high degree of anisotropy (Fisher and Marcinkowski 1961). We will ignore elastic

effects due to mismatching lattice parameters between the phases. These are important only for

the coherent coexistence of large-enough particles of a phase with a different lattice parameter in

a matrix or in domain structures of noncubic phases. Depending on the mismatch parameter, the

size where elastic effects become important can be as small as nanometers.

2. Formulation

In this section, we discuss bcc and fee ordering in discrete and continuum formulations. We begin

with a brief description of the crystallography of ordering interfaces (Section 2.1), followed by a
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diseussion of the formulation of diserete models and issues in taking sueh models to eontinuum

limits (Seetion 2.2). We then diseuss a speeifie simple eontinuum model of ordering on a bee lattiee

(Seetion 2.3), in order to motivate the more general eontinuum model whieh we shall study in this

paper (Seetion 2.4).

2.1. Ordering interface crystallographies

Ordering in a bee crysted produces a phase with the CsCl structure (designated as B2, with space

group symmetry Pmmm), in which the two primitive cubic sublattices are occupied with different

atoms and hence are not equivalent (see Figure 1). The transition is higher order with the usual

Figure 1 : A schematic diagram of the unit cell of a bcc lattice. The sites 1 and 2

are distinguished.

statistical mechanical models, although it can be first order. When the transition is higher order

there is no coexistence between the ordered and disordered phase and no interfaces between these

two phases. The ordering is a subgrouping of order 2 and produces two domains that are shifted

relative to one another by a vector,
(
1 /2 ) < 111 >, which had been a translation vector in bcc, but

is no longer a translation vector in the ordered cubic phase.

The special point symmetry of this shift vector is compatible with cubic symmetry for the APB,

however. One way to see this is that all shift vectors of type (1/2) < ni, 712,713 >, where the rii

are odd integers, are equivalent to
(
1 /2 ) < 111 > by addition of lattice translations of the periodic

ordered lattice; therefore all translations of type (1/2)<±1±1±1>, describe the same APB.

Such an equivalence means that such a shift does not distinguish among axes, and does not break
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the equivalenee of the three eubic axes. This leads to a eubie (mSm) symmetry for the properties

of the APB that depend on the direetion of its normal. This ean also be seen by noting that three

and four-fold axes of one domain eontinue in the other. Near the order-disorder transition the

APB interface thickness diverges and is large compared to the lattice parameter. As a result, the

isotropic continuum approximation is found to become valid (Cahn and Kikuchi 1962) and leads

to isotropic interfaces. Anisotropy corresponding to the mSm cubic symmetry is found at lower

temperatures.

By contrast, the ordering of fee to the LI 2 structure (with space group Pm3m; prototype

CuaAu) gives four interpenetrating primitive cubic lattices, as seen in Figure 2. This ordering

Figure 2: A schematic diagram of an fee lattice. There are four distinguished sites

corresponding to a corner and one each for the faces intersecting at that corner.

transition cannot be a higher-order transition (Landau and Lifshitz 1980). At the transition tem-

perature there is coexistence between the ordered and disordered cubic phase and hence there is

an IPB between them. The symmetry of the orientational properties of the IPB is also m3m;
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there is no reason for to it be isotropie. APBs are interfaees between any two of the four ordered

domains that are shifted by a veetor of type (1/2) < 110 > relative to one another. Sueh shifts

between two eubie domains break the symmetries among the three cube axes; although the axes

of the two domains are parallel, all are shifted, and two of them cease to be four-fold axes of the

two-domain system. In one cube direction a four-fold axis through the cube corners in one domain

is retained, and continues as a four-fold axis through the face center in the other domain. The

four-fold axes of the other two cube directions continue as two-fold axes in the other domain, and

are lost as four-fold axes. The shift also means that no three-fold axis threads both domains. This

leads to interfaces with a lowered tetragonal symmetry (4/mmm) in their orientational properties.

The anisotropy due to this tetragonality was found to be severe enough to make some orientations

unstable (Kikuchi and Cahn 1979); the interfacial energy is a nonconvex function of orientation.

Furthermore there are structural changes in the interface with increasing temperature, that are

described as an infinite set of interfacial phase transitions (Finel et al. 1990). A proper continuum

model should preserve the tetragonal anisotropy due to the (l/2)< 110 > shift. The continuum

model developed in this paper will give the tetragonal symmetry for the APB and at the same time

will yield cubic anisotropy in the IPB.

2.2. Discrete formulations

In a binary aUoy with no vacancies there would appear to be only one composition variable. The

alternation in composition between neighboring sites that describes a known ordered structure can

lead to the formulation of Hi-posed dilferential equations if they are couched in a spatially continuous

composition variable. This problem can be avoided by a formulation with suitable choices of a

number of order parameters in addition to the local composition, even though it creates a set of

field variables from a single composition. A study of spatially discrete formulations for bcc and

what happens when the spatial variable is continuized was recently done, and set guidefines for

how the order parameter should be chosen (Cahn and Novick-Cohen 1994).

In a discrete formulation, the assumptions of pairwise interactions in a binary alloy of A and B

atoms imphes that there are energy terms in the free energy of the form

i j
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where is the probability that an A atom sits on a lattiee site whose position is parametrized

by three integers, designated by k 6 Z^, and and aj is the energy assoeiated with finding two A

atoms separated by j. The point group symmetry dietates whieh sets of j have the same value of

a. While it is possible to choose basis vectors such that every element of is a lattice point, it

is convenient for bcc and fee to let the basis vectors be along the cube edges. In order to avoid

half-integer values in the position vector, we choose 2 as the edge length of the unit ceU, and put

restrictions on integer values of the components of k. For bcc, the component of k are then either

all even (cube corners) or all odd (body centres); a < 111 > translation of the origin switches corner

and centres. For fee, the sum of the components has to be even; all even components denote cube

corners, while two odd components denote face centres.

Let us examine the properties of one such term in the free energy

i ®

where a is a vector belonging to the set of vectors A =< 111 >, which give the locations of the

nearest neighbors for bcc. This can be rewritten for an infinite lattice

Continuizing the second term leads to the integral of the square of the gradient of the continuous

variable p, —(aj/2) /|Vp(r)|^dr. When a > 0, such a term would lead to Ul-posed equations for

energy minimization; however, a > 0 is what leads to ordered structures, and poses no problem in

discrete minimizations of the energy.

To understand the differences in formulations in different lattices we arbitrarily take the species

A to be the minority species. Since A atoms are conserved

l'£p(i) = W<l/2,

where W is the average composition and there are N lattice points. When aj < 0, the minimum in

the sum tends to occur when A atoms are compactly clustered on sublattices whose

basis vector are taken from the set j; when aj > 0, the minimum in the sum tends to occur when

as few pairs as possible are A atoms are separated by the vector j. This is achieved when A and B

can alternate along such sublattices. Alternation is not possible on close-packed sublattices, i.e. on
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fee itself with the j ehosen from the set of near neighbor < 110 >, or on bee with the set of third

neighbor < 220 >, beeause there are elosed equilateral triangles with sides j; this leads to what is

eaUed frustration.

In what follows, we will eall a\ and a2 the values of a for first and seeond neighbors, and we

assume that a = 0 for all higher neighbors. If ai < 0, the minimum in the sum

oeeurs when pi = 1 for a eompaet eluster oeeupying a fraetion J /?(r)dr/ J dr of the lattiee points

and Pi = 0 for the remaining points. This is a strueture on the lattice that can be described as

phase separated into pure A and pure B phases. Spinodal decomposition can be modeled with a

single negative near neighbor interaction.

Interesting cases occur when aj and a2 are respectively positive and negative. For both fee

and bcc, points linked by second neighbors with its negative a2 form simple cubic sublattices. The

interaction term will be at its minimum when the minority species will concentrate as clusters on

no more than half of the sublattices (one for bcc and one or two for fee). With both interactions

for bcc the minimum in energy occurs when pi alternates between 0 and 1 for compact clusters

occupying a fraction 2W of the lattice points and p^ = 0 for the remaining points. This is a

structure on the lattice that can be described as phase separated into an ordered B2 phase and a

pure B phase. When W = 1/2 the minimum is for the B2 structure alone. For fee the situation

depends on W. When W = 1/4 the minimum is the LI 2 structure, and the minority A atoms

occupy one of the four primitive cubic sublattices of the fee. For 0 < W < 1/4, the minimum is a

mixture of an fee that is pure B and LI 2 ;
the A occupy a part of that one sublattice. For W = 1/2

the minimum occurs for the LIq structure (space group symmetry P4/mmm, prototype CuAu) in

which two of the sublattices are occupied by A; an equivalent description is a layering on a cube

plane, alternating in pure A and pure B. For 1/4 <W < 1/2 the minimum is for a mixture of LI 2

and LIq. The minima occur for two-phase structures with minimum area for the “surface” between

the phases (Richards and Cahn 1971).

What emerges from such considerations is that, except for interfaces, the compositions on each

sublattice (two for bcc and four for fee) can be thought of as slowly varying or constant over large

distances. Linear combinations of these variable give a new slowly varying composition variable

averaged over the sublattices, and even over some larger neighborhood, that is subject to the

conservation condition. Other combinations lead to slowly varying order parameters, which need
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not be conserved. If the selection of these variable is done properly it leads to weU posed equations

whose solutions can be shown to approximate those of the discrete equations. The three-order-

parameter model considered here describes the ordering of an fee crystal in much the same way

that the Cahn-AUen equation, a model with a single order parameter, describes the ordering of a

bcc alloy.

2.3. The bcc alloy

We review briefly the case of a bcc alloy in a way that differs from that used by Cahn and Novick-

Cohen (1994); this helps clarify the meaning of the order parameters we will use in the fee model,

and shows in what sense the three-order-parameter model can be viewed as a generahzation of the

Cahn-AUen equation.

A simple model is obtained by assuming the state of the system can be characterized by just

two parameters p\ and p2 giving the atomic fraction of component A at sites 1 (corners) and

2 (body centres), respectively; the atomic fraction of the fuU system is then W = [px -f P2)/2.

The parameters px and p2 can be viewed as average values of the atomic fraction of A over each

sublattice; a disordered state of the crystal in which A and B atoms are spread randomly over sites

1 and 2 is then described by px = p 2 — W. An ordered state of the crystal is one in which the sites

1 and 2 are differentiaUy populated by A and B atoms, so that px ^ P2 - This simple two-parameter

model clearly describes only long range ordering; the description of local arrangements of more

than a pair of sites requires the introduction of additional variables as done in the cluster variation

method (Kikuchi 1951).

To convert the rapidly alternating composition of the ordered structure into slowly varying com-

position field, it is convenient either to deal with each sublattice separately or to change variables

and work instead with the parameters

^ '^2)j ~ ^2 ); (1)

a disordered state of the crystal is therefore described by A = 0, and X is nonzero in an ordered

state. Conservation of atomic species is a constraint on the average composition W, but not on

the order parameter X

,

which need not be conserved as the crystal undergoes transitions between

ordered and disordered states.
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In this model the thermodynamic state of an isothermal crystal is described by a Helmholtz

free energy density / that is assumed to depend on the atomic fractions px and p2 ,
or equivalently

on W and X, viz., / = f{W,X). Bulk equilibrium states of a fixed composition are then obtained

by minimizing the free energy subject to the constant W = constant, which gives the conditions

fwiW,X) = K fx(W,X) = 0
, (2)

where A is a Lagrange multiplier associated with the composition constraint. Disordered bulk states

are described by fxiW, 0) = 0; i.e., the free energy has a minimum in X at X = 0. Ordered states

have non-zero roots in X to the equation fx{W,X) = 0.

