
NISTIR 5600

Object-Oriented Technology
Research Areas

Wayne J. Salamon
Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.1156

NO. 5600

1995

NIST





NISTIR 5600

Object-Oriented Technology
Research Areas

Wayne J. Salamon
Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

January 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Linder Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





ABSTRACT

Object technology is a term that covers many topics. Some of the aspects of object technology

are object-oriented analysis (OOA), object-oriented design (OOD), and object-oriented

programming (OOP). Also, modeling of information systems based on objects is a topic with

growing interest.

This paper discusses some of the issues surrounding object technology. The topics which are

discussed are object-oriented development methodologies, measuring the quality of object-

oriented (OO) software, testing, the use of OO technology in high-integrity systems, and

distributed object computing. The purpose of this report is to identify research topics in

object-oriented technology for the NIST Computer Systems Laboratory. A bibliography is

included to assist the reader in selecting material for further reading.

KEY WORDS

Distributed computing; Object-oriented design; Object-oriented programming; Object technology;

Software measurement; Software testing





1.0 INTRODUCTION 1

2.0 OBJECT-ORIENTED DEVELOPMENT METHODOLOGIES 3

3.0 OBJECT-ORIENTED SOFTWARE 5

3.1 Existing Metrics Applied to 00 Software 5

3.2 New Metrics for OO Software 6

4.0 TESTING OBJECT-ORIENTED SOFTWARE 9

5.0 OBJECT-ORIENTED SOFTWARE FOR HIGH INTEGRITY SYSTEMS 11

6.0 DISTRIBUTED OBJECT COMPUTING 13

7.0 OTHER ISSUES 14

8.0 SUMMARY 16

9.0 REFERENCES 17

10.0 GLOSSARY 20

11.0 BIBLIOGRAPHY 23

11.1 Methodologies 23

11.2 Testing 24

11.3 Metrics 24

1 1 .4 Frameworks 25

V





1.0 INTRODUCTION

Object technology is reaching a level of maturity in the software industry. The applications for

object technology range from programming abstractions to database configurations to graphical

user interfaces. The purpose of this report is to identify the topics and related issues in

object-oriented technology that require further research to enable NIST to provide practical

guidance for the users and beneficiaries of this technology.

Much of the focus in the software industry has been on using object-oriented techniques to

develop software. Object-Oriented Analysis (OOA), Object-Oriented Design (OOD), and

Object-Oriented Programming 1 (OOP) have been researched extensively. There are many
approaches to solving problems using OOA, OOD and OOP principles. These methodologies vary

in their scope and complexity. Some cover only the analysis or design aspects of a project, while

others attempt to cover all phases of software development. Some methodologies are based on

existing structured development techniques, while others develop new approaches to analysis and

design.

Object-oriented programming garnered the most interest early on in the OO movement. Much of

the discussion in the literature focused on languages for supporting OOP. As experience grew

with OO techniques, the research expanded to include OOA and OOD topics. New areas of

research include object-oriented domain analysis (OODA), object-oriented domain design

(OODA), and object-oriented requirements analysis (OORA) [FIRESMITH].

Some of the questions to be asked are: What is different about object-oriented analysis, design,

and programming, as compared to structured techniques? How and why is testing different? What

are the advantages to using object-oriented techniques to develop software? What are the pitfalls?

Bertrand Meyer describes the object-oriented approach as "The emphasis on structuring a system

around the classes of objects it manipulates rather than the functions it performs on them, and

reusing whole data structures, together with associated operations, rather than isolated routines"

[MEYER]. The key concepts are encapsulation, abstraction, and reuse. Objects are self-sufficient,

and the goal is to have objects manage themselves, and provide services in an implementation

neutral manner.

This paper explores some of the issues involved in software development using object-oriented

techniques. The goal of the paper is to raise some questions which need further research in order

to be answered. The first section discusses some of the issues involved in selecting a OO
development methodology. The next section discusses measuring object-oriented software, using

existing metrics as well as new metrics. Next, we describe the testing of object-oriented software,

and the use of object-oriented software for high integrity systems. A section on distributed

l
The term Object-Oriented Programming (OOP) refers to the implementation phase of software development, i.e. coding.

1



computing based on object models follows. The final section contains short summaries of other

issues associated with object technology.

A reference section is included to provide pointers to books, papers, and articles for further

information. The section is organized by topic.

2



2.0 OBJECT-ORIENTED DEVELOPMENT METHODOLOGIES

This section discusses some of the issues involved in comparing and choosing an OO
development methodology. Work is continuing in the computer industry on OO methodologies.

Many methodologies are reaching a level of maturity, resulting in more effective use of the

techniques. However, some of the shortcomings of various methodologies are becoming apparent.

Most OO development methodologies have similar features. One common theme is the modeling

of the problem and solution using a common modeling language in the analysis and design. One
feature of OO development is that the boundary between the analysis and design is small, and

often blurred. The objects used to describe the problem are often the same objects in the design.

The methodologies differ in the types of models each recommends.

