

NISTIR 5559

Indoor Air Quality Impacts of Residential HVAC Systems Phase II.A Report: Baseline and Preliminary Simulations

Steven J. Emmerich Andrew K. Persily

Building and Fire Research Laboratory Gaithersburg, MD 20899

United States Department of Commerce Technology Administration Institute of Standards and Technology

QC 100 .U56 N0.5559 1995

NISTIR 5559

Indoor Air Quality Impacts of Residential HVAC Systems Phase II.A Report: Baseline and Preliminary Simulations

Steven J. Emmerich Andrew K. Persily

January 1995 Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

U. S. Department of Commerce Ronald H. Brown, Secretary Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Prepared for:

U.S. Consumer Product Safety Commission Directorate for Engineering Sciences Division of Mechanical Engineering Bethesda, MD 20814

Abstract

NIST has completed Phase II.A of a project to study the impact of HVAC systems on residential indoor air quality and to assess the potential for using residential forced-air systems to control indoor pollutant levels. In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations with the program CONTAM93 to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. This report summarizes the results of Phase II.A of this project, which consisted of three major efforts: baseline simulations of contaminant levels without indoor air quality (IAQ) controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits. In Phase II.B of the study, all of the baseline cases will be modified to incorporate the IAQ control retrofits. The retrofit results will then be compared to the baseline results to evaluate the effectiveness of the retrofits.

The pollutant concentrations in a building depend on many factors including the configuration of the building zones, the air leakage of the building envelope and of interior partitions, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, heating and cooling system airflow rates, furnace filter efficiency, characteristics of reversible pollutant sinks in the building, individual pollutant decay or deposition rates, and ambient weather and pollutant concentrations. This report describes the input data used to model the baseline houses with CONTAM93 and presents the results of the baseline simulations in the form of the transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations. Three indoor air quality control technologies were then selected for incorporation into the baseline house models to determine their effectiveness in controlling the modeled pollutant sources. The technologies include the following: electrostatic particulate filtration, heat recovery ventilation, and an outdoor air intake damper on the forced-air system return. Selected baseline cases were then modified to implement these indoor air quality control retrofits, and preliminary simulations were performed to demonstrate the ability of the program to model the control technologies.

Key Words: airflow modeling, building technology, computer simulation, filtration, heat recovery ventilator, HVAC system, indoor air quality, infiltration, residential buildings, ventilation

Acknowledgements

This work was sponsored by the U.S. Consumer Product Safety Commission under Interagency Agreement No. CPSC-IAG-93-1124. The authors wish to acknowledge the efforts of Roy Deppa and Lori Saltzman of CPSC in support of this project. The authors also express appreciation to Cherie Bulala for her assistance in performing simulations for the project.

Table of Contents

Abstract	. iii
Acknowledgements	. v
Introduction	1
Contents of Report	. 1
Baseline Simulations	. 3
Baseline Simulation Input Data	. 3
Baseline Simulation Results	13
Indoor Air Quality Controls	20
Electrostatic Particulate Filtration	20
Heat Recovery Ventilator	21
Outdoor Intake Duct	24
Preliminary Simulation of IAQ Control Retrofits	31
IAQ Control Retrofits	31
Results of Preliminary Simulation of IAQ Control Retrofits	32
Summary	36
References	38
Appendices	
Appendices	• • •
A Airflow Modeling Results	41
B Baseline and Preliminary Simulation Results	46

Introduction

Despite the increasing interest in residential indoor air quality (IAQ) problems, only limited research has been conducted which integrates the analysis of pollutant sources, residential heating and cooling system operation, and building characteristics. While central forced-air heating and cooling systems may provide solutions to some IAQ problems, such an integrated approach is required to analyze these options. Because large quantities of indoor air circulate through these systems, they offer the potential for treating the indoor air and then distributing this treated air through the system ductwork to the building. Also, outdoor air brought into the building by the forced-air system can be distributed throughout the building by this ductwork. Most modeling studies of IAQ in residential buildings have employed very simple models of the building and its systems, ignoring the multizone nature of the airflows involved. The use of such simple analytical procedures has limited our understanding of the impact of central forced-air heating and cooling systems on residential IAQ and the possibility of using these and other systems to mitigate IAQ problems.