2.3.1. Symmetry requirements on the energy

Since a translation of the origin of the crystal from a corner to a body centre reverses the roles of

lattices 1 and 2, the free energy density of the crystal should be invariant to the interchange of pi

and p2 ,
or, in terms of W and X, f{W,X) should be an even function of X. If (W,X) represents

an ordered eq'uilibrium state with X / 0, then the solution {W, —X) represents the same physical

state, but shifted from the original by a (1/2) < 111 > translation along the cube diagonal.

In order to describe spatiaUy-inhomogeneous crystals with a continuum formulation, it is conve-

nient to allow the parameters X and W to vary slowly in space compared to the lattice spacing. If

X is the only spatial variable, Cahn and Allen (1977) postulated a generalized free energy functional

of the form

X[W,X]= fJv
\XX\^ + f{W,X) dV,

(
3

)

where the gradient energy coefficient e can be related to the characteristic thickness of transition

regions between bulk phases. The gradient energy term provides an energy penalty for sharp

transition regions where the gradient of the order parameter is large. In the spirit of the Cahn-

Hilhard treatment for a conserved order parameter, a gradient energy contribution involving
|

VW|^

might also be considered, but we will not treat this possibiHty since our intent is not to emphasize

the isotropic role played by W in the present development.

Dynamical equations for the free energy function (3) can be postulated based on variational

arguments, leading to equations of the type

dW
IT = m'

dX _
dt

~
^6X^ (

4
)
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where Mw and Mx are phenomenological rate constants relating the time derivatives to the varia-

tional derivatives of T

.

With an appropriate choice of boundary conditions, these equations ensure

that W is conserved in time, whereas the order parameter X simply evolves in the direction of

steepest descent of X. This will be discussed further in a subsequent paper.

In many instances the time scales associated with ordering on the atomic scale are much faster

than those associated with long-range diffusion of the conserved species, so that the kinetics of the

non-conserved order parameter are much faster than those associated with the conserved one. Under

these conditions it is of interest to consider the evolution of the non-conserved order parameter

while assuming that W is uniform in space and time. The equations then reduce to the Cahn-Allen

equation

1 dX
Mx dt ex' ( 5 )

A particularly tractable model is obtained by assuming that f{X) has the form of a quartic poly-

nomial with double-weU structure of the form

fm = ^ 1 -
2 T 2

( 6 )

where /o/8 is the height of the double well at X = 0; the energy at the minimum of the double

well at X = Xo has been set to zero. The equation then admits a steady state one-dimensional

solution of the form

(
7 )

representing an antiphase boundary (APB) separating two ordered bulk regions with X = ±Xo by

an interfacial region of width Xoe/\/7o- The surface energy 7 associated with the APB is given by

the excess free energy per unit area of the layer,

\e^ fdX\^
'

lU) d( — -Xoe^/Jo. (
8

)

2.4. The fee alloy

We next consider a model for order-disorder transitions on an fee crystal lattice described geomet-

rically by four inter-penetrating cubic sublattices defined by the lattice points labeled 1, 2, 3, and

4, respectively (see Fig. 2). For the disordered fee structure aU sublattices are crystaUographically

equivalent. In the Figure 2, the site 1 is chosen to be the corner of the fee cube, sites 2, 3 and 4
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correspond to the face centres of the planes a: = 0, y = 0, and z = 0, respectively. The overall state

of the crystal is then assumed to be completely described by the four parameters pi, p2, ps, p4

representing the atomic fraction of A on each sublattice.

It is convenient to introduce four new parameters W, X, Y

,

and Z in place of the parameters

/?!) p2, P3, and p4; they are defined by

W — - (pi + P2 + P3 + P4 ) ,
(9a)

X = -{pi + P2 - P3 - P4 ) :
(9b)

1
Y = - {pi - P2 + P3- Pa) ,

(9c)

Z = -^{pi - P2 - P3 + Pa) (9d)

As in the bcc model given above, the parameter W represents the atomic fraction of the system

as a whole, and X
,
Y, and Z are non-conserved order parameters that can vary between plus and

minus one half. In this model a disordered state is represented by pi = p2 = pz = P4 = W

,

which

implies that X = Y = Z = 0. The above expressions can be inverted to give the pi as functions of

the W, X, Y and

We next consider a thermodynamic description of the crystal for the case of an isothermal

system, based on a generalized free energy functional assumed to have the form

X = ^ ^ ^ ,
dWdW

,
dXj dXk 1 ,,,

IV
I

^3) + + iiUm
g^^ g^^ j

J-V.
( 10 )

For notational convenience we have suppressed the dependence of the free energy on temperature,

and the suffix notation is given by Xi = X
,
X2 = Y, Xz = Z, and {xi,X2,xz) = {x,y,z); repeated

indices are summed. The term /(W, Xi, X2, X3) is the bulk Helmholtz free energy density, and the

remaining terms are gradient energy contributions.

As discussed in the next section, the symmetries associated with the fee crystal structure restrict

the possible forms of /, ajk, and bjikm- la tlie following section, we will discard the aij term, since

symmetry considerations require that these terms lead only to isotropic contributions. We will also

take / to be a low order polynomial in Xi,X2,X3, and wiU assume that the coefficients hjikrn are

independent of W

.
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2.4.1. Symmetry requirements for bulk free energy density

A free energy f{W,X,Y,Z) must have the symmetries in the variables X, Y, and Z that are

dietated by the fee lattiee. A rotation of the erystal about the three-fold axis along the eube

diagonal through lattiee site a effeetively re-labels the lattiee sites aeeording to the seheme

1-^1, 2 ->3, 3 ->4, 4 ->2. (11)

Using Eq. (9), it follows that permuting p2 , ps, and p^ gives rise to the permutation

X ^Y,Y Z, Z ^ X. (12)

It follows that the funetion f{W,X^Y^Z) must be invariant to eyelie permutations of the three

variables X, Y, and Z.

Another symmetry is obtained if the erystal is rotated by tt about an axis that passes through

the midpoints of the two hne segments that join sites 1 and 4 and sites 2 and 3; this rotation

interehanges sites 1 and 4 and sites 2 and 3. Using Eq. (9), it follows that under this permutation

one has

X ^ -X, Y -y -Y, Z ^ Z. (13)

The funetion f{W,X,Y,Z) must therefore be invariant to ehanges in the signs of any two of the

variables X, T, and Z.

In what follows we restriet our attention to a free energy density f{W, X, Y, Z) that is given by

a low-degree polynomial. Imposing the above symmetries implies that the energy can be written

in the form

f{W, X, y, Z)^ao + a2(X2 + Y^ + Z^) + a^XYZ + a4i(X" + 7"
-f Z^)

-F a42(X2y2 + X^Z^ + Y^Z^) + asXYZ{X^ + y^ + Z^) + a6i(X® + y® + Z^) (14)

+ a62 {X\Y^ + Z^) + Y\X^ -K Z^) + Z^{X^ + Y^)] + aesX^Y^Z^

through terms of degree six, where the coefficients are generally functions ofW (and temperature).

We note that symmetry permits the cubic term XyZ in the free energy, which plays a fundamental

role in the subsequent analysis. The order parameters do not transform in the manner of the

components of a vector under simple rotations; for example, a rotation of the crystal by x/4 about
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tlie z axis eifeetively interehanges the roles of and pz while leaving p\ and /J4 unehanged. This

implies that X and Y are interehanged with no ehange in sign, whereas sueh a rotation would be

expeeted to produee a sign ehange in one of the eomponents of a veetor quantity.

A free energy of this type ean provide eorreet qualitative deseriptions of the disordered fee

phase (vanishing order parameters) and two of the eommonly-observed ordered phases that oeeur

in fee systems (Ansara et al. 1988, Dupin 1995). In a temperature-eomposition phase diagram, the

Llo ordered phase has a eongruent temperature loeated at or near the eomposition W = 1/2; this

phase is deseribed by a single non-zero order parameter. The il 2 ordered phases have eongruent

temperatures located at compositions at or near W — Ij

A

(for the stoichiometry A3B) andW = 3/4

(for AB3 ); for the LI 2 phase aU three order parameters are non-zero and are equal in absolute

value. A phase diagram with the correct qualitative features can be obtained with this free energy

by prescribing an appropriate temperature and composition dependence to the coefficients uq, a2 )

and az\ the higher-degree coefficients may be taken to be constants. The fcc-Tlo phase transition

is first order if a^i and 051 are negative and positive, respectively, and the fcc-Tl2 transition is first

order if the coefficient 03 is non-zero (Braun et al. 1995b). More generally, one would choose the

coefficients in the free energy to obtain agreement with a given phase diagram or other measured

properties of the alloy, such as heat capacity or equilibrium pair correlations (Clapp and Moss 1966,

1968; Moss and Clapp 1968), or first principle quantum mechanical calculations (de Fontaine 1994).

In the work described herein, we wiU focus on the fcc-Tl2 phase transition, and will simplify

the analysis by truncating the free energy at fourth degree and assuming that the fourth-degree

terms are positive definite. Such a truncation would not provide a correct description of the fcc-

L\q transition at FF = 1/2; instead, one obtains the multicritical point of second-order transitions

originally found by Nix and Shockley (1938). In future work we plan to investigate the sixth-degree

theory; however, we may note that it is possible to choose the free energy coefficients in the sixth-

degree theory in such a way that the fcc-Tlo transition remains first order, while in the expression

for the bulk energy of the LI 2 phase the fifth and sixth degree terms are absent. Preliminary studies

indicate that the results obtained here for the fcc-Tl 2 transition are in qualitative agreement with

a more realistic sixth-degree model. In the present work we wiU describe phase boundaries by

prescribing the coefficients a2 ,
<13 , a^i and a42 themselves; without loss of generaUty we wiU set

ao = 0. Since our principal concern is with the surface tension anisotropy introduced by the multiple
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order parameters, we wiU. also simplify the model by ultimately assuming that the eomposition W
is uniform throughout the system. Exeept at a eongruent point, the equilibrium eompositions

for a two-phase system would be expeeted to dilfer; assuming a uniform eomposition generally

is equivalent to working along To eurves in the phase diagram that deseribe states of equal free

energies (see, e.g., Cahn 1971 for a diseussion of Tq eurves).

2 .4 .2 . Symmetry requirements for the gradient energies

The form of the two terms in the gradient energy eontribution, denoted by iS'(x), is

5(x) = ajk
dW dW
dxj dxk

, .
dXjdXk

I ^jlhm r\

dxi dXm
(15)

We require that 5(x) transform hke a sealar under simple rotations of the erystal. Sinee W is a

sealar, we find that the coefficients ajk form an isotropic second rank tensor. However, the bjikm

do not transform in the manner of a fourth-rank tensor, since as noted above the Xj do not form

a first-rank tensor. The partial derivatives dXjjdxi themselves do not constitute a second-rank

tensor, and hence the coefficients bjikm obey a different transformation law in order that 5(x)

results in a scalar quantity.