An overview of several OO development methodologies would be useful to combat the marketing

done by many methodologists. Some of the questions raised are: What is the industry experience

with the methodology? What Computer-Aided Software Engineering (CASE) tools, from the

vendor and other parties, support the methodology? How effective is the methodology in

modeling different software application domains, from a theoretical standpoint? Even though

many of the OO methodologies have been developed from "real-world" development projects,

there are still questions as to whether the techniques can be applied to other application domains.

Some methodologies are specific to certain domains (Real-time Object-Oriented Methodology

[ROOM]), while others claim to support a larger set of application domains.

Are some OO methodologies better suited to high integrity software, or real-time systems? The

Hierarchical Object-Oriented Design (HOOD) methodology was specifically developed for large,

complex, real-time distributed systems [CUTHILL]. Many of the methodology designers are from

the real-time field [based on comments by Ed Berard]. Is it to our advantage to develop a

methodology specifically for a single problem domain? Or are the existing methodologies

sufficient to be applied to any problem domain? Many companies have learned to mix features

from different methodologies an create their own OO methodologies. Examples can be found in

[HEWPAC] and [LORENZ],

Much of the literature written to date has involved the theoretical aspects of applying an OO
methodology to a development project. Research can be conducted on the state-of-the-practice

concerning these development methodologies. A survey of companies using these methodologies

can be conducted to determine in what directions industry is taking. Are companies standardizing

on a methodology, or are they allowing the project managers to decide for a given project? Are

companies moving to using only one methodology, or are they mixing the best attributes from

different methodologies into a custom development environment? Also, what tools are out there

to support software development using OO methodologies?

One issue receiving attention is the standardization of object methodologies. Many companies

use a mix of object methodologies, and are interested in standards. There are various levels of

standards, however. It may not be possible to derive a single object-oriented methodology

3



because problem domains emphasize different areas of the model. However, It may be useful to

standardize the terminology, notation, and basic concepts. A discussion of standardization by six

of the leading methodologists is contained in the [OOPSLA94] paper. One result of such efforts

could be a standard glossary of 00 terminology, or an updating to the existing software

engineering glossaries such as "The IEEE Standard Glossary of Software Engineering

Terminology" (ANSI/IEEE Standard 610.12). NIST can assist in producing this glossary.

4



3.0 OBJECT-ORIENTED SOFTWARE METRICS

The measurement of software quality is still a developing field, with many issues unresolved.

There have been many metrics developed for software design and code. However, most of these

metrics have been developed with structured design and programming in mind [NIST500-209].

The questions being asked now are what new metrics are needed for OO software, what existing

metrics still apply (with or without modification), and the applicability of general metrics for OO
software across OO methodologies. Also, there is a need to reevaluate some commonly accepted

truisms about metrics. For example, for OO software, low coupling levels between classes is not

always attainable due to inheritance.

Reuse is claimed to be one of the major advantages of OO software. Reuse at the code, design,

and even requirements specification levels may be possible. [NISTIR5459] How does one

measure reuse using existing metrics? What new metrics need to be developed? How do we
measure reliability of components reused, for which the designs and source code are not

available? How is productivity measured?

3.1 Existing Metrics Applied to OO Software

This section discusses a few of the more common metrics used for software development and the

application of these metrics to OO software. Most software metrics are oriented towards

structured programming, and therefore measure the structure of the software artifact When
dealing with OO software, which is inherently focused on the operation of the software, and less

on the structure, the question arises: what role do existing metrics play in OO software?

There is much research and industry experience with software metrics. (See [IEEE982],

[IEEE1045], [IS09126], [ArmySTEP]) Some metrics have matured nearly to the point of

standardization. A desire exists to use that experience and apply it to OO software artifacts. At

the source code level, many of the methods developed for objects follow traditional structured

programming techniques. Can we apply complexity measures to these functions? At the design

level, what metrics from structured design still apply? Is it meaningful to apply a metric for

module coupling to a class? Is low coupling desirable, given the benefits of inheritance for reuse?

Or must we further refine the definition of coupling, to have coupling within an inheritance tree

and coupling between classes in different trees? (A problem is then encountered with languages

which force all classes to derive from a system root class).

Along with product metrics come process metrics. Object-oriented software is NOT typically

developed using the waterfall process model. Many process metrics, however, assume a waterfall

model, or a close derivative. The rapid prototyping model of development, favored by many OO
developers, requires a new attitude by management. With code being changed often, and much
thrown away, metrics must be applied carefully. Measuring productivity against developed code

may not be wise, because so much code is not released.

5



Another aspect is that the design stage may not end until much of the code is complete. Designs

tend to develop alongside prototype code in this development model. Some existing metrics for

design count errors found in code as design errors. But these measures can be skewed by the fact

that the design is meant to change when code is tested for feasibility.

3.2 New Metrics for 00 Software

Researchers are now starting to define new metrics specific to OO software products

[ABREU] [CHIDAMBER] [LI]. The three papers are discussed in this section.

In the [ABREU] paper, a framework has been defined for the metrics. This framework divides

metrics into categories (design, size, complexity, reuse, productivity, and quality), subdivided by

granularity. The granularity groups are method, class, and system. Table 1 summarizes the

metrics. There is no experience in applying these metrics defined in [ABREU] to real-world

projects. However, that effort is under way. This paper also applies some existing metrics

(cyclomatic complexity, volume, information flow) to 00 software.

