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The MasPar MP-1 as a Computer Arithmetic Laboratory

Michael A Anuta^ Daniel W Lozier and Peter R Turner^

Abstract

This paper describes the use ofa massively parallel SIMD computer architecturefor the

simulation of various forms of computer arithmetic. The particular system used is a

DEC/MasPar MP-1 with 4096 processors in a square array. This architecture has many
ad\>cmtagesfor such simulations due largely to the simplicity of the individual processors.

Arithmetic operations can be spread across the processor array to simulate a hardware

chip. Alternatively they may be performed on individual processors to allow simulation of

a massively parallel implementation of the arithmetic. Compromises between these

extremes permit speed-area trade-offs to be examined. The paper includes a description

of the architecture and its features. It then summarizes some of the arithmetic systems

which have been, or are to be, implemented. The implementation of the level-index and

symmetric level-index, LI and SLI, systems is described in some detail. An extensive

bibliography is included.

I. Introduction

This paper describes and discusses the use of a massively parallel SIMD computer system as a computer

arithmetic laboratory. Specifically the DEC/MasPar MP-1 system with 4096 processors is used for

software implementation ofvarious types of computer arithmetic for integer, fixed-point, real and complex

arithmetic. The systems implemented (or, in some cases, to be implemented) include both conventional

and novel representation and arithmetic systems. Some of these provide general computational frameworks

(such as binary integer and floating-point). Others have been developed primarily as special arithmetic

systems (such as the RNS) or are still in experimental design stages (such as logarithmic, level-index and

symmetric level-index arithmetic).

The first part of the paper contains a brief introduction to the MasPar architecture and why it is

appropriate for this task. Section 3 reviews some of the number representations and their corresponding

arithmetic data types which have been (or, in some cases, are being) created in this laboratory. In Section

4, we concentrate on one particular case. The implementation of the symmetric level-index, SLI, arithmetic

serves as a particularly illustrative example of the general laboratory project because it uses some of the

other arithmetic systems (such as fixed point fractional arithmetic of various wordlengths) for its internal
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processing. This section also contains details of a modified algorithm for SLI arithmetic which is better

suited to a massively parallel implementation - and to an eventual VLSI hardware implementation of SLI

arithmetic. A substantial bibliography is included.

11. The MasPar MP-1 System

The MasPar system used is a SIMD array of 4096 processors configured as a square 64x64 array with

toroidal wraparound in both directions. The individual processors are just 4-bit processors so that all

arithmetic is implemented in microcode. Like any SIMD architecture, at any instant all processors are

either performing the same instruction or are inactive. Clearly, for example, adding two 64x64 matrices

is a particularly simple instruction for this machine. Matrix multiplication is less straightforward but is still

well-suited to the array. Its speed advantage relative to conventional architectures comes from the massive

parallelism overcoming the slower individual operations.

FIGURE 1 The principal advantages of using such a SIMD array

Conceptual diagram of SIMD array with
implementation of a computer arithmetic laboratory

toroidal wraparound
arise out of its flexibility.

The 64x64 array of four-bit processors can be used to

simulate hardware implementations of the various

arithmetic schemes and to make alterations easily in the

algorithms being used. Alternatively arithmetic can be

implemented using serial algorithms so that the main

computation is spread across the processors. This allows

computation to take advantage of the parallelism to reduce

the time-penalty inherent in such a software system.

By implementing the standard floating-point and integer arithmetic in a similar manner, it should be

possible to create a "level playing field" for comparing the performance of different arithmetic systems

on particular problems. In particular, timing comparisons can be made fairly easily since even the built-in

arithmetic is "nibble-by-nibble". Since a 4-bit nibble corresponds to a hexadecimal digit, using radix 16

to implement the internal arithmetic of any system is natural. This also has the benefit that even

multiplications can then be accommodated by using the built-in 8-bit integer format as a basic building

block.



The parallel array will allow realistic experimental computation without the enormous time-penalties

which would be suffered on conventional serial machines - or even on pipelined vector processors.

