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NISTER 5573

AGILE MANUFACTURING FROM A
STATISTICAL PERSPECTIVE

Robert G. Easterling*

New Initiatives Department

Sandia National Laboratories

Albuquerque, NM 87185

Abstract

The objective of agile manufacturing is to provide the ability to quickly realize high-quality,

highly-customized, in-demand products at a cost commensurate with mass production. More

broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency — the

ability to thrive in an environment of unpredictable change. This report discusses the general

direction of the agile manufacturing initiative, including research programs at the National

Institute of Standards and Technology (NIST), the Department of Energy, and other government

agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics

can be important because agile manufacturing requires the collection and communication of

process characterization and capability information, much of which will be data-based. The

statistical community should initiate collaborative work in this important area.

* This work was performed while the author was a Visiting Researcher at the Statistical

Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD. The

report will also be published as a Sandia report, SAND95-1552
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AGILE MANUFACTURING FROM A
STATISTICAL PERSPECTIVE

INTRODUCTION AND SUMMARY

Introduction

Agile manufacturing, and, more generally,

agility, have become topics of considerable

interest to industry -- a source of ideas,

conferences, organizations, and funding.

Agility is broadly defined by the Agility

Forum (an industry-led, government-funded

organization established by the lacocca

Institute at Lehigh University) as the ability

to thrive in a continuously changing,

unpredictable environment (Dove 1994),

More concretely, agile manufacturing is

thought of as the ability to quickly realize

(design, produce, and deliver) totally new,

customized, high-quality products at prices

commensurate with mass production. To

accomplish this, a structure that is

envisioned is a "virtual enterprise" in which

various resources, or processes, are linked,

sometimes across corporate lines, in a type

of partnership that goes beyond traditional

supplier-producer relationships.

Agility, as "change-thrivability," is

obviously a desirable ability, from the

personal to the organizational to the

corporate to the national levels. Nobody

could be against it. The challenge is how to

achieve it. The virtual enterprise is seen as

an important ingredient. But of course

there are other possible success ingredients,

such as flexibility, leanness, total quality^

management, process re-engineering,

customer-focus, and many others. And as a

statistician, I think overt statistical thinking

and methods -- data-driven decision-

making, ferreting out and eliminating or

controlling sources of variability, etc. —

also enhance an enterprise's chance of

success or its thrivability in the face of

change. With this motivation, then, I

decided to explore the concept of agility

and the possible role of statistics in agility.

Many authors have written on statistical

needs in industry (see, e.g., Hoerl et al.

1993 and their references), with an

emphasis in recent years on the relationship

of statistics to quality. There are other

aspects of industry that warrant statistical

participation, one of which potentially is

agile manufacturing. Thus, the focus of this

report is the potential role of statistics as an

enabler of agile manufacturing. Whether or

not Total Quality Management in its

various incarnations fades from the

limelight in favor of something else, say re-

engineering, or maybe even agility, the

constant need remains for statisticians to

help industry make better products, more

consistently, quickly, and economically.

Useful, usable data-based information is

essential to good industrial practice, under

any banner, and that need provides

opportunities for statistics.

Summary

The broad, current definition of agility as

thriving on unpredictable change has led to

the development, by the Agility Forum, of a

structure, or a framework, for addressing

“change-proficiency.” Change-proficiency

is not a characteristic limited to virtual

enterprises, so this structure can apply to

individual organizations, product lines, or

work stations. Change-management is a

recurring theme in industry, with an

extensive literature, so it remains to be seen

whether the agility perspective will b ring

something new to change-proficiency.

But, what is the agility perspective? What

does one do to become agile? By the broad

definition, anything that works (thrives on
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change) must be agile. Thus, widely

disparate examples of successfully dealing

with unpredictable change, with no other

constraints, are not very helpfiil. For

example, an agility instance I have seen

cited is the hiring by one company of a

CEO from an unrelated industry. The

structure developed by the Forum for

evaluating an operation's change-

proficiency in various domains, plus the

development of reference models of "best

agile practices" should help define agility in

practical ways.

In statistical terms, agility is a dependent

variable. Development of a theory of

agility means the identification of

predictors of agility — industrial practices

that increase the probability of thriving in

an environment of unpredictable change.

Examples and case studies can suggest

predictors, but caution is warranted in

inferring a cause-and-effect relationship in

such observational data. What works for

one company in its environment may not

work at all for another company and its

environment. Ideally, one would test

theories in controlled experiments, but

company-level, or product line-level

experiments are generally infeasible.

Government funded research could

undertake such experiments.

Change-proficiency theories can be

interesting, but the real opportunities for

statistics lie in agile manufacturing — quick

realization of high-quality, highly

customized products, at competitive cost.

Predictable, well-characterized, and well-

controlled manufacturing processes are

required in order to rapidly reconfigure

manufacturing processes to produce

products that meet particular customer

needs, and much of the process information

required to support successful reconfig-

uration will be statistical in nature.

Mathematical models of processes are

needed in order to make design and

production process decisions much more

rapidly than can be done by iterative

physical testing. While these models are

often physics-based, there are statistical

issues in the estimation of model

parameters and in the validation of models

experimentally. Agile design decision-

making, however, may require models of

relationships that are not typically

addressed theoretically, so the development

of empirical models is also needed, a point

that has been made in the materials

processing area by Szekely and Trapaga

(1994). A NISS (National Institute of

Statistical Sciences)-NIST workshop report

(Karr 1994) points further to the

opportunities for statistical-materials

sciences collaboration in developing the

process understanding and analytical tools

that will permit agile manufacturing. The

availability of computer models and the

need to extract information from them lead

to computer experiments and raise

experimental design issues that the

statistical community has been addressing

in recent years. Predicting process

capability via process models, as opposed

to process exercising, also poses interesting

statistical problems.

Much industrial statistical practice is

quality-related and the national quality

thrust of recent years has invigorated

industrial statistical practice. Quality is one

element of agile manufacturing — it's

assumed that high-quality will be achieved.

Actually accomplishing that, in the

dynamic, short production run (lot size of

one?) world of agile manufacturing will

require the (continued) development and

application of new statistical methods. It is

also apt to require deep immersion by

statisticians in product realization projects,

rather than the role of a consulting

specialist. The goals of agile manu-

facturing — faster, better, cheaper — extend

beyond the traditional bounds of quality,

say process characterization and control.

5
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and they will endure, whether under the

heading of agile manufacturing or some

other banner. Statisticians and statistical

methods can make important contributions

to achieving these goals.

Research under the heading of agile

manufacturing generally deals with the

infrastructure for linking together the

processes required by an enterprise and for

moving information across those con-

nections. Presently, there seems to be little

statistical content in infrastructure issues,

but at some point standards for the

transmittal of statistical information

pertaining to processes will become

important. A Sandia demonstration project,

though, has provided an opportunity for the

development and testing of statistical

qualification methods in agile manu-

facturing.

The goal of agile manufacturing — quick,

economical realization of high-quality,

customized product — is important to

industrial competitiveness and survival.

The routes to that goal may differ from

industry to industry and company to

company. Common to all, though, is the

need to provide information that can be

readily used to decrease design and

production time and cost. Modem data

generation, storage, and analysis capabil-

ities pose new problems and opportunities

for the statistical extraction of information

from data. But, the opportunity has to be

seized. Statistics can be (or at least

perceived to be) a speed-bump rather than a

speed-enhancer on the road to progress.

Our personal and professional agility are

worth some thought.

In sum, I encourage statisticians to seek out

collaborative opportunities to help industry

realize the goals of agile manufacturing.

This report describes in general the sort of

work that is needed, but it is the day to day,

in-depth project involvement that will lead

to success.

AGILITY AND AGILE
MANUFACTURING

A Brief History of Manufacturing

A century ago, manufacturing was

accomplished by craftsmen. A single

craftsman made a rifle; a team of craftsmen

made a locomotive. Then, to meet the

needs of mass production, came inter-

changeable parts (achieved by variance

reduction) and the assembly line. Straight

line production is susceptible to bottlenecks

and breakdowns, so flexible manufacturing

systems evolved, whereby alternate paths

through a production network were

possible. Leanness in manufacturing has to

do with the elimination of waste and non-

value-adding operations (which can also be

variance-introducers), and can be related to

flexibility. If a machine, or work cell, or

technician is flexible enough to do more

than one job, the operation is leaner

because of not having to have two

dedicated machines. (Reader's Digest joke:

To the old saw about how the optimist and

pessimist see the half-full (-empty) glass of

water, there is added the efficiency (re-

engineering, lean, ... ) expert who says,

"Whoa. Looks like you've got twice as

much glass as you need.") Agility, then, is

to be the next step beyond flexibility.

Agility

(This discussion is drawn largely from

Nagel and Dove (1991) and Dove (1994)

plus my experiences as a member of the

Agility Forum's Agile Operations Focus

Group. Dove (1995), which appeared after

this report was largely written, is the
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Forum’s most recent exposition on agility.)

The vision set forth (Nagel and Dove 1991)

by the team that launched the agile

manufacturing initiative is that the agile

enterprise will be able to rapidly create

totally new products, not just flexibly

produce a particular product. Stated more

fully, the agile enterprise will quickly

produce high quality, highly customized

products, usually in low volume, at the

same cost levels achievable by mass

production. The phrase sometimes used is

"mass customization." Horse shoes one

day; engine blocks the next. Further, in

some contexts, the product is to be readily

upgradeable in the hands of the customer, a

la some computers. All this is to be

achieved by linking together resources and

processes, oftentimes across corporate

lines, thus forming a "virtual enterprise,"

supported by an information infrastructure

and system of standards that smoothly

accomplish the linkage and implemented by

a workforce that correctly and efficiently

uses and communicates the information

made available, to produce a customized

product. Then, after delivering the product,

the enterprise will dissolve and reform in

other configurations to produce other

products. To a degree, the concept of mass

customization is a return to craftwork

(Headline, Wall Street Journal, Oct. 24,

1994: "Back to the Past: Some Plants,

Especially in Japan, Are Switching to Craft

Work From Assembly Lines"), but on a

larger scale and with more fluidity and

speed.

Agility in manufacturing is not explicitly

defined in Nagel and Dove (1991). Thus,

the implication is that the dictionary

definition applies: agile — "marked by

ready ability to move with quick easy

grace;" agility — "nimbleness, dexterity"

(Webster's Ninth New Collegiate

Dictionary). Subsequent work on

developing the concept and providing the

credentials for a new paradigm, represented

by Dove (1994, 1995), has led to the greatly

expanded definition given above: ability to

thrive on unpredictable change. The

apparent connection is that in order to

thrive on unpredictable change, an

enterprise must be able to rapidly create

totally new products (as opposed to rapid

improvements or modifications of existing

product lines). This ability is to be derived

from the ability to quickly reconfigure

processes and resources to achieve creation

of a new product ("reconflgurable

everything" is the phrase used). Further,

agility, under the broad definition, is not

restricted to manufacturing and it can be

applied to various levels within an

enterprise — a department, a machine, a

product line, a service organization — and

not just to a cross-corporate virtual

enterprise.

Change-Thrivability

Companies have always had to deal with

changing environments — buggy-makers

became automobile makers; some thrived,

most disappeared. Management texts and

journals must, I would guess, be filled with

case studies and theories of success.

Currently, U.S.-Asian joint ventures in

automobile production are examples of

reconfigurability as a survival/thrival

technique. Whether the current rate of

change, or the nature of current changes, is

dramatically different from the past, as

advocates of agility and other avenues to

success maintain, and render earlier

solutions inadequate, is an issue that I'll

leave to the specialists. There is always a

tendency, though, call it proximity bias or

short-term memory, to regard the present

environment as dramatically more chal-

lenging than anything our predecessors saw

and therefore there is a need for new

solutions.
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Whatever the nature and pace of change,

today's businesses need to deal with today's

changing environments. How do they do

it? Is there any underlying theory of

thrivability? Are there tools that help 'do

agility'? What changes should be made on

the factory floor? Several years ago there

was a spate of books on change manage-

ment, but these seem focused on the

sociological aspects of adapting to or

surviving change that is thrust upon one, or

they dealt with the methods by which an

enlightened or frightened management

could bring change to their organizations.