The [CHIDAMBER] paper defines six new metrics for evaluating OO software. The metrics are

evaluated against Weyuker’s properties for software metrics [WEYUKER]. The metrics defined

in the paper have been tested on two projects, and the results are reported in the paper. There is

a need for further evaluation of the metrics because the data collected in the two experiments is

sparse. The metrics are summarized in Table 2.

The final paper reviewed [LI] discusses five of the six metrics defined by Chidamber in an earlier

paper than discussed above. Additional metrics are then defined, and these are summarized in

Table 3. The paper also discusses prediction of maintenance effort based on the metrics data

collected. The metrics were used on two commercial projects, and the paper presents several

analyses of the validation results. Two models are defined for using the metrics. The first

incorporates the five metrics from Chidamber, and the additional five defined by Li. The second

model incorporates the two size metrics, SIZE1 and SIZE2. The results of the analyses show that

there is a strong relationship between metrics and maintenance effort in OO systems.

6



Method Class System

Design percentage of used

instance variables; ratio of

comments to code size

method cohesion; depth

of inheritance; number of

methods available to the

class

average dimension (lines

of code) of methods;

average number of

methods per class;

average number of

instance variables per

class

Size number of executable

statements; operator and

operand counts; number

of instance variables used

number of methods; total

number of instance

variables; size of class

interface

number of classes; total

number of methods; total

number of instance

variables

Complexity cyclomatic complexity;

volume metric;

information flow

number of directly

inheriting subclasses;

number of subclasses that

inherit directly or

indirectly; number of

superclasses from which

the class inherits directly;

number of superclasses

from which the class

inherits directly or

indirectly

total length of inheritance

chain; number of

noninheritance-related

couples with other

classes

Reuse internal reuse; number of

times method is inherited

(nl); number of times the

method is overloaded

(n2); method reuses

efficiency (nl-n2)/nl

percentage of inherited

methods that are

overloaded; number of

times library class is

reused "as is”; number of

times library class is

reused with adaptation

percentage of reused "as

is" classes; percentage of

reused classes with

adaptation; library quality

factor

Productivity effort to build an average

method; new methods

developed per unit effort

effort to build an average

class; new classes

produced per unit effort

average effort to build a

class; reused classes

adapted per unit effort

Quality method reliability;

number of method defects

per time period; average

time to identify and

correct a defect

class reliability; average

number of defects per

method; average number

of failures per method

test effectiveness;

medium time between

failures; average learning

time

able 1: Metrics defined in the paper [ABREL J

7



Metric Description

Weighted Methods Per Class

(WMC) D

WMC =
J2

C1

where c
;
is the complexity of the method i

Depth of Inheritance Tree (DIT) the depth of the class in the inheritance tree

Number of Children (NOC) NOC = number of immediate subclasses subordinate to a class in the class

hierarchy

Coupling between object classes

(CBO)

CBO for a class is the count of the number of other classes to which it is

coupled

Response For a Class (RFC) RFC = IRSI where RS is a set of methods that can potentially be executed in

response to a message received by an object of that class

Lack of Cohesion in Methods

(LCOM)
LCOM = count of the number of method pairs whose similarity is 0, minus

the count of method pairs whose similarity is not zero

Similarity is the number of common instance variables used by two methods

in a method pair

able 2: Metrics defined in the paper [CHIDAMBER]

Metric Description

Message-passage coupling (MPC) MPC = number of send statements defined in a class

Data abstraction coupling (DAC) DAC = number of ADT’s defined in a class

(A class is an ADT, so this metric gives the number of

classes used in an aggregate class)

Number of methods in a class (NOM) NOM = number of local methods

(represents the interface complexity of the class)

Size of class (SIZE1) SIZE1 = number of semicolons in class (LOC)

Size of class (SIZE2) SIZE2 = number of attributes + number of local

methods

Table 3: Metrics defined in the paper [LI]

8



4.0 TESTING OBJECT-ORIENTED SOFTWARE

Traditional software testing is usually conducted in three major phases: unit testing, integration

testing, and software system testing. These test phases still occur in OO software testing, but the

testing takes different approaches. We discuss the testing of OO software in these three phases

in this section.

Testing of object-oriented software involves some fundamental differences with testing of

procedural software. Because objects store state data, the state of the object must be determined

before the test case can be run. This means that there must be some way to access the object’s

state during test. Debugging tools may do more harm that good, because the object under test

may be affected by the tool. In [BERARD], it is argued that we must test what is delivered,

which means that the complete objects must be tested, not some scaled-down form of the object

which is easier to test.

Unit testing for structured software is the testing of individual software functions. The testing

involves white-box testing (statement testing) and black-box testing (functionality). In OO
software, unit testing is the test of classes and objects [FIRESMITH2]. The testing of objects

involves more than the testing of the individual methods. Because objects store state data, the

order of message processing affects subsequent object behavior. Test cases must be developed

to effectively test the object with minimal number of test cases. Firesmith recommends built-in

test for objects [FIRESMITH2]. One advantage to built-in test is that test case drivers do not

need to have knowledge of the internal workings of the object. That knowledge would break the

encapsulation of the object, and may be difficult to achieve with some languages.