By making a compromise between the "spread-the-arithmetic-across-the-array" paradigm and the

"serial-algorithm-executed-in parallel" alternative, speed-area trade-oflf simulations can be run. The

relative performances can be expected to be reasonably indicative and so to alleviate the need for building

experimental hardware.

Many of these points will become clearer with reference to particular implementations later.

The MP-1 programming languages are MPL and MPFortran. MPL is an extended version of ANSI C

allowing for plural variables which are variables for which there is an instance on each processor - or,

more precisely in each processor's individual memory. Communication between the various processors

and their memories is achieved either through the Xnet (which is designed for nearest-neighbor

communication in each of the North, South, East and West directions) or the router which handles more

distant communications.

MPFortran is a version of high-performance Fortran which again includes the appropriate array

constructs and communication instructions. The two languages have been designed for the easy inclusion

of subroutines written in one language within programs in the other. There is also a very powerful

debugging and program-development environment which includes a profiler so that bottlenecks are easily

identified. An additional advantage is that these languages will lead fairly naturally to more portable code

in F90 or C++.

A later phase of the development of this computer arithmetic laboratory will be the simulation of

various arithmetic hardware components. Then a prospective chip design could be mapped onto the array

and tested.

III. Review of proposed computer arithmetic systems

Integer and floating-point arithmetic already exist in both MPL and MPF in all the standard wordlengths,

and some others such as a built-in long long which is a 64-bit integer in MPL. Complex floating-point

arithmetic is also available in MPF. This section contains a brief summary of some of the other formats

which are (or will be) available in the computer arithmetic laboratory. The list is merely illustrative and

is not intended to be complete.



III.l Integer and fixed-point arithmetics

111.1.1 Binary integer arithmetic

Standard (two's complement) binary integer arithmetic already exists on the MP-1 and so need not be

implemented specially for this laboratory. Indeed the standard and, especially, the shorter wordlength

integer forms will be used as a basis for many of the other implementations. At a later stage of the

development many of the hardware components of binary integer processors will be simulated to assist

with the design of hardware algorithms. Details of these algorithms are readily available in standard texts

such as [l]-[7] Online algorithms, signed digit and redundant arithmetic ([8]-[13], for example) are often

used for the internal computation. These would also be implemented during this later stage.

111.1.2 Fixed-point fraction arithmetic

One of the arithmetic forms which is often missing from the usual computational data types is fixed-

point fraction arithmetic. Systems such as the lexicographic continued fractions of Kornerup and Matula

[49]-[53] provide a general rational arithmetic. Otherwise, typically, binary fixed-point fractions are

implemented as scaled versions of integers.

The fraction arithmetic implemented within this computer arithmetic laboratory allows direct

computation with fixed-point fractions of varying wordlengths. Specifically, the wordlength is measured

in "nibbles" (or hexadecimal digits). One nibble is reserved for sign and other information - such as a

record of overflows for addition or the use of a reciprocation bit in division.

Fraction arithmetic is often required not only for itself but also for the internal computation of other

arithmetic representations such as the level-index scheme which is discussed in greater detail in the next

section. Some of the details of the implementation of fraction arithmetic are also presented there.

The use of the "nibble-base" means that multiplication of digits can be easily performed in an 8-bit

integer format. Division is readily implemented using a radix- 16 nonrestoring algorithm.

The basic fraction arithmetic is also to be extended for various library functions including some special

function definitions which are needed for efficient algorithms for LI, SLI or logarithmic arithmetic. These

arithmetic algorithms also require the use of fixed-point number representations which have both an

integer and a fraction part. These representations are accommodated by allowing "fractions" with n.m

hexadecimal digits meaning n integer digits and m fraction nibbles.
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in.1.3 RNS arithmetic

Residue Number Systems (RNS) arithmetic has been extensively researched for well over twenty years

and there is a very considerable literature on the representation, arithmetic algorithms and applications of

such systems. A sample of these are listed in the Residue Number Systems section of the Bibliography,

[14] -[28]

The principle ofRNS arithmetic is that an integer within the representable range is represented by its

residues modulo a set of basis primes. (Strictly, not all the basis elements must be prime but for most

practical purposes this is needed.) Thus an integer A is represented in the RNS system using base moduli

by the vector {a^, ^2 , ..., a^) where

a = N mod 0 '
1 , 2, ..., L)

Addition and subtraction of integers represented in this way can be performed by adding (or subtracting)

the respective residues - and this may be done entirely in parallel since there is no carry from one modulus

to another. The same is true for multiplication provided that the product does not overflow the dynamic

range

(For many practical applications ofRNS arithmetic, a symmetric range equivalent to [-MU, AT/2] would

be used.)