The current hot management topic, re-

engineering, continues the change theme

and deals with radically changing internal

processes and often reducing the work-

forces that run those processes. (A change-

survival approach that appeals to me, which

is the bane of change-theorists, but will

someday have its 1 5 minutes of fame, is the

science of 'muddling through,' which I once

saw in an article — British, I believe.)

The agility proponents appear to be

broadening the change-management

perspective by considering the technical

aspects of change — how do you design a

system, or a company, or a department to

be change-proficient? — and going beyond

survival to "thrival." Also, rather than the

ability to make a specific change, the agility

focus is on the ability to respond to future,

unanticipated, repeated changes in the

environment. But even if there were

nothing new in the objective of change-

proficiency, in a dynamic world there is

need to rethink change as the times change.

For example, computing and commun-

ications power, the ability to rapidly

generate, process, and exchange massive

amounts of information (not just data), is

both a part of today's unpredictably

changing environment and a provider of the

technological tools that make new modes of

change-proficiency possible. So, new tools

for change-proficiency are available and

agility provides a vehicle for their appli-

cation. Agility, as change-proficiency, is in

an early stage of development, and it

remains to be seen whether this perspective

will add to our understanding of change.

Agility, Statistically Speaking

Agility, in statistical terms, is a dependent

variable, a response variable, not a set of

independent variables that "causes" this

response. Its definition doesn't provide or

suggest the means by which that result is to

be attained. The leading candidate

independent variable, by the discussion

above, is reconfigurability: "Reconfig-

urable everything" (it is said) leads to the

ability to thrive in an environment of

unpredictable change. But, that's a difficult

theory to test and to put into practice and

one can conjecture about other causal, or at

least contributing variables, such as

concurrent engineering, computer-aided

everything, automation, visionary leaders,

flat management structures, empowered

work teams, and many more. The

definition of agility invites such conjec-

tures. Sorting it all out, finding methods

that, in advance, can be claimed to have an

appreciable probability of success, is an

objective of the Agility Forum and agility

research sponsors. To date, the search for

independent variables has led to the

collection of examples and the development

of "reference models," which are

collections of best agile practices, and to a

focus on smaller organizational units than a

virtual corporation.

The breadth of the Agility Forum definition

of agility can lead to putting everything

good under the heading of agility (if it

works, it's agile). Doing so, though, dilutes

the concept and confuses people trying to

understand what is new and unique about

agility. More specific examples can help to

characterize agility in practice and one can

8





also examine collections of examples to try

to identify common contributors to agility.

While such information can be useful, the

(statistical) cautions one should apply to

observational data are very appropriate.

Just because Company A attributes its

success on Project P, in environment E, to

its use of method X, doesn't mean that

Company B, in environment F, can expect

success if it uses method X. Either

'lurking,' unrecognized or unattributed

variables, by themselves or in conjunction

with method X, or environmental differ-

ences may invalidate such an inference. A
familiar example is that some American

companies found that some Japanese

quality practices were not a "treatment" that

could be applied to their company and get

the desired response. The "Hawthorne

effect," improvement due just to the

attention given a project, rather than the

method tested, may also be at work.

Further, there is a selection bias: we don't

know how many other companies tried

method X and were not successful.

Typically, the search for examples begins

with a survey asking for success stories and

typically the response rate is very low,

clearly a further source of selection bias. In

reliability terms, success stories provide

numerator data, not denominator data, so

probability of success cannot be estimated.

Lack of a control (e.g., a parallel project

that used method Y, a standard method) and

lack of replication also limit the ability to

draw inferences from examples.

One way to overcome the limitations of

observational studies would be to conduct

designed experiments, but that is generally

not feasible in a commercial manufacturing

setting. For example, it's generally not

possible to have two or more teams take on

the same project by different methods. All

one can often do when a new approach is

tested, is to measure its value by

comparison to a previous project under the

old approach. Reduced cycle times, costs,

etc., if achieved, are attributed to the new
approach. Some sort of subjective standard

error is used to decide when the reduction is

more than just (random) noise. This

attribution may be warranted at least in

part, but separating out the method's effect

from general learning effects and the

Hawthorne effect may be impossible. In

these circumstances, face validity of anec-

dotal evidence is generally what one has to

rely on in inferring the success of a new
method. If multiple companies (or a whole

country, say Japan) replicate tests of

method X, then the combined results should

be more convincing (providing non-

successes are not screened out). I'm not

aware (not having searched the

management literature) whether any such

meta-analyses have been carried out. In

this vein, though, recent news stories

reported a follow-up study of companies

identified in the Peters and Waterman

(1982) book, In Search of Excellence, that

found their stock performance had not

exceeded overall stock averages. While

stock performance may not be the best

measure of excellence, the notion of

looking for consistent effects across

multiple "trials" of a method is statistically

correct. Both the average and the

variability of those effects are informative.

To some extent government- and industry-

funded work in industry, university, and

government laboratories, taken together, is

an experiment in agility methods. Looking

at that program from an experimental

design point of view (Are there controls,

replication?) might be informative.

It is interesting to contrast the way in which

new industrial procedures are adopted with

the way in which new medical procedures

are adopted. Medical procedures require

fairly strong experimental proof of efficacy

and the lack of harmful side effects.

Industrial/management procedures require

publicity, charismatic advocates, and a

9
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good collection of anecdotes. Experi-

menting on companies, or product lines

within companies, is different from

experimenting on patients, but the

similarities, and differences, and the

benefits provided by clean experimental

evidence are worth thinking about.

Examining sets of examples and identifying

common apparent contributors to success is

sometimes called 'benchmarking.' I'm

aware of two agility benchmarking studies:

One, by the Agility Forum (Goldman 1992)

selected four characteristics of agility:

information-sharing, man-machine inter-

face, concurrency, and level of cooperative

development across companies, and asked

companies to compare successful and not

so successful projects with respect to these

characteristics. Contributing factors to

success were identified as: simulation/

modeling techniques, design technologies,

flexible production techniques, and

information technologies. Another

benchmarking study, Hilton and Gill (1994)

attributed leading companies' success in

quickly and efficiently launching new

products to the "use of cross-functional

teams, a standardized development process,

and a partnership approach to supplier

management" — not exactly the dramatic

stuff of a new paradigm. Further study

would be required to tell whether consistent

evidence on the contributors to agile

success was found in the two studies.

Another means by which the concept of

agility is being developed is by focusing on

smaller units than the cross-corporate

virtual enterprise. A work cell, a product

line, a business system, a department, etc.,

can all have features that allow them to

thrive in a changing environment. One can

also have temporary organizations created

within a corporation. While this would just

be a project team, hardly a new concept,

agility ideas may have something to offer in

how those teams are created, supported, and

managed. To characterize agility at these

lower levels, the Agility Forum is

sponsoring focus groups that will collect

best practices in very specific areas and

assemble them into "reference models" of

agility. Further, as described in the

following paragraphs, it is defining "best"

from an agility perspective, which is not

necessarily the same as, say, a profitability

perspective. Where best practices are not

very agile, constructs of what would be

agile will be developed. For these

reference models to be useful it will be

necessary, following the discussion of the

previous paragraphs, to provide as much
information about the environmental

context as possible, and to probe these best

practices for hints of lurking variables.

(Note. My cautionary remarks are not

meant to discourage learning from others'

experience — what are the alternatives? —

but to point out ways in which that learning

might be enhanced.)

Measuring Agility

Dove (1994) has initiated the development

of a structure, a set of principles underlying

agility, by identifying domains in which an

organization has to be proficient at change.

That is, to thrive in an environment of

unpredictable change, an organism has to

be proficient at changing itself to cope with

and capitalize on environmental change —

industrial Darwinism or Lamarckism, if you

will. (Actually, agility advocates say that

adaptation won't keep up; DNA alteration is

needed.) At any rate, eight change domains

have been identified and are listed in Table

1. The terminology in Table 1 requires

some elaboration. I would express the

Table 1 domains, in general terms, by

saying that you have to be proficient at

changing what you produce, how much you

produce, the configuration of your

processes and resources, your resource mix,

and your fundamental concepts; further.
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your processes have to be robust, fixable,

improvable, and improving. Reusable,

reconfigurable, and scaleable are other

adjectives that reflect agility’s attributes

(Dove 1995).

To evaluate change-proficiency in these

domains, it is proposed to measure pro-

ficiency in four dimensions: 1. Cost. 2.

Time (How much money and time does it

take you to change, in response to some

specified environmental change?). 3.

Robustness (For example, when a change

is made from one product to another, how
much effort and cost are required to get the

new product line running smoothly?).

Table 1. Eight Agile Change Domains*

Creation Build something new.

Capacity Increase/decrease existing resource

mix.

Capability Add/delete resource types.

Reconfiguration Change relationships among

modules

Migration Event-based change of

fundamental concepts.

...Agile adds new domains above to traditional lean

domains below

Performance Real-time operating surprise.

Improvement Continuous, incremental upgrade.

Recovery Reincorporate corrected failures or

alternatives.

*Copyright 1994, Rick Dove, Agility

Forum, Bethlehem, PA 18015

4. Scope (How much change can you cope

with (thrive on?)). These dimensions are

intertwined, of course, and the first three

are functions of the magnitude of the

change that is postulated. For example, a

composite-material bicycle wheel maker

might be asked to consider the changes

required to: 1. make wheels with slightly

larger or smaller diameters, 2. make

composite-material termis rackets, or 3.

make composite-material auto body parts.

Or, since we're talking total unpredictability

here, 4. to make plastic trash cans, or 5.

space shuttle skin panels. Time, cost, and

robustness will vary with the contemplated

change, so there's no single measurement of

these attributes. Scope, though, should

limit the postulated change to changes

within reach of an organization's

competencies and resources, which puts a

practical limit on the unpredictableness of

the change that can be considered. That is,

“Horseshoes today. Engine blocks

tomorrow,” may be the epitome of agility,

but it is beyond practical planning horizons.

This categorization of change domains and

metrics, under the working hypothesis that

change-proficiency leads to thrivability,

translates the focus to specific, measurable

(in principle) characteristics, as does, e.g.,

defining cardiovascular health in terms of

blood pressure, cholesterol, triglycerides,

etc. These 32 attributes are still dependent

variables, but by being more specific and

measurable, in principle, the search for

independent variables that influence

selected attributes may be simplified.

The matrix structure consisting of change

domains by dimensions can also be used to

evaluate an operation's agility. Considering

the enterprise as a whole. Dove (1994)

suggests 12 "enterprise elements" within

which such an evaluation might be done,

but it's possible to apply the analysis to any

organizational unit. Doing such evaluations

has been one function of the Agility Focus

Groups. From limited experience, my
impression is that this analytical tool has

not yet been developed enough to say that

the agility perspective yields insights not

otherwise obtainable. Asking a bicycle

wheel manufacturer to think about making

tennis rackets may not stimulate much

insight. Experienced, knowledgeable

reviewers, whether thinking agility or not,

can usually spot problem areas in a
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production process, including areas that are

lacking in or degrading to change-

proficiency, but these are apt to be well-

recognized by members of the organization

being reviewed.

(As a personal aside, I would note that

while the activities of the Agile Operations

Focus Group in which I have participated

have had limited explicit statistical content,

this participation has been very valuable in

providing a context in which to examine

statistical aspects of agility. It is also

useful, I think, to examine one's personal

and organizational skills in terms of

proficiency in the various change domains.