Class testing is often accomplished indirectly by testing the objects instantiated from the class

[FERESMITH2]. With inheritance and generic classes, thorough testing is much more difficult.

To test a generic class, test cases must be developed for each object instantiated from the class

with different generic parameters. Classes which inherit attributes from ancestors require

regression testing each time a ancestor class is changed. (This conflicts with the OO software

promise of class encapsulation) Firesmith advocates regression testing as a normal practice, and

reuse libraries should store source code, test plans and procedures, drivers, stubs, and test cases.

The idea of having "stand-alone" reusable classes should extend beyond source code and libraries

to include packaging of these other documents as well.

Integration testing of OO software involves the testing of messages, events, object behavior, and

interfaces between the OO software and non-OO software, databases, or the operating system

[FIRESMITH2][JORGENSEN]. The testing of messages includes the message passing between

objects as well as the handling of the message within an object. Event testing is the testing of

system functions bounded by input events and output events [JORGENSEN]. The series of

messages processed to implement the functionality of the system are tested in this manner.

Within this test scenario is an examination of the object processing of the messages. There must

be adequate tools to allow tracing of messages as well as examining objects dynamically.

9



System testing of 00 software is the testing of execution threads within the software system. The

goal of the testing is to determine whether the assemblies of classes implement the proper system

behavior. The software is tested within the complete system. Issues include software interaction

with hardware devices, saving of persistent objects, and error recovery. For the latter, propagation

of error conditions via messages and handling of these messages must also be tested.

Along with testing come post-mortem analysis tools. When a system crashes during test, data is

often logged in order for the programmer to unwind the execution of the program leading up to

the problem. Saved data include state data, execution traces, processor information, and data local

to the procedure (i.e. the stack). When analyzing an OO program, the execution trace would need

to include the method invocation sequence. Also, messages may need to be saved in order to

recreate the scenario, as well as the state of the objects involved. Have debugging tools kept pace

with the programming environments for OO software systems? With large systems, is it possible

to record the state of every object involved in every test scenario? Have tools been written that

only record information about objects involved in the specific test scenario that failed?

Are other approaches to post-mortem debugging required? When objects that are distributed

across processors are tested, there is a need for data capture tools to communicate as well across

processor domains. Or is it feasible for the objects themselves to include data capture tools as

part of their operation? Performance is then a concern. Because the behavior of the system is

implemented by the object interactions, what information must be saved during system test in

order to recreate test scenarios, without executing the entire test suite from the start? These

problems are not new to OO software testing, but analyzing the system states requires knowledge

of object activity.

10



5.0 OBJECT-ORIENTED SOFTWARE FOR HIGH INTEGRITY SYSTEMS

High integrity software is software that must be trusted to work dependably in some critical

function, and whose failure to do so may result in serious injury, loss of life or property, business

failure or breach of security [NIST500-204]. Many standards and guidelines have been produced

for software used in high integrity systems. How does the introduction of 00 technology affect

these standards? Are the standards too dependent on structured design methods and associated

lifecycles?

The choice of what programming language to use for specific types of systems has been debated

since the early days of the computer industry. Tradeoffs of speed versus the abstraction supported

by the language have been discussed extensively. With OO programming languages, what are the

new issues raised, and what existing issues are recast in a new light? For example, how does the

run-time system for managing objects affect the behavior of the program? Object construction,

storage allocation, destruction, and garbage collection may be out of control of the programmer.

In the C++ language, default object constructors and destructors are called when objects are

created and destroyed, but these default constructors and destructors may be redefined by the

programmer. Having the programmer code the constructors and destructors is necessary to ensure

that the behavior of the program can be analyzed statically by looking at the code. However, it

is better to have the constructors and destructors specified in the design.

How does the use of OO technology affect the design of high-integrity systems? The paper by

Cuthill discusses four principles of good software design and the relationship of 00 design to

these principles [CUTHILL], These principles are modularity, functional diversity, traceability,

and removal of ambiguity. Modularity is the dividing of the system into logically separate

components with defined interactions and limited access to data. Functional diversity provides

for multiple independent checks on the data produced. Traceability is the ease of mapping

requirements, analysis, design, and code to each other. Removal of ambiguity means having no

code with unpredictable effects.

The conclusions in the [CUTHILL] paper are now summarized. 00 design supports modularity

well through abstraction, although care must be taken to reduce the complexity of inheritance

trees. Because OO design is still evolving, many methods do not address the issue of managing

a large number of classes. One example of a methodology that does address the issue is in

[FIRESMITH]. The subassembly, assembly, and framework models provide a method to group

together classes that are related. Other methodologies provide similar grouping techniques based

on different rationales [CUTHILL].

Functional diversity is supported by encapsulation, with independent objects providing similar

functions and communicating to coordinate the results. There is a danger with having the

independent objects connected via the inheritance tree. Care must be taken to design the classes

to reduce or eliminate any dependencies between the objects.