If the nine derivatives dXj/dxi are arranged in a 9 x 1 linear array, then the coefficients bjkim can

be arranged in a corresponding 9x9 array having 81 elements. Since 5 is then given by a quadratic

form based on this array, the array may be chosen to be a symmetric matrix with bjikm = bkmjh

and the number of independent coefficients is reduced to 45. By invoking the symmetry of the

fee crystal, the number of independent coefficients reduces to two, and 5(x) can be written in the

simple form

{X^^ + X^^+Y^ + Y,^ + Zl + Zl). (16)

where A and B are independent constants. To give an example of the arguments that are involved,

consider a set of order parameters with X = go{x) and Y = Z = 0, which results in the expression

S(x) = 61111 (17)

Now consider a four-fold rotation of the crystal about the z-axis, so that x y and y —» — x; that

is, the coordinates of a point x = {xo,yo,zo) fixed in the crystal are now x' = i—yo,xo,zo) (here
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we regard the eoordinate system as fixed and rotate the erystal). Under the rotation, the densities

ehange aeeording to

Pi —^ Pi) P2 —^ PS) P3 P2) P4 —^ P4- (18)

In addition, sinee the erystal is assumed to have property variations along the eoordinate x in the

original orientation, after rotation the properties of the erystal now vary along the y direetion of the

fixed eoordinate system. Thus, the order parameters as measured in the fixed eoordinate system

that are assoeiated with the new orientation of the rotated erystal are given by

X = 0, y - go{y), Z = Q. (19)

The quantity S that is eomputed for the rotated erystal is then

5 (x') = 62222 Po(z/)Po(2/)- (20)

K we require that the eomputation of S gives the same result for eorresponding points in the

original and new orientations of the erystal, we then eonelude that 61111 = ^2222 - By invoking

similar arguments, it ean be shown that the gradient energy eontribution has the above form.

An alternate, heuristie motivation of the form of the gradient energy term ean be based on

near-neighbor interaetions on the fee lattiee. To do this, a lattiee parameter d is introdueed that

represents the length of the unit eeU, and we introduee the notation

(21 )

for the representation of the atomie fraetion of sublattiee 1 at the points x = jd, y = kd, and

z = Id, and analogous definitions for the other sublattiees,

^ [i + i/2]d). (22)

^(i+i/2,M+V2) ^ ^ kd, [Z + l/2]<i), (23)

The diserete free energy is assumed to eonsist of eontributions from pointwise energies and from

nearest- and second nearest-neighbor interactions.

The second-nearest-neighbor interactions involve points on the same cubic sublattices; a repre-

sentative interaction has the form -P which can be re-expressed in the form of
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simple finite differenees plus pointwise eontributions as in Seetion 2.2. In the eontinuum limit the

seeond nearest-neighbor interaetions then eontribute the gradient term

where B is proportional to the seeond nearest-neighbor interaetion energy /3. Inserting the defini-

tions of the atomie fraetions in terms of the order parameters gives

jr(2) ^ ^^ {|VX|2 -f |vy|2 + |VZ|2} dV. (26)

The nearest-neighbor interaetions are less straightforward, sinee they involve eouphng between

sublattiees. A typieal interaetion is a produet of the form a and the sum of

the four terms involving the interaetion of with sublattiee 3 eontributes an expression of the

form

^
^0+1/2,fc,i-a/2) ^(i-l/2,A:,Z+l/2)

^
^0-l/2,A:,/-l/2)|

ad? [ d'^pz d'^ps
-pi + -|- bulk contributions (27)

^
dx^ dz^

^

to the gradient energy expression in the continuum limit. Collecting all the terms that involve

x-derivatives gives the contribution

jrfi) = - /“ 4 Jv
[Pl + P2)-^{PZ + Pa) + {pz + ^4)^^(pi + P2) dV

where we have integrated by parts and disregarded the boundary contributions; here A is propor-

tional to the second nearest-neighbor interaction energy a. The contributions from the y and z

derivatives have an analogous form, so that we have

T = + jrj') + jr(2)

I {xl +
}
+ 1 {|VX|^ + |vy|^ + |VZ|^} dV. (29)

We note that A > 0 and .B > 0 follow from choosing the interaction energies to have the signs /5 > 0

and a > 0; with our sign conventions, these choices are analogous to repulsive nearest-neighbor

and attractive second nearest-neighbor interactions. This form of the gradient energy contribution

has also been reported by Lai (1990).
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2.4.3. Governing equations

The system free energy thus has the form

:f = J
{/(x,r, 2) +

1

(xj + r/ + z^) +

1

(x^^ + x^ + (30)

A simple set of dynamieal governing equations ean be obtained by writing

dXj

dt 6X, ’
(31)

where r is a phenomenologieal relation parameter, whieh for simplieity we will take to be eonstant.

The system then evolves along paths of steepest descent of the functional X. Pried and Gurtin

(1994) have provided alternate derivations of dynamical governing equations in related situations

that are based on the second law of thermodynamics.

For equilibrium surfaces, the time derivatives are set to zero. Evaluating the functional deriva-

tives gives

0 = AXxx + BXyy -j- BXzz — fx )
(32a)

0 = BYxx + -^Xyy A BYzz — fy, (32b)

0 = BZxx + BZyy -f- AZzz — fz- (32c)

These are the equations we shall study in this work. The dynamic form of these equations is

currently under investigation and the results will be pubhshed separately (Braun et al. 1995a).

3. Single phase bulk states

Equilibrium states in which the order parameters X, Y

,

and Z are constant require that the free-

energy of the system is stationary, and hence that

fx{X, Y, Z) = 2a2X 4- a^Y

Z

-)- Aa^^X^ -1- 2a42X{Y^ -f- Z^) = 0, (33a)

/y (X, Y, Z') = 2a2Y a^X

Z

-|- 4a^iY^ -t- 2a42P(X^ Z^'^ = 0, (33b)

fz{X, Y, Z') = 2a2Z -j- a^XY + ^a^iZ^ -1- 2a42.^(X^ -|- P^) = 0. (33c)

The stability of such equilibria may be examined by a standard linear stability analysis of the

governing equations, which indicates that the stable equilibria are local minima of f{X,Y,Z).
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There exist distinct types of equilibria given by the solutions of Eq.
(
33 ); we now discuss the nature

of the solutions as 03 varies for fixed values of 03, a4i, a42.

The trivial solution X = Y = Z = 0 represents the disordered or fee phase, and is stable

providing ua > 0 . The variable a2 plays the role of temperature, with 03 = 0 corresponding to the

limit of metastability of the fee phase.

There are solutions for which X = A 0 and Y = Z = 0
,
where

A =
-aa

2a41
(34 )

which exist only when 03 and 041 have opposite sign. In this situation the order parameters may

be expressed as pi = p3 = W + A and = W — X, representing a layered structure consisting

of planes with different copper concentrations alternating in the ^-direction (c.f. Fig. 2 ).

We refer to this type of solution as the CuAu or LIq phase, without necessarily implying that

the atoms are copper and gold or that the number of copper atoms and gold atoms are equal.

Because of symmetry there are analogous solutions with Y" = A and X = Z — Q, and with Z — X

and X = Y = 0, that also represent the LIq phase with the layering occurring in the y and z

directions. Symmetry allows changing the sign of any two of the order parameters, which allows a

total of six equivalent variants of the LIq phase.

There are solutions of the form X = Y = Z = x{¥^ where x satisfies

2^3 + o,3X + 4(041 + 043)x^ — 0, (
35

)

which allows for two possible real values of %, denoted Xi 3'°-^ X2- These solutions exist when

03 < 02 ,
where

of =
(
36

)
32(041 + 043)

When 03 = 02 ,
the two branches merge at a limit point where xi = X2 = + <142)]. For

these solutions, pi = W + 2>x and P2 = P3 = P4 = ^ ~ so that site 1 is distinguished from the

other sites. We refer to this case as the Z-I2 phase. The symmetries that correspond to changing the

signs of two of the variables imply that there are related solutions of the form X = X) ^ — Z = —x,

and so forth, resulting in four variants on each of the two branches of LI2 phase. A single change

of sign separates the two branches; the variants have different energies, and usually do not coexist.

On the Cu-Au phase diagram the different branches are designated as CusAu and CuAua.
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There are also “mixed-mode” solutions that bifureate from the LIq solution braneh for a2 < ^2

where

(37)(
1
) _ —^41^3

dry

they have the form

X = as

4[2a4i - 042 ]^
’

y = z = ±>
(4^^ - a2)

\ (2a4i + a42)
’ (38)

2[2a4i — 042]

and analogous solutions related by symmetry to these solutions. (If
[
2a4i

— a42 ]
vanishes this

bifureation point moves to infinity.) The mixed-mode and LI 2 solutions interseet at

_ (
2

) _ (4a4i + a42)o-3

= 2[2a„ - at2? '

(39)

The mixed-mode solutions are never stable, but play a role in determining the stability of the bulk

LIq and LI2 phases, as described below.

The restricted class of solutions of the governing equations Eq. (32) for which Y = Z contain

instances of aU of the above types of equilibrium states.

If we now allow the order parameters to depend solely on time then the governing equations

are

T— = -[2a2X + asYZ + 4a4iX^ + 2a42X{Y^ + Z%
at

- -[2a2y + + 4a4iy^ + 2a^2Y{X^ + Z^)],
at

jy
T— = -[2a2Z + a^XY + 4a4iZ^ + 2a^2Z{X^ + Y^)].

(40a)

(40b)

(40c)

For the case Y — Z, Eq. (40) have the same form as the two-mode disturbance equations that govern

the weakly nonlinear competition of rolls and hexagons in the classical Rayleigh-Benard problem

of hydrodynamics (Segel 1965), as well as band-node competition in the directional solidification

of a binary alloy (for a recent review, see CorieU and McFadden 1993). For the Rayleigh-Benard

problem the rolls are represented by solutions of the form X 7^ 0,y = 0, the analogue of L1q\

hexagons by X = Y (/ 0), the analogue of XI 2 ;
and the no-flow base state by X = Y = 0, the

analogue of the disordered phase. The control parameter is the Rayleigh number, the analogue of

which is the quantity — 02 . In the context of Rayleigh-Benard convection the solution structure of

Eq. (40) is well understood and is commonly represented by a state diagram in which the amplitude
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of the solutions are plotted against the Rayleigh number, whieh for our problem is given by — 03,

with all the other eoefiieients, 03,041 and 042 fixed. The nature of the solution strueture depends

on the values of these eoefiieients.

In Fig. 3 we show a sehematie representation of the state diagram for the ease of fixed W in

-°2

Figure 3: A sehematie state diagram showing the existenee of the disordered (Al),

Llo and LI2 bulk states, as well as the mixed-mode solution (MM), as the param-

eter 02 varies. The solid and dashed lines represent stable and unstable solutions,

respeetively.

whieh 041 and 043 are both positive and 042 — 2041 < 0. This diagram shows the different possible

bulk states, eharaeterised by the value of X, as 02 is varied. It displays only half of the possible

fixed W states; there are an additional set of solution branehes whieh may be obtained from those

shown by refleeting them about the abseissa, but whieh have been omitted here for elarity.

The abseissa in Fig. 3 represents the disordered (fee) state X = Y — Z = 0] it beeomes unstable

for a2 < 0 in a transeritieal bifureation to the I-I2 state and a pitehfork bifureation to the LIq

state. The XI2 phases, given by X = T — have two values of X for a given value of a2 <

The LI2 braneh with larger |X| is stable for 03 < af"; the braneh with smaller |X| is unstable for

Uj < 03 < a^\ The ilo braneh is given by X negative and Y = Z = 0 for a2 > 0; aU the LIq

states are unstable for 043 — 2041 < 0. Lastly, there are mixed modes where only two of the order
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parameters are equal but aU are nonzero. They are aU unstable, but they do restabilise the LI2

braneh for X < 0.

