
NIST

PUBLICATIONS

Applied and

Computational

Mathematics

Division

NISTIR 5596

Computing and Applied Mathematics Laboratory

Inserting Line Segments into Triangulations

and Tetrahedralizations

J. Bernal

March 1995

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

QC

100

. U56

NO. 5596

1995

NISTIR 5596

Inserting Line Segments into

Triangulations and Tetrahedralizations

J. Bernal

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Computing and Applied Mathematics Laboratory

Gaithersburg, MD 20899

March 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Inserting Line Segments into Triangulations

and Tetrahedralizations

Javier Bernal

National Institue of Standards and Technology, Gaithersburg, MD 20899, U. S. A.

Abstract. In this paper, we further develop an algorithm by Bernal, De Floriani, and Puppo,

for inserting a line segment into a Constrained Delaunay triangulation. The new version of the

algorithm inserts the line segment in exactly the same manner in which the old version does but

has the additional capability that it does not delete the triangles intersected by the line segment

but transforms them through edge-swapping. Since the concept of edge-swapping generalizes to

3— dimensional space, a 3— dimensional version of the algorithm without the optimization step for

the Delaunay property is also presented for attempting to insert a line segment into a tetrahedral-

ization. It is shown that for certain cases the failure of the 3— dimensional algorithm to insert a

line segment is an indication that it can not be done. Finally, 3— dimensional problems that can

be approached algorithmically as 2— dimensional problems are identified.

Key words, computational geometry, constrained Delaunay triangulation, edge-swapping,

empty circle criterion, locally equiangular, segment insertion, Voronoi diagram

AMS(MOS) subject classifications. 68U05

1

1. Introduction

A triangulation for a finite set of points S in the plane is a finite collection of triangles in the

plane having pair-wise disjoint interiors, each of which intersects S exactly at its vertices,

and the union of which is the convex hull of S. Given a triangulation T for 5, we say that

T is a Delaunay triangulation for S if for each triangle in T there does not exist a point of

S inside the circumcircle of the triangle [10]. A (Delaunay) tetrahedralization for a finite set

of points in 3— dimensional space is similarly defined with tetrahedra and spheres taking the

place of triangles and circles.

A triangulation more general than the Delaunay triangulation can be defined. Let S be

a finite set of points in the plane, and let E be a finite collection, possibly empty, of line

segments that intersect only at points in S and whose endpoints belong to S. We say that

a triangulation T for 5 is a triangulation for S constrained by E if for each e in E and each

t in T, e does not intersect the interior of t. Given T, a triangulation for S constrained by

E, we say that T is a Delaunay triangulation for S constrained by E if for each t in T there

does not exist a point P of S inside the circumcircle of t such that no e in E intersects the

interior of the convex hull of t U{p}-
Let S and E be as above. Given T, a triangulation for S constrained by E, we say

that T is locally equiangular constrained by E if given any two triangles in the triangulation

that share a common edge not contained in any edge belonging to E and whose union is

a strictly convex quadrilateral, then replacement of the common edge by the alternative

diagonal of the quadrilateral does not increase the minimum of the six angles in the two

triangles making up the quadrilateral. That a triangulation is constrained Delaunay if and

only if it is constrained locally equiangular has been proven in [8]. On the other hand, given

S and E as above, T a triangulation for S constrained by E, we say that T constrained by

E satisfies the empty circle criterion on a local basis if given any two triangles t, d in T that

share a common edge not contained in any edge belonging to E, then the vertex of t' not in

t is not inside the circumcircle of t. That a triangulation is constrained locally equiangular

if and only if it is constrained satisfying the empty circle criterion on a local basis has been

proven in [4], [8].

Algorithms for the computation of a Delaunay triangulation for the vertices of a polygon

constrained by the boundary of the polygon have been presented in [4], [8], [9], the algorithm

in [8] having complexity O(nlogn), where n is the number of vertices of the polygon. As for

the general problem of computing a Delaunay triangulation for a set of n points constrained

by a set of line segments, an 0{n 2

)
algorithm has been presented in [8], 0{n log n) divide-and-

conquer algorithms have been presented in [3], [12], and an 0(n log n) plane-sweep algorithm

has been presented in [11]. Each one of these algorithms has the disadvantage that the set

2

of line segments must be known before the execution of the algorithm.

In [5] a method has been presented for the incremental computation of a constrained

Delaunay triangulation by stepwise insertion of points and line segments. Accordingly, algo-

rithms are presented in [5] for point insertion and line segment insertion into a constrained

Delaunay triangulation. Independently, the algorithm for line segment insertion was also

presented in [1]. In the following section, we describe a new version of the segment insertion

algorithm that works in the same manner in which the old one does, but that has the addi-

tional capability of not deleting the triangles intersected by the line segment, transforming

them instead through edge-swapping (Lawson’s transformation [7]). In Section 3, we take

advantage of the fact that edge-swapping generalizes to 3— dimensional space and present

what would be considered the generalization to 3— dimensional space of the new line insertion

algorithm without the optimization step for the Delaunay property. It is shown there that for

certain cases the failure of this algorithm to insert a line segment into a tetrahedralization is

an indication that it cannot be done. Finally, in the same section, 3— dimensional problems

are identified that can be approached algorithmically as if they are 2—dimensional.

2. Segment insertion by edge-swapping

Let T be a triangulation in the plane, not necessarily Delaunay, let P1} P2 ,
P\ ^ P2 ,

be

vertices in T, and let T* be the collection of triangles in T whose interiors are intersected

by the line segment with endpoints Pi, P2 . We say that the line segment with endpoints

Pi, P2 has been inserted into T producing T if T is a triangulation for the vertices of T such

that the line segment is the union of one or more edges in T and each triangle in T \ T*

is also in T. In what follows, and assuming that T is constrained Delaunay, we present

procedure INSERT-SEGMENT which inserts the line segment with endpoints Pi, P2 into

the triangulation T by edge-swapping (Lawson’s transformation [7]), producing a constrained

Delaunay triangulation with the line segment as an additional constraint. Without any loss

of generality, we assume that the line segment is not an edge in T and that its relative

interior does not contain any vertices in T

.

In [1] and [5] this algorithm was presented but without edge-swapping. This older version

consists essentially of two steps. In the first step, the triangles whose interiors are intersected

by the line segment are detected and deleted so that a non-triangulated region inside the

convex hull of the original triangulation results. In the second step, this region is divided

into two polygons separated by the line segment, and a Delaunay triangulation is then

computed for each polygon. Each polygon satisfies the property that each point in the

polygon is visible through the polygon from the line segment, i. e. given a point P in the

3

polygon but not in the line segment, there exists a point P' in the relative interior of the line

segment such that the relative interior of the line segment with endpoints P, P' is contained

in the interior of the polygon. Because of this property, each polygon can be triangulated

through an incremental insertion of triangles in the polygon, and optimized for the Delaunay

property with procedures based on the empty circle criterion. Outlines of this older version,

justifications, optimization procedures, and related results can be found in [1], [2], [5], [
6].