The National Institute of Standards and Technology (NIST) is conducting a study for the U.S. Consumer Product Safety Commission (CPSC) to assess the potential effectiveness of existing heating, ventilating, and air conditioning (HVAC) technology to reduce the levels of selected pollutants in single-family residential buildings. This effort is employing a new multizone airflow and contaminant dispersal modeling program, CONTAM93 (1). In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. Phase I of the project included conducting a literature review, developing a detailed simulation plan, and hosting a workshop to discuss the project, and was described in a previous report (2). This report summarizes the results of Phase II.A which consisted of three major tasks: baseline simulations of contaminant levels without IAQ controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits in place.

In Phase II.B of the study, the baseline HVAC systems will be modified to incorporate the IAQ control technologies described in this report and simulations will be performed for all conditions under which baseline simulations were performed. The Phase II.B simulation results will be compared with the results presented here to determine the effectiveness of the IAQ modifications at controlling the selected pollutant sources.

Contents of Report

The first section of the report describes the baseline simulations performed. The program CONTAM93 (1) was used to calculate airflows and pollutant distributions for the houses and pollutant sources described in the report on Phase I of the project (2). The houses modeled are not based on real buildings but are intended to be representative of typical buildings. This first section presents the input data used to describe the houses, HVAC systems, pollutants, sources, and boundary conditions in the baseline simulations. In addition, this section summarizes the

results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations.

The second section describes the indoor air quality control technologies that will be evaluated in the computer simulations during Phase II.B. These technologies will be incorporated into the baseline house models to determine their effectiveness in controlling the selected pollutant sources. The three technologies described in this section include electrostatic particulate filtration, heat recovery ventilation, and an outdoor air intake damper on the forced-air system return. This section describes each of these technologies and includes revisions of the baseline house duct drawings. In addition, this section contains an estimate of the equipment and installation costs and a revision of the thermal load calculations based on the modifications. Finally, the impacts of each of these technologies on "other contaminants" are discussed qualitatively. These other contaminants, as described in the original project work statement, include contaminants that have typically been of concern to designers of residential ventilation systems including cooking odors, tobacco smoke, moisture, outdoor pollen, outdoor odors and ozone.

The third section presents the results of preliminary simulations of the IAQ control retrofits. These simulations involved modifying selected baseline simulation cases with the three IAQ control retrofits. The preliminary simulations were performed to demonstrate the ability of the program to model the IAQ control technologies.

The report includes two appendices. The first appendix describes modeling performed to characterize the airflow in the houses including the results of fan pressurization simulations and whole house infiltration simulations. The second appendix includes summary tables of the baseline and preliminary simulation results.

Baseline Simulations

This section of the report describes the baseline simulations performed in Phase II.A. This section presents the input data describing the houses, HVAC systems, pollutants, sources, and boundary conditions modeled in the baseline simulations. In addition, this section summarizes the results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations.

Baseline Simulation Input Data

Calculating airflow rates and contaminant concentrations with CONTAM93 or any other multizone model requires the following input: the configuration and volume of the building zones, the air leakage paths through the building envelope and interior walls, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, HVAC system flows, furnace filter efficiency, characteristics of reversible pollutant sinks, individual pollutant decay or deposition rates, and ambient weather and pollutant concentrations. This section describes the input data used in the baseline simulations.

The study included eight building models - a ranch and a two-story house, located in two sites (Miami and Minneapolis), with typical and low values of airtightness. The Phase I NISTIR (2) described the layout and dimensions of each house and contained floorplan drawings. Simulations were performed under three sets of weather conditions (cold, mild, and hot) for each building. Each simulation was performed for a one-day cycle repeated until peak concentrations converged to a specified tolerance. Referring to all pollutant sources modeled for a single building as one simulation, there were a total of 24 baseline simulation cases. Table 1 lists the baseline simulations by house type, location, airtightness and weather condition.