The implementation ofRNS arithmetic on the MP-1 would use one processor per modulus. Usually,

the dimension L of the RNS-basis is much smaller than the 4096 processors available and so it becomes

feasible to implement a high degree of SIMD parallelism at the conventional level. For example even with

a RNS-basis of 64 moduli, the MP-1 can simulate a SIMD vector processor with 64 processors each

operating on this extended data type.

The implementation covers the common RNS integer arithmetic formats - both the nonnegative and

symmetric forms. Conversion of either of these to binary integer forms can be achieved using the Chinese

Remainder Theorem, CRT. The processor array can be used to implement the long accumulator which is

needed for this conversion with a large dynamic range.

Other features which are included are base extension using a mixed radix conversion and the quadratic

extensions of RNS integer arithmetic to admit complex integer arithmetic. Both the "real and imaginary

part" form of the QRNS and the logarithm-based GEQRNS (Galois-enhanced quadratic residue number

system) are implemented. (See [23] for example.)
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Various RNS division algorithms have been (or will be) included for comparison purposes. These

include the newer algorithms of [20] and [27], One of the first applications of this arithmetic will be to the

solution of linear systems and, in particular, the adaptive beamforming problem.

III.2 Real number representations and arithmetic

III.2.1 Floating-point systems

The standard IEEE floating-point data types are provided in MPL and MPF. The laboratory will

include software implementations of these with variations to allow for different wordlengths and different

partitioning of those words between the exponent and mantissa. Variants for complex arithmetic in MPL

are also to be added.

For all the real number representations to be implemented, complex arithmetic will be implemented

both in its conventional (real and imaginary part) form and in modulus-argument (or polar) form.

Appropriate elementary and special function routines will also be available for each of these data types.

Much work has, of course, been done over the years on various aspects of the floating-point system.

This has included the IEEE standards, hardware algorithm development, error analysis and correction,

CORDIC algorithms for elementary functions and multiple precision packages. (See [29]-[38], for

example.)

Other variations on the basic floating-point arithmetic which are included are implementations of

directed rounding so that interval arithmetic [39]-[42] may be simulated along with conventional

arithmetic operations. In this context a "super-accumulator" for "exact" accumulation of floating-point

inner products is to be implemented using the processor array to simulate the multiple precision unit.

The extended floating-point systems of Matsui-Iri [74] and Hamada [71], [72] and [76] are based on

the principle of only using the necessary number of bits in a floating-point word to represent the exponent.

These are therefore developments of Morris's tapered floating-point system [75]. The intention of both of

these systems is to alleviate the overflow/ underflow problem of floating-point arithmetic.

Matsui and Iri used part ofthe computer word to represent a pointer which indicates the number of bits

allocated to the exponent with the rest then being available for mantissa representation. The relative

representation error therefore grows with the magnitude of the number being represented - approximately

linearly with the logarithm of its binary exponent. However, a "single precision" version of this

representation requires 5 bits for this pointer and so can only yield higher precision over a very restricted
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range. The system is therefore suitable only for longer wordlengths.

This is also true of Hamada 's "Universal Representation of Real Numbers" or URR in which Matsui

and Iri's pointer is replaced by a dual purpose segment of the representation. In essence, this section of the

word replaces both the pointer and the first bit of the exponent. Thus if the exponent has the form T'+n

the first bit is replaced by a unary string ofm bits followed by a terminator. The rest of the exponent (the

binary representation of //) occupy the next m bits and these are followed by the mantissa. Because of the

need for the terminating bit in the representation of m, it follows that this representation is less compact

than Matsui & Iri's once m is greater than the pointer length of the latter representation.