The new version of the algorithm presented here works essentially in the same manner

in which the old one does, thus producing exactly the same triangles, but has the capability

through edge-swapping of maintaining at all times a complete triangulation for the vertices

in the original triangulation. This will be illustrated below with an example.

In the following, we list and describe, in the order of their first appearance in procedure

INSERT-SEGMENT, procedures used there as primitives.

INTERSECTED_TRIANGLES(T, T*
, Pi, P2 ,

Q,tp): Assuming that Pi, P2 ,
Pi ^ P2 ,

are ver-

tices in triangulation T, this procedure identifies T*, T* C T, which is made up of those

triangles in T with interiors intersected by the line segment with endpoints Pi, P2 . It also

locates tp and Q, where tp is the triangle in T* with Pi as one of its vertices and Q is any

one of the vertices of tp different from Pi.

NEXT_TRIANGLE(T, Pi, P2 ,
tp, tc): Assuming that Pi, P2 ,

Pi 7^ P2 ,
are vertices in tri-

angulation T, that the line segment with endpoints Pi, P2 intersects the interior of tp
,
a

triangle in T

,

and that P2 is not a vertex of tp, this procedure locates triangle tc in T which

shares a facet with tp intersected by the line segment, and which is closer to P2 than tp in

the direction of the line segment.

NEXT_VERTEX(tp, tc, P): Assuming that tp and tc are adjacent triangles in some trian-

gulation, this procedure locates vertex P of tc not in tp.

PREVIOUS_VERTEX(tc, Pi, P2 ,
P, Q): Assuming that P is a vertex of triangle tc and that

the line segment with endpoints Pi, P2 intersects exactly one of the edges of tc with P as

an endpoint, this procedure locates the vertex Q of tc for which the line segment does not

intersect the edge with endpoints P, Q.

STRICT_CONVEXITY(tc, tp, //a^2): Assuming that tc and tp are adjacent triangles in

some triangulation, and that flag2 equasl 1
,
this procedure sets flag2 to zero whenever the

4

union of tc and tp is not a strictly convex quadrilateral.

EDGE-SWAP(tc,tp,Q,T,T*): Assuming that tc, tp are adjacent triangles in T*, T* C T,

whose union is a strictly convex quadrilateral, and that Q is one of the vertices that tc and

tp have in common, this procedure transforms tc, tp
,
and therefore in the same manner

T* and T, through the replacement of the common edge by the alternative diagonal of the

quadrilateral in such a way that Q is the vertex of the transformed tp not in the trans-

formed tc-

OPTIMIZER, T*
:
tp

,
P, Q ,

R): Assuming that P
, Q ,

R are the vertices of triangle tp in T*,

T* C T, this procedure is essentially the same as procedure UPDTRI in [1], which transforms

T*, and therefore in the same manner T, through edge-swapping in such a way that if after

the execution of this procedure t is a triangle in T* that either equals tp or that was not in

T* before the execution of the procedure, then t satisfies the following properties:

(
1

)
P is a vertex of t.

(2) The two edges of t with P as an endpoint intersect the line segment with endpoints Q ,
R.

(3) The circumcircle of t does not contain in its interior any vertex P‘ in T* for which the

relative interior of the line segment with endpoints P, P' lies entirely in the interior of the

union of the triangles in T* and intersects the edge of t that does not have P as an endpoint.

PREVIOUS_TRIANGLE(T, Pi, P2 , tc, tp): Assuming that Px ,
P2 ,

Px 7^ P2 ,
are vertices in

triangulation T, that the line segment with endpoints Px ,
P2 intersects the interior of tc, a

triangle in T, and that Px is not a vertex of tc, this procedure locates triangle tp in T which

shares a facet with tc intersected by the line segment, and which is closer to Px than tc in

the direction of the line segment.

THIRD_VERTEX(tc, P, P
, Q)' Assuming that R, P, R 7^ P, are vertices of triangle tc, this

procedures identifies Q, a vertex of tc with Q 7^ R and Q 7^ P.

The outline of INSERT.SEGMENT follows. Throughout the procedure and for the pur-

pose of keeping track of where in T the optimization procedure can be applied, a collection

of triangles T* is maintained, T* C T, which is made up of those triangles or their trans-

formations through edge-swapping (with procedures EDGE-SWAP and OPTIMIZE) that

initially are intersected by the relative interior of the line segment with endpoints P x ,
P2 .

Also, throughout the procedure, a function P is defined on certain elements of {1,2} x T*.

Essentially, given t in T* with interior intersected by the line segment, it is assumed that

5

the line segment intersects exactly two edges of t at different points. F(l,t), F(2,t) are then

defined to represent the endpoints of the edge of t not intersected by the line segment, in such

a way that F{2,t) also represents an endpoint of the one of the two edges of t intersected by

the line segment that is closer to P2 in the direction of the line segment. Finally, we notice

that if the optimization steps are eliminated in INSERT-SEGMENT (steps 20 and 32) then

the procedure simply becomes one for inserting a line segment into a triangulation.

procedure INSERT_SEGMENT(T, P1 ,
P2)

begin

1. INTERSECTED_TRIANGLES(T, T*, P1; P2 , Q, <f);

2. -F(Mf) := Pi] F(2,tF) := Q\ flagl := 1;

3. while
(flagl = 1) do

begin

4. tp := tp
;

5. NEXT-TRIANGLE(T, Pu P2 ,tP ,
tc)\

6. NEXT_VERTEX(fP ,
tc ,

P);

7. if (P ^ P2)
then

begin

8. PREVIOUS_VERTEX(tc ,
Pi, P2) P, Q)\

9. tp := tc

end

else

begin

10. Q := F(2,ip); flagl := 0

end

11. if (F{l,tP)
= P,) then F(2,tP) := Q;

12. P(l,«c) := Q; F(2,tc) := P; flag2 := 1;

13. while
(flag2 = 1) do

begin

14. STRICT-CONVEXITY(tc, tP ,
flag2);

15. if
(flag2 = 1) then

begin

16. R := P(l,fp); tL := tc]

17. EDGE_SWAP(tc ,
tP , Q, T, T*)\

18. if {tp = tp) then tp := tc]