In Fig. 4 we show a sehematie state diagram for the ease where 041 and 042 are both positive

-°2

Figure 4: A sehematie state diagram showing the existenee of the Llo and LI2

bulk states as the parameter 02 varies. The solid (dashed) lines represent stable

(unstable) solutions.

and a42 — 2a4i > 0. We again have the disordered (fee) state losing stability to the LI2 state in a

transeritieal bifureation and to the LIq state (now X > 0) in a pitehfork bifureation. However, the

mixed mode now restabilises the LIq state for X > 0 and eventually destabilises the LI2 braneh.

There is the possibility of bistability between both ordered states as weU as between the fee and

LI2 state; sinee W is fixed, these are points on the To eurves, rather than eongruent points.

In terms of a phase diagram interpretation, we may regard 02 as inereasing with temperature;

we may then interpret
,
the minimum on the LI2 braneh, as eorresponding to the limi t of

metastability of the ordered phase and a2 = 0 as eorresponding to the temperature of the limit of

metastability of the disordered phase.

In this paper, we shall only eompute solutions to the governing equations for the ease a42— 2a4i <

0, shown in Fig. 3. We also note that for the values of the parameters we eonsider, the mixed modes

exist only for large values of |X| (not as suggested by the sehematie state diagrams) and will not

-24-



Interfacial Anisotropy and Ordering of an fee Alloy April 1995

form part of our subsequent discussion.

4. Interphase boundaries

In this section we consider those one-dimensional solutions to the governing equations (32) which

represent a stationary, planar, interfacial region separating an ordered LI 2 bulk phase from a

disordered bulk phase at the same composition (usually a congruent point on a phase diagram, but

in this case it is a point on the Tq curve, since we fix W to be the same value in both phases). The

order parameters vary only in a direction parallel to the unit normal to the interface, denoted by

h = (n.1 ,
Tiy, 71^), and so

X(x) = X(h x), F(x) = y(h • x), ^(x) = Z{h-x.). (41)

The governing equations then reduce to the following system of nonlinear ordinary differential

equations

ilX(( = fx{X,Y,Z), (42a)

ilYK = fy(X,Y,Z), (42b)

ilZK = !z(X,Y,Z), (42c)

where ^ = h x, and

il = Anl + Bnl + Bn], il = Bnl + Anl + Bnl, H = Bnl + BnJ + Anl. (43)

Assuming that the bulk disordered phase exists for ^ — oo and imposes that

X(f), y(C), Z{() ^ 0, as C ^ -OO. (44a)

We further require 02 > 0 so that the bulk disordered phase is stable. We then have the ordered

il 2 phase as ^ -(-00 and hence

X(f), Y(0, Z(0 Xl. as C + 00
.

(44b)

where xi represents the common value of the order parameter in the stable XI 2 bulk phase. The

equations (42) have a first integral

fW" + %Y(f + f [2<1' - f(X, Y, Z) = /„ (45)
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where /o is a constant of integration. Inserting the far-held boundary conditions
(
44

)
into this

expression gives that

/o = /(Xi,Xi,Xi) = /(0j0>0)= 0; (46)

since /(O, 0,0) = 0, i.e., the free-energy of each of the bulk phases must be equal. Prom the form

of the free-energy density, this requires that

3a2 -|- dzXi + 3(041 + 042 )Xi — 0- (47)

Combined with Eq.
(
35 ), the equation for Xi, tlds gives that

Xi = - 602

03

and

(03)^ — 3602(041 -|- O42).

(
48

)

(
49

)

We note that this condition allows the XI2 and disordered phases to coexist in stable equilibrium

only for a unique value of 02.

Let 02,o|, 04^ and O42, denote the values of the 02,03,041 and O42 which satisfy Eq.
(
49

)
for

the existence of an interphase boundary, and let x* denote the corresponding value of the order

parameters in the LI2 bulk phase given by Eq.
(
48 ), i.e., x* = “602/03. Nondimensionalising the

governing equations

X(()=x‘X{(), y(C) = x*?(0 . Z(0 = x*2 (0 . (
50a)

f{X,Y,Z) = [x']\iJ{X,Y,Z). (50b)
X V

Here

f{X, Y, Z) = 02(^2 + y2 ^ ^ a^XYZ Y {X^ + Y^ + ^^) + -K X^Z^ + Z^Y^), (51)
4 I -{>4

I
(74 )

where

02(05)2 _ a3o5
^2 — TTr"—; 03 = -;

36041(02)2’ 6041 02’ 041

In terms of these parameters an interphase boundary forms when 02 = o^, 03 = o^ etc, and so, on

using Eq.
(
49

)
we find

at

(53)
<13

O2 — —— — 1 -t- 042 •

6
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We define the unique value of 0.2 for eoexistenee as

^2 = 1 + ^42 . (54)

Finally, we define

^2^2 I ^2^2 c2 _ ^22 , 2
I

2^2 i:2 _ ^2^2 , ^2„2 ,

Si ~r f T f 5^2 5 Sy ^ ^y d” ^ ) Sz ^ ^i d” ^ ^y d"
,2„2 ,2„2

Tl, (55)

where = 5/A.

We heneeforth omit the tilde’s on the dimensionless quantities; the dimensionless governing

equations are then

with boundary eonditions

ilXa = fx(x,Y,z), (56a)

(iY(( = fY{X,Y,Z), (56b)

(lZ(( = fz(X.Y,Z), (56c)

X(Q, y(0 ,
Z(0 ^ 0, as c ^ - 00

.
(57a)

x((), y(0 . Z(C) ^ 1, as C ^ + 00 . (57b)

The interfacial energy 7 is given by the excess free energy per unit area, which may be written

as

foo f C2 C2 a2 i

7 = /_ + f[Yc]^ + ^f[Zc? + f{X,Y,Z)jdC- (58)

here (X(C), y(^), Z((’)) denotes the solution to equations (56) and (57). By using the first integral

(45), the interfacial energy may be expressed in either of the equivalent forms

1 = r + + = 2 r f(X,Y,Z)dC (59)

The interfacial energy of the layer solution can also be regarded as the extremal value for a vari-

ational formulation of the one-dimensional governing equations (56); they are the Euler equations

for the variational problem

7 = + |[y(]2 + ^lZ(f + f{X,Y, Z)\ dC (60)

where the minimum is taken over all functions (X(C), ^^(0 ; Z{C)) satisfying the boundary conditions

(57).
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4.1. Geodesic interpretation

A geometric interpretation of the one-dimensional layer solutions is possible in terms of geodesic

curves, (X(C), ^'(C)? ^(0) that minimise a generalised distance between the points (0,0,0) and

(1, 1, 1) (see, e.g., Sternberg 1991). Using the inequality 2ab < in the expression (60), gives

7 > min r J2 f(X, Y, Z) + (IW d(, (61)
J— oo

and from the first integral Eq. (45) of the layer solution, the inequality is actually an equality. If

we define a weighted arclength on curves (X(C),y(C), Z[()) by ds^ = + ^ydY^ -f (^dZ^, this

expression can be written in the form

7 = min/ J2f{X,Y,Z)ds-, (62)
‘'(0

,
0

,
0

)

that is, the interfacial energy 7 can be viewed as the geodesic distance between the points (0,0,0)

and (1,1,1) in a metric given by the integral of y/2 f{X,Y, Z) with respect to the arclength ds.

The layer solution is the corresponding geodesic curve. In special cases in which the path of

the geodesic can be inferred from symmetry considerations, e.g., if only a single non-zero order

parameter is involved in the transition, an explicit expression for the surface energy can thus be

obtained immediately by quadrature.

4.2. Numerical and asymptotic solutions

In the computations of interphase boundaries presented below we set 02 = a| = 2, as = — 12, a42 =

1, which satisfies the relation given by Eq. (53). To ensure the accuracy of our numerical solutions

we have used two methods to compute solutions of the nonlinear system of ordinary differential

equations, Eq. (56), with the boundary conditions Eq. (57a) and Eq. (57b). In the first approach

we employed a central finite difference approximation to the spatial derivatives and solved the

resulting nonlinear algebraic equations by Newton’s method, allied with a continuation method to

provide suitable initial guesses. The second approach used the software package COLNEW (Bader

and Ascher 1987) which solves nonlinear boundary value problems. The package employs adaptive

meshing on a variable number of subintervals, with the solution on each subinterval approximated

by a convenient set of algebraic basis vectors. The resulting solutions for the coefficients of the

basis vectors of the basis vectors allow accurate evaluation of the solution wherever desired in the

interval.
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We note from the state diagrams for the values of the parameters used in the eomputations,

e.g. Fig. 3, that the LIq forms a supereritieal bifureation from the disordered phase; henee, both

these bulk phases eannot be stable for the same value of a2 . This does not allow the possibility of

an IPB between the disordered and ilo bulk phases.

4.3. The orientation dependence

We now go on to discuss the dependence of the interfaces on their orientation. Because of the

underlying mZm symmetries of the LI 2 and the disordered fee, only those orientations whose

normals n are subtended by the spherical triangle whose vertices are given by the intersection of

the unit sphere and radial vectors in the directions of h, [100], [110] and [111] need to be considered.

The m3m symmetry dictates that scalar properties, such as the surface energy, will have extrema

at < 111 > and < 100 >, an extremum or saddle at < 110 >, and no gradients normal to the sides

of the spherical triangle.

We first discuss solutions for special orientations for which symmetry imposes relationships

among the order parameters, and then go on to general interface orientations for which there are

no such relationships. The only symmetry operations in mSm that impose such relationships are

the {110} mirrors and the 3 axes along < 111 >. For an IPB in the (111) plane, with n along [111],

we have one-dimensional solutions of the form X(^) = Y{Q = ^iO- Two of the order parameters

are equal for any surface that contains a < 110 >, or, equivalently, any n lying in a {110} mirror

for which the magnitudes of two of the components of n are equal. For any other orientation there

is no relationship among the order parameters. These include the n =< hkO that lie on the cube

plane, except for the < 100 > and < 110 >.

4.3.1. The isotropic IPB and the [111] IPB

We begin by considering two cases together. The first is the isotropic case in which A = B (or

e = 1) for an arbitrarily oriented interface. The other is the anisotropic case (A ^ B, e 1) with h

oriented in the [111] direction {ux = riy = = l/\/3). In both these cases = (y = and there

are one-dimensional solutions of the form A’(C) = T(C) = Z{() that represent il 2 throughout the

interfacial layer. The governing equations (56) give, on using Eq. (53), that

eXcc = 4a2A(l - X){l/2 - X), (63)
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where = 1 for the isotropic case and = (1 + 2e^)/3 for the [111] case. This has solution

+ (64 )

In the geodesic interpretation, the solution is a straight line segment connecting the points (0, 0, 0)

and (1,1,1) in the space of points {X,Y,Z). In Fig. 5 we display the corresponding sublattice

Figure 5: The sublattice atomic fractions for a42 = 1 and = 0.005 for the [111]

IPB. Note that X = Y = Z for this orientation.

atomic fractions as functions of the interface clearly consists of a LI 2 structure in which the

atomic fractions of three of the sublattices are the same at each station and distinguished from the

remaining sublattice.

4.3.2. The special n in {110} mirrors

Interfaces with normals of the form < hkk > span the two sides of the spherical triangle that run

from [111] to either [100] with h > k, or to [110] with h k. In contrast, the interfaces represented

by the third side, the < hkQ > running along the cube mirror plane from [100] to [110], have no

special symmetry relations for these computations.