Statistical practice has some inherent agility

skills in that statisticians can be quickly

reconfigured. We can plug our methods

into a wide variety of applications

(enterprises). One of my professors, Carl

Marshall, expressed the following

sentiment which has remained with me:

"The nice thing about statistics is that the

nouns may change, but the verbs stay the

same." That is, bushels of com one day,

microelectronic chips the next, but ANOVA
(analysis of variance) endures.

(Organizationally, though, we need to pay

attention to our change-proficiency. We
face unpredictable changes in the

environments in which statistical organ-

izations function. Companies and agencies

can suddenly reorganize in ways that can

profoundly alter the working relationships

and clientele that a statistical organization

has established. The quality boom provided

a boost for some statistical groups, witness

the various university Quality Centers that

sprang up, but what next? Recent AmStat

News articles have discussed with alarm the

dissolution of and attacks on institutional

statistical groups.

inherently collaborative discipline, the

agility model of floating alliances is

appropriate. We need to initiate, establish,

and contribute importantly to alliances in

emerging areas, such as the subject of this

report, agile manufacturing.)

Agile Manufacturing

Outside the Forum, agility in manufacturing

(or, agile manufacturing), I believe, is

generally still defined, in line with the

original Agility Fomm vision (Nagel and

Dove 1991), as the ability to quickly realize

highly customized, high-quality product,

generally in low volume, but at a cost

corresponding to mass production. (I don't

think, however, that the condition that this

product literally be "totally new" is

imposed. You've got to stay within reach of

your core competencies, which, of course,

can change over time.) This definition,

which is recognizably related to the

dictionary definition (nimbleness), trans-

lates more readily (than change-thrivability)

into engineering approaches such as

concurrent engineering, the use of

mathematical models and computer

simulation to reduce design and test times,

technology improvement, automation, and

real-time process monitoring and control.

Improved manufacturing architectures, such

as flexibility and reconfigurability, also fit

in here. Of course, technology does not

exist in a vacuum, so the surrounding and

sometimes supporting business, engineer-

ing, and cultural practices are also

important contributors to product realiza-

tion and they need to be designed to

facilitate the speed and cost-effectiveness

of the endeavour, i.e., to be agile. All this

is evidence of change-proficiency, but is

not tantamount to it.

A full airing of these issues is outside the

scope of this report, and I can offer no

solutions except to note that, as an

12
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I've dealt at some length, however, with

agility in the broad sense, because that is

the direction the agile manufacturing

initiative has moved. And it does provide

an appropriate backdrop: rapid realization

of customized products will require change-

proficiency. I'm concerned, though, that

rapid (customized) product realization,

reconfigurability, and change-thrivability

are all getting so mixed up that the concept

of agile manufacturing will suffer because

of it.

Reducing product realization cycle times

and costs, from concept to delivered

product, has long been an imperative for

industiy’ and will continue to be, whether

under the heading of agile manufacturing,

quality improvement, re-engineering, or

something else. While some industries may
survive, even thrive, for some periods of

status quo operations ("If it ain't broke,

don't fix it."), competition generally

disrupts this state of complacency. If there

is a constant it is the need for improve-

ment. And, as long as some fraction of the

population has enquiring minds and tolerant

management, people will seek better ways

of doing things, some evolutionary, some

revolutionary'. Agile manufacturing

continues the industrial imperative for

reduced product realization time and costs

and adds the imperative for customized,

economical, low-volume production.

On the matter of terminology, it may be

useful to distinguish betw^een advanced

manufacturing and agile manufacturing.

Advanced manufacturing, in my under-

standing, refers to the new technologies —

the processes and equipment — by w'hich

raw materials are transformed into

products. Clearly, new manufacturing

technology is often aimed at faster product

realization, reduced cost, and higher quality

" less time, less rework, less variability —

and so it contributes to agile manufacturing.

Agile manufacturing, though, refers to the

coordination of manufacturing technologies

(not all of which need be considered

"advanced") in order to rapidly realize

customized product. It also refers to the

supporting mechanisms and business and

engineering practices by which this can

smoothly happen. For example, data bases

and software support systems that help a

design team quickly and intelligently

choose among design options are

contributors to agile manufacturing.

Figure 1 is my depiction of agile

manufacturing. At the upper right of the

figure is the enterprise's objective — a

product aimed at satisfying a customer's

requirements in terms of cost, performance,

production-volume, and schedule. Pro-

ducing that product requires the linkage of

several processes. The figure illustrates a

serial linkage, in which the output of each

process is input, possibly along with other

inputs, for the next process. More complex

arrangements are, of course, possible.

Next, Figure 1 shows that for each process,

the producer, conceptually, has various

alternatives from which to choose. These

alternatives could be different equipment,

different parameter settings on the same

equipment, different potential partners (in

the sense of forming a virtual enterprise),

distinctly different processes (such as the

use of different chemicals in a cleaning

process), etc. The decision problem is to

choose among the alternatives for each

process in order to yield a product that

meets or exceeds customer requirements in

performance, cost, volume, and schedule.

The agile challenge is to make these

decisions quickly and intelligently (right, or

nearly right, the first time). Achieving this

means having viable choices at your

disposal and having enough information

about them to make good choices. Making

different choices for different products and

customers represents the reconfigurability

discussed above.
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As indicated, meeting the agile

manufacturing challenge requires infor-

mation — a lot of information, but not so

much as to overload the recipient's capacity

and not so overladen with noise that the

signal is obscured. It is the generation and

management of appropriate information

that is the backbone of agile enterprises.

One will not have the luxury of developing

new processes, evaluating and comparing

Figure 1. Conceptual Model of Agile Manufacturing

alternatives, then designing, building, and

testing prototypes for several iterations

until arriving at a successful product design.

Instead, one needs readily available and

understandable information pertaining to

the alternative processes and their

interfaces, plus the ability to predict the

characteristics of the product that will

emerge from a selected candidate set of

processes. Good, trustworthy predictions

would mean that few, if any, prototype-

build and design-tweaking iterations would

be required before actual production.

Morton (1994) in a wide-ranging and

entertaining survey of manufacturing

technology, published in The Economist,

cites agile manufacturing as "(o)ne of the

most influential visions of future

manufacturing in the past few years," and

describes the importance of predictability in

the following terms:

The precondition (to agile

manufacturing) that matters

most ... is predictability. The

essence of agility is

sensitivity to time. The

different companies involved

have to know their capa-

bilities exactly, and the time

they take exactly. This is

what new factory manage-

ment technologies make

possible. When a virtual

enterprise is assembling

itself, it has to know

14
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precisely the dimensions of

its parts, not in breadth,

length, and depth, but in

terms of such things as

process time and quality. At

present, few companies can

accurately measure them-

selves in many of these

dimensions.

One might statistically quibble with

"exactly," but the point is unarguable: To

successfully and quickly assemble a virtual

enterprise, whether across-companies, as in

the grand vision of agile manufacturing, or

across departments within a company, the

players' capabilities have to be known

(well-estimated) and predictable -- they

won't go unstable in a new enterprise.

Measuring a company or a process in the

dimensions of time, quality, and capability,

with adequate and appropriate accuracy and

precision, is in part a statistical problem.

The other precondition cited by Morton

(1994) is that these new dimensional

measurements be clearly communicated.

Achieving clear communication will

require standards for communicating

information that goes far beyond part

geometry, for example, to include process

time, capability, and quality, as just

indicated. He states, "interoperability will,

in the end, matter more than pure

performance, and assuring that systems in

different companies work together will

definitely require standards." This points to

an already-existing NIST role in agile

manufacturing and Morton cites STEP (the

developing standard for the exchange of

product data) in this regard. The role of

statistics in formulating how to

communicate estimates, standard errors,

variance components, degrees of freedom,

and the like, pertaining to a process's

characterization (quality), needs to be

considered.

The two fundamental problems in agile

manufacturing are thus (1) determining

what information should be developed and

provided and (2) determining how that

information should be communicated.

Because much information is data-based,

statistics is inevitably involved. The

following sections discuss various aspects

of this involvement.

MANUFACTURING PROCESS
MODELING

There are two basic ways to make process

predictions. One is to have data bases of

the results of exercising various processes

under various conditions. These could be

searched to compare and select from

alternatives for a given process. As an

example, one of the Year 2006 agile

manufacturing scenarios described in Nagel

and Dove (1991) features the Factory

America Network, which "provide(s)

elaborately cross-indexed information about

manufacturing capabilities, materials

handling facilities, software development,

engineering services of every kind,

hardware and software product availability

(together with price and performance data),

marketing, and customer service expertise."

Statistical issues in this context pertain to

how information, such as the environmental

conditions under which a process was

operated, recognizable variance com-

ponents, and the uncertainty in the

estimates of process characteristics, should

be conveyed.

The second way to make process

predictions is through mathematical

models. Predictions, in the agile,

customized product world, are apt to be

needed for conditions for which a process

has not been run, or at least not run

extensively enough to adequately
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characterize the process. At the

development stage, there will be a need to

make predictions for processes that may
only exist on paper. In some cases, it may
be possible to estimate process performance

by interpolating between or extrapolating

beyond neighboring process data (bearing

in mind the general caveats mentioned

above about the risks of drawing inferences

from observational data), but there will also

be a need to predict where no one has gone

before. Further, to make predictions over

combinations of processes, as illustrated by

Fig. 1, and to try to optimize the

combinations, a multiple data base search

approach is apt to be unwieldy or

infeasible. Mathematical models for

processes, if they model the appropriate

relationships and characteristics and are

trustworthy, thus offer a second way to

make process predictions for single

processes and, if compatible, across

combinations of processes. The Year 2006

scenarios in Nagel and Dove (1991) reflect

the important role of mathematical

modeling in agile manufacturing as follows:

"Intensive use of computing power allows

the properties of new products and the

behaviors of new manufacturing processes

to be predicted in advance."

There is an extensive amount of work going

on today in the development and use of

mathematical models to reduce design and

evaluation time. "Virtual manufacturing,"

"virtual testing," and the "factory in a

computer" are all expressions of this role

for mathematical models. A commonly

cited example is the Boeing 111 airplane,

which was designed and analyzed in the

computer so that the first unit built could

also be the first unit flown. No mock-ups

were required to assure that its parts would

fit. At General Motors, the concept is

"math-based vehicle development"

(Cowger 1994 and McDonald 1993),

referring to testing the engineering and

manufacturing intent of a product via math

models and computer simulation, rather

than physical build and test. Processes that

have been modeled pertain to applications

that include sheet metal forming,

aerodynamics, throughput analysis, heat

flow, and structural analysis. An example

cited by Cowger (1994) of the agility gains

attributable to math modeling is that the

time required to design an automobile hood

has been reduced from 90 days to one day.

The type of model required to support agile

manufacturing is one that predicts product

performance characteristics as a function of

design and process variables. In Fig. 1, the

product characteristics of interest for the

final product include things such as fit and

strength, in the case of mechanical

products; output voltage, current, and other

electrical properties for electrical and

electronic products; reliability indicators in

either case, such as the stress (e.g.,

mechanical load or voltage) at which failure

occurs and time-to-failure under various

environmental conditions; and cost, in the

traditional cost of materials and labor sense,

but also environmental and maintenance

costs over product lifetime. Time-to-

produce is another important cost variable

in agile manufacturing. Process variables

include raw material characteristics,

environmental conditions during produc-

tion, and process settings, such as feeds and

speeds for machining processes and

temperatures and deposition rates for

chemical processes. For a performance

characteristic such as reliability, reliability

models need to fold in use conditions and

their effect on performance. In general,

such integrated process-to-product-to-

performance models are not available. The

complexity and multidimensionality of the

relationships are daunting. Nevertheless,

models of pieces of the total process can be

useful in making design decisions. Work
towards integration, as discussed in the

following paragraphs, is required, though, if

these mathematical models are to be most
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effectively used in achieving rapid

realization of customized products.