19. if (P(l,tc)
= F{2,tP)) then

begin

6

20. OPTIMIZER, T',tP,P,Q,R)

21. F{l,tc):= R;Q-.= R
end

else

begin

22. P(Mc) := R
;
F(2,tc) := F{2,tp);

23. := Q ;
F(2,tp

)
P;tc := tp

end

24. if (P ^ Pi) then

begin

25. PREVIOUS_TRIANGLE(T, P1; P2 ,
tP);

26. if (P(l,tp) = Pa)
then P(2,fP)

:= <5;

27. if (P = P2)
then

begin

28. Q := F(2,tP)- F(l,tc):=Q
end

end

else

begin

29. flag2 := 0;

30. if (P = P2)
then

begin

31. THIRD_VERTEX(tc ,
R

,
P, Q);

32. OPTIMIZER, P, <2, P)

end

else

begin

33. NEXT-TRIANGLE{T, Pu P2 ,tc ,tN)]

34. F(2,tc) := P(Mjv)
end

end

end

end

end

end

Algorithm INSERT-SEGMENT has been mostly justified in [1], [6]. In what follows, we

7

illustrate with an example the way in which the algorithm works and the new aspects of its

justification. Since the insertion of the line segment is the significant aspect of the algorithm

we do not assume that the initial triangulation is Delaunay and ignore the optimization

steps throughout. Starting with triangulation (i) in Figure 1, we enumerate and describe

in the order of their executions the crucial steps of INSERT-SEGMENT that are executed

in order to obtain the desired triangulation, triangulation (viii) in Figure 1, and all other

intermediate triangulations, triangulations (ii)-(vii) also in Figure 1. Here, given points X,

Y, Z

,

whenever we refer to the triangle XY

Z

it is implied that a triangle exists in the plane

with vertices X
,
Y, Z

,
and that this is the order in which they appear in the boundary of the

triangle in a counterclockwise direction around the interior of the triangle. Given points W,
X

,
Y

,
Z

,
a similar assumption goes along with any reference to the quadrilateral WXYZ

.

1. Step 1 (triangulation (i)): T* is obtained and it is made up of the triangles intersected

by line segment P1P2
' P\AF

,
FAE

,
EAB

,
EBD

,
DBC

,
DCP2 - The first triangle

is tp — P\AF.

2. Step 5 (triangulation (i)): The next triangle is tc = FAE.

3. Step 6 (triangulation (i)): The next vertex is P = E.

4. Step 14 (triangulation (i)): The quadrilateral PiAEF is not strictly convex (flag2 is

set to zero, no edge-swapping is possible, and a new P must be obtained).

5. Step 5 (triangulation (i)): The next triangle is tc — EAB.

6. Step 6 (triangulation (i)): The next vertex is P — B.

7. Step 14 (triangulation (i)): The quadrilateral FABE is strictly convex.

8. Step 17 (triangulation (ii)): Triangles FAE
,
EAB are transformed into triangles FAB,

FBE through edge-swapping; tc becomes FAB.

9. Step 14 (triangulation (ii)): The quadrilateral P\ABF is strictly convex.

10. Step 17 (triangulation (iii)): Triangles P-^AF, FAB are transformed into triangles

P\AB, PiBF through edge-swapping; tc becomes PX BF.

11. Step 29 (triangulation (iii)): Because Pi is a vertex of tc, flag2 is set to zero (a new
P must be obtained).

12. Step 5 (triangulation (iii)): The next triangle is tc — EBD.

8

Figure 1: A triangulation and the insertion into it of line segment with endpoints P1} P2 .

9

13. Step 6 (triangulation (iii)): The next vertex is P = D.

14. Step 14 (triangulation (iii)): The quadrilateral FBDE is strictly convex.

15. Step 17 (triangulation (iv)): Triangles FBE, EBD are transformed into triangles

FBD, FDE through edge-swapping; tc becomes FBD.

16. Step 14 (triangulation (iv)): The quadrilateral P\BDF is not strictly convex.

17. Step 5 (triangulation (iv)): The next triangle is tc = BCD.

18. Step 6 (triangulation (iv)): The next vertex is P = C

.

19. Step 14 (triangulation (iv)): The quadrilateral FBCD is strictly convex.

20. Step 17 (triangulation (v)): Triangles FBD
,
BCD are transformed into triangles FBC

,

FCD through edge-swapping; tc becomes FBC

.

21. Step 14 (triangulation (v)): The quadrilateral PiBCF is not strictly convex.

22. Step 5 (triangulation (v)): The next triangle is tc = DCP2 .

23. Step 6 (triangulation (v)): The next vertex is P = P2 .

24. Step 10 (triangulation (v)): flag 1 is set to zero (this is the last P).

25. Step 14 (triangulation (v)): The quadrilateral FCP2D is strictly convex.

26. Step 17 (triangulation (vi)): Triangles FCD
,
DCP2 are transformed into triangles

FCP2 ,
FP2D through edge-swapping; tc becomes FCP2 .

27. Step 14 (triangulation (vi)): The quadrilateral FBC

P

2 is strictly convex.

28. Step 17 (triangulation (vii)): Triangles FBC
,
FCP2 are transformed into triangles

FBP2 ,
BCP2 through edge-swapping; tc becomes FBP2 .

29. Step 14 (triangulation (vii)): The quadrilateral P1BP2F is strictly convex.

30. Step 17 (triangulation (viii)): Triangles P\BF
,
FBP2 are transformed into triangles

P1BP2 ,
P1P2F through edge-swapping (line segment P1P2 has now been inserted).

31. Step 29 (triangulation (viii)): flag2 is set to zero (combined with flag 1 equal to zero,

it signifies that the execution of the algorithm must come to an end).

10

We can use the same example to illustrate the significant new aspects of the justification of

the algorithm. A rigorous proof would involve showing that the triangles produced by the old

version of the algorithm are also produced by the new one in exactly the same manner. Here

we avoid a rigoruous proof and concentrate our efforts on simply pointing out the reasons why
triangulation (i) in Figure 1 is transformed into triangulation (iii), thus producing triangle

PiAB which is a triangle that the old version would also produce. Equivalently, we point

out the reasons why the quadrilaterals FABE and PiABF are strictly convex under the

assumptions that the quadrilateral PiAEF is not strictly convex and that the triangle PXAB
is also produced by the old version of the algorithm. The latter assumption is equivalent

to the fact that the internal angle of triangle PiAB at A measures less than ir radians. In

order to show that the quadrilateral FABE is strictly convex we must show that each of its

internal angles measures less than 7r radians. The internal angles of the quadrilateral at F
and B satisfy this property because they are also internal angles, respectively, of triangles

FAE and EAB. Since the internal angle of the quadrilateral at A is contained in the internal

angle of triangle PiAB at A it follows that it must also satisfy the property. Finally, because

of the way in which line segment P1P2 intersects the quadrilateral PtAEF and the fact that

the quadrilateral is not strictly convex it follows that the ray with origin E through F must

intersect the line segment. This, combined with the fact that the ray with origin E through

B also intersects the line segment (

E

is above it, B is below it), implies that the internal

angle of the quadrilateral at E measures less than 7r radians. That the quadrilateral PiABF
is also strictly convex follows through essentially similar arguments.