Simulation	House type	Location	Airtightness	Weather
SIM1FLC	ranch	Miami	typical	cold
SIM1FLM	ranch	Miami	typical	mild
SIM1FLH	ranch	Miami	typical	hot
SIM1FTC	ranch	Miami	tight	cold
SIM1FTM	ranch	Miami	tight	mild
SIM1FTH	ranch	Miami	tight	hot
SIM1MLC	ranch	Minneapolis	typical	cold
SIM1MLM	ranch	Minneapolis	typical	mild
SIM1MLH	ranch	Minneapolis	typical	hot
SIM1MTC	ranch	Minneapolis	tight	cold
SIM1MTM	ranch	Minneapolis	tight	mild
SIM1MTH	ranch	Minneapolis	tight	hot
SIM2FLC	two-story	Miami	typical	cold
SIM2FLM	two-story	Miami	typical	mild
SIM2FLH	two-story	Miami	typical	hot
SIM2FTC	two-story	Miami	tight	cold
SIM2FTM	two-story	Miami	tight	mild
SIM2FTH	two-story	Miami	tight	hot
SIM2MLC	two-story	Minneapolis	typical	cold
SIM2MLM	two-story	Minneapolis	typical	mild
SIM2MLH	two-story	Minneapolis	typical	hot
SIM2MTC	two-story	Minneapolis	tight	cold
SIM2MTM	two-story	Minneapolis	tight	mild
SIM2MTH	two-story	Minneapolis	tight	hot

Table 1 - Baseline simulations

Detailed information on building component leakage of the houses is not available as the houses modeled were not based on real buildings. However, since there is no attempt to compare predictions with experimental data, the building leakage modeled needs only to be reasonable in magnitude and distribution. Table 2 shows all of the leakage paths between the zones of the Miami ranch house (see Figure 1 for the ranch house floorplan and zone labeling and Figure 2 for the two-story house floorplan and zone labeling). The Minneapolis houses have basements (zone label BMT) that are not shown in the figures. Table 3 lists the values for those leakage paths for both the typical and tight cases. The Table 3 leakage areas are for a reference pressure difference of 4 Pa and a discharge coefficient of 1.0 and are based on values listed in Table 23-3 of ASHRAE (3) unless otherwise noted. The typical values were generally based on "best estimate" and/or uncaulked entries in the ASHRAE table, while the tight values were based on minimum and/or caulked entries. All doors connecting zones other than closets were modeled as open. The same leakage values were used for the other houses, although the paths connecting the zones differed depending on the house configurations.

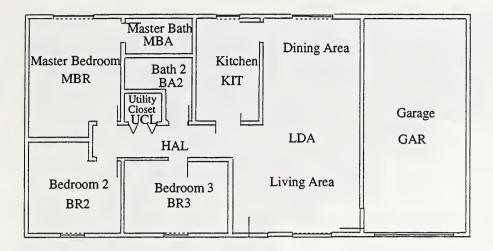
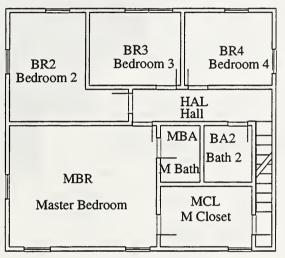
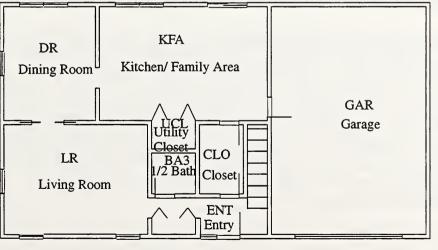




Figure 1 - Ranch house floorplan and zones

2nd Floor

Ist Floor

Figure 2 - Two-story house floorplan and zones

	MBR	BR2	BR3	MBA	BA2	UCL	KIT	LDA	HAL	GAR	ATC
BR2	INTW OUTL								n dita A di sectori data di Antalian sectori Bandian sectori		an Saintean Saintean Saintean
BR3		INTW OUTL									a bar Alasti Mariati
MBA	INTD INTW										ra cano se vido. Notada Notada Notada Notada se
BA2	INTW OUTL			INTW OUTL							
UCL	INTW				INTW						an a
KIT				INTW OUTL	INTW OUTL						
LDA			INTW OUTL				INTW INTD OUTL				
HAL	INTD INTW	INTD INTW	INTD INTW OUTL		INTD INTW	CLD INTW	INTD INTW OUTL	HAD			
GAR.								EXTD EXW OUTL			
ATC	CEIL CPEN	CEIL CPEN	CEIL CPEN	CEIL CPEN PIP	CEIL CPEN PIP	CEIL CPEN	CEIL CPEN	CEIL CPEN CPEN	CEIL ATD		
AMB	WIN EXW OUTL	WIN EXW OUTL	WIN EXW OUTL	EXV EXW OUTL	EXV		WIN EXV EXW OUTL	SGD EXTD WIN EXW OUTL		GAD GARF EXW	VNT
	MBR	BR2	BR3	MBA	BA2	UCL	KIT	LDA	HAL	GAR	ATC