Materials Processing Models

A glance at current scientific and

engineering literature shows the widespread

effort in developing mathematical models

of processes pertaining to manufacturing.

Any attempt to categorize, summarize, and

evaluate the status of such modeling in the

context of agile manufacturing is well

beyond the scope of this report. A recent

paper, Szekely and Trapaga (1994)

(abbreviated in the following paragraphs as

ST), however, provides a very useful

perspective on the mathematical modeling

of materials processing operations, so I will

summarize and comment on their view.

Because materials properties are

fundamental determinants of performance,

this body of modeling is a major portion of

potential process modeling. Readers

familiar with the status of modeling in other

areas, such as casting, machining, and

assembling can evaluate the extent to which

the materials processing perspective of

Szekely and Trapaga applies in those areas.

In their review of materials modeling, ST

indicate that "while major advances are

being made in both the software and the

hardware used in materials modeling work,

and in the range of problems that are now

being successfully tackled, most of the

modeling work to date does not address the

critical problems faced by the materials

industry, namely the potential market for a

new product, the trade-offs between cost

and performance, manufacturability, and

environmental impact." Making such trade-

offs and evaluations is the agile manu-

facturing challenge represented by Figure 1.

ST's explanation for the lack of modeling

work on these critical problems is that

"very different groups of the (materials)

community, with very different skills and

attitudes, tend to study process on the one

hand and product on the other."

ST's recommended future directions point

to opportunities for statistics (though not

called out by them explicitly). In their

discussion of models, they distinguish two

types: mechanistic models, which are based

on fundamental physical and chemical

relationships such as mass and energy

conservation, and simulation (or empirical)

models, which "seek to mimic a system

mathematically, invoking experimental

information, without paying particular

attention to the process mechanisms

involved." In passing, I would note that

mechanistic models also only mimic a

system mathematically, because, in general,

they cannot capture all the physics and

chemistry of a complex relationship and

therefore have to make simplifying

assumptions. They also may invoke

experimental information to estimate

certain parameters within the mechanistic

model. Mechanistic modeling is generally

the strict purview of physicists and

chemists, but statistical aspects include the

design and analysis of experiments to

validate a model, estimate its parameters,

and characterize the residual variation of

the difference between model predictions

and experimental data (because there will

be some) and the corresponding statistical

precision of the parameter estimates..

Empirical model building is in the realm of

conventional statistics. Recent years have

seen a great deal of growth, not all of it in

the statistical literature, in the development

of methods for fitting empirical models in

complex, nonlinear, high-dimensional

situations, so statistical tools and the

computing resources to implement them are

extensive (ST mention neural nets). The

possibilities are considerably richer than the

polynomial models that some might

associate with statistical modeling. The

traditional statistical issues of design.
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estimation, and uncertainty characterization

still apply to these new methods, however.

Also, it should be recognized that modeling

need not be at one of two poles:

mechanistic or empirical, since it's both

possible and advisable for empirical

modelers to pay attention to process

mechanisms. For example, if physics

indicates that a product characteristic

depends on two processing parameters only

through their ratio, then the empirical

model should capture that relationship, not

force-fit a polynomial in the separate

parameters. Black-box modeling should

become gray-box. There is a clear need and

an opportunity to combine subject-matter

and statistical expertise in the development

of useful mathematical models. Will that

opportunity be seized? Theorists will have

to overcome a disdain of empirical

modeling; statisticians will have to be

willing to learn and more able to embody

theoretical understanding than the black-

box approach requires. Truly collaborative

relationships will have to be established.

ST, recognizing that mechanistic models

are not apt to be able to bridge the gap

between process and product, support a

statistical view by stating that a "major

advance could be made by the effective

blending of mathematical (meaning

mechanistic) modeling and empirical

components." For example (my example),

a mechanistic model might predict physical

characteristics of a fabricated part, as a

function of dominant process parameters.

Predicting the (statistical) distribution of

cycles to failure, though, as a function of

these part characteristics, might require a

designed experiment and subsequent

empirical fit. Combining the models

provides a means of predicting reliability as

a function of process parameters.

ST also bring out the need to keep in mind

the objective of model-building. Research

objectives lead to deeper models of

phenomena and increasing precision.

Production problem-solving (and agile

design decision-making) may need only a

quick, approximate model that addresses

major parts of the production process,

rather than one micro-phenomenon within

it. ST's concluding comment is that

progress on issues pertaining to integration

of process and product models "may

provide a much greater impetus for new
product and process development than the

refinement of the micromodels that seems

to be the major objective of most current

research."

Where Szekely and Trapaga provide a

glimpse of the statistical role in the

development of process-to-product-to-

performance modeling in the materials

sciences, that role is the centerpiece of a

recent workshop, reported by Karr (1994).

The workshop, alliteratively sponsored by

NISS (the National Institute of Statistical

Sciences) and NIST, defined the problem

by stating that the key needs for materials

science, as an enabler of industrial

competitiveness, "are to design components

with desired performance, fabricated from

materials with desired properties, and the

processes to produce these components and

materials via control of microstructure"

(emphasis in original). Further, "(t)he

ultimate goals are to optimize materials

properties and increase reliability of

components and systems." To which, from

the agility perspective, I would add that

design and optimization must be rapid.

Accomplishing all this, the workshop

concluded, will require statistical methods

and the close collaboration of materials

scientists with statisticians because

"modem materials science is embedded in a

'sea' of statistics" (but not drowning, I

hope). The argument behind this image is

that the complexity of materials structure

means that "intrinsic variability can only be

characterized statistically." Furthermore,

"(k)ey experimental data are uncertain and
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incomplete. Relations among structure,

properties, performance and processing,

derived from a combination of experiment

analytical modeling and numerical

modeling, require statistical character-

izations." (This last sentence relates

directly to the point made by ST about the

need for blending of modeling approaches.)

The workshop report (Karr 1994) elaborates

on these themes and provides several

examples.

The combined perspectives of ST and Karr

(1994) clearly identify the problems that

exist and the approaches that need to be

taken. Statistics should be an important

contributor to solutions that can greatly

reduce product realization time and enhance

quality. The extent to which statisticians

are already collaborating with materials

scientists in developing the models needed

by industry', and the prospects for healthy

growth in those collaborations, are

questions I caimot evaluate. Perhaps a

follow-up query' of workshop participants

should take place. Statisticians should take

the initiative to fmd out about materials

science work being conducted at their

institutions and look for opportunities to

participate. The workshop report (Karr

1994) would be a good letter of

introduction. Similar comments apply to

other areas of manufacturing-process model

development. Product performance

depends on properties of its materials and

the geometric shape in which it is rendered,

so the integration of materials and forming

and shaping models is apt to be required in

order to predict product performance from

process characteristics.

Semiconductor Processing Models

Blakey and Zirkle (1994) provide an

industrial perspective on semiconductor

modeling. They describe a conceptual

sequence of models in the following order:

equipment-process-device-circuit. That is,

output from a process model, say, is

(potentially) input to a device model. In

their view, equipment modeling is in its

early stages and the device-to-circuit link is

often neglected. Integration of simulation

tools has progressed to the point that

“interfaces between most major tools are

widely available ... and there is some

automatic scheduling of multiple runs for

optimization and statistical design,” but

they anticipate continued improvement in

this area through standardization, natural

language interfaces, and expert systems.

Blakey and Zirkle (1994) cite the potential

benefits of simulation — reduced physical

testing time and costs — and current

difficulties in achieving those benefits.

These include “unsophisticated” use,

“inappropriate concentrations” of use (by

specialists only), unrealistic expectations,

and difficulties in measuring the benefits of

using simulation tools. As an example of

unsophisticated use they describe the

practice of adjusting input parameters in

order to make simulation output match

experimental data, a process sometimes

known as “tuning.” When the tuned model

is used for subsequent “what-if’ studies,

“the naive adjustment of an inappropriate

subset of parameters can, and often does,

lead to dangerously misleading results.” As

a technical concern related to statistical

issues, they also note that since semi-

conductor processing is quite complex,

often involving more than 100 steps,

“(w)hen simulating an entire process the

errors and uncertainties in the simulation

compound at each step. It is consequently

not yet possible to obtain accurate

predictions of final structures by simulating

a state-of-the-art process from start to

finish.”

NIST researchers Bennett and Lowney

(1994) explore the field of semiconductor

device simulation at considerable depth.
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Their perspective on empirical-mechanistic

modeling questions is that “Conventional

procedures for determining model

parameters ... rely very much upon

empirical relations, and give acceptable

results for transistors with dimensions

greater than about a micrometer. Such

empirical procedures may not give reliable

results for smaller transistors and they most

likely will not be adequate for future

devices that have features sizes less than

about 0.2 mm.” In that situation, “one also

needs device physics, based on first

principles, to understand problems that

arise in making reliable devices and to

develop strategies to overcome design

limits.” The authors go on to develop

"improved device physics (IDP)" models

and show an example of situations in which

IDP models provide considerably more

accurate predictions of transistor gains than

conventional (empirical) device models.

The semiconductor field has also seen the

integration of simulation models with

experimental design and analysis software

to facilitate the use of simulation in

evaluating alternate device designs. Wong
et al. (1992) describe a Simulation

Experiment Workbench that includes

models relating device (e.g., resistor,

transistor) structure to electrical behavior

and experimental design and analysis

packages for designing, running, and

analyzing the results of experiments in

which the device structure parameters are

varied. The authors note a need to develop

similar tools for process design.

Discrete Parts Manufacturing Process

Modeling

In a NIST survey of methodologies of

representing manufacturing process

capabilities, Algeo (1994) focuses on

information models (models for informa-

tion flow among manufacturing functions),

but also addresses mathematical models of

processes. This survey provides a helpful

entry into the literature pertaining to

process modeling. One reference, Konig

and Knop (1992), addresses the mechanistic

vs. empirical modeling question in the

context of grinding processes. They note

the advantages of mechanistic modeling in

terms of breadth of applicability and

theoretical soundness, but cite the difficulty

of modeling all the complex thermo-

mechanical, grain-level, fundamental-

physics relationships in grinding, and in

taking measurements that provide estimates

of the coefficients in these relationships.

Alternatively, at least for industrial

production planning, they find empirical

modeling to be satisfactory and illustrate

the use of sums of exponentials to model

product characteristics as a function of

grinding process parameters.

Algeo (1994), in contrasting the state of

industrial practice with state-of-the-art

methodology, notes that "in production

environments, representations of manu-

facturing process capabilities appear to be

gradually migrating from printed media to

electronic media. In many companies,

handbooks are still the reference of choice
"

Further, at this early stage, there is a

multiplicity ofways of representing process

capabilities, so, in line with Morton (1994),

she recommends developing a standard

framework, terminology, and process

taxonomy to facilitate the communication

of process capability information.

PROCESS MODELING: STATISTICAL
CONSIDERATIONS

In this section I will elaborate on some of

the issues raised in the previous section. As

20



‘y>

1(K-'

V' ’ '1^?i

'

% ilW ,
: '!hf;?^

ii\ ''ifiTiKlis' jt*L4 “
.. it.w

^1;

w. ^iasliU

'-m^m

’S]

^:4 /''W'4.^%
4^0^, P^A

tee': ; t'

.b'«^
".T . W?/'

'""'i
•:"0.'i'^'

' -'5;

I
^

. H ''’' <&:.. *g

m

'

.^f',! 4^4^^- 'viSM' '^f ^ ,i!:iii<5i'anrkif

*

;: <#
'

^hifm> '. b

^ 5* 'wti

^ ^4:^ mi^ifUirhi tn siui nfin t hcn^-

AV *':
. -.Vf-vY<4a'f«^.'s #*},'< ‘Ti

iVl-lnS^'

Wfi- .. A

:';;-i3E-:'; -^J

••..•..
• .'. • .•..