3. The 3—dimensional version of the algorithm

Let T be a tetrahedralization, not necessarily Delaunay, let Pi, P2, Pi ^ P2, be vertices

in T, and let T* be the collection of tetrahedra in T each of which is intersected by the

line segment with endpoints Pi, P2 at either its interior or the relative interior of one of

its facets. We say that the line segment with endpoints Pi, P2 can be inserted into T if a

tetrahedralization T for the vertices of T exists such that the line segment is the union of

one or more edges in T and each tetrahedron in T \ T* is also in T

.

In what follows, we take

advantage of the fact that edge-swapping generalizes to 3— dimensional space and present

procedure 3D_INSERT_ATTEMPT which attempts to insert the line segment with endpoints

Pi, P2 into T, and which can be considered as the generalization to 3— dimensional space

of procedure INSERT-SEGMENT of the previous section without the optimization step for

the Delaunay property. We notice that only the case for which the relative interior of the

line segment with endpoints Pi, P2 does not intersect any edges in the tetrahedralization is

addressed in what follows.

11

In the following, we list and describe, in the order of their first appearance in procedure

3DJNSERT-ATTEMPT, procedures used there as primitives.

FIRST_TETRAHEDRON(T, Pi, P2 , <3, tp): Assuming that Pa ,
P2 ,

P\ ± P2 ,
are vertices in

tetrahedralization T
,
this procedure identifies tp, where tp is the tetrahedron in T with Pi

as one of its vertices and interior intersected by the line segment with endpoints Pi, P2 . It

also identifies Q, where Q is any one of the vertices of tp different from Pi.

NEXT_TETRAHEDRON(T, Pi, P2 ,tp,tc): Assuming that Pi, P2 , Pi ^ P2 ,
are vertices in

tetrahedralization T, that the line segment with endpoints Pi, P2 intersects the interior of

tp, a tetrahedron in T, and that P2 is not a vertex of tp, this procedure locates tetrahedron

tc in T which shares a facet with tp intersected by the line segment, and which is closer to

P2 than tp in the direction of the line segment.

NEXT-VERTEX(fp, tc, P): Assuming that tp and tc are adjacent tetrahedra in some tetra-

hedralization, this procedure locates vertex P of tc not in tp.

PREVIOUS_VERTEX(t c, Pi, P2 ,
P, Q)- Assuming that P is a vertex of tetrahedron tc and

that the line segment with endpoints Pi, P2 intersects exactly one of the facets of tc with

P as a vertex, this procedure locates the vertex Q of tc for which the line segment does not

intersect the facets of tc that have in common the edge with endpoints P, Q.

STRICT_CONVEXITY(tc, tp, fla9^) : Assuming that tc and tp are adjacent tetrahedra in

some tetrahedralization, and that flag 2 equals 1, this procedure sets flag2 to zero whenever

the union of tc and tp is not a strictly convex hexahedron.

COMMON_VERTEX(fc, tp, Q, S, U): Assuming that tc and tp are adjacent tetrahedra in

some tetrahedralization, and that Q and 5 are vertices, not necessarily different, common
to tc and tp, this procedure locates U, a vertex common to tc and tp such that U ^ Q and

U ± S.

TWO-THREE(T,tc,tp, P, R,Q,U): Assuming that tc, tp are adjacent tetrahedra in T
whose union is a strictly convex hexahedron, that P is the vertex of tc not in tp, that R
is the vertex of tp not in tc, and that Q, U

, Q 7^ U

,

are vertices that tc and tp have in

common, this procedure transforms T by transforming tc and tp into the three tetrahedra

that have in common the edge with endpoints P, R, in such a way that tc becomes the one

12

of the three tetrahedra that does not have Q as a vertex, and tp the one that has Q and U
as vertices.

FACETJNTERSECT(P, P, U, Pi

,

P2 ,
flag2): Assuming that P, R

,
U are the vertices of a

facet of some tetrahedron, and that flag2 equals 1, this procedure sets flag2 to zero when-

ever the line segment with endpoints Pi, P2 does not intersect the relative interior of the

triangle with vertices P, R, U.

PREVIOUS_TETRAHEDRON(T, Pi, P2 ,
tc, tp): Assuming that P1} P2 ,

Pi P2 ,
are ver-

tices in tetrahedralization T, that the line segment with endpoints Pi, P2 intersects the

interior of tc, a tetrahedron in T, and that Px is not a vertex of tc, this procedure locates

tetrahedron tp in T which shares a facet with tc intersected by the line segment, and which

is closer to Pi than tc in the direction of the line segment.

The outline of 3D_INSERT.ATTEMPT follows. Throughout the procedure, and serving

the same purpose as in procedure INSERT.SEGMENT of the previous section, a function P
is defined on certain elements of {1, 2} x T. Essentially, given t in T with interior intersected

by the line segment with endpoints Pi, P2 ,
it is assumed that the line segment intersects

exactly two facets of t at different points. P(l,f), P(2,f) are then defined to represent the

endpoints of the edge of t that is shared by the two facets of t that the line segment does not

intersect, in such a way that P(2, t
)
also represents a vertex of the one of the two facets of t

intersected by the line segment that is closer to P2 in the direction of the line segment. Also,

throiighout the procedure, a variable flag is defined which at the end of the execution of the

procedure equals 1 if the line segment has been inserted, zero otherwise. We point out here

that in the procedure, tetrahedra can only be transformed at steps 21 and 27 with procedure

TWO.THREE which, when possible, transforms two adjacent tetrahedra into three in the

obvious fashion.

procedure 3DJNSERT.ATTEMPT (T, P1 ,P2 ,flag)

begin

1. flag := 0;

2. FIRST_TETRAHEDRON(T, Pa ,
P2 ,

Q,tF)\

3. F{l,tF)
:= Pi; F{2,tF)

\= Q ;
flag 1 := 1;

4. while {flag 1 = 1) do

begin

5. tp := tF \

6. NEXT_TETRAHEDRON(r,Pi,P2 ,fP ,ic);

13

7. NEXT_VERTEX(iF ,
ic ,

P);