11



OO design supports traceability between the analysis, design, and coding via the object models.

Because the objects described in the analysis and design are the same objects in the code,

traceability is enhanced. One problem is that many methodologies do not support all phases of

the lifecycle (analysis, design, and code). However, some methodologies are being updated or

developed which do support more than one phase. Examples include [BOOCH94] and

[FIRESMITH],

Removal of ambiguity is not a problem in the OO design phase [CUTHILL]. The Cuthill paper

discusses the ambiguity problem in relation to C++ in addition to the other three principles. A
similar analysis of other OO programming languages may be useful. Also, what features of the

languages support other OO design goals in addition to the four principles discussed? A paper

by SoHaR Inc. [SOHAR] discusses C, C++, Ada, and PL/M in relation to OO design goals such

as abstraction, encapsulation, modularity, hierarchy, and typing, in addition to concurrency and

persistence. A similar study with Ada95, C++ (because the language has changed since the

SoHaR paper was written), Eiffel, and Smalltalk could be conducted.

There has been research conducted in distributed, real-time systems based on object models. One
paper by Takashio and Tokoro describes distributed real-time object model and programming

language [TAKASHIO]. Another paper by Satoh and Tokoro introduces a formal model and

language for reasoning about real-time object-oriented computations [SATOH]. Is there a similar

formal model for describing high integrity software? Can we capture the semantics of dependable

object systems in some formal language?

12



6.0 DISTRIBUTED OBJECT COMPUTING

One technology gaining considerable support is distributed computing based on an object model.

The application program becomes a loosely coupled system of components. These components

may reside within one process, one computer, one network, or across different networks. The
components are modeled within the systems as large-grained objects. There are several enabling

technologies to allow these components to communicate. Examples include Common Object

Request Broker Architecture (CORBA) from the Object Management Group, Object Linking and

Embedding and Common Object Model (OLE/COM) from Microsoft, Distributed Objects

Everywhere (DOE) from SunSoft, and System Object Model (SOM) from IBM. Comparing and

contrasting these technologies with Remote Procedure Call (RPC) and the Distributed Computing

Environment (DCE) is useful to understand different approaches to distributed computing.

The enabling technologies provide different levels of abstraction for component modeling.

Remote Procedure Call, for example, provides a point-to-point mechanism for communication

between processes. This form of communication fits well with the process model. The CORBA
model provides for indirect communication between objects, with the object request broker

providing the message services between objects. The requesting object does not need to know
where, or even if, the target object is active. The broker will locate the object, or activate the

object if needed. Object modeling provides a consistent design for these types of applications.

In comparing these different enabling technologies, we must decide what criteria we will use to

make the comparison. Complexity, portability, abstraction, and performance are all valid areas

to investigate. The RPC mechanism may be too low-level at the application level to be used in

a system with hundreds of objects. Also, RPC increases the coupling between these objects. A
CORBA product may reduce the inter-object dependencies, but at what cost to performance and

portability?

We can move up to another level of abstraction, away from object-to-object communication

altogether. The idea of a "software bus" has been around for many years. Can a system be

developed where objects place information on an underlying communication system, without

sending messages directly to other objects? How do the target objects know what information to

retrieve from the bus? The advantages of such an architecture is eliminating the communication

problem where an object must understand the messages of all objects it communicates with.

Some OO frameworks are heading in this direction. For example, MITRE’s DISCUS [DISCUS]

framework provides object communication via pre-defined services. Frameworks are discussed

further is section 7.0.

13



7.0 OTHER ISSUES

One of the main features of OO software is the encapsulation of data and operations. One of the

claims is that changes to an OO software system are more localized and side-effects are

minimized. However, there are still potential problems which can arise. For example, if a base

class, high up in the inheritance tree, is changed, many modules may need to be recompiled. This

recompilation may be necessary even though the descendent classes do not take advantage of the

change. One issue is then, how are components going to be updated in the system without

requiring access to source code of the changed component? There are several products which

address this issue. IBM’s System Object Model is one architecture designed to isolate changes.

A related issue is the effect on object behavior created by a change to another object. Can it be

guaranteed that changes to an object’s internal behavior will not effect dependent objects? An
example is an object which changes from ignoring bad message operands to raising exceptions.

What effect will this new behavior have on dependent objects, and overall system behavior? Even

though the object’s interface did not change, how other objects interact with this object can not

be ignored. Also, what effects will the change to the class have on subclasses of that class, in

terms of the subclasses’ behaviors? Are the subclasses necessarily improved by the change, or

are potential problems with the subclasses going to be surfaced? How much regression testing

is then needed of all subclasses? (This problem is sometimes called the "fragile base-class"

problem).

The choice of which language to use to implement object-oriented software requires careful

consideration. C++ is the most popular language, but Smalltalk and Eiffel have substantial

followings. There are many issues involved in comparing languages. For example, the issue of

class dependencies on base classes. Every class in Smalltalk is a descendent of a single root

class; there is only one inheritance tree in a Smalltalk program. C++, however, allows for

multiple inheritance trees, independent of each other. Which language is "better" for

implementing the model of the problem?