For an interface oriented in the [100] direction [n^ = 1 and Uy = Uz = 0), we have = 1 and

= e^. There are one-dimensional solutions with T(C) = 2'(C)j which case Equations (56)
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beeome

XfC = 2a2X + agy' + 4 X, (65a)

= 2a2Y + ^aXY + 2 ([2 + a42]Y^ + a42X^') Y. (65b)

Computed solutions of this system are shown in Figures 6 and 7 for = 0.005. Fig. 6 shows a

Figure 6 : The order parameters for 042 = 1 and = 0.005 for the [100] IPB. Note

that Y = Z for this orientation.

“delay” in the inerease of T from zero eompared to X. In the (X, Y) plane, the geodesie eonneeting

the points (1,1) and (0,0) is roughly deseribed by an are from the point (1,1) to a point (Xc,0)

on the axis T = 0
,
followed by a hne segment from (Xc, 0

)
to the origin

(
0

,
0 ).

As ean be seen elearly from the eorresponding plot of the sublattiee atomie fraetions shown in

Fig. 7 this results in a region within the interfacial layer where there are just two distinct pairs

of sublattices, each sublattice of the pair having the same atomic fraction of Au. This region is

therefore occupied by the LIq phase, although this is not a stable bulk phase.

This interesting layered structure of the interface was first found by Kikuchi and Cahn (1979) in

their cluster variation simulation of the copper-gold alloy; recently, more refined calculations have

been carried out by Finel et al. (1990, 1992). In those models, the composition was allowed to vary

across the interface, unlike our simpler model. In Fig. 8 we reproduce the corresponding result of
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Figure 7: The sublattiee oeeupation densities pi for a^2 = 1 = 0.005 for the

[100] IPB.

NUMBER OF THE PLANE

Figure 8: The interfaeial strueture predieted by Kikuehi and Cahn (1979) for the

[100] IPB (their figure 11(b)); the eurves represent the various oeeupation densities

of the lattiee as in Figure 7.

-32-



Interfacial Anisotropy and Ordering of an fee Alloy April 1995

Kikuclii and Cahn, whicli shows the occupation densities of the 4 sublattices of the (spatially dis-

crete) cluster variation method plotted against distance through the interfacial layer. Comparison

of Fig. 7 and Fig. 8 shows the striking qualitative agreement between our work and theirs. While

our result is not directly analogous with theirs, our more restricted model appears to retain the

essence of the interfacial layering. It is interesting to note that layering in interfaces between phases

has been observed in the molecular dynamics computations by Landman et al. (1980,1981) and

Cleveland et al. (1982), though in that context the layering is strictly onto a lattice arrangement

for a pure material (see also Cahn and Kikuchi 1985).

For the [110] case = Uy = l/y/2 and 71^ = 0 and have — ^2 _ -|- e^)/2 and = e^. We

then have X(C) = 1^(C) the governing equations Eq. (53) become

= 2,a2X a^X

Z

-I- X ^2[2 -t- 042]^^ I- 2a4.2Z^^
,

(b6
)

— 2a2Z 1- 4 (^Z"^ 042^^^ Z. (b7)

Computed spatial profiles for the [110] orientation are shown in Figures 9. The strong separation

Figure 9; The order parameter variation for a42 = 1 and = 0.005 for the [110]

IPB. Note that X —Y for this orientation.

of layer widths which occurred for the
[
100

]
orientation does not occur here; as a consequence no

interfacial layering occurs. When the order parameters are converted to the occupation densities.
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there is again striking agreement with the eomputed results of Kikuehi and Cahn (1979, see their

Figure 15).

No signifieant ehange is needed to ealeulate the solution for all the orientations along the two

sides of the spherieal triangle that inelude all the < hkk >. We fixed aU the parameters but the

orientation; in particular we choose = 0.005 to ensure the formation of the LIq interfacial layer

in the [100] direction. For the orientations represented by the side of the spherical triangle between

the [111] and [100] vertices ^(C) = but X(C) separates from them with increasing distance

from [111]. In fact, the symmetry of the equations for these orientations is the same as for the [100]

direction, Eq. (65), because the Y and Z equations are identical. Moreover, it may be shown that

the Llo layering observed in the limit e —> 0 is only apparent for orientations sufficiently close to

the [100] direction for which the azimuthal angle,
<f),

is 0(e). In our computations with = 0.005

the formation of the LIq layer becomes apparent for
(f)
« 25°, which is 0 « de radians. An example

of the solution on this side of the spherical triangle for (j) = 18.25° is given in Fig. 10.

Figure 10: The order parameter variation for a42 = 1, e^ = 0.005, azimuthal angle

(j) = 18.25°, and polar angle 6 = 72.16° on the upper side of the spherical triangle.

Varying the orientations from the [111] vertex to the [110] reveals behavior analogous with the

[110], with X(^) = V(^) and Z((^) separating from them as the orientations are moved away from

the [111] direction. The results are very similar to those shown in Fig. 9.
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4.3.3. General orientations

We have also eomputed the solutions of the governing equations, (56) for general orientations of a

planar interfaee with respeet to the erystal axes. Within the spherieal triangle the X{(), Y[Q and

Z(() are also all distinet. A typieal solution is shown in Fig. 11 for 9 = 80° and (j) = 35°. General

Figure 11: The order parameter variation for 042 = 1
,

= 0.005, azimuthal angle

(j) = 35° and polar angle 6 = 80° away from the edges of the spherical triangle.

orientations include the open interval of the side of the spherical triangle connecting the
[
100

]
and

[110] vertices for which the Y{() and Z{Q are aU distinct. Along that side, as the orientation

varies away from the [100] direction, the Z component separates from its like component Y and

finally becomes the same as the X component as the orientation approaches [110].

4.3.4. The asymptotic limit e ^ 0 for the [lOO] IPB

To help understand some of the mathematical aspects of the [100] IPB layering, we now seek a

solution asymptotic to the computed solutions of the governing equations (65) in the limit of e —»• 0.

An outer solution that is a regular perturbation series as e —> 0 is:

X = X^°\rj) + e^X^'^X-rj) + C>(e^), Y = Y^°\tj) + e2y(i)(^) + O(e^).
(
68

)
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The leading order problem is then

xW = 2a2X<'') + + 4[(X(“>)^ + a42(y<‘‘>)')X(“>,

0 = r<“) [202 + <I3X<°> + 2[2 + + 2<i42(X<‘'y] .

Solving (70),

= 0
,
X^°\r]) < Ac

or

y(“) = /_ 2-2 + a3XW + 2a42(X(°y
^

^
y 2[2 + 042 ]

(69)

(70)

(71)

(72)

at = Xc, the numerator of the radical vanishes. Because solutions to (69) and (70) are trans-

lationaUy invariant, we are free to choose 77 such that A(°)(0) = Ac- Thus the regular perturbation

series generates two outer solutions vahd on two domains: Region I where A^®) < Ac (77 < 0) and

Region II where A^®) > Ac (77 > 0).

The order parameter A^*^)(77) is required to evaluate the leading-order solution for A^®) is,

for A(o)(
77) < Ac,

For A(o)(
77) > Ac,

or

X(»)(7,) = 1 -

x(“)(,,) = 1 -

^3

a + /3isinh/32(77 - 77//)'
if 2q:^ < 1;

a + /5i cosh/32 (77 - Vll)
,

if 2a^ > 1,

with

a =
3-1-02=. ft = ^3 =

-02! ''

y 1 -h 02

1 3 -|- 2o2

|3-<I2|

(74)

(76)

(76)
\/(3 + 2a2)|3-a2|'

' ' ^
V 1 + “2

where Eq. (53) has been used to express these quantities solely in terms of 02 ; 777 and 77/7 are

constants of integration that are as yet undetermined. We note from Eq. (72) that oc y/rj as

77 —> O'*', and hence it has an unbounded second derivative as 77 O’*". This suggests we require an

inner region, between the outer regions 1 and II, which wdl take account of the second derivative of

Y

.

The inner region also acts to relate the two outer solutions and hence determines the constants

777 and 7777 .
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We now investigate the inner problem by introdueing the resealed distanee in the inner region,

p, defined by 77 = and expanding the solution as

and

X (ji) = z{p) = x^°\p) + + 0(e),

Y(v) = y(p) = [!/*°*(/>) + + 0(e)]
,

(77)

(78)

whieh balanees the seeond derivative of y with the eubie nonlinearity and wHl allow matehing to

the outer solutions. Substituting these forms in the governing equations and matehing to the outer

solutions requires that

a;(°)(p) = Xc and x^^^(p) = D-^p, (79)

where Dx is a eonstant. Matehing to the outer solution for X shows that

^(“'(O-) = X<“>(0+) = and
dX<»)

d-q
7=0+

dq
(80)

T)=0

and so the outer solution for and its first derivative are eontinuous aeross the inner region,

whieh in turn determine qj and qn.

The equation for the leading-order inner solution for y is

yf) = (4X. - 12)(Xc + Di^)t/<‘’> + 6(i,(“y

,

with matehing eonditions

y —^0, as p —

4

— 00
,

1/2 2T>i(Ac-3)
Vo^ P ' y

, as p + 00 .

(81)

(82a)

(82b)

This provides a deseription of the leading-order variation of Y in the inner region. From Eq. (77)

and Eq. (78) we note that in the inner region X is non-zero {X = 0(1)) and Y is almost zero

(Y = Z = indieating that the inner region is eomposed of LIq material, as suggested by

the numerieal solutions.

We may use this asymptotie form of the solution in the expression for the interfaeial energy to

obtain

7 = \//(Xo,o.o)<iXo + y/(x(»),y(»),y(‘>))<iXo| + (83)
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e 7
0.3740 0.607343

0.1000 0.537039

0.0374 0.527107

0.0100 0.525863

Table 1: The interfacial energy, 7, computed from eqn. (84) using the trapezoidal rule

and numerical solutions to the governing equations computed using the software package

COLNEW. Here a2 = 2, = -12 and a42 = 1. The asymptotic result as e 0 is

7 = 0.525553+

Note that the leading-order behaviour of the interfacial energy is independent of the leading-order

solution for Y in the inner region and so we do not numerically compute from Eq. (81).

However, the first integral in Eq. (83) may be integrated directly and the integrand of the second

can be displayed exphcitly to give

7 = V2
I

i(02 + - a+ + £{Xo- . (84)

We compute the leading order approximation to the interfacial energy to be 0.525553. In Table 1 we

tabulate the interfacial energy computed from a numerical solution of the governing equations for

dilferent values of e, showing that as e decreases the interfacial energy approaches the leading-order

value.

A heuristic explanation for the observed structure of the LIq intermediate layer that is obtained

for £ <C 1 can also be given in terms of the geodesic interpretation. When Y = Z, then g{X, Y") =

f{X,Y,Y), and the variational principle has the form

0 = 6 J2g{X,Y) VdX^ + 2e^dY^. (85)
J{o,o) ''

In the spirit of the F-convergence approach (De Giorgi 1978), we consider the leading order behavior

expected for e <C 1 by setting e = 0 in the weighted arc length, which becomes simply ds = dX

.