8. if (P ^ P2)
then

begin

9. PREVIOUS_VERTEX(ic , Pi, P2 ,
P, Q);

10. tF := tc

end

else

begin

11. Q = F(2,tP)i flagl := 0

end

12. if (P(l, ip) = Pi) then P(2,ip) := Qi

13. P(Mc) := Q; P(2,tc) := P; flag‘s •= l;

14. while
(flag2 = 1) do

begin

15. STRICT_CONVEXITY(ic ,
ip, /^2);

16. if
(flag2 = 1) then

begin

17. P := P(l,ip); 5 := P(2,ip);

18. COMMON_VERTEX(ic ,
tP,Q,S,U);

19. if (P(l,ic) = P(2,ip)) then

begin

20. ip := ic;

21. TWO_THREE(P, ic , ip, P, P, Q, U)\

22. if
(
tF — iz,) then tF := ic;

23. P(l,ic) := R] Q := R
end

else

begin

24. FACETJNTERSECT(P, P, 7/, P: ,
P2Jla :

25. if
(flag2 = 1) then

begin

26. it, := tc]

27. TWO_THREE(T, tc ,
tP ,

P,P,Q, 17);

28. if (ip = iz,) then tF := tc]

29. F(l,tc)~ R\ F(2,tc)
:=F(2,tP);

30. P(1 ,tP)
:= Q; F(2,tp) := P]tc := ip

14

31.

end

end

if
(flag2 = 1) then

begin

32. if (

R

^ Pi) then

begin

33. PREVIOUS_TETRAHEDRON(T, P1 ,
P2 ,t Ci tP)]

34. if {F(l,tP)
= Pi) then F(2,tP) := Q;

35. if (P = P2)
then

begin

36. Q := F(2,tP)- F(l,tc) := Q
end

end

else

begin

37. flag2 := 0;

38. if (P = P2)
then flag := 1

else

begin

39. NEXT.TETRAHEDRON (T, Pi, P2 ,
tc ,

tN);

40. P(2, tc) := P(l, itf)

end

end

end

end

end

end

end

Experiments show that procedure 3D_INSERT-ATTEMPT seldom succeeds in inserting

a line segment. However, this may just be an indication that it is seldom possible to insert

a line segment into a tetrahedralization. Let T, Pi, P2 ,
T* be as above. In what follows, we

show that for a certain kind of T* the failure of the procedure simply signifies that the line

segment can not be inserted into T. Namely, we prove the following proposition.

Proposition 1. If points Q 1 , Q 2 exist, Q 1 ^ Q 2 ,
that are vertices of every tetrahedron in

T*, then at the end of the execution of 3D_INSERT-ATTEMPT, variable flag equals 1 if

15

and only if the line segment can be inserted into T

.

Proof. That flag equal to 1 implies that the line segment can be inserted into T follows

trivially. Thus, it remains to be shown that if flag equals zero then the line segment can

not be inserted into T

.

For some positive integer n, let ti, i = 1, . .
.

,

n, be the tetrahedra in T* in the order in which

they are intersected by the line segment from Pi to P2 .

At the end of the execution of the procedure let T** be the collection of tetrahedra in T that

are intersected by the relative interior of the line segment, and for some positive integer m,

let t\, i = 1, . .
.

,

m, be the tetrahedra in T** in the order in which they are intersected by

the line segment from Pi to P2 .

Clearly, n > m, and since flag equals zero it follows that m > 3.

Let R0 equal Pi, and, inductively, for each i, i — 1, . .
.

,

n, let R t be the vertex of ti different

from Ri.-i, Qi ,
and Q 2 . Similarly, points R[, i = are defined with respect to t[,

i = 1, . .

.

,m. Figure 2 illustrates an example of the facets of the tetrahedra in T* that do

not have Q 2 as a vertex, and of Ri, i — 0, . .
. ,

n, R\, i = 0, . .
.

,

m, where n equals 14 and m
equals 5.

We define a function / from {0,...,m} into {0, ...,n} in such a way that for each i
,

i = 0, . .

.

,m, R[equals RfU)- Based on this definition, for each i
,

i = 1, . .

.

,m, we then

define sets C {-Ro, • • • ,
Rn}, by

Wi = {Rf^- 1)
= R'i_i, Rf(i-i)+ i,

R

f (i) = R
[
}.

From the definition of T** it follows that given i, 2 < i < m, the union of t[_
1
and t[is not

a strictly convex hexahedron (step 15 of procedure). Thus, it is not possible to insert the

line segment and at the same time to have a new tetrahedron in T with vertices Q 1} R[_ 2 ,

R'l-n The same is true for a tetrahedron with vertices Q 2 ,
R[_ 2 , R[_u Rf From this

and the fact that it is always true that F(l,tc) equals F{2,tp) in step 19 of the procedure,

it follows that for each i,i — 2, . .
.

,

m, it is not possible to insert the line segment and at the

same time to have a new tetrahedron with one vertex equal to either Qi or Q 2 ,
two vertices

in Wl-i, and one vertex in Wi \ {R[_i}-

In what follows, we assume that the line segment can be inserted into T. Thus, we must

assume that T* has been transformed in such a way that the line segment is one of its edges.

Clearly, in the transformed T*

,

which we denote by T*

,

only one tetrahedron can have both

Qi and Q 2 as vertices, namely the tetrahedron with vertices Q i, Q 2 ,
Pi, and P2 . All other

tetrahedra with either Qi or Q 2 as a vertex have in addition three vertices of the form Rj,

Rk, Ri, 0 < j < k < l < n.

16

€U

Figure 2: Facets of tetrahedra in T

*

that do not have Q 2 as a vertex, and points Ri,

i = 0, . .
.
,n, i = 0, . .

.
,m.

17

For some integer n', 1 < n' < n, we define integers hi, U, i = 0, . .
.
,n', as follows. We

let h0 and l0 equal 0 and n, respectively. Inductively, given i, i > 0, we assume integers

hi-i, k-i, 0 < /ij_i < l{-

1

< n, have been defined such that for integers j, k, 1 < j < k < m,

Rhi_! G Wj, Ri ._
l
G ± P', Pz;., ^ R'k-i, and the triangle with vertices Qi, P/^,

Ri
i _ l

is a facet of a tetrahedron in T*. Then from the geometry of T* and the last

fact about the triangle with vertices Q i, R^, Ri;_ 15 it follows that integers hi, lz exist,

h 2_! < hi < k < li-i, for which R^ G Wj, Ri
{ £ Wj, and the tetrahedron with vertices Q 1 ,

Rhi _ 1} Rhi ,
R

ti
belongs to T*. If Ri

{
belongs to Wj+ 1 then we let n' equal i. That for some i,

1 < i < n, and some j, 1 < j < m, Ri
{
belongs to Wj+1 ,

while Rh
{_ 15 Rhi belong to Wj,

follows from the fact that {hi} is an increasing sequence of integers bounded above by {/2 }

which is itself a non-increasing sequence of integers. Thus, n 1

is well defined. However, this

is a contradiction, for it implies for some j, 1 < j < m, the existence of a tetrahedron in T*

with one vertex equal to Q i, two vertices in Wj, namely Rh
ri,_ 1

and Rhn ,

,

and one vertex in

Wj+ i \ {R'j}, namely Rin ,- This completes the proof of the proposition.