The idea of object frameworks is a growing area of interest within the object community. These

frameworks provide an object model for application development within a specific problem

domain. The SEMATECH [SEMATECH] framework for computer-integrated manufacturing

(CIM) of semiconductors, and the DISCUS framework mentioned above are two examples. Other

companies are developing frameworks for the health care industry. One possible area of research

is to abstract the common features of these frameworks into a reference model for developing

frameworks for other domains.

Frameworks have also been developed for specific types of application functions. Graphical user

interfaces (GUI) are the most common types of these frameworks. The Taligent [TALIGENT]
system includes frameworks for GUIs, file access, and other functions common across

applications. Also, the Taligent framework is extensible so domain specific frameworks can be

developed and integrated into the Taligent system. The Taligent framework builds on top of the

System Object Models (SOM and Distributed SOM) developed by IBM.

14



Other examples of frameworks include Borland’s ObjectWindows Library and Microsoft

Foundation Classes. These frameworks provide a model of the graphical user interface in the

Microsoft Windows environment. Instead of programming individual windows and their

components, the programmer creates instances of window, menu, and dialog box objects for the

application.

15



8.0 SUMMARY

The purpose of this report is to identify the topics and related issues in object-oriented technology

that require further research to enable NIST to provide practical guidance for the users and

beneficiaries of this technology.

Research is needed on the following topics to help clarify issues in software engineering that will

enable high integrity software systems, which may be produced economically:

characteristics for deciding when to use OO technology for various application domains

measurement of quality of OO programs

measurement of productivity of using OO technology

• testing of OO programs

use of OO to facilitate software reuse

• use of OO in safety-critical systems

use of OO for distributed computing systems

• use of OO with existing traditional systems

• transferring existing software engineering knowledge and experience to OO technology

• standardization of OO terminology.

Research on these topics should be developed into practical guidance for those who develop,

assure, purchase, use, or license high integrity software systems.

16



9.0 REFERENCES

[ABREU]
Abreu, Fernando Brito e and Rogerio Carapuca, "Candidate Metrics for Object-Oriented

Software within a Taxonomy Framework," Journal of Systems Software

,

no. 26 (1994).

[ArmySTEP]

Betz, Henry P. and Patrick J. O’Neill, "Software Metrics Initiatives Report," Army
Software Test and Evaluation Panel (STEP), March 21, 1991.

[BERARD]
Berard, Edward, Testing of Object-Oriented Software, (Course workbook), Berard

Software Engineering, Inc., 1994.

[BOOCH94]
Booch, Grady, Objected-Oriented Analysis and Design with Applications , second edition,

The Benjamin/Cummings Publishing Company, Inc., 1994.

[CHIDAMBER]
Chidamber, Shyam R. and Chris F. Kemerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, vol. 20, no. 6 (June 1994).

[CUTHILL]
Cuthill, Barbara B., "Applicability of Object-Oriented Design Methods and C++ to Safety-

Critical Systems," Proceedings of the Digital Systems Reliability and Nuclear Safety

Workshop, NIST Special Publication 500-216, March 1994.

[DISCUS]

Data Integration and Synergistic Collateral Usage Study (DISCUS), (Tutorial workbook).

The MITRE Corporation, November 2, 1994.

[FIRESMITH]

Firesmith, Donald G., Object-Oriented Requirements Analysis and Logical Design, John

Wiley & Sons, Inc., 1993.

[FIRESMITH2]

Firesmith, Donald G., "Testing Object-Oriented Software," whitepaper, August 12, 1994.

Also appears in Software Engineering Strategies, Auerbach Publications, Vol. I, No.

5, (Nov./Dec. 1993).

[HEWPAC]
de Champeaux, Dennis, Douglas Lea and Penelope Faure, Object-Oriented System

Development , Prentice-Hall, 1993.

17



[JORGENSEN]
Jorgensen, Paul C. and Carl Erickson, "Object-Oriented Integration Testing,"

Communications of the ACM ,
Vol. 37, No. 9 (September, 1994).

[IEEE982]

IEEE Std. 982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable

Software," The Institute of Electrical and Electronics Engineers, June, 1988.

[IEEE 1045]

IEEE Std. 1045-1993, "Standard for Software Productivity Metrics," The Institute of

Electrical and Electronics Engineers.

[IS09126]

ISO/IEC 9126, "Information technology - Software product evaluation - Quality

characteristics and guidelines for their use," International Organization for Standardization

and International Electrotechnical Commission, December 1991.

[LI]

Li, Wei and Sallie Henry, "Object-Oriented Metrics that Predict Maintainability," Journal

of Systems Software , no. 23 (1993).

[LORENZ]
Lorenz, Mark, Object-Oriented Software Development: A Practical Guide , Prentice-Hall,

1993.

[MEYER]
Meyer, Bertrand and P. Hucklesby, "EIFFEL: an introduction," Object-oriented

Programming Systems: Tools and Applications, edited by J. J. Florentin,Chapman & Hall,

1991.