.

'
, -’'A''

'-m^mr .•tn

4 ^rt ^ ti:^js YV! 4 *-..

'^(iW ..^;(tp'i^ IK
''**'

' -4

'SN/r#^ i' ! i) ;v,^A^-
,

'A*' T>, '

,':i^y':‘-:, i^^
,

rjrp!' j

.1pk4^^^: ..f ('.'•xr YY.
... '.-mv

fiim .

44^^' '

..

^

j

; 'j
•

' '

"l^'i ^>/;''

,

ilfyf ,

: ^ ^:ty, '

'

m^: -^4^^ iy^^ s m4^m ««£^
’

- vi'-^v

j:i!^>;S^3 fC'l ^!'*>f)ij'18iairte

/-' ^
: •’.'ll •|,

!:

V ' '.'•^l> i’''
" ' ••' ''^ ‘-‘ •'* '-’'•V''-

'•'
•-'.'•..’i«

'
' '

''’.'a.''>'"'' ’r'"
"

'

1
'",, ''i''t''' -

..

'
'.. t'^

' '

'

y,
.,*' '

.'' ./'
Y'''

V.4 ... ‘i.

'/ ,YY

^

li? A lo r£in . /
V :

.
;y.’v

,.
*' “

1

'

'- icai'^.
:•

4js>jbom ^^3 ...Yir'>!

34^4
'C-Y

'

''ii



a vehicle for considering these issues,

consider the following model for the

process-to-product-to-performance situa-

tion. Let w denote the controllable process

parameters, such as speeds and feeds of a

milling process. These parameters

influence product characteristics, x, such as

dimensional deviations from target values,

but they don't necessarily determine these

characteristics because other uncontrolled

or uncontrollable influences combine with

w to determine x. Conceptually, this

relationship can be expressed as: ^ = g(>v,

e^), where represents all the extraneous

influences. Similarly, x influences product

performance along with other influences

such as the use environment, so = h(^, ey).

More generally, it might be the case that

some of the process parameters and process

"noise factors" also influence x in ways not

manifested in so = h(^, w', ey,

where the primes denote subsets of the

original vectors.

A simple context in which to envision this

sort of relationship is dimensional stack-up

of mechanical parts. Processing variables,

w, influence part dimensions, x. The

product characteristic of interest would be y
= Sxj, or perhaps some more complicated

function of the part dimensions. Of
ultimate interest might be some measure of

process capability, such as Prob(L <y< U),

where L and U are specification limits, but

this requires probabilistic considerations,

not yet introduced.

In the general situation, approximating

these relationships via mathematical models

provides a means of making process design

decisions, such as the choice of process

parameter nominal settings and tolerances.

A process model can be expressed as x* =

g*(w',
£;c')’

primes denoting the

possibility that only subsets of the process

parameters and additional influences may
be contained in the model, the asterisks

denoting that the model and resulting

calculated product characteristic are

approximations to the actual relationship

and product characteristic. The actual

product characteristic can be expressed as x
= g*(w', fjc') where is the

difference between prediction and actual

and contains influences not captured in g*

and lack of fit of g* to g, in a general sense.

In a production run, these influences may
vary in such a way that it makes sense to

treat as random and thus, to make

predictions, one would need to estimate its

distribution. In other contexts, bounds on

over some domain of g* may be

appropriate.

This depiction of the process-to-product-to-

performance chain needs to be expanded as

in Fig. 1. The process to convert raw

materials to a product is actually the

combination of multiple processes, each of

which may be the subject of a mathematical

model. Figure 2 shows a serial linkage of

processes and illustrates how the output of

one process, along with process-specific

process and environmental variables, are

input to a subsequent process, all

culminating in a product with performance

characteristics, y. Thus, models for

processes need to be compatible for a

similar linkage. Research-oriented model

development is aimed at improving a single

gj* as an approximation to gj, generally by

bringing additional variables and relation-

ships into the model. The point of view of

ST, discussed above, is that for the sake of

improving production capabilities, there

should also be research done that is aimed

at assuring that some sort of model, even

empirical, is in place for all the k models

required to predict product performance.

Having a very sophisticated, deep mechan-

istic model, g*, for a particular process,

doesn't help solve production problems if

there are glaring gaps in the chain of

models required to predict product

performance.
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Figure 2. Modeling Framework

Model Validation

One value of a model is that it can provide

predictions for process configurations,

designs, settings, or environments not

previously observed, but no matter the

theoretical soundness of a mechanistic

model, there is still generally a need to

check its predictions against data from an

experiment or the actual process. This can

be a contentious issue. For example, a

Washington Post article (October 14, 1994)

described a controversy over the credibility

of predictions of improved Patriot

antiballistic missile reliability based on

simulations (the term is here being used in

the general sense, not ST's categorization of

an empirical model), in the absence of field

tests against actual Scud missiles. ( In a

reverse twist on this issue, I recently heard

about an experimental program, well-run by

all accounts, that had its funding canceled

because its experimental results did not

match the predictions of a state-of-the-art

computer model.) I asked the provider of

fluid dynamic codes what provided

assurance that applying a code in a new

situation would yield trustworthy results.

The answer was, "Well, I try to get a little

data." Deciding how much data and at what

conditions, i.e., settings of the model inputs,

W and e', is a difficult and important, and in

part a statistical, issue. The model may be

designed to be used over an extensive

multidimensional domain. Testing, for

economic reasons, can only be done at a

small number of points in that space. How
to choose? Consider the problem of

estimating Patriot reliability over a wide

range of encounter scenarios. Subject-

matter expertise and theory can help narrow

the choice of test conditions, but where

tests have not been done, one often has to
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rely on face validity — the simulation

results look reasonable.

The need to validate computer predictions

is well-recognized by the modeling

communities. Thus, various groups have

assembled benchmark sets of data against

which modelers can test their models. For

example, a NATO aerospace group recently

published 39 test cases pertaining to air

flow around aircraft and missile

configurations (AGARD 1994). In the

semiconductor area, Meyyappan (1994)

notes that "(T)here is a critical need for

benchmark experiments in the field of

semiconductor processing," and goes on to

offer this perspective on mechanistic and

empirical models:

When quantitatively accurate

predictions are required, the

need for validation and

benchmark experiments be-

comes essential. A case in

point is the role of models in

real-time process control. At

present, development of

process control strategies is

based on data from many

well-designed experiments

[5]. The data is (sic) fitted

into empirical models using

Box response surface [9] or

Taguchi orthogonal arrays

[10]. This approach is

complex, time-consuming

and expensive. Computa-

tional modeling is ideally

suited to replace the above

procedure.

So, here is a case in which mechanistic

modeling is suggested as a cost-effective

alternative to empirical modeling.

Experimental models that are rich can

require extensive experimentation, data

collection, and analysis to develop.

Mechanistic models can be intrinsically

rich. The amount of experimentation, data,

and analysis required to validate that

richness should be less than the amount

required to construct a comparably rich

empirical model. These are issues that need

to be examined at some depth. In some

circles there is a euphoric sense that

computer models can virtually eliminate the

need for physical experimentation.

A problem that can occur in model

validation efforts is that some key model

inputs may not be measurable in an

experimental or field situation. This can

lead to tuning exercises, trial and error

attempts to plug in physically reasonable

values to improve the match of model and

data. The interplay of tuning and validation

is another issue that deserves some thought.

Incidentally, a designed experiment ap-

proach to multi-parameter tuning may make

the search more efficient.

Computer Experiments

One way to focus model validation tests is

to first identify what model inputs are the

dominant influences on model output.

Then, the validation experiment could focus

on whether those influences are properly

characterized by the model. In a complex

model, such as one incorporating finite

element analysis, it may not be at all clear

what the dominant inputs are. Designed

experiments are one way to attempt to

identify dominant inputs. These "computer

experiments," so called because they are

experiments in which the experimental

apparatus is a computer code, can also be

used to obtain faster-running, more "agile,"

models that might be required, in the

context of Fig. 1, to help a decision-maker

choose among alternative processes or to

select desirable process settings. Another

need for faster-running models is in a

Monte Carlo analysis, as described in a

subsequent section on virtual prediction.
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The design and analysis of computer

experiments has received a fair amount of

attention in recent years (see, e.g., Morris et

al. 1993, Welch et al. 1992, and Sacks et al.

1989 and references therein). As

mathematical models become increasingly

important in supporting agile manufac-

turing, computer experiments on those

models, and the communication of their

results to people involved in selecting or

optimizing processes, will become more

important in the manufacturing arena. The

approaches taken in the referenced articles

are generally much different from those

used in the design and analysis of physical

experiments, so the differences are worth

examining. Some particular contrasts:

• In a computer experiment, all the

variables that might influence the

result, namely the model inputs and

internal parameters, are known and

controlled; they have to be given values

in order to run the model. In a physical

experiment, there may be a compar-

atively small number of known and

controlled potentially influencing

variables and a large number that are

uncontrolled. Thus, repeating a compu-

ter experiment yields identical results

(excluding the case in which the

computer calculation draws on random

numbers) while repeating a physical

experiment does not (at some level of

resolution).

• In a computer experiment, because

there are conventionally a large number

of explanatory variables (model inputs),

all of which are apparent and

controllable, there is a tendency to

include a large number of variables in

the design, in the sense that their values

are deliberately varied over the set of

runs. In a physical experiment, there is

a tendency to focus first on variables

thought to be important and build a

design primarily on them. Variables

not included in the design are either

overlooked, deliberately held constant,

or allowed or encouraged, via

randomization, to vary freely (but their

values would be unknown and thus

could not be part of any model-

building, except in the sense of

characterizing residual variation). In a

computer experiment, in order to

randomize over thought-to-be extran-

eous variables, one would have to

assume probability distributions for

them, which might be difficult to

justify. In a physical experiment,

"nature" distributes these variables (to

the extent allowed by the experiment

protocol).

• Even in the case of a similar number of

variables to be included in the design,

experimental designs are very different

for computer and physical experiments.

Computer experimenters tend to use

very highly fractionated multi-level

designs. For example, a Latin

hypercube design (see, e.g., McKay et

al. 1979) for 32 runs in 10 variables is a

32"^ fraction of a 32 factorial. The

design for a physical experiment in this

case is apt to have only two or three

levels of each variable, say a 2^^"^

fractional factorial, or perhaps a L27

design for three-level factors,

augmented with a few other points, or

an orthogonal main effects design for a

mixed number of levels. Part of the

appeal of the designs with more levels,

less orthogonality, is that when extreme

effect sparsity permits projection on to

a small number of input variables, the

multi-level designs provide detailed

information about the nature of the

relationship. Similar projections for

two- or three- level factorials result in a

lot of redundancy. (In a physical

experiment, this redundancy would at

least provide degrees of freedom for
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estimating the error variance — not an

objective in a computer experiment.)

• Computer and physical experiments

have different design ancestries. Early

computer experiments were, in essence,

a means of numerical integration:

Given input-variable probability

distributions, the objective was to

convolute these to approximate the

probability distribution of the output

variables. Thus, by using a Monte

Carlo approximation to numerical

integration, random, or constrained

random (especially Latin hypercube),

selection of inputs constituted the

"design" of the computer experiment.

These pseudo-random results could

subsequently be analyzed, much as in

the case of observational data, to try to

identify dominant influential variables

and to fit simplified models. Physical

experiments have not had the

distribution-approximation objective,

the nearest analogy being to draw a

random sample from a defined

population in order to estimate the

distribution of some characteristic of

individuals in the population. When
variable screening, or simplified-model

fitting became the objective, computer

experimenters have either continued to

use Latin hypercube designs (e.g.,

Welch et al. 1992) or have tended to

use a number of levels somewhat

intermediate between the extremes just

discussed, selecting designs from the

very large number of possible

combinations, e.g., 5^^, by various

optimality criteria (Morris 1994).