Finally, in what follows we shed more light on the fundamental differences between

the 2— dimensional and the 3— dimensional line insertion problems by identifying those

3— dimensional problems that can be approached algorithmically as 2—dimensional prob-

lems. In particular, we look at the following problem: Let T be a triangulation in the x — y

plane of 3—dimensional space, let P\, P2 , Pi 7^ P2 ,
be vertices in T such that the line seg-

ment with endpoints Pi, P2 is not an edge in T and its relative interior does not contain any

vertices in T, and let T* be the collection of triangles in T that are intersected by the relative

interior of the line segment. Let T be a collection of contiguous tetrahedra in 3— dimensional
space that have a vertex Q in common and let T be the collection of 2— dimensional triangles

in 3— dimensional space that are the facets of the tetrahedra in T that do not have Q as a

vertex. Assume that the perpendicular projection of T onto the x — y plane equals T* and

that each triangle in T* is the perpendicular projection of only one triangle in T

.

Assume,

in addition, that P{, P2
' are the vertices in T whose perpendicular projections onto the x — y

plane are Pi, P2 ,
respectively, and, without any loss of generality, for the purpose of executing

3DJNSERT.ATTEMPT with T
,
P[, P'

2
as input, that T is a complete tetrahedralization for

its vertices. What conditions must the tetrahedra in T satisfy so that the relative interior of

the line segment with endpoints P[, P
2
lies in the interior of the union of the tetrahedra in T

and the line segment can then be inserted into T with procedure 3D.INSERT.ATTEMPT in

a manner that mimics exactly what the 2— dimensional algorithm (without the optimization

steps) does when inserting into T the line segment with endpoints Pi, P2 ?

In order to answer the above question we further formalize the notation. For a positive

18

integer n, let P{, i = 1, . .
.

,

n, be distinct points in the x — y plane of 3—dimensional space,

and for each i, i = let X{, y, be the x— and y— coordinates, respectively, of Pt .

Given a triangulation T for the set of points Pi, i = 1, . .
.

,

n, we say that a collection T' of

distinct 2— dimensional triangles in 3— dimensional space is a triangulation that generalizes

T (a generalized triangulation for short) if numbers zl ,
i = 1, . .

.

,n, exist such that if points

P-, i = 1, ... ,n, in 3—dimensional space are defined by setting P- equal to (x{,yi, Z
{)

for each

i,i = 1 , ... ,n, then the set of vertices of T' equals the set of points P/, i = 1, . .

.

,n, and the

perpendicular projection onto the x — y plane of T' is T.

Let Pi, P-, Xi, yt ,
Z{, i— l,...,n, T, T' be as above. Assume that the line segment

with endpoints Pi, P2 is not an edge in T and that its relative interior does not contain any

vertices in T. Let T* be the collection of triangles in T that are intersected by the relative

interior of this line segment, and let T be the collection of triangles in T' whose perpendicular

projection onto the x — y plane is T*. For arbitrarily large positive z we let Q represent the

point (0,0,2), and T the collection of tetrahedra obtained by computing the convex hulls of

Q together with each of the triangles in T. In what follows, we say that the line segment

with endpoints P[, P2 can be inserted into T if a collection of tetrahedra T exists such that

the tetrahedra in T have pair-wise disjoint interiors, the relative interior of the line segment

is contained in the interior of the union of the tetrahedra in T

,

the line segment is an edge

in T
,
T and T have the same set of vertices, and the union of the tetrahedra in T equals the

union of the tetrahedra in T. Accordingly, we say that the line segment with endpoints P[,

P2 can be inserted into the positive side of T' if it can be inserted into T. Based on these

definitions, we notice that if the line segment with endpoints P[, P2 satisfies the prerequisite

for insertion into T, i. e. its relative interior lies entirely in T and does not intersect any

edges of tetrahedra in T

,

then an attempt can be made to insert it into T with procedure

3DJNSERT.ATTEMPT even though T is not necessarily a complete tetrahedralization for

its vertices.

We assume that the line segment with endpoints P[, P2 satisfies the prerequisite for in-

sertion into T, that procedure INSERT-SEGMENT (without the optimization steps) has

been executed for inserting into T the line segment with endpoints Pi, P2 ,
and that proce-

dure EDGE-SWAP (step 17 of INSERT-SEGMENT) has been executed m times during the

insertion. Similarly, we assume that procedure 3D-INSERT-ATTEMPT has been executed

for attempting to insert into T the line segment with endpoints P[, P2 and that procedure

TWO-THREE (steps 21 and 27 of 3D-INSERT-ATTEMPT) has been executed m' times

during the attempt.

We define functions a, e from {1, . .

.

,m} into {(z,j) : 1 < i < j < n} as follows: Given

l, 1 < l < m, we set a{l) and e(l) equal to (h,k) and (g,r), respectively, where h, k, q,

r, 1 < h < k < n, 1 < q < r < n, are those integers for which after the I
th execution of

19

EDGE-SWAP in INSERT-SEGMENT the edge with endpoints Ph ,
Pk is the new edge

in the triangulation and the edge with endpoints P
q ,
PT is the edge that has been elimi-

nated. Correspondingly, assuming m' > 0, we also define functions a', e' from {1, . .
. ,

ra'}

into {(i
: j)

: 1 < i < j < n} as follows: Given Z, 1 < l < m ', we set a'(Z) and e'(Z) equal to

(h, k) and
(
q,r),

respectively, where h, k, q, r, 1 < h < k < n, 1 < q < r < n, are those inte-

gers for which after the I
th execution of TWO-THREE in 3D-INSERT-ATTEMPT the edge

with endpoints Pk ,
P'k is the edge that the three new tetrahedra have in common and the edge

with endpoints P'
,
P’T is the edge that the two eliminated tetrahedra had in common and that

does not have Q as an endpoint. Clearly, a(rn) equals (1,2), and if 3DJNSERT-ATTEMPT
is successful then ra' > 0 and a'(ra') also equals (1,2).