For solutions of the form Y = Y{X) with y(0) = 0 and y(l) = 1, the leading order behavior is

described by the reduced problem

0 = 6 j2g(X,Y)dX, (86)

whose solution must satisfy gY{X,Y)6Y = 0. This is equivalent to the leading order equation (70)

satisfied by the outer solution, and, as noted above, the solutions are given by Eq. (72) and the
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eurve Y" = 0. The shortest distanee to the origin from the point (1, 1) is then obtained by using the

solution y = y(-X’) to Eq. (72) for Xc < X < 1 that satisfies y(l) = 1 and Y[Xc) = 0, followed by

the solution Y = 0 for 0 < X < Xc, whieh represents the intervening Llo layer.

4.3.5. Interfacial energy

Prom our numerieal solutions we have evaluated the interfaeial energy as a function of interface

orientation. Figure 12 shows contours of the interfacial energy on the unit sphere for 0.005.

Figure 12: The variation of surface energy on the unit sphere for 042 = 1 and

e2 = 0.005.

The interfacial energy has a global maximum in the [111] direction and a global minimum in the

[100] direction; in the [110] direction, there is a saddle point. This behaviour of the interfacial
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energy shows the expeeted mSm symmetry. Our findings are eonsistent with Kikuchi and Cahn’s

(1979) finding of the ranking 7100 < 7iio- It is natural to ask whether the equilibrium shapes will

develop missing orientations; a two-dimensional ordered partiele with interfaeial energy of the form

7o + 74 cos 40 would not develop eorners with the level of anisotropy we have found at ^ = 0.005.

In order to study the three dimensional case, we adopt the vector thermodynamics formalism of

Hoffman and Cahn (1972) and Cahn and Hoffman (1974) and use the “^-vector” to determine

the equilibrium shapes given the anisotropy of interfacial energy. We computed ^ in cartesian

coordinates; see e.g., the appendix of Voorhees et al. (1984). For = 0.005, the equilibrium shape

determined from the interfacial energy shown in Figure 12 does not develop missing orientations.

While the anisotropy of the interfacial energy is relatively weak, the equilibrium shape has definitely

developed a rounded cuboidal shape with no angular edges, even for the highest anisotropies studied.

5. Antiphase boundaries

An antiphase boundary separates two variants of the LI2 phase that necessarily share the same

free energy, and can be expected to exist for a range of values of 02 < a^, where is the value of

a2 at the limit point of the LI 2 branch (see Fig. 3). This is in contrast to interphase boundaries

that only exist when 03 = a^; that is, where the free energy of the LI 2 and disordered fee bulk

phases are equal. For the parameters chosen here, recall that = 2 and Xi = 1 .

5.1. The orientation dependence

Antiphase boundaries separate two ordered (AI 2 )
domains that are shifted by a (1/2) < 110 >

vector relative to one another. Because this shift breaks the cubic symmetry, it matters which

vector is chosen from this set of vectors. Take (1/2)[101] as an example; the y direction is then

the distinguished direction and remains as the common 4-fold axis that threads both domains.

For a (1/2)[110] shift the z direction becomes the tetragonal axis. These cases are related by an

appropriate rotation. For symmetry arguments and in the presentation of orientation dependencies

we wiU always take the z axis as the unique 4-fold axis.

For a (l/2)[110] shift the atomic fractions of the two ordered domains are given respectively by

Pi = W + 3x,p2 = P3 = P4 = W -X for one and P4 = W -\-3x, pi = P2 = Ps = W - x for the other,

and the domains are differentiated by the distinguished atomic fractions on sublattices 1 and 4. The
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siiift ehanges the sign of two of the order parameters; X = Y = Z = x and —X = —Y — Z — x-,

respeetively. Without loss of generality, we wiU eonsider this type of shift in our ealeulations of the

strueture of antiphase boundaries for all the orientations.

The resultant symmetry of the orientational properties of the APB is 4/mmm, a thirding

subgroup of m3m. For this group of order 16, the spherieal triangle has eorners at the [001] (a

4-fold cLxis), at the [100] (no longer a 4-fold axis) and at the [110] two-fold axes, and encompasses

three of the mSm triangles. This symmetry dictates that scalar properties, such as the surface

energy, will have an extremum at < 001 >, extrema or saddles at < 100 > and < 110 >, and no

gradients normal to the sides of this larger triangle.

Most of the {110} mirrors that were important in the IPB calculations have been lost. The

only special orientations for the computations are the [hhk] (but not the [khk]) that lie in the
(
110

)

mirror plane for which X = T. In particular, for the [111] orientation, this is the only symmetry

that applies. AU orientations other than the [hhk], including [100], are general orientations with

distinct values for X, Y", and Z.

The dimensionless governing equations are given by Eq. (56), but with boundary conditions

S'(0 - -Xi. Z(0 ^ +Xi C - -oo, (87)

and

X{C.), V(0, Z(0 ^ +X1 .
as C ^ + 00

, (88)

where Xi is the dimensionless value order parameters in the bulk states, which is given from Eq. (35)

as the positive root of

2a2 + (I3X + 4(1 -|- a42)x^ — 0. (89)

Below we discuss dependence of the interfacial structure on its orientation and temperature (here

proportional to —

a

2 ), based on computations for the same parameters as employed for the interphase

boundaries, i.e., 03 = — 12
, 042 = 1

,
as well as appropriate asymptotic analysis of the governing

equations.

5.1.1. The isotropic case and special h that lie in the (110) mirror plane

For = B/A = 1, we have = 1
,
and the interface orientation drops out of the

problem. Symmetry allows solutions with X(C) = Y^(C)) isotropic surface tension results.
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For general values of BjA, orientations [hhk] in the (110) mirror plane lead to and

solutions with X{Q — Y{C,) are possible in this ease as weU. For the
[
111

]
orientation, here is the

further simphfieation that = {I 2e^)/3. In this ease the governing equations

then simpHfy to the form

2fX(( = hx{X,Z), (90a)

eZc< = hz(X,Z), (90b)

where h{X,Z) = f{X,X,Z) represents the free energy density and = (1 + 2e^)/3. For the pur-

poses of finding analytieal solutions, we used the semi-infinite domain
[
0

,
oo) with the appropriate

symmetry conditions at the origin. When computing numerical solutions, we used a truncated

domain that was sufficiently large that the solution did not change.

We conducted a series of computations for the [111] APB with a2 varying in the range 0 <

a2 < — 2. Another type of wetting behavior is observed, as shown in Fig. 13, where the

Figure 13: The
[
111

]
APB for a2 = 1.99999, = -12, 042 = 1 and = 0.005.

order parameters though the antiphase boundary are plotted for a2 = 1.99999. In this case the

disordered phase intervenes between the two CusAu variants on either side of the transition layer.

As a2 approaches a^, the disordered region in the interior of the layer is found to widen at a

logarithmic rate as 02 —> ^1; an asymptotic analysis in this hmit is presented in Section 5.1.3. In
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eontrast to the wetting behavior found for the [100] IPB, in whieh the wetting by ilo oeeurs for

^ 1 and a2 = a|, the wetting of the [111] APB by the disordered phase oeeurs as a2 —> and

is insensitive to the value of e.

5.1.2. The general orientations including the [100] APB

In eontrast to the [100] IPB eonsidered above, the imposed boundary eonditions Eq. (87) and

Eq. (88) for the [100] APB do not allow the symmetry ^(C) = •^(0) instead allow solutions in

whieh X[Q and E(C) a-re odd and Z{C,) is even. The governing equations (32) may then be solved

on the semi-infinite interval, [0,oo), with the boundary eonditions

X{0) = y(0) = 0, Z'{0) = 0, and X{C) = ¥{() = Z{C) = xi as C cx). (91)

Numerieal solutions of the governing equations for the [100] APB with these boundary eonditions

for different values of e and a2 show somewhat more eomplieated interfaeial struetures than that

found for the [100] IPB or the [111] APB; depending on the values of e and a2, the [100] APB

ean show the formation of an intervening layer eomposed of either ilo or disordered phase, or, in

intermediate eases, eombinations of the two, as deseribed below.

For fixed values of ~ 1, an intermediate disordered layer is found to form as a2 —> as

illustrated in Fig. 14 for a2 = 1.99999 and = 0.25. This behavior is similar to that found for the

[111] APB in this limit.

On the other hand, as ^ 0 for fixed values of 03 7^ a^, an intervening LIq layer is observed,

that is analogous to the [100] IPB layering by LIq. This is illustrated in Fig. 15 for 03 == 1.9 and

= 0.005. For this case the occupation densities are also shown Fig. 16. They may be compared

with the APB results of Kikuchi and Cahn (1979, their Fig. 11(a)); again the similarity is striking.

Similar results have been obtained by the improved cluster variation calculations of Finel et al.

(1990).

In Fig. 17 we display the solution for a2 = 1.99999 and = 0.005. Comparing Fig. 14 and

Fig. 17, which both display solutions for 03 = 1.99999 but different values of e, we observe that the

effect of reducing e is to sharpen the transition between the interior region and the outer regions,

but not to significantly alter the extent of the interior region. Comparing Fig. 15 and Fig. 17, which

both display solutions for e = 0.005 but with different values of a2 ,
illustrates the widening of the
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Figure 14: The [100] APB for a2 = 1.99999, as = —12, a42 = 1 and

Figure 15: The [100] APB for as = 1.9, as = -12, a42 = 1 and

0

= 0.25.

0.005.
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Figure 16: The oeeupation densities in the [100] APB for a2 = 1.9, = —12,

a^2 = 1 a.nd = 0.005. Onee again the eomparison with the results of Kikuehi and

Cahn (1979, their Figure 11 a) is striking.

Figure 17: The [100] APB for a2 = 1.99999, as = —12, 042 = 1 and = 0.005.
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-4.0 -2.0 0.0 2.0 4.0

Figure 18; The order parameter variation in the [001] APB for a2 = 2.1, = —12,

a42 = 1 and = 0.05. Note that this APB separates metastable ordered variants

(a2 > APB is practically the same for a2 < a^.

interior region as a2 —^ ^ of these observations we discuss in Section 5.1.4 below an

asymptotic analysis as e —^ 0.

Computed [001] APBs are shown in Fig. 18 through Fig. 20. These antiphase boundaries

do not wet with the disordered phase in the limit 02 —> a|; in fact, other than the change in

the far-field values ixi, the solution behavior is insensitive to the value of a2 provided it is not

too close to a2 . The order parameters for = 0.05 and a2 = 2.1 are shown in Fig. 18; the

corresponding occupation densities are shown in Fig. 19. These solutions show that it is possible to

compute antiphase boundaries between metastable LI 2 phases; for these values of the parameters

the disordered phase is the lowest energy bulk state. Fig. 20 shows the order parameters for

= 0.005 and 02 = 2.1, showing that there is a significant dependence on e in these solutions.

This strong dependence suggests that another asymptotic analysis may be carried out as e —> 0; we

report those results in Section 5.1.5.
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Figure 19: The occupation density variation in the [001] antiphase boundary for

a2 = 2.1, tta = —12, a^2 — 1 = 0.05.

1 .5
I

^ ^

1 . 0
;

:

0.5

>< 0.0

- 1 . 0 '

-1 .5 I ' ^

-4-.0 -2.0 0.0 2.0 4-.0

Figure 20: The order parameter variation in the [001] APB for a2 = 2.1, as = —12,

a42 = 1 and = 0.005.