[NIST500-204]

Wallace, Dolores R., Laura M. Ippolito and D.R. Kuhn, NIST Special Publication 500-

204, "High Integrity Software Standards and Guidelines," U.S. Department of

Commerce/National Institute of Standards and Technology, prepared for U.S. Nuclear

Regulatory Commission, September 1992.

[NIST500-209]

Peng, Wendy W. and Dolores R. Wallace, NIST Special Publication 500-209, "Software

Error Analysis," U.S. Department of Commerce/National Institute of Standards and

Technology, April 1993.

18



[NISTIR5459]

Salamon, W. J. and D. R. Wallace, NIST Internal Report 5459, "Quality Characteristics

and Metrics for Reusable Software (Preliminary Report)," U.S. Department of

Commerce/National Institute of Standards and Technology, May 1994.

[OOPSLA94]

Monarchi, David, Grady Booch, Brian Henderson-Sellers, Ivar Jacobson, Steve Mellor,

James Rumbaugh and Rebecca Wirfs-Brock, "Methodology Standards: Help or

Hindrance?" Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, Vol. 29, No. 10, October 1994.

[RUMBAUGH]
Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy and William

Lorensen, Object-Oriented Modeling and Design , Prentice Hall, 1991.

[SATOH]
Satoh, Ichiro and Mario Tokoro, "A Formalism for Real-Time Concurrent Object-Oriented

Computing," Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, Vol. 27, No. 10, October 1992.

[SEMATECH]
Computer Integrated Manufacturing (CIM) Application Framework, SEMATECH, Inc.,

March 31, 1994.

[SOHAR]
Tai, Ann and Herbert Hecht, "A Comparative Study of Programming Languages for Class

IE Applications," SoHaR Incorporated, Beverly Hills, CA, September 1991.

[TAKASHIO]
Takashio, Kazunori and Mario Tokoro, "DROL: An Object-Oriented Programming

Language for Distributed Real-Time Systems," Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications, Vol. 27, No. 10, October

1992.

[TALIGENT]
"Leveraging Object-Oriented Frameworks," Taligent, Inc., 1993.

[WEYUKER]
Weyuker, Elaine J., "Evaluating Software Complexity Measures," IEEE Transactions on

Software Engineering, vol. 14, no. 9 (September 1988).

19



10.0 GLOSSARY

ancestor class A class that cannot have direct instances but whose descendants can have

instances [RUMBAUGH]

binding Denotes the association of a name (such as a variable declaration) with a

class [BOOCH94],

class A set of objects that share a common structure and a common behavior

[BOOCH94];

a template from which objects can be instantiated [FIRESMITH];

a description of a group of objects with similar properties, common
behavior, common relationships, and common semantics [RUMBAUGH].

dynamic binding A binding in which the name/class association is not made until the object

designated by the name is created at execution time [BOOCH94].

inheritance A relationship among classes, wherein one class shares the structure or

behavior defined in one (single inheritance) or more (multiple inheritance)

other classes; [BOOCH94];

a relationship among classes that allows subclasses to be built as

extensions or specializations of superclasses [FIRESMITH].

instance Something you can do things to; has state, behavior, and identity; the

terms instance and object are interchangeable [BOOCH94];

an object constructed by instantiation from a class [FIRESMITH];

an object described by a class [RUMBAUGH].

instantiate To create a new instance of a class or type [FIRESMITH].

instantiation The process of filling in the template of a generic or parameterized class

to produce a class from which on can create instances [BOOCH94];

the process of creating instances from classes [RUMBAUGH],

link Between two objects, one instance of an association [BOOCH94];

an instance of an association; a physical or conceptual connection between

objects [RUMBAUGH].

20



message An operation that one object performs upon another; the terms message,

method, and operation are usually interchangeable [BOOCH94];
the primary means of communication among classes and objects consisting

of a request for service, a notification of an event, or the passing of data

[FIRESMITH];

(in Smalltalk) invocation of an operation on an object, comprising an

operation name and a list of argument values [RUMBAUGH].

method An operation upon an object, defined as part of the declaration of a class;

all methods are operations, but not all operations are methods

[BOOCH94];
a popular synonym for operation [FIRESMITH];

the implementation of an operation for a specific class [RUMBAUGH].

object Something you can do things to; has state, behavior, and identity; the

terms instance and object are interchangeable [BOOCH94];

an abstraction (i.e. model) in the requirements, design, and/or code of a

single tangible or intangible object, entity, or thing from the real-world,

application, or problem domain [FIRESMITH];

a concept, abstraction, or thing with crisp boundaries and meanings for the

problem at hand; and instance of a class [RUMBAUGH],

operation Some work that one object performs upon another in order to elicit a

reaction [BOOCH94];

a discrete activity, action, or behavior that implements a functional (i.e.

sequential) or process (i.e. concurrent) abstraction, and that is typically

performed by, belongs to, and is part of an object or class [FIRESMITH];

a function or transformation that may be applied to objects in a class

[RUMBAUGH],

polymorphism A concept in type theory, according to which a name may denote objects

of many different classes that are related by some common superclass

[BOOCH94];
the ability of the same identifier to refer at run-time to different instances

of various classes [FIRESMITH];

takes on many forms; the property that an operation may behave

differently on different classes [RUMBAUGH].