Table 2 - Air leakage paths for Miami ranch house

The infiltration through a building's envelope also depends on the static pressure distribution created by the wind on the building's exterior surfaces. The relationship between wind and surface pressures are characterized by wind pressure coefficients which depend on the wind direction, the building shape, the position on the building surface, and the presence of shielding near the building. The surface pressure coefficients for the building walls were based on Equation 23-8 of ASHRAE (3). The coefficient for the flat garage roof was based on Figure 14-6 of ASHRAE (3). The ASHRAE wind pressure coefficients do not include shielding effects and no modifier for shielding effects was used, however, recent studies have reported on the shielding effects of trees (4) and rows of houses (5).

	5 - All leakage values		
Name	Description	Typical	Tight
ATD	Attic door	30 cm²/ea	18 cm²/ea
CEIL	Ceiling [Based on general ceiling]	$1.8 \text{ cm}^2/\text{m}^2$	$0.79 \text{ cm}^2/\text{m}^2$
CLD	Closet door (closed) [Based on interior door]	0.9 cm ² /m	0.25 cm ² /m
	Closet door frame [Based on general door frame]	25 cm²/ea	12 cm ² /ea
CPEN	HVAC ceiling penetration [Based on kitchen vent with damper closed]	5 cm ² /ea	1 cm ² /ea
EXTD	Exterior door [Single]	21 cm ² /ea	12 cm ² /ea
	Door frame [Wood]	$1.7 \text{ cm}^2/\text{m}^2$	$0.3 \text{ cm}^2/\text{m}^2$
EXV	Bathroom exhaust vent	20 cm ² /ea	$10 \text{ cm}^2/\text{ea}$
	Kitchen exhaust vent	$40 \text{ cm}^2/\text{ea}$	5 cm ² /ea
EXW	Ceiling-wall joint	1.5 m²/m	0.5 m²/m
	Floor-wall joint	$4 \text{ cm}^2/\text{m}$	0.8 cm ² /m
	Wall-wall joint [Based on ceiling-wall joint]	1.5 m ² /m	0.5 m²/m
GAD	Garage door [Based on general door (2 m x 4 m)]	0.45 cm ² /m	0.31 cm ² /m
	Garage door frame [Wood]	$1.7 \text{ cm}^2/\text{m}^2$	$0.3 \text{ cm}^2/\text{m}^2$
GARF	Garage roof [Based on general ceiling]	$1.8 \text{ cm}^2/\text{m}^2$	$0.79 \text{ cm}^2/\text{m}^2$
HAD	Hall doorway	2.4 m ² /ea	2.4 m²/ea
INTD	Interior door (closed) [Based on Table 4.2 of Klote and Milke (6)]	140 cm ² /ea	75 cm ² /ea
	Interior door (open)	2.1 m ² /ea	2.1 m ² /ea
INTW	Interior wall [Based on gypsum board on stud wall (Shaw et al. 7)]	$2.0 \text{ cm}^2/\text{m}^2$	$2.0 \text{ cm}^2/\text{m}^2$
OUTL	Electric outlet	2.5 cm ² /ea	0.5 cm ² /ea
PIP	Piping penetrations	6 cm ² /ea	2 cm ² /ea
SGD	Sliding glass door	22 cm ² /ea	3 cm ² /ea
VNT	Attic vent [Based on Table 21-1 of 3]	$1 \text{ cm}^2 / 300 \text{ cm}^2$	$1 \text{ cm}^2 / 300 \text{ cm}^2$
WIN	Double hung window	2.5 cm ² /m	0.65 cm ² /m
	Window framing [Wood]	$1.7 \text{ cm}^2/\text{m}^2$	$0.3 \text{ cm}^2/\text{m}^2$

Table 3 - Air leakage values

The building HVAC systems were designed in Phase I of the study and are described in the Phase I report (2). This earlier report contains the heating and cooling equipment types and descriptions, overall and individual supply and return airflow rate design values for both heating and cooling, and drawings showing the system equipment and duct locations and duct sizes. In addition to this information, CONTAM93 requires information on the system operation, specifically, an on-off schedule. The schedule was determined by calculating the fractional on-time required to meet the cooling or heating load for each 3-hour period of the day. A control profile incorporating this schedule was then input for each simulation. For the baseline simulations, the HVAC systems included standard furnace filters with constant efficiencies of 5% for fine particles and 90% for coarse particles. Fine particles are defined as having a diameter less than 2.5 μ m (the efficiency is based on a diameter of 0.6 μ m); coarse particles are defined as having. These

efficiency values are based on assumed arrestance for these filters of about 90% and a review of manufacturers' test data. No outdoor air intake is included for the baseline HVAC systems.