The computer arithmetic laboratory will include both 32- and 64-bit versions of both these arithmetics

as further variations on the binary floating-point system.

in.2.2 Logarithm-based arithmetics

Logarithmic arithmetic has been extensively studied in recent years as an alternative to floating-point

for real arithmetic. Work has included theoretical error analysis studies, algorithmic analysis and

developments and practical hardware processor designs. (See [43]-[48] for a sample of this work.)

The basis of logarithmic arithmetic is that a positive number is represented by its base 2 logarithm.

This logarithm is represented in fixed-point form. The internal arithmetic of the logarithmic arithmetic in

the MP-1 laboratory is therefore one ofthe places where the fixed-point binary fraction arithmetic referred

to in Section III. 1.2 is used.

The recently developed algorithms based on polynomial interpolation techniques [47] will be

incorporated into the implementation.

It is easy to extend the ideas of logarithmic arithmetic to an arbitrary base. Using e the base of natural

logarithms may have some advantages for logarithmic complex arithmetic and for the evaluation of

elementary functions within this system. This, too, will be added to the laboratory.

Natural logarithmic arithmetic is a bridge to the implementation of the level-index, LI, and symmetric

level-index, SLI systems [54]-[70]. The implementation of these systems is discussed in greater detail in

the next section.

IV. SLI implementation

Like many arithmetic systems the LI and SLI systems rely on a simpler arithmetic for their underlying
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internal arithmetic. In this case the underlying arithmetic is fixed-point fraction arithmetic. This section

begins with a brief description of this and then of the LI and SLI implementations.

IV.l Fraction arithmetic

In the fraction arithmetic of the MP-1 computer arithmetic laboratory, a number / with 1/1 < 1 is

represented by a sign digit followed by a number of fraction digits. Each of these is a hexadecimal digit

(or nibble) which simplifies spreading an arithmetic operation across the processor array.

The sign digit can obviously carry much more information than just the sign of the number. This

additional space allows the storage of a reciprocation bit (or flag), and an overflow indicator bit. The

reciprocation bit allows meaningful results to be returned for division of a larger number by a smaller one.

If this result is itself to be used later as a divisor, unnecessary failure is thus averted.

Similarly, the "overflow bit" can be used to prevent overflow resulting from the addition of two

fractions. In fact two such bits are available and these could be used to extend the representable range to

(-4, 4). Adding further integer nibbles can obviously extend this range.

Fractions of up to 15 nibbles, can be stored in the standard MPL data type long long - a 64-bit

integer which is one of its extensions of ANSI C. There are therefore packing and unpacking routines for

conversion between types such as fractionlO (a fraction with sign plus 10 hexadecimal digits) and its

various components. The bit manipulation operators of C make this operation reasonably straightforward.

Further conversion routines are provided for changing between conventional real storage and the fraction

types.

The available types will allow up to 15 hexadecimal digit fractions. Longer fractions can be simulated

by using more than one word - or, more likely, by using more than one processor - for its storage.

Once the storage of such quantities is achieved, addition and subtraction are implemented by using

their integer counterparts. The same is not true of multiplication.

Overflow (or wraparound) of integer multiplication is not appropriate since the most significant digits

of the product are the ones which correspond to these conditions. However the hexadecimal digit products

can be constructed using unsigned 8-bit integer arithmetic and then combined with appropriate shifts to

reformulate the result. Similarly the hex digits provide a natural framework for a (software) radix- 16

nonrestoring division algorithm.

The presence ofthe reciprocation bit necessitates a preprocessing of fractions for multiplication and/or

division so that the correct sign and reciprocation sign are assigned to the result of the appropriate final
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arithmetic operation. For example division of a larger fraction, x, by a smaller one, y, is performed by

setting the reciprocation bit of the result and computing the reciprocal quotient _y/x.

Many of the decision processes here are reminiscent of those used in the Turbo Pascal implementation

of SLI arithmetic described in [68]-[70].