state The cumulative results of the behavior of an object; one of the possible

conditions in which an object may exist, characterized by definite

quantities that are distinct from other quantities [BOOCH94];

the values of the attributes and links of an object at a particular time

[RUMBAUGH],

21



static binding A binding in which the name/class association is made when the name is

declared (at compile time) but before the creation of the object that the

name designates [BOOCH94].

subclass A class that inherits from one or more classes (which is called its

immediate superclasses) [BOOCH94];

a refined version of another class, the superclass [RUMBAUGH].

superclass The class from which another class inherits (which is called its immediate

subclass) [BOOCH94];

a more abstract version of another class, the subclass [RUMBAUGH].

22



11.0 BIBLIOGRAPHY

11.1 Methodologies

Booch, Grady, Software Engineering with Ada , The Benjamin/Cummings Publishing

Company, Inc., 1983.

Booch, Grady, Objected-Oriented Analysis and Design with Applications , second edition.

The Benjamin/Cummings Publishing Company, Inc., 1994.

Booch, Grady, "Object-Oriented Development," IEEE Transactions on Software

Engineering , vol. SE-12, no. 2 (February 1986).

Coad, Peter and Edward Yourdon, Object-Oriented Analysis, second edition, Yourdon

Press, 1991.

Coad, Peter and J. Nicola, Object-Oriented Programming , Yourdon Press, 1993.

de Champeaux, Dennis, Douglas Lea and Penelope Faure, Object-Oriented System

Development , Prentice-Hall, 1993.

Fichman, Robert G. and Chris F. Kemerer, "Object-Oriented and Conventional Analysis

and Design Methodologies," IEEE Computer, October 1992.

Firesmith, Donald G., Object-Oriented Requirements Analysis and Logical Design , John

Wiley & Sons, Inc., 1993.

Henderson-Sellers, Brian, and Julian M. Edwards, "The Object-Oriented Systems Life

Cycle," Communications of the ACM, vol. 33, no. 9 (September 1990).

HOOD Working Group, HOOD Reference Manual , (HRM/91/07/V3.1), European Space

Agency, 1991.

Korson, Tim, and John D. McGregor, "Understanding Object-Oriented: A Unifying

Paradigm," Communications of the ACM, vol. 33, no. 9 (September 1990).

Meyer, Bertrand, Object-Oriented Software Construction , Prentice Hall, 1988.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy and William

Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991.

Shlaer, Sally and Steven J. Mellor, Object-Oriented Systems Analysis, Yourdon Press,

1988.

23



Wirfs-Brock, Rebecca, Brian Wilkerson and Lauren Wiener, Designing Object-Oriented

Software , Prentice Hall, 1990.

11.2 Testing

Berard, Edward, Testing of Object-Oriented Software , (Course workbook), Berard

Software Engineering, Inc., 1994.

Chung, Chi-Ming and Ming-Chi Lee, "Object-Oriented Programming Testing

Methodology," Proceedings of the Fourth International Conference on Software

Engineering and Knowledge Engineering , IEEE, 1992.

Firesmith, Donald G., "Testing Object-Oriented Software," whitepaper, August 12,

1994. Also appears in Software Engineering Strategies , Auerbach Publications,

Vol. I, No. 5, (Nov./Dec. 1993).

Jorgensen, Paul C. and Carl Erickson, "Object-Oriented Integration Testing,"

Communications of the ACM, Vol. 37, No. 9 (September, 1994).

McCabe, Thomas J., Lori A. Dreyer, Albert J. Dunn and Arthur H. Watson, "Testing

an Object-Oriented Application," CASE Outlook, 1994.

Parrish, Allen S., Richard B. Borie and David W. Cordes, "Automated Flow

Graph-Based Testing of Object-Oriented Software Modules," Journal of Systems

Software, no. 23 (1993).

11.3 Metrics

Abreu, Fernando Brito e and Rogerio Carapuca, "Candidate Metrics for

Object-Oriented Software within a Taxonomy Framework," Journal of Systems

Software, no. 26 (1994).

Chidamber, Shyam R. and Chris F. Kemerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, vol. 20, no. 6 (June 1994).

Li, Wei and Sallie Henry, "Object-Oriented Metrics that Predict Maintainability,"

Journal of Systems Software, no. 23 (1993).

Rajaraman, Chandrashekar and Michael R. Lyu, "Reliability and Maintainability

Related Software Coupling Metrics in C++ Programs," Proceedings of the Third

International Symposium on Software Reliability Engineering, IEEE, 1992.

24



11.4 Frameworks

Data Integration and Synergistic Collateral Usage Study (DISCUS) , (Tutorial

workbook). The MITRE Corporation, November 2, 1994.

Computer Integrated Manufacturing (CIM) Application Framework , SEMATECH, Inc.,

March 31, 1994.

"Leveraging Object-Oriented Frameworks," Taligent, Inc., 1993.

25