• The fitting functions tend to differ. The

primary approach of computer experi-

menters is to represent the computer

model as a realization of a stochastic

process and use smoothing methods,

such as kriging, to obtain a simplified

model. Such fits have the desirable

feature that the fitting function passes

through the observed results, which, of

course, are known exactly. Physical

experiments could be similarly fitted,

but are conventionally fitted by

polynomial models, perhaps using

transformed variables, or by theory-

based functions. These need only pass

close to the observed results (within

experimental error, which is not of

interest in computer experiments).

Fitting stochastic process models can

be quite computing-intensive (as can

the selection of a design). Fitting

regression models can be quite

analysis-intensive, as different func-

tional forms, transformations, and other

tricks of the trade are tried.

Comment

I tend to favor approaching computer

experiments essentially as I would approach

physical experiments (Easterling 1989)

because the fact that the experimental

apparatus is a computer model doesn't seem

to me to warrant a whole change of

perspective. That is, if I had a table of

results from a lab experiment in

temperature, pressure, and humidity, I

wouldn't interpret it as a realization of a

random process and therefore fit a spatial

covariance function (treating temperature,

pressure, and humidity as spatial

dimensions), and I doubt that many
computer experimenters would either, so I

don't see how being told that the table was

computer-generated would motivate a

dramatic change of approach. If told the

objective was to smooth a function through

the tabled values, then, as a mechanical

means of doing so. I'd choose some multi-

dimensional smoother, recognizing that (at

least for me) this is a somewhat arbitrary

choice among the myriad of possibilities. I

might use cross-validation to provide some

guidance. If told the objective was to find
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dominant variables, I'd take a more

conventional regression approach, for the

sake of familiarity and interpretability.

Standard errors are a problem in this case,

but I'm not sure the standard errors of

prediction provided by a kriging analysis,

e.g., are really more interpretable.

The different fitting approaches can be

contrasted as follows. In general, a model

output, X, is treated as a realization of

^ = g(>v) + e(w),

with g() representing signal, e() noise.

Conventional regression modeling tries to

capture all the structure in g, leaving e to

look like pure noise (independent,

identically distributed). The random

process approach tries to capture all the

structure in the covariance function for e,

often letting g be a constant. For a set of

deterministic computer model runs, it's hard

to claim either is right (particularly in the

calculation of standard errors); either may
be useful for certain purposes.

For the design of a computer experiment, I

would use factorial-based designs, modified

to overcome the projection shortcomings

mentioned above. Thus, in the example,

rather than a 2^^’^ design, say at comers of

the (±1) cube, I might run a 2^^"^ at ±1

plus a 2^^'^ at comers of a ±a cube, with a

equal to 1/3, say, or maybe 1/2. Or, I might

mn an orthogonal array of 10 four-level

factors in 32 mns. Then, if the model is

dominated by only two variables, there are

16 points on which to characterize this

relationship. These suggestions pertain,

though, to a black box approach. On a real

problem, I would want to select levels and

design the experiment based on subject-

matter insights, but still with a factorial

orientation. I would also advocate a

sequential strategy in exploring these

complex, high-dimensional relationships in

order to test and improve predictions.

Process Capability Prediction

The product and process designer, facing

design options as in Fig. 1, needs

information pertaining to the probability

that a process will yield output that will

meet design requirements. This

characteristic of a process is generally

referred to as process capability and various

indices have been created to try to

summarize a process's capability. In this

report, though, capability refers more

broadly to any comparison of a process

output distribution to requirements, such as

specification limits, for that output.

Prediction is the term used because the

context is the prediction of a process to be

used in the future, possibly in a different

configuration than in the past, or of a

process that does not yet exist. Three

situations will be considered:

• The process exists and has been

exercised or is available for

experimentation

• A prototype or laboratory version of the

process is available for experimentation

A mathematical model of the process is

available.

Process Capability Prediction Based on

Physical Experimentation

Historical data from a process could be

summarized as follows: At process setting,

w/, product characteristic x has a distribu-

tion with (estimated) mean, mj, and

standard deviation, s/. (In some cases, it

would also be appropriate to include

variance components, such as variability

among machines, operators, or set-ups.) A
process capable of being operated at

various settings could be summarized by

such statements at different settings. A
robust process would have essentially the
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same output distribution over a wide range

of process settings. The variability

represented by these distributions results

from the variability of influences on the

process not controlled by w/
,

such as

variability in incoming material and the

environment in which the process is being

operated. If this process is being

reconfigured into a new manufacturing

system, these influences may change,

resulting in different distributions. This

possibility needs to be considered before

past experience is accepted as a prediction

of future performance. Enough information

needs to be provided to make an

engineering judgment that previous

experience is applicable, or it may be

necessary to conduct test runs under the

altered conditions. Demonstrated process

robustness -- takes a licking and keeps on

ticking ” is a boon to reconfigurability.

Similar concerns pertain to using lab or

prototype test assessments of variability as

predictions of actual use of the process.

The "cause system" influencing variability

in the lab may be much different from that

in the field, so theory, or an empirical

bridge, is required to make the connection.

Historical data may not lend themselves to

ready summarization, as described, so it

may be necessary to run an experiment on

the actual or prototype process. To do so,

the design issues discussed above for

computer experiments need to be

addressed. In particular, of all the possible

influences on the process, denoted by (w,

e), some will be controlled and varied

according to the experimental design, some

will be held constant, and some will be

allowed to vary freely. The same issues

have to be addressed if the objective of the

experiment is to provide a basis for fitting

an empirical model that can be used to

mathematically represent the process. For

the sake of providing information on

reconfigurability, the span of conditions

over which to experiment is apt to be wider

than would be done for a dedicated process

because of the need to use a process in

different circumstances and in different

combinations. It behooves the "owner" of a

process who wants to play in the

reconfigurability arena to characterize that

process as broadly as possible and make the

information known to enterprise manage-

ment (prospective suitors).

Assessing process capability requires

comparing an estimated output distribution

to specification limits for that output.

However, when a process is operated, it is

generally operated under conditions that

require it to meet certain tolerances. In

fact, a tolerance could be, in essence, a

process setting in w'. For example, a

machine tool is operated to produce parts

with certain dimensions falling within

specified tolerances. The machinist will

design a sequence of rough and finish cuts

to achieve this quality. Thus, the output

distribution will (generally) fall within

those tolerances and it may not be clear

whether the basic process has this

capability, whether herculean efforts are

required, or whether acceptable product has

been achieved by scrapping and reworking

parts produced from what is really an

incapable process. Cost, processing time,

and first-pass acceptance data may reveal

the difference between a capable process

and a highly inspected and screened

incapable one. It would be better, however,

to have pre-screening process output

distributions to use in evaluating a process

against requirements that are possibly

different from the ones in force at the time.

Process Capability Prediction Based on

Mathematical Models

If a math model, g*(H:', e'), exists, then

process capability can be predicted by

propagating estimated, or assumed
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distributions of the process arguments

through that model. Complex, long-

running models may not be feasible for

such Monte Carlo exercises, so simpler

models, obtained either by simplifying the

mechanistic model or by developing

empirical models from computer

experiments, may be required. Statistical

problems arising in this situation are the

approach to model-fitting, already

discussed, and the estimation of

distributions of the process arguments.

To summarize the issues in process

prediction in a specific situation, consider

the following simple relationships:

X = a. + bw +
y=o + dx + ey

That is, suppose theor>^ indicates that

product characteristic x is linearly related to

process variable w, but with some residual

error, e^. Similarly, performance

characteristic y is linearly related to x, with

residual error ey. Further, suppose that the

residual errors are modeled as random

variables that will var>’ in production with

mean zero, and standard deviations, s^^. and

s^. Also, in a production environment, w
will vary’ according to some distribution,

say with mean m-^ and standard deviation

s-^^. (For example, the process may specify

a particular temperature, but the

imperfection of temperature control results

in variable actual temperature.) Now,

suppose that all of these (statistical model)

parameters have to be estimated. From

these estimates, the resulting distribution of

y can be estimated to have a mean of

My = g + ad ^ bdniy^

and a variance of

Sy^ = b^d^Sy^^ + d^SQ^ + Sy-,

where English letters represent estimates of

their Greek counterparts. There are two

major statistical problems to address in this

situation: 1. How precise are these two

estimates? Can their statistical uncertainty

be characterized by standard errors or

confidence limits? (We need some

indication of statistical uncertainty in order

to be able to compare alternative processes

or just to know how well process capability

is being predicted.) 2. How should the

experiments or data collection efforts from

which these estimates are to be obtained be

sized and designed in order to achieve a

desired degree of precision? Even for these

simple linear relationships, addressing these

questions is not straightforward. Initial

steps are reported in Easterling (1995).

Addressing these questions for multi-

dimensional, complex relationships is going

to be a formidable challenge.

Any prediction is limited, of course, by the

quality of the models and the data on which

it is based. Thus, until the point at which

the producer is very sure of the process and

product models, the next step would be to

build and test some (small) number of

prototypes in order to be sure that things

can operate as predicted. Determining a set

of conditions under which to build and test

prototypes and determining what per-

formance constitutes adequate agreement

with predictions is another area of potential

statistical involvement. The issues are

analogous to those in deciding what

physical tests are required to validate a

single model.

There is a similar situation in reliability

prediction: Given component test data and

a system reliability^ model, the analysis

objective is to predict system reliability and

evaluate the statistical uncertainty^ of that

prediction. In the agile manufacturing

context, we will have process data and a

manufacturing system model that links

these processes to product performance. In
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the reliability situation, a system designer

may have choices among components and

other design features such as system

architecture, so the predictions would be

used in making design decisions. As in the

process capability situation, reliability

predictions are conditioned on assumptions

that the system operates as modeled and the

component data are representative of in-use

functioning. Some limited number of

system tests are necessary for checking

these assumptions. Further, the reverse

problem of deciding on a suite of

component test plans that will yield a

system reliability prediction with

predetermined precision has also been

addressed (Easterling, et al., 1991). In

reliability, though, the type of data, e.g.,

binary pass/fail data, and system model

considered, typically sums and products of

component failure probabilities, are apt to

be simpler than the process characterization

data and process and product models

envisioned here, so extending the reliability

analogy to the agile manufacturing context

will require considerable effort. The

approach will have to be to simplify the

models and focus on the dominant

contributors of performance.

Tolerance Allocation

In passing, I would note that the Fig. 1

schematic can also apply to the problem of

tolerance allocation. Suppose that final

product characteristics are required to fall

within some tolerance intervals about target

values for those characteristics. Achieving

this will require the specification of

tolerances for various part characteristics,

say, for the case of mechanical assemblies.

The different parts could be built to

different tolerances, at different costs. The

problem is to decide how to allocate the

tolerances, assuring that the final product

requirements will be met, at minimum cost.

Solution requires a model relating part

dimensions to final product characteristics,

reasonable cost estimates, and reasonable

estimates of the distributions of parts

characteristics for each alternative toler-

ance. A recent reference is Zhang and

Wang (1993). Statistical issues that arise

are the same as in the above discussion of

predicting the capability of a production

process created by the linkage of several

individual processes.

AGILE MANUFACTURING AND
QUALITY

In the agile manufacturing world

envisioned in Nagel and Dove (1991),

quality is assumed. You're not even in the

game if you cannot make high-quality

products, quickly and economically, and if

you are not attentive to customer current

and potential future needs, from whence

will come the market for new, customized

product. Low-volume production and the

need for rapid, economical product

realization means that scrap, rework, and

product inspection and testing must all be

minimized. Production processes will have

to be not only capable, predictable, and

continuously improved as customer needs

evolve, but they must also be

reconfigurable and robust to recon-

figuration. Modem quality assurance has

evolved from inspection and testing to an

emphasis on process understanding, design,

monitoring, and control, but the needs of

agile manufacturing ought to accelerate that

evolution.