Finally, in what follows, given integers h, k, q, r, 1 < h < k < n, 1 < q < r < n, we say

that (h,k) crosses
(q ,

r) if the relative interiors of the line segment with endpoints Ph, Pk and

of the line segment with endpoints P
q ,
Pr have one and only one point in common. Assuming

(h, k
)
crosses (q, r), let x

, y be the x— and y— coordinates, respectively, of the point at which

the line segment with endpoints Ph
. ,
Pk intersects the line segment with endpoints P

q ,
PT ,

and let zkk, zqr be the numbers for which the points defined by {x,y, Zhk), {x,y,zqr)
belong,

respectively, to the line segment with endpoints P

P

k ,
and the line segment with endpoints

P'
q , PI- Based on these definitions, we say then that {h, k

)
is below (q,r) if Zhk < zqT . We are

now ready to answer the question formulated above.

Proposition 2. The line segment with endpoints P[, P'2 satisfies the prerequisite for in-

sertion into T
,
m equals m\ and for each integer l, l = 1, . .

.
,m, a(/) equals a'{l), and e{l

)

equals e'{l
)
so that the line segment can be inserted into T if and only if for each integer /,

Z = 1, ... ,m, e(Z) is below a(Z).

Proof. The ‘only if’ part follows easily. In order to prove the ‘if’ part it suffices to prove

that for each integer Z, l = 1,. .. ,m, e(Z), which obviously crosses (1,2), is below (1,2). This

will imply that the line segment satisfies the prerequisite for insertion in T, and that flag2

always equals 1 in step 25 of 3D-INSERT-ATTEMPT (after the execution of procedure

FACETJNTERSECT in step 24).

Let T* be as defined above, and let T0
* equal T*

.

Inductively, for each Z, Z = 1, . .
.

,

m, let

be the collection of triangles in the x — y plane of 3— dimensional space which is the

transformation of T
l

*_
1
after the I

th edge swap.

Let T be as defined above. For each Z, 1 = 0, ...,m, let T/ be the collection of distinct

2—dimensional triangles in 3—dimensional space whose perpendicular projection onto the

x — y plane equals T)*, and whose set of vertices equals that of T.

20

For each /, / = 0, . .
. ,

ra, we define a real-valued function fi with domain the union of the

triangles in T* as follows. Given a point P in a triangle in T* we let x, y be the x— and

2
/—coordinates, respectively, of P, and let fi(P) be the unique number for which the point

defined by
(x,y,fi(P)) belongs to a triangle in Tj.

Given an integer Z, 1 < / < m, let h, k, q, r, 1 < h < k < n, 1 < q < r < n, be those integers

for which a(l
)
equals (h,k) and e(Z) equals

(
q,r). By definition T* is the transformation

of T{ obtained by replacing the edge with endpoints P
q ,
PT by the edge with endpoints

Ph, Pk Clearly, the replaced edge is shared by two triangles in T*_
1
whose union is a strictly

convex quadrilateral and the new edge is the alternative diagonal of this quadrilateral. These

observations and the fact that e(l
)

is below a(/) imply that //_ i equals /) everywhere ex-

cept in the relative interior of the aforementioned quadrilateral in which i is strictly less

than fi. In particular, given a point P in the relative interior of the replaced edge, it then

follows that //_ 1 (P) < fi(P). Thus, since the edge with endpoints Pi, P2 belongs to T^,

given an integer l, 1 < / < to, and a point P which is the intersection of the edge with end-

points Pi, P2 and the edge replaced in T
l
*_

1
during the I

th edge swap, it must follow that

fi-i(P) < fi(P) < /m (P). Hence, e(l
)

is below (1,2) and the proof of the proposition is

complete.

We notice that Proposition 2 provides conditions for identifying 3— dimensional problems

that can be approached algorithmically as if they are 2— dimensional. However, it does not

provide a method or procedure for selecting the vertices of T so that these conditions are

satisfied. In what follows, we describe one such method that is based on the order in which the

2— dimensional swapping of edges occurs. As will be pointed out below, the implementation

of this method requires that procedures INSERT-SEGMENT and 3D_INSERT-ATTEMPT
be somewhat modified.

Let P and Q be variables as they appear in procedure INSERT-SEGMENT. We define

variable W as the pair
(
P,Q). During the execution of INSERT-SEGMENT, W takes on

different values, each value being taken on by W only once. Let W 1 be one such value and

assume that while W equals W' procedure EDGE-SWAP in step 17 of INSERT-SEGMENT is

executed at least once. Accordingly, we notice that W ceases to equal W' in one of two ways:

when an execution of procedure STRICT-CONVEXITY returns a value of zero for flag2
,
and

when F(l,tc) equals P(2,ip) in step 19 of INSERT-SEGMENT. When the first possibility

occurs it signifies that while W equaled W' the swapping of edges (through the execution

of EDGE-SWAP) did not lead to the creation of a triangle that does not intersect the line

segment with endpoints Pi, P2 (since the second possibility never occurred). Thus, we can

think of the swapping of edges as being unnecessary while W equals a value for which the first

21

possibility occurs, and point out that procedure INSERT.SEGMENT can be modified so that

such a value can be identified as soon as W is set to it (before any swapping of edges occurs)

and W can then be set to its next value. Correspondingly, we can define variable W in the

same manner with respect to variables P and Q in procedure 3D.INSERT.ATTEMPT. Here,

again assuming that W' is one of the values that W takes on, we consider the possibility that

W ceases to equal W' because an execution of procedure STRICT.CONVEXITY in step 15

of 3D.INSERT.ATTEMPT returns a value of zero for flag
1
!. In a manner similar to what we

did for the 2— dimensional algorithm, we point out that procedure 3D.INSERT-ATTEMPT
can be modified so that such a value can be identified as soon as W is set to it (before

any executions of procedure TWO.THREE in step 27 of 3D.INSERT.ATTEMPT take place

while W is set to the value) and W can then be set to its next value.

In what follows, we assume that INSERT.SEGMENT and 3DJNSERT-ATTEMPT have

been modified as just described. We also assume that T, T*

,

n, Pz ,
P-, i = 1, . .

.

,n, T, m,

a, e are defined as above and that the modified version of INSERT.SEGMENT (without the

optimization steps) has been executed for inserting into T the line segment with endpoints

Pi, P2 . We let S* be the set of vertices of T*

,

and without any loss of generality we let

P3 be the point in S* which is the last value that Q takes on during the execution of

INSERT.SEGMENT (obtained through the execution of THIRD.VERTEX in step 31). We
let ra* be the number of points in S* and notice that 1 < 72* — 3 < 772 since for each point in S*

different from Pi, P2 ,
P3 ,

one execution of EDGE.SWAP with Q equal to the point takes place

that produces a triangle tp that does not intersect the line segment with endpoints Pi, P2 . We
define a one-to-one function g from {1, . .