X(0=Y(0
Z(f)

.0 -2.0 0.0 2.0 4 .
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5.1.3. The asymptotic limit aa —
>

[m] APB

We define 6 = a^ — 0,2 and eonsider Eq. (90) in the limit ^ > 0. Prom Eq. (89) we find that xi =

1 + ^/al + 0{S^) as d —^ 0, and so the energy density in the bulk phases is fi(xi,Xi) + 0{S^)

as 5 > 0. The governing equations may be integrated onee; on applying the expression for the free

energy in the bulk phase, this gives

- h{X,Z) = 36 + 0{6^). (92)

We anticipate the formation of an interior region occupied by disordered material, i.e., where A(C)

and Z{Q and their first derivatives are small. In the interior region the leading order terms in the

first integral, Eq. (92), are 0(6) and it is a simple matter to show that this requires X(() and Z(()

to be 0(6^^^). In the disordered region, we express the solution as X(Q = + 0(6)]

and Z(Q = + 0(6)]. The leading-order solutions are then found to be

X(»)(0 = A(")siiil(’^cV (93)

and

Z(“)(0 = B<°>cosh('^cV (94)

where and are constants, and we have chosen to centre the interface at ^ = 0.

The disordered region separates two outer regions where X(() and Z(() are not small; we

denote the outer region for X > 0 as region I, and the outer region for X < 0 as region 11. The

solutions X(Q and Z(C) in these outer regions are given by regular perturbation series in 6. The

leading-order solutions are

(95a)

in region I, and

1 - tanh
j ^ + ^(6) (95b)

in region II. Here 1(6) is a function of 6 to be determined, and we assume that i(6) 00 as ^ —4 0.

Matching the outer regions to the interior region gives that Substituting the form

for the inner region in the first integral, Eq. (92), evaluated at ^ = 0 gives that
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Matching also requires that

m = - 'In (^ + ln(3/4a2)

4
(96)

The asymptotic solution compares favourably to the numerical solutions; the error in the layer

width (based on Z{^*) = 0.5 in this case) is 0{6) for sufficiently small 6. Eq. (96) predicts that

the length of the interior disordered region l[6) increases logarithmically as ^ > 0, i.e., as 02 —+ a|.

We also note that the two outer solutions, given by Eq. (95), closely approximate a pair of IPBs

symmetrically displaced from the centre of the interface. This suggests that the ABP may be

thought of comprising two IPBs which separate as Ua —^ a^, as has been suggested by Kikuchi and

Cahn (1979) and by Widom (1978), and discussed more recently by Finel et al. (1990).

5.1.4. The asymptotic limit aa ^2, e 0 for the [100] APB

We first take the limit e —> 0 and find that like the [100] IPB, there are three regions on the interval

[0,oo). There are two outer regions where the solutions are given by regular perturbation series in

e. In both outer regions the leading-order solution for A’(C) satisfies

= 2a2X (°^
-b a3(^(°))2 + 4[(X(°y + (97)

Outer region I (where ( < (*) has at leading order Z^^\C,) = 0, where C,* is at this stage undeter-

mined. Outer region II (where ( > (*) has

2 (
0)(« ^ ^ / 2a2 + a3X(°)(0 + 2a42(^(°)(0)b

Y 2[2 4- 042]
(98)

The inner region, centred at ^ = C* with width follows very closely the case of the interphase

boundary.

Matching across the inner region shows that the leading-order outer solutions are continuous.

As a result, in both outer regions, where Xc is given by the value for which

0 in outer region II.

There is a first integral of the governing equations

- f{X,Z,Z) = -/(xi.Xi.Xi).

In outer region I, Z^°^ = 0 and so we may integrate once more to find

du
C = V2

0 •//(!', 0,0) - /(xi.Xl.Xl)

(99)

(
100

)
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f’

We may examine how the length of the outer region /, given by C, varies as a2 approaches

a|, by taking the limi t ^ ^ 0, where 6 = — 03. As shown in the case of the [111] APB,

/(Xi,Xi,Xi) = + 0{S^), and so Eq. (100) becomes

r~ du
r = V2

/ (101)
•'O ^1/4 i/2 -f 3(J -)- 0(^2^

In the limit (J —> 0, we find

and so

(102)

C=-^M'5) + O(l),«-0. (103)

Thus the width of outer region I increases logarithmically as 03 approaches al much like the width

of the disordered region for the [111] APB.

We have compared our asymptotic analysis to our numerical solutions. In Fig. 21, we compare

Figure 21: Comparison of asymptotic (solid line) and numerically computed values

(circles) of against 6.

the asymptotic form for ("* predicted by our asymptotic analysis, Eq. (102), with that determined

from our numerical solutions. There is evidently excellent agreement; for = 0.005 and S = 10“'^,
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the relative error in the asymptotic solution for the layer width compared to the computed value

of (* « 2.5978 is about 0.26%.

This analysis suggests that for small e, as a2 approaches the APB is composed of two IPBs

symmetrically displaced from the centre of the interface, both of which exhibit wetting by the LIq

bulk phase, this is most clearly evident in Fig. 17. Such behavior was also suggested by Kikuchi

and Cahn (1979); our Fig. 17 shows excellent agreement with Fig. 6 of Finel et al. (1990).

5.1.5. The asymptotic limit e ^ 0 for the [001] APB

Fig. 18 and Fig. 20 show the structure of the order parameters for the [001] APB. As e decreases,

the magnitude of the dip in the Z profile diminishes at a rate proportional to e, and the X profile

appears to approach a tanh function of width e. That behavior motivates our matched asymptotic

analysis for this case. It is sufficient to consider the domain C ^ 0 with the boundary conditions

X(0) = Z^{Q) = 0 and X, Z —> xi C °o- case X(C) = T(C) because the boundary

conditions do not break the symmetry of the governing equations, and it is sufficient to consider

the domain C ^ 0 with the boundary conditions X(0) = Z^(0) = 0 and X, Z —> xi C

We define an inner variable ( = pe, and expand the dependent variables as

X = xo{p) + €Xi{p) + ..

.

and Z = xi + ^zi{p) + (104)

At the first non-trivial order, we find that

^0 = 3.nd zi = C-i -\- C2P, (105)

where r] = ap and a = V^xi- We require ^[(O) = 0, so C2 = 0. At next order, we find that, after

satisfying the boundary conditions,

4vi - 12
Z2 = — In cosh77 + C3 (106)

and

xi = — ^sech‘^77
[
87

] + 877cosh277 + 4sinh27/ + 2sinh477]
.

(107)

We seek outer solutions of the form

X = xi + eXi(C) + . . . and Z = Xi + €Zi{() + (108)
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We find that

for A > 0 given by

and

^1 = (109)
V3 -xi/

= C4e-^< + (110)

= (16/3)xS+28xi-24 (111)

/i(Xi) =^ r(4x.-12)(3-x.)^,3_, 1

(112)

Matching the inner and outer solutions yields Ci = ot[Axi — 12)/(3A), which completes the

solution through 0(e). The comparison between asymptotic and numerical solutions for Z{0) with

e ^ 1 is excellent.

For e 1 the surface energy of the [001] APB is found to be relatively small compared to

the [100] and [110] APBs; this behavior is consistent with the geodesic interpretation of the [001]

surface energy, which takes the form

7 = ^2f{X, X, Z) V2e2X2 + dZ'^ (113)

where we have set Y" = X

.

Since the .Z-variation of the solution is small for e < 1 (c.f. Fig. 20),

the geodesic curve tends to a line of constant Z in the (A, Z) plane. The weighted arclength dS is

therefore small along the geodesic, resulting a low surface energy.

5.2. Interfacial energy

The orientation dependence of the interfacial energy of the APB solutions is illustrated in Fig. 22

and Fig. 23. The interfacial energy is now a function of two parameters, the “temperature” a2 and

the ratio of the gradient energy coefficients We have computed the orientation dependence for

a number of different cases; we wfil present a small subset of these results and defer more detailed

results to a subsequent paper.

Because of the broken symmetry due to the 1 <-> 4 shift, the APB interfacial energy has 4/mmm

tetragonal symmetry as shown in Fig. 22 and Fig. 23. The [001] APB has low energy (where

the solution behaves as in Section 5.1.5), and the [100] and [110] APBs have high energies (see

Section 5.1.4).
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12394

02998

Figure 22: APB interfacial energy variation for 03 = 1.99 and = 0.005.
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Figure 23: APB interfaeial energy variation for a2 = 1.5 and = 0.005.
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Note that the location and number of extrema in the energy depend on the parameters. As

02 approaches a^, the maxima of the interfacial energy tend to the < 111 > directions and the

anisotropy diminishes. This behavior is consistent with the energy of the APB approaching the

behavior of two separated IPB as is approached (Kikuchi and Cahn 1979). As 02 decreases

from 02 ,
the maxima in the interfacial energy tends to the < 110 > directions and the anisotropy

becomes stronger. At some distinguished value of 02 ,
there is a bifurcation of the maxima at the

< 110 > directions into two maxima and saddle, while the saddles at < 100 > become minima

and two saddles each of which move toward [001] and [001] along the < hOk >. Fig. 23 shows the

energy for the case when 02 is sHghtly larger than this critical value. More detailed investigation

of this behavior will appear elsewhere.

In the CVM calculations of Kikuchi and Cahn (1979), the interfacial energy of some of the

orientations vanished as the critical point was approached because they only took into account

nearest-neighbor interactions in their tetrahedral approximation. Because our continuum formula-

tion models both first and second nearest-neighbor interactions, our model has nonzero interfacial

energy for all orientations.

The anisotropic interfacial energies were used to compute the ^-vectors in the same manner as

in Section 4, where the ^-vector based on the IPB surface energy was used to compute the IPB

equilibrium shape. We will refer to the analogous shape computed from the APB surface energy as

a ^-surface, and refer to the convex inner portion of the possibly non-convex ^-surface as the Wulff

shape. One octant from the resulting ^ surfaces are shown in Fig. 24 and Fig. 25. For 02 = 1.99

and = 0.005 (Fig. 24) the anisotropy is strong enough to cause “ears” to form; this implies

the the ^-surfaces for these parameters have edges that are almost circular. The Wulff shapes

correspond to the appropriately reflected ^ surface with the ears removed; in these cases the Wulff

shape resembles a slightly bulging almost circular coin. Such Wulff shapes could be expected on

the basis of the tetragonal symmetry caused by the different behaviours of the 1 4 interchange in

the [001] direction vs. the [100] and [110] directions. Congruent rotated shapes are obtained for the

other interchanges. The formation of the edges can be considered to develop parametrically with

decreasing for fixed a2 . For a given 02 ,
the edges may first appear at either < Okl > or < hhl >

directions for decreasing e^. The edges then widen over a very small range of until a complete ear

rings the ^ surface. This picture of domain structures composed of large flat segments of low energy
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Figure 24: One-eighth of the ^ surface for a2 = 1.99 and = 0.005.

Figure 25: One-eighth of the ^ surface for a2 = 1.5 and = 0.005.
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surfaces in the three cube orientations together with sharp corners to smoothly curved segments

is readily seen in the micrographs of the classic study of Fisher and Marcinkowski (1961). These

shapes confirm the conclusion of Kikuchi and Cahn (1979). The competition of these faces in the

three-dimensional ordering of an LI 2 alloy can now be computed using our model; we are currently

studying this situation.