In a broader sense of quality, agile

manufacturing, in its model of cross-

corporate cooperation in virtual enterprises,

even among companies that might be

competing in other arenas (as in automobile
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joint ventures), reflects Deming's views on

the quality and productivity advantages of

cooperation over competition. It should be

recognized, though, that reconfiguration

can be anti-quality if it results in the

introduction of extraneous sources of

variation. For agility to work, echoing the

remarks of Morton (1994) cited earlier,

process interfaces will have to be worked

very carefully and processes will have to be

quite stable and predictable to avoid

surprises in production. On the social side,

quickly establishing trust as configurations

among companies, or organizations within

companies, change may also be an obstacle

to successful agile manufacturing.

Achieving quality in agile manufacturing

begins with the design of both the product

and the manufacturing process. Process

monitoring and control then help assure that

the design intent is achieved. Ideally, there

would be no need for final-product

inspection and certification, but in practice,

some product testing will often be needed.

Mathematical process modeling, as

described in the previous section, will help

achieve "agile quality assurance," by

contributing to process design and control,

but there are additional aspects, and

corresponding statistical roles, that will be

discussed in this section.

Integrated Product and Process Design

Integrated Product and Process Design

(IPPD) is the term used to represent the

concurrent design of a product and its

production processes so as best to use

existing manufacturing processes or to

develop new processes in a timely manner

that will be highly capable of producing the

product. (Concurrent engineering is

another term used interchangeably with

IPPD, though some argue one is a subset of

the other.) As an engineering practice,

IPPD is approached by establishing product

teams early in the design process that

include manufacturing personnel. Thus, it

is by forced early communication that

production problems are prevented. It is

my impression that industrial statisticians

are not generally part of these integrated

design teams -- they more often play the

role of a specialist called in to help address

specific problems — but the opportunity to

be well-immersed in a design project can

enhance the contribution a statistician can

make to the project when statistical

approaches to problem-solving are required.

A case in point is Sandia's A-PRIMED
project, described in a subsequent section.

There is a need, though, to go beyond the

avoidance of production problems via early

communication and to try to optimize (or at

least greatly improve) the product design

and production processes. Designs

generally begin at a point and then are

improved one factor at a time as problems

are encountered and resolved. Having all

the players involved at the start can speed

up this process and multiple engineering

insights can greatly help in negotiating a

high-dimensional design space. A more

systematic exploration of the product and

process "parameter space," however, can

lead to solutions that might otherwise be

missed. This is where the "factorial"

perspective of a statistical team member

can make a contribution (and it's a

contribution that the specialist might never

be called on to make). Experimentation

that plays design features against

alternative production processes (or process

settings) can provide the basis for

optimization. The genius of the Taguchi

approach (see, e.g., Nair 1992 and Kacker,

1985) to robust design (in this case, a

product design that is robust to production

process noise) is that it calls for early

experimentation that simultaneously

addresses product and process designs.

Technical issues pertaining to experimental

design and data analysis can sometimes

obscure the basic fact that experimenting
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with the right factors, over the right ranges,

at the right time in the product design cycle

can be the key to real quality and

productivity breakthroughs.

Process Control

Real-time process control, by which

process deviations from target can be

sensed and translated into course

corrections, is another means by which

quality assurance can be provided in agile

manufacturing. A considerable amount of

engineering and statistical work is aimed at

the development of process controllers.

Statistical and engineering approaches often

differ, but some recent work that blends

them is Montgomery et al. (1994) and

Vander Wiel et al. (1992).

An example of statistical modeling for the

purpose of real-time process control is

provided by a recent NIST project (Rudder

et al. 1992). In a milling operation,

temperature affects cutting accuracy and

temperature can vary as a piece is milled.

Quality could be improved if in-process

temperature changes could be detected and

translated into compensating modifications

of the tool path (this assuming that process

parameters, such as speed, feed rate, and

coolant, have been determined that reduce

temperature fluctuations to the extent

possible, but that the remaining temperature

effects still need to be compensated for).

To this end, a vertical axis milling machine

has been extensively instrumented, data

collected, and empirical models developed.

Process Change-Over

Agile, customized production can call for

frequent process change-overs, say- from

one recipe to another. Time and cost are

saved if the new process can be targeted

quickly, without a lot of tweaking and

stabilizing. Statistical aspects of this

problem pertain to the development of data-

based decision rules for accomplishing the

change-over and these have recently been

addressed by Faltin et al. (1994) at General

Electric. Other work in this area is Hu
(1994).

Short-Run Process Control

Traditional quality assurance requires a

substantial amount of production to

establish statistical control limits against

which subsequent production is to be

compared. Recent statistical work is aimed

at modifying this approach for use with

very limited amounts of data (Quesenberry

1991 and Crowder 1992). The ability to

detect process shifts via product-specific,

low-volume or short-run (lot size 1?) data,

though, may be so limited as to be not

worth the effort. Inspection against

specification limits, not statistical control

limits, may be all that can be done.

Applying statistical process control to

processes that are repeatedly used, in

different configurations and for different

products, perhaps, is more appropriate.

Some adjustment for configuration differ-

ences may be required to make cross-

configuration data compatible.

Final Product Testing

Qualification or certification of product can

inhibit agility (quote from industry

colleague: "Measurement is killing us!,"

meaning the time and expense). Two
approaches to reducing the measurement

burden are (1) to reduce the amount of

measurements and (2) to reduce the time

required for necessary measurements.

Reducing the number of measurements

required, especially at the final product

stage, can be accomplished by eliminating

redundant or noninformative measure-
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ments; statistical methods can be used to

achieve this dimension reduction. Better

still, the elimination of the need to do final

product tests via process understanding,

control, and monitoring of process variables

can greatly reduce the qualification

component of the product realization cycle.

To reduce the time required to take

measurements, methods such as on-

machine inspection of mechanical parts (as

opposed to moving a part from the machine

on which it is produced to a special

measurement station) are being developed.

Because some machine biases may also be

present in on-machine measurements, not

all off-machine measurements may be

eliminatable. Statisticians can help qualify

on-machine measurements by the design

and analysis of studies that compare on-

machine measurement to off-machine

measurements by standard methods, such as

via coordinate measuring machines.

Framework for Quality Assurance

The mathematical framework presented

above for relating process variables, w, to

product characteristics, x, to product per-

formance variables, jk, also provides a

framework for quality assurance. Post-

production quality assurance focuses on y.

Each unit produced is measured for form,

fit, and function to the maximum extent

possible and acceptance is based on those

measurements. Performance characteristics

that can only be measured destructively,

such as lifetime, or burst pressure, might be

measured on a sampling basis. By this

approach, which might be labeled

traditional quality assurance, the burden of

proof that the realized product meets

requirements is provided by tests on the

final product. While such testing

maximizes the realism of a quality

evaluation, it can be expensive and tardy in

identifying process problems.

Alternatively, if the relationship between

product characteristics, x, and performance

variables, is well-understood, measure-

ments ofX can provide the basis for product

acceptance. For example, deflection under

some nondegrading load might be a good

predictor of breaking strength, which could

only be measured destructively, so

measured deflection would be a surrogate

for breaking strength and product

acceptance could be based on meeting

requirements in terms of deflection.

Moving further upstream, if the relationship

of deflection to process parameters, w and

environmental parameters e is understood,

then deflection can be controlled by

controlling w and e. The product and

performance characteristics, x and x might

never need to be measured, or at most be

measured on a sampling basis.

Process monitoring and product testing,

perhaps on a sampling basis, provide an

ensemble of w, e, x, and x data. It seems to

me that there ought to be ways to use all of

these data simultaneously, in ways other

than just comparing them to their

specifications, to provide assurance that

processes and product are on target and to

detect departures from target. For example,

the (x, x) data could be used to check that

the assumed relationship between them has

not changed. That evidence should add

quantifiable assurance to that provided by

the separate comparison of x and x to their

requirements.

All of these relationships, of course, are

what underlies design. In order to achieve

product that meets customer requirements

in terms of x the product should have

characteristics x that meet certain require-

ments (the designer says). Achieving this

requires manufacturing processes that run at

settings w under environmental conditions e

that both fall within prescribed limits. The

ability to set limits on w, e, and x is derived

from the understanding of the relationships
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of these variables to x- When that

relationship is not well-understood,

conservative margins are used to provide

assurance that realized product will meet

customer requirements. Compensations for

measurement uncer-tainty introduce further

conservatism. Improved understanding,

reflected in improved mathematical models

of the relationships, and improved

measurement precision can lead to reduced

margins and reduced costs. — i.e., greater

agility.

THE AGILE MANUFACTURING
RESEARCH AGENDA

As a developing concept, agile manu-

facturing is the subject of ongoing research

and development. Government funding for

such research, that I am aware of, is coming

from the Departments of Defense, Energy,

and Commerce and the National Science

Foundation. This section describes some of

those programs, with emphasis on statistical

aspects of that research. Of course, all

research and development, government or

privately funded, that is aimed at reducing

product realization time also contributes to

agile manufacturing. Numerous statistical

opportunities exist in the development and

testing of new manufacturing technologies

and many government, academic, and

industrial statisticians are involved in this

research.

With respect to agile manufacturing, in

brief, the Advanced Research Projects

Agency (ARPA) of the Department of

Defense funds the Agility Forum, in part to

help set the research agenda in agility.

ARPA then funds particular research

programs. The Department of Energy is

sponsoring agile manufacturing R&D at its

national laboratories and a lab/industry

program called TEAM (Technologies

Enabling Agile Manufacturing). The

National Science Foundation sponsors agile

manufacturing research at three AMRIs
(Agile Manufacturing Research Institutes).

These are located at the University of Texas

at Arlington, Rensselaer Polytechnic

Institute, and the University of Illinois and

focused on three manufacturing sectors:

electronics, aerospace, and machine tools,

respectively. NIST, in addition to

supporting the Agility’ Forum and TEAM
through membership on various panels, has

internal programs pertaining to the

infrastructure of agile manufacturing and

also funds some industry programs through

the Advanced Technology Program. This

section briefly describes these programs

with focus on their statistical aspects.

ARPA

The ARPA request for proposals for its

Agile Manufacturing Initiative, issued as a

Broad Area Aimouncement (BAA) in the

summer of 1994, begins with a sweeping

description of agility:

"Agility in manufacturing is

viewed as the ability to thrive

in an environment of

continuous and often unantic-

ipated change through an

enterprise geared toward

’reconfigurable everything.'

Agility addresses ... business

practices; the culture of

management and employees;

financial control and opera-

tions; relationships of the

customer, assembler, and

supplier; manufacturing pro-

cess integration with design,

information systems to

support decision making,

(and) information systems for

empowering workers; ac-

counting systems to reflect
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operations; and education

and training. This initiative

includes the ’lean manu-

facturing' emphasis on the

streamlined, efficient use of

resources and the mini-

mization of waste, and the

best commercial quality

management practices of

customer focus, an empow-

ered and knowledge-able

workforce, team-work, com-

munication and continu-ous

improvement. It also

includes integrated product/

process development and

flexible manufacturing capa-

bilities; requires flexible

management structures with

commitment to societal and

environmental concerns; and

requires a networked infra-

structure capable of support-

ing 'virtual corporations' and

other agile organizations that

can respond to rapidly

changing market demands."

This description has a clear emphasis on the

infrastructural aspects of agility — the

supporting and connective tissue of a

manufacturing enterprise. The primary

technical aspects of this description are

"manufacturing process integration with

design," and "integrated product/process

development," which are about the same

thing. Pilot projects in these areas are

invited and the Initiative will also fund the

development of technologies that enable

agile manufacturing. The scope of enabling

technologies is virtually unlimited, but at

this time the ARPA focus is on "Enterprise

Communications, Command, Control, and

Intelligence" (the military perspective is

clear) and at this point becomes statistically

interesting.