.

,
72*} onto S* by setting g{n*), g(n* —

1), g(n* — 2)

equal to Pi, P2 ,
P2 ,

respectively, and by setting for each i, i = 1, . .
.

,
72* — 3, g{i) equal to the

point in S* which is the value of Q the i
th time during the execution of INSERT.SEGMENT

that the execution of EDGE.SWAP produces a triangle tp that does not intersect the line

segment with endpoints Pi, P2 . In addition, we define functions ini, fin from {1, ... ,72* — 3}

into {1, . .
.
,m}, by setting for each i, i = 1, ...

,
72

* — 3, 2722
(
2
)
equal to the positive integer l

for which the I
th time EDGE-SWAP is executed it is also the first time it is executed with Q

equal to g(i), and fin(i) equal to the positive integer k for which the k th time EDGE.SWAP
is executed it is also the last time it is executed with Q equal to g(i).

Assume that procedure INSERT.SEGMENT has been further modified so that it com-

putes and returns variables that correspond to m, a, e, n*
, g, ini, fin. Based on this

information, we now describe a procedure for computing for each integer i,i— 1, . .
.
,72*, a

number that can be used as the z—coordinate for the vertex of T that corresponds to g{i)

so that for each integer 1,1— 1, ...
,
772

,
e(l) is below a{l). Essentially, the procedure consists

of two steps. In the first step, the numbers zn»_ 2 ,
zn*_i, zn * are selected arbitrarily from the

set of real numbers. In the second step, inductively, for each i, i = 1, . .
.

,

72 * — 3, assuming

22

that the numbers Zi+1 , . .
. ,
zn . have been computed, z t is selected arbitrarily from the set

of possible values of zz for which e(l) is below a(l) for each integer l, l —
In order to see that this set can be computed under the given assumption in a manner

consistent with the required conditions, it suffices to show that its computation depends

solely on z;+ i, . .
. ,

. For this purpose, let /, h, k
, g, r, ini(i) < l < 1 < h < k < n,

1 < g < r < n, be integers such that a(l
)
equals [h, k

)
and e(l) equals (g,r). Then from the

definitions of g and e, g(%) must equal either P
q
or PT ,

and assuming without any loss of

generality that g(z) equals P
q ,

then from the definitions of g, a, and e, integers il, z2, z3 must

exist, i + 1 < zl,z2,z3 < n*

,

such that Ph equals g(zl), Pk equals g(z2), and Pr equals g(z3).

Thus, the computation of the set of possible values of z; for which e(l) is below a(/) depends

solely on Z{+ 1 , . .
. ,

zn .
,
and the assertion follows.

Figure 3 can be used to illustrate the way in which information must be gathered in order

to compute the numbers z^, i = 1, . .
. ,
n*, as just described. Triangulation (i) in Figure 3 is

the initial triangulation into which the line segment with endpoints Pi, P2 is to be inserted,

triangulation (vii) is the desired triangulation obtained from the execution of the modified

version of INSERT-SEGMENT, and triangulations (ii)-(vi) are intermediate triangulations

in the order in which they are computed during the execution of INSERT-SEGMENT.
Each triangulation, except triangulation (i), corresponds to one instance of the swapping

of edges, the dotted edge in each triangulation being the one that is eliminated. It is easy

to see that for this example m equals 6, n* equals 8, the values for e(z), i = 1,...,6, are

(5.6)

, (4,8), (4,7), (5,7), (3,8), (3,7), respectively, and for a(i), i— 1,...,6 are (1,7),

(3.7)

, (3,5), (1,3), (2,7), (1,2), respectively. In addition, from triangulations (ii), (iv)-(vii),

respectively, the values for g{i), i = 1, ... ,5, are obtained (the edge swapping depicted in

triangulation (iii) does not produce a triangle that is not intersected by the line segment) and

they are, respectively, the points P6 ,
P4 ,

P5 ,
Ps, Pi- Finally, we notice that for this example

the values for ini(i), i — 1, . .
.

,

5, are, respectively, 1, 2, 4, 5, 6, and for fin[i), i — 1, . .
.

,

5,

are, respectively, 1, 3, 4, 5, 6 (
P4 ,

the value for g(2), is the only point to which two instances

of the swapping of edges are assigned: those depicted in triangulations (iii) and (iv)). Based

on this information, the numbers Z{, i — 1, . .
.

,

8, are then computed as described above.

23

p*

Pa

Figure 3: A triangulation and the swapping of edges during the insertion into it of line

segment with endpoints Pi, P2 .

24

References

[1] J. Bernal, On constructing Delaunay triangulations for sets constrained by line seg-

ments, National Institute of Standards and Technology Technical Note 1252 (1988).

[2] J. Bernal, Computing Delaunay triangulations for comet-shaped polygons, National

Institute of Standards and Technology Internal Report 4716 (1991).

[3] L. P. Chew, Constrained Delaunay triangulations, Algorihtmica 4 (1989), 97-108.

[4] L. De Floriani, B. Falcidieno, and C. Pienovi, Delaunay-based representation of sur-

faces defined over arbitrarily shaped domains, Computer Vision, Graphics, and Image

Processing 32 (1985), 127-140.

[5] L. De Floriani and E. Puppo, Constrained Delaunay triangulation for multiresolution

surface description, Proc. 9
th International Conference on Pattern Recognition (1988),

566-569.

[6] L. De Floriani and E. Puppo, A dynamic incremental algorithm for constrained Delau-

nay triangulation, Istituto per la Matematica Applicata Tech. Rep. (1988).

[7] C. L. Lawson, Transforming triangulations, Discrete Math. 3 (1972), 365-372.

[8] D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs, Discrete

Comput. Geom. 1 (1986), 201-217.

[9] B. A. Lewis and J. S. Robinson, Triangulation of planar regions with applications, The

Comput. J. 21 (1978), 324-332.

[10] F. P. Preparata, M. I. Shamos, Computational Geometry - An Introduction, Springer-

Verlag, New York (1985).

[11] R. Seidel, Constrained Delaunay triangulation and Voronoi diagrams with obstacles,

Rep. 260, IIG-TU Graz, Austria (1988), 178-191.

[12] C. A. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay

triangulation of a set of line segments, Proc. 3
rd Ann. ACM Symp. on Computational

Geometry (1987), 223-232.

25