IV.2 LI arithmetic

In the LI system a positive numberX is represented by its generalized logarithm x where

X= (Kx)

and the generalized exponential function (j) (the inverse of the generalized logarithm) is given by

4(x)
exp ( 4)(x

-
1 ))

0 < X < 1

X > 1

( 1 )

(2 )

The basic representation, arithmetic algorithms and analysis for this system were discussed in detail in

[54]-[57], [61], [64],

To give a flavor of the MP-1 implementation of this system we describe just the addition algorithm

and its use of the fixed-point fraction arithmetic. This operation consists of finding r such that

4(z) = 4)(x)±4)(v) (3)

where x = I +f > m + g =y > 0 and /= [x], m = [v] . This is achieved by computing members of the

sequences

a = b - c = (4)
4)(x-7) (Kx-y) ^ (Kx-i)

The first two of these are evaluated by similar recurrence equations for decreasing values ofj\

9-1
= exp

-i'

./ /

-1
= exp

-1
) = cr , em- 1 m-

1

( 5 )

The initial value for the Z)-sequence can be redefined to allow the simultaneous computation of these two

sequences. Their values are bounded by 0 and 1 and the analysis of the algorithm [56] shows that they can

be computed to fixed absolute precisions. It follows that fixed-point fractions are the desired internal

arithmetic form.

The remainder of the algorithm consists of setting
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S = ' ^ *0 (6)

then computing terms of the c-sequence by another short recurrence, and performing a final step to obtain

r. The c^'s are bounded, by [0, 1] for subtraction and [1, 2] for addition. Again, fixed-point fraction

arithmetic is appropriate.

The analysis of the LI arithmetic algorithms [56] shows that, for a 32-bit LI wordlength, the data types

fraction 10 and fractions (that is fractions with 10 and 8 hexadecimal digits) are suitable for the

computation of the a-sequence and the b- and c-sequences respectively. Furthermore, the sign nibble of

the fraction representation above admits a 1-bit integer part so that the terms of the c-sequence for addition

create no difficulty.

Efficient computation with these data types will certainly require implementation of special algorithms

for the exponential and logarithm functions for the restricted range of arguments which are encountered

in the LI algorithms. These special algorithms can be spread across the processor array. They would

probably be based on the modified CORDIC algorithms originally presented in [66] or the table-lookup

approach of [65].

Development of these algorithms is another task which will be eased by the computer arithmetic

laboratory.

IV.3 SLI arithmetic

We begin with a brief description of a new SLI arithmetic algorithm and then consider its

implementation in the MP-1 computer arithmetic laboratory. The notation here is the same as for LI

arithmetic above except that now a real numberX is represented by

with (j) given by (2) and x > 1

.

rv.3.1 Modified SLI algorithm

In the standard SLI arithmetic algorithms described in [56] and [58] all the basic arithmetic operations

involve the computation of a quantity from which computation of the c-sequence proceeds.

For the "large" case, the add/subtract operation is just the LI operation (3) above. Then Cq is given by

(
7 )

4Kx)

10



The corresponding "mixed" operation is

^z) = 4)(x)± (Kv)"'

with Cq given by

1 ±
1

(K^)4>Cv)

For "small" arithmetic the basic operation is

= (t>(x)-'±(Kv)'‘

with = 1 /Cq given by

^ ^ P 0
1 ±

4>(y)

(8 )

(9 )

There are similar recurrence relations to those in (5) which are used from appropriate starting values

to generate the members of the a- and P -sequences given by

= exp

= e.xp

j /

-l^P

a p

(j
= m-l, 1)

(/• =/-l,..., 1)

where, again, /, m are the levels of x, y respectively. Note that in all cases, the first argument to the

arithmetic operation is assumed to be the larger in absolute value so that x > >’ for the large case and x <

y in the small case.

These arithmetic operations are analysed in [58] in terms of the required precisions in the fixed-point

computation of the sequences in order to deliver results with error comparable with inherent errors.

The alternative algorithms presented here are based on using only the a- and a -sequences. This has

great potential advantages for both SIMD software and VLSI hardware implementation of SLI arithmetic

since the definitions of these sequences are identical for the two arguments x and v.

These alternative algorithms reduce to redefining the initial values of the c-sequences by:

1.^
“o

large arithmetic (10)

^0 ' “o mixed aritlmietic (11)

and
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small aritlinietic
( 12 )

in place of (7)-(9). The remainder of the algorithm remains unchanged. We observe here that the divisions

in (10) and (12) are always of a smaller quantity by a larger so that our fixed-point fraction arithmetic

remains appropriate.