The interesting analogy is to think of virtual

enterprise management as battle manage-

ment. Sensors throughout the enterprise

provide data that need to be converted into

information that will determine subsequent

actions. The enterprise management

system, in the terms of the BAA, should

provide a "current state estimate ... (that is)

... based on autonomous collection of data

... and reduction of that data (taking the

uncertainty of the data into account) to the

parameters used in the state estimate."

Further, the system should provide a future

state forecast for which "(c)are must be

taken to deal with propagation of the

uncertainty in the state estimate."

Subsequent actions can then be planned.

I hope there will be statisticians involved in

developing such systems (there are lots of

uncertainty propagators about who are not

very statistical). Conceptually, it's very

intriguing. This is (statistical) process

monitoring and control at the enterprise

level, rather than the production process

level. There are design issues to address:

• What sites in the enterprise should be

"instrumented" and what should those

instruments measure?, data analysis/

condensation issues:

• What functions of the data estimate

(describe) current state?, and modeling/

forecasting issues:

• What functions of current (and

probably recent) state estimates predict

what's going to happen next?

I infer from the ARPA material that battle

management systems have addressed such

issues; it would be interesting to know more

about how these common statistical issues

in a very nontraditional setting have been

addressed.
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TEAM (Technologies Enabling Agile

Manufacturing)

The basic goal of the TEAM project

(TEAM 1994) is to make available, to

industry, the manufacturing technology

resources developed in the DOE's nuclear

weapons complex and, with industry

leadership and participation, to apply both

DOE and industry technologies, as

appropriate, to agile manufacturing

demonstration projects. The program is

DOE-funded, with matching industry

participation and participation from NIST

and other government agencies.

TEAM is divided into the following five

"thrust areas:"

Product Design and Enterprise Concurrency

— design tools and approaches that speed

the transition of designs to production

• Virtual Manufacturing — modeling and

simulation tools to evaluate and

improve products and processes

• Manufacturing Planning and Control --

tools for quick selection of resources,

process optimization, process planning,

numerical control, work instructions,

scheduling and tracking

• Intelligent Closed-Loop Processing —

advanced sensing and control technol-

ogies that provide rapid response

• Integration — tools for communication

and information transfer.

Methods, models, and software are to be

identified in all of these areas and then

tested and demonstrated on real products in

three areas of application: material removal,

sheet metal forming, and electronic/

electromechanical assembly. Primarily,

TEAM will deploy existing technology, not

undertake research and development,

though it can be expected that application

of the existing tools is apt to require

development of interfaces.

NIST Agile Manufacturing Projects

Much NIST work contributes to rapid

realization of high-quality product

primarily through metrology and standards,

so this work is a part of general agile

manufacturing research and development.

For example, quicker, more accurate

measurement methods and improved

process monitoring and control systems, as,

e.g., the milling machine control study cited

above (Rudder et al. 1992), contribute to

industry agility.

At the virtual enterprise level of agility,

NIST internal projects stem from its

responsibilities in developing manufactur-

ing applications of the National Information

Infrastructure, stated in Bloom (1994) as:

"Implementation of the Nil concept for

manufacturing will allow such capabilities

as: (1) customers to "custom design"

products, (2) companies to form alliances

needed to produce new products (i.e., Agile

Manufacturing), (3) small to medium size

companies to interact with large companies

for bidding on products (i.e., the Virtual

Enterprise), (4) software system brokers to

"rent" sophisticated manufacturing systems

tools, and (5) rapid access to manufacturing

knowledge by the product designers that

will enable enterprises to use concurrent

engineering practices." The NIST program

pertaining to these objectives is the Systems

Integration for Manufacturing Program

(SIMA) which is focused on interface

standards by which the communication and

integration possibilities of the Nil can be

realized. SIMA has four program elements:

Manufacturing Systems Environment —

models and software for integrating

manufacturing systems
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Technology Transfer Environment

mechanisms for the exchange of infor-

mation

Standards Development Environment ~
development of STEP (The Standard for

Exchange of Product Model Data)

AMSANT Facility — a testbed for advanced

manufacturing systems and networking.

There could be a role for NIST statisticians

in the design and analysis of tests of some

advanced manufacturing systems, but I do

not foresee much of a statistical role in the

software and standards development

activities which are the focus of SIMA. As

noted above, though, at some point there

will need to be statistical involvement in

developing standards for the commun-

ication of statistical information pertaining

to process capabilities.

NIST's Advanced Technology Program

(ATP) funds a wide variety of industrial

research, some of which is related to agile

manufacturing. As an example, the most

recent awards (November 1994) included

one entitled "Rapid Agile Metrology for

Manufacturing," which will develop a

flexible, high-speed, high-accuracy meas-

urement system. Agile and flexible are

really not the same concepts, but one would

have to get into the details of this project to

see whether a distinction is being made in

this case.

A-PRIMED

Sandia National Laboratories' A-PRIMED
project was a demonstration project that

actually produced hardware via an agile

manufacturing approach. Conventional

product realization (at Sandia and

elsewhere) is geared toward producing a

single product for a single customer, then

doing the whole process over again for a

different customer. The A-PRIMED
approach is to design for and develop the

ability to quickly produce any one of a

family of electromechanical devices called

discriminators for any customer whose

requirements fall within a "parameter

space" of possibilities. Thus, the limits of

(rapid) customization are prescribed;

requests outside of the bounds of the

parameter space would not be turned away,

but would have to be negotiated. Design,

analysis, process development and

characterization, and qualification activities

were therefore geared toward the parameter

space, not a single point design. A
concurrent engineering approach was used

to help assure that product design and

production issues are identified early and a

communication system was developed to

facilitate transmittal of information among

team members.

The component family developed by A-

PRIMED is the "pin-in-maze" discrim-

inator, a safety/security device that permits

the transfer of energy only on receipt of a

specific binary code. The correct code

moves a pin through a maze and closes a

switch; an incorrect code locks up the

device. The device has to be quite robust to

prevent unwanted closure of the switch in

accident environments. Parameter varia-

tions considered for this family of

components included the code length and

pattern, mounting plate geometry, and part

material. The goal was to be able to

produce quickly a discriminator at any

point in the (qualified) parameter space.

For example, highly reliable operation of a

discriminator requires very precise

balancing of the maze wheel. Every

different code changes the geometry of the

maze wheel and thus requires a unique

balancing (by removing material). The

objective of A-PRIMED was to

automatically translate any acceptable code
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into a maze wheel design and NC
machining program so that the required

maze wheel can be quickly produced

without human intervention. Furthermore,

robotic assembly instructions keyed to

maze wheel features will also be

automatically generated to permit prompt

assembly of the fabricated parts.

For a parameter space with any breadth at

all, or one that includes continuous

parameters, adequate assurance that

acceptable product can be realized

throughout the parameter space cannot be

obtained by fully realizing product at every

point in the parameter space. And even if

such brute force, exhaustive qualification

could be economically done, that would

defeat the purpose of agility. Rather, in any

realistic context, tests and analyses can be

conducted only at a subset of points in the

parameter space, points selected to provide

an engineering and statistical basis for

inference to points not tested. For example,

if tests and analyses show that the device

can survive its shock requirements at

certain extreme configurations included in

the parameter space, then this provides

assurance that it will also survive at

intermediate configurations. Engineering

understanding of the physics of the

situation provides assurance that extremes

and intermediates are correctly identified;

statistical considerations will determine the

level of assurance provided. Also, for the

sake of economy and efficiency, the

qualification focus is on constituent

processes and subassemblies, rather than

fully realized devices. For example, some

machining processes, such as drilling a hole

or cutting certain features, may be constant

throughout the parameter space, so there is

no need to repeatedly qualify them as other

aspects of the design change. Diegert, et al.

(1995) describes the qualification process

and its implementation for A-PRIMED in

detail.

Note that this project does not meet the

broadest concepts of agility and agile

manufacturing discussed in earlier sections.

We (I was a participant) were not

responding to unpredictable change; we had

bounds and worked to assure predictability

within those bounds. Any "totally new"

device would have to fall within those

bounds (though work done within defined

bounds could provide a head start on

meeting a request outside of the bounds).

Also, reconfigurability is limited; we
qualified one alternative machining facility

and planned for both manual and robotic

assembly. But, these limitations seem

prudent and necessary. Paradigms do not

shift overnight. Parameter-space thinking,

in particular, has been difficult to adopt.

Thinking in terms of possible future

customers instead of the specific needs of

the one you know can blur a team's focus.

Lessons learned should contribute to much
better understanding of the practice of agile

manufacturing.

There is one reconfigurability issue that

warrants some attention for virtual

enterprises, in general: Many A-PRIMED
team members were involved only part-

time in the project. Thus, they plugged

themselves into and out of the project at

various times and the personnel associated

with various functions changed over the life

of the project. Thus, the connections in

Fig. 1 come and go. Re-establishing

connections takes time and can introduce

variability. The well-designed virtual

enterprise will have to address such issues.

Sandia statisticians were involved in

developing the conceptual approach of the

A-PRIMED project and then became

responsible for leading the qualification

activities. This level of involvement led to

a variety of activities that a consulting

specialist doesn't have to do, such as:

scheduling meetings, taking and

distributing minutes, tracking open items.
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reminding, coaxing, and wheedling. The

parameter space qualification efforts

became the prime way by which design and

production interface issues were identified

and coherently addressed. A myriad of

"things happen" between the high-level

concepts and goals of agile manufacturing

and the actual production of functioning,

highly-customized devices and the A-

PRIMED history, if it is written, should be

quite helpful in identifying the sorts of

problems that can be encountered and in

pointing toward solutions.

Other Research

The 1994 ORSA/TIMS (Operations

Research and Management Science

societies) conference included three

sessions on agile manufacturing and several

other papers on the topic. These

presentations tended to deal with

conceptual and infrastructural aspects of

agile manufacturing. Modeling by the

OR/MS community is primarily what I

would call factory-level modeling, models

that deal with tasks such as scheduling,

provisioning, and transporting, rather than

the physics of a manufacturing process.

This sort of modeling would seem,

therefore, to be quite appropriate to virtual

enterprise modeling (and I would note that

the TEAM project, discussed above,

includes an enterprise modeling task). All

the statistical issues pertaining to parameter

estimation, validation, etc., discussed above

for process models, also are pertinent in this

case. Integrating process and enterprise

models is the overall objective discussed

above by Szekely and Trapaga (1994).

Spring Research Conference (SRC) on

Statistics in Industry and Technology, June

1994.

This conference, which I immodestly

mention because of my familiarity with it

as Program Chair, did not have any papers

that addressed agile manufacturing per se,

but there were numerous papers pertaining

to the statistical aspects that have been

discussed in this report. The conference

illustrated the breadth of potential statistical

opportunities for helping industry achieve

more rapid, economical product realization

and shows that the sorts of statistical

participation called for in this report are

occurring.

CONCLUSION

The goal of agile manufacturing — quick,

economical realization of high-quality,

customized product -- is important to

industrial competitiveness and survival.

The routes to that goal may differ from

industry to industry and company to

company. That is the point of the scenarios

in Nagel and Dove (1991). Common to all,

though, is the need to provide information

that can be readily used to decrease design

and production time and cost and maintain

and improve high quality. This report

presents my perspective, which is

concerned with statistical aspects of this

information. Other perspectives, and

particular technologies (electronic systems,

mechanical assemblies, materials process-

ing, ...), will raise many other issues.

Concurrent, multi-disciplinary work will be

required to translate general principles of

agile manufacturing into successful

production and delighted (or astonished)

customers. Let's start now.
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