6. Other interfaces

There are additional phase boundaries in our model that could also be investigated. For example,

as illustrated in Fig. 4, the model includes the possibility of stable bulk LIq phases, which have

a total of six variants at a given temperature. Each variant is characterized by a single non-zero

component Xq of the order parameters, with the six variants (iXo, 0, 0), (0, ±Xo, 0), or (0, 0, ±Xo),

and describes a bulk phase which is ordered in planar layers. Antiphase boundaries connecting any

two of the variants can be examined, and the associated surface energy calculated. Two basic types

of LIq APBs result, depending on whether the two variants: (i) are each described by the same

component of the order parameters taking equal and opposite signs, say (Xo,0,0) and (—Xo,0,0)

in each domain, or (ii) are described by different non-zero components, say (Xq, 0, 0) and (0, Xq, 0).

The former case (i) has a simple analytical solution for any orientation, given by a hyperbolic

tangent profile, from which the orientation dependence of the surface energy can be obtained in

closed form, and the surface energy is given by

7(n) = + £2(7^2 „2).

in particular, the surface energy has tetragonal symmetry about the [100] direction. We note

that this closed form solution makes the energy stationary, but does not necessarily correspond to

the global energy minimum, which, for example, could entail contributions from additional order

parameters.

In the latter case (ii), the planar layers in each domain are mutually perpendicular and, as

there is generally a mismatch in the lattice parameters at an APB of this type, elastic effects can

become important. The resulting surface energy does not have a closed form solution, but symmetry

arguments (Kalonji and Cahn 1982) show that the resulting surface energy again has tetragonal

symmetry, with the tetragonal axis perpendicular to the normals to each family of layers.

-57-



Interfacial Anisotropy and Ordering of an fee Alloy April 1995

IPB energies ean be eomputed for all pairs of phases over the range of temperature or eom-

position of eoexistenee. Kikuehi and Cahn (1979) eomputed the IPB between fee and LI 2 over a

range of temperatures to the triple point allowing W to vary, and showed an infinite temperature

eoeffieient of the energy at the eongruent point and wetting by LIq at the triple point. Beeause of

the fourth order truneation of the free energy and our decision to keep concentration constant we

are hmited to the kinds of coexistences the model gives, similar to those found by Nix and Shockley

(1938). As seen in fig. 4, there is a range of a2 where both LI 2 and LIq are stable, and for some

range of parameters there is a point where they have equal free energy. For this case there is no

coexistence between fee and LIq. Such coexistence is commonly seen in phases diagrams, but is

absent from the phase diagram found by Nix and Shockley with such a free energy, and is also

absent from Lifshitz’ original predictions from the Landau theory.

7. Discussion

The model developed in this paper is an attempt to overcome the ad hoc approach employed by

phase-field models to represent anisotropic interfaces. Here we have focussed on the case of an fee

lattice and have developed a model which is intimately related to the lattice and is formulated in

terms of physically based order parameters. Our model employs an energy functional in which the

gradient energy terms are simple square terms and results in a simple continuum description of an

interface. This model provides a natural development of phase-field models. By conducting both

asymptotic analysis and numerical solutions of the resulting system of nonhnear ordinary differential

equations that represent stationary interfaces we have been able to analyse many interesting features

of both IPBs and APBs, and have exhibited phenomena that have only previously been observed

in much more complicated numerical simulations. We anticipate that the approach adopted here

can be adapted to other crystalline structures.

One way to incorporate anisotropic interfacial properties in a single-order-parameter diffuse

interface theory is to allow the gradient energy coefficient and the mobility coefficient r (cf. Eq. (32))

to depend on the spatial gradient of the order parameter; in this way the surface energy cr and the

kinetic coefficient fx can be assigned a given anisotropy. While this approach allows a great deal

of flexibility, it is also somewhat ad hoc. Another approach to introducing anisotropy is through

generalized gradient energy terms that include higher-order derivatives; this approach can also be
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diffienlt to justify on theoretieal grounds. The use oflattiee models, or eontinuum models based on

an underlying lattiee sueh as we have have eonsidered here, have the advantage that the anisotropy

is introdueed in a natural way, and eorreetly ineorporates the erystal symmetries that are present.

7.1. IPBs

Based on the theory developed here, we have computed IPBs for interfaces between the disordered

FCC and LI 2 states at the congruent point, or the VP = 1/4 point on the Tq curve. In the [100]

IPB, our simplified model of the alloy recovers the intervening layering reminiscent of the ilo

phase, even though the LIq phase does not exist as a bulk phase under the imposed conditions.

This layering was first seen by Kikuchi and Cahn (1979) in their discrete model using CVM. It is

somewhat surprising that the continuum model that we employ seems to reproduce their results

so weU; we view this as post facto support for the continuum theory. The behavior of the interface

profiles in the order parameters allowed for an asymptotic analysis where we were able to compute

the outer behavior and examine in detail the mathematical aspects of the layering. In particular,

the presence of significant gradients of X in the layer allowed the existence of the layered solutions

even when this state is not allowed as a uniform bulk phase.

Similar layering in interfaces between phases has been observed in the molecular dynamics

computations by Landman et al. (1980,1981) and Cleveland et al. (1982). They carried out

surface molecular dynamics calculations for crystal growth in liquid phase epitaxy; their calculation

included a bulk hquid part and surface part of 500 particles each. They found, among some transient

phenomena, a persistent ordering within the interfacial layer. Their intralayer ordering is based on

occupying a lattice, and not based on different occupation of two species on the lattice as is the

case in our model. In any event, the layering in the interface that we observe is reminiscent of the

intralayer ordering observed in their molecular dynamics calculations.

For a [100] IPB, the variational principle for the stationary interface’s surface free energy can

be written as

with {X,Y,Z) (0,0,0) as C
— 00

,
and (X, T, Z) ^ (1,1,1) as ^ ^ + 00 . The minimization

with y = Z gives Eq. (65). For e C 1 this produces a transition from disordered phase to LI 2

phase with an intervening LIq layer [Y = Z ~ 0). Compare this behaviour to a constramed system
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with no Llo layer, that is obtained by imposing X — Y = Z in the variational prineiple Eq. (60);

from Eq. (115) we have

7(Cu3Au) = imii^“ + (116)

giving now

(l + 2^)X^(=^j(X,X,X) (117)

This has a elosed form solution with

(r A \ _ °41 + Q’42
7(Cti3A'u) —

5 (118)

whieh exeeeds the uneonstrained minimum 7. The layering by LIq in the [100] IPB thus lowers the

interfaeial free energy of the boundary. Sinee the intervening LIq strueture does not exist as a bulk

phase under the eonditions shown in Fig. 3 that were used for our calculations, this behavior is

analogous to the prewetting behavior observed in the theory of critical point wetting (Cahn 1977),

and also resembles surface melting of a solid-vapor interface at temperatures below the melting

point (see, e.g., Lowen 1994).

In the [110] orientation, X = Y with Z different, and no such layering occurs in the interfacial

region. While two sites on the lattice are occupied with equal probability, the remaining two differ,

and so there is no LIq layering in this orientation. The profile again matches very well with the

discrete model of Kikuchi and Cahn (1979). For the [111] IPB aU of the order parameters are equal,

and a closed-form solution results.

One of the strengths of our theory is that we can also explore IPBs for general orientations.

We have shown some results along these Hues. Let us begin with the [111] IPB where aU the order

parameters are equal; proceeding toward [100] on an arc lying in the surface of the unit sphere, we

find that Y = Z smoothly separates from X as shown in Figure 10. Within about 25° of [100], the

profiles tend to develop LIq layering behavior provided is sufficiently small.

Setting out from [111] but in the direction of [110], we find that X = Y smoothly separates from

Z and continues to approach the behavior of the [110] IPB smoothly. Setting out from [110] toward

[100] along the unit-radius arc connecting them, we find that Y separates from X and migrates

over to Z\ for orientations within the triangle X, Y

,

and Z are separated, approaching the special

behaviors as orientations approach the side of the triangle (Figure 11).
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7.2. APBs

For LI 2 antiphase boundaries we again find very favorable comparison with the previous discrete

results of Kikuchi and Cahn (1979). The structure of the antiphase boundaries is very dependent on

their orientation and the temperature. For interfaces whose normals lie in the vicinity of < hfcO >

(the equatorial surface energies), the solution passes through the origin in {X,Y, Z)-space. As the

temperature approaches the transition temperature the energy of the well at the origin approaches

that of the ordered phases. As a consequence the solution remains in the vicinity of the {X,Y, Z)-

origin for longer spatial distances; compare Fig. 14 and 16. This corresponds to the interface being

wetted by the disordered phase which may be represented by two IPBs. As a consequence the

APB surface energy inherits the low degree of surface energy anisotropy associated with the IPB;

compare the equatorial regions of Figs. 12 and 22.

For temperatures away from the transition temperature the equatorial surface energies of the

APB have changed even though the structure of the interface shows that the solution in {X,Y, Z)-

space still goes through the origin. This can be seen by comparing Figs. 22 and 23.

For interfaces whose normals lie closer to the tetragonal axis the solution is qualitatively different

and does not pass through the origin in (X, T, Z)-space; see Fig. 18. This results in a very large

anisotropy (factors of 4 and 7) associated with interfacial normals lying in longitudinal planes; see

Figs 22 and 23. The surface energy is no longer convex. The corresponding Wulff shape is a slightly

bulging round coin, see Figs. 24 and 25.

7.3. Concluding remarks

In conclusion, we reiterate some of the successes and failures of our model. We obtain good

comparison with previous discrete models (Kikuchi and Cahn 1979) for the spatial variation of the

occupation of the lattice for IPBs and APBs. Our model is able to easily calculate one-dimensional

interfacial profiles for general orientation. This allows us to determine the parametric variation of

the interfacial energy of both IPBs and APBs, and via the Cahn-Hoffman ^-vector, to determine

equilibrium shapes or ^-surfaces. We find that our model successfully incorporates both the cubic

anisotropy of the IPBs and the tetrahedral anisotropy of the APBs in fee crystals.^

^We have computed surface energies based on one-dimensional solutions that correspond to stationary, if not

minimal, surface energies. We have not examined the possibility that the actual minimum energy solutions have
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Althougli we have deseribed the model in terms of the ordering of a binary alloy, the resulting

model ean also be interpreted in terms of solidifieation if we assoeiate the liquid phase of a pure

material with the disordered state of the alloy
(
a “lattiee gas” liquid), and identify the solid phase

of the material with a particular ordered state of the lattice that undergoes a first-order transition

in passing from the ordered to the disordered state. This description then provides an alternate

description of phase change allowing the anisotropy of the interface to arise in a natural way from

the underlying crystal.

Our approach has focussed on the role played by the three order parameters X, Y, and Z

that appear in the fee model in determining the anisotropy of interphase boundaries and antiphase

boundaries. We have not examined the role played by the overall composition variable W, which

we have taken to be constant. This might be expected to give useful results for the description

of antiphase boundaries that separate equivalent bulk domains having the same composition. For

interphase boundaries, however, requirements of thermodynamic equilibrium generally require dis-

tinct values ofW in each phase. Before thermodynamic equilibrium is attained, however, our model

might be appropriate to the early stages of order-disorder transitions in systems that are initially

of uniform composition, when the time scales for compositional diffusion are long compared to the

times scales required for ordering to take place. Extension of our model to iuclude concentration

variation and to compute interfacial properties at specific locations on the phase diagram is cur-

rently underway (Braun et al. 1995b). In particular, the determination of the equilibrium phase

diagram would determine the coefficients of the bulk part of the free energy, and matching the

measured surface energy from experiment would then determine the gradient energy coefficients.

We are also studying the motion of APBs in an effort to understand the facetting into (001) and

(hkO) faces in three dimensions.
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