The precision requirements of the fixed-point internal computation will, of course, be slightly different

for this modified algorithm. The detailed error analysis of this algorithm will be published elsewhere. The

availability of variable wordlength fixed-point fractions will simplify computational testing of this

algorithm.

Extensions of this algorithm to the extended arithmetic operations such as summation, scalar products

and vector norm computations (see [62], [69] for example) yield further simplifications in the algorithm

logic and therefore in the potential for VLSI hardware designs. A SIMD software implementation is a

natural step in this direction.

IV.3.2 SLI Implementation

In this subsection we highlight some of the features of the MP- 1 implementation of SLI arithmetic with

reference to the task of summing a series of SLI terms which fits the processor array.

This example demonstrates some of the simplifications which follow from the adoption of the revised

SLI algorithm described above. It is also a good vehicle for illustrating some of the features of the MPL

language and its extensions of ANSI C. One of the primary benefits of this from the arithmetic viewpoint

is that the SIMD instructions make it plain where there is multiple use of the same instruction which is a

good indicator of suitability for VLSI design. The many reduction algorithms that are built into the

language also show clearly the places in a VLSI algorithm where adder, or other logic, trees would be

used.

These advantages obviously carry over to any arithmetic system that is to be implemented on this or

any similar SIMD architectures.

First the single precision, 32-bit, SLI data type si is ingle can be identified with the 32-bit integer

type long in such a way that the integer ordering is the correct SLI ordering. This is just the same data

packing routine as was used in [68]-[70]. This order-preserving mapping is important for the identification

of the largest element of the array of terms.

These terms would exist as a variable X of type plural slisingle which is to say it has one
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instance on each of the processors in the 64x64 array.

To describe the algorithm we shall denote the individual terms by X = 5
^
4K^', (/ = 0, 1, 4095), The

largest element in this array of terms, and, more importantly, its position can be obtained using the built-in

MPL reduction functions reduceMax32 and rank32. We shall denote the position of the maximal

element by p. For simplicity we shall assume Wj ^ 1 so that rp^\.

The next step of the algorithm is to compute the a-sequence for each term. This operation is performed

simultaneously on each processor to produce a plural fractionlO a [7] where again the word

"plural" indicates the existence of this array on all processors. (The dimension 7 here reflects the maximum

level needed in SLI arithmetic.) We shall denote the values of a[0] by A,.

The only branch in the algorithm is now used to compute the quantities

(13)

These terms are then summed over all processors to obtain Cq using the fraction equivalent of the built-in

reduceAdd function. The number ofterms demands that a maximum of 12 bits, or 3 hexadecimal digits,

are needed for the integer part of Cq.

The computation is completed by generating subsequent members of the c-sequence as for regular SLI

addition.

The algorithm just described is not only much simpler than that presented in [69]. The use of the

parallel instructions and reduction-based algorithms demonstrates clearly the inherent suitability of the

algorithm for VLSI implementation.

The underlying fraction arithmetic requires just a few extensions beyond regular arithmetic operations.

For example, a special purpose routine for computing exp(-l/F) for a fixed-point fraction F in (0, 1) to

a fixed absolute precision is needed to compute the various (7-sequences efficiently. This can be achieved

using a modified CORDIC algorithm similar to those in [66] and [69].

V. Conclusions

In this paper we have introduced the ideas behind the development of a software computer arithmetic

laboratory on a massively parallel SIMD array processor. The particular machine used is a DEC/ MasPar

MP-1 with 4096 processors although the principles would apply equally well on any other similar SIMD
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machine.

A wide variety of number representation and arithmetic systems for computers can be incorporated

into this laboratory. This paper has described some of those and then presented some salient details ofjust

a few, including fixed-point fractions and the level-index and symmetric level-index systems.

The primary benefits to be gained are in the provision of a reasonable basis for comparison between

various arithmetic forms and in allowing algorithmic experimentation as an aid to hard\yare design

processes.
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