Another important consideration for the HVAC systems is duct leakage. Since the duct system itself is not modeled in these simulations, duct leakage is modeled by including an additional system supply or return point and reducing the other supply and return flows by the corresponding amount rather than by an effective leakage area. Cummings et al. 1991 (8) tested duct leakage in 160 houses in Florida and found that return leaks were dominant in the majority of homes. They reported an average return leak fraction of 10.7% (based on ratio of leakage flow to total system flow). For the Minneapolis houses, a return leak of 10% was included in the basement. For the Miami ranch house, a supply leak of 10% was included in the attic because the system has a central return. For the Miami two-story house, no leaks were designed based on guidelines published by the National Association of Home Builders (9) and drawings are included in the Phase I report (2).

The ambient boundary conditions required by CONTAM93 include weather and outdoor pollutant concentrations. The weather conditions were chosen by selecting a hot, mild, and cold day for each location from Weather Year for Energy Calculation (WYEC) data (10). The WYEC data is presented in Tables 5 and 6 for Miami and Minneapolis, respectively, and includes temperature, wind speed, and wind direction from north.

		Cold	14010 5		Mild	Ior duit	Hot			
Hour	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)	
0	2.8	2.3	320	13.3	3.9	360	26.7	0	0	
1	2.8	2.3	300	13.3	2.7	360	26.1	1.2	200	
2	2.8	3.5	310	13.3	3.5	360	26.1	1.2	200	
3	2.8	2.7	320	13.9	1.9	20	25.6	1.6	200	
4	2.2	2.3	310	13.3	2.7	20	25.6	1.9	200	
5	2.2	3.5	310	13.9	1.6	360	26.1	1.9	230	
6	2.8	2.7	320	13.3	2.3	340	25.6	1.9	200	
7	3.3	3.5	300	14.4	2.3	340	26.7	1.6	230	
8	4.4	2.3	290	16.1	2.7	340	27.2	1.9	200	
9	6.1	2.7	330	21.1	4.7	70	30.6	2.3	200	
10	8.9	3.1	320	23.3	4.7	70	31.7	2.3	230	
11	11.7	2.3	320	23.3	5.1	70	32.8	0	0	
12	13.9	2.7	330	23.3	5.4	70	33.3	2.3	200	
13	14.4	2.7	350	22.8	5.1	70	33.3	3.9	140	
14	16.1	2.3	360	22.8	5.4	70	32.8	4.3	180	
15	17.2	0.8	40	22.2	4.7	70	31.7	4.7	160	
16	17.8	2.7	40	21.7	3.9	90	30.6	1.9	290	
17	17.2	3.5	20	21.7	3.1	90	31.7	3.1	140	
18	16.7	1.9	340	21.7	4.3	70	30.6	2.3	160	
19	16.1	2.3	340	21.1	4.3	90	27.8	1.6	50	
20	15	1.6	350	21.1	2.7	90	27.8	1.2	50	
21	14.4	1.9	350	21.1	3.1	90	27.2	1.6	200	
22	16.1	2.3	30	21.7	1.2	90	26.1	2.3	230	
23	16.1	2.3	60	21.7	2.3	90	26.1	1.2	250	
24	17.2	3.5	60	20.6	3.1	50	26.1	0	0	

Table 5 - Miami weather data

	Cold			Mild			Hot		
Hour	Т (°С)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)	T (°C)	V _{wind} (m/s)	Dir (°)
0	-21.1	1.6	330	7.8	1.9	60	21.1	3.1	180
1	-21.1	1.6	330	7.8	1.9	40	20	2.7	180
2	-21.1	3.1	350	7.8	3.1	90	18.9	2.7	180
3	- 21.1	3.1	350	7.2	1.9	100	17.8	1.9	180
4	-21.1	3.1	350	7.2	4.7	130	18.3	1.6	158
5	- 21.1	3.1	350	7.2	3.9	130	17.2	2.7	135
6	-21.7	3.5	350	7.2	3.1	120	17.8	3.5	158
7	-21.7	2.7	340	7.2	3.9	140	20	1.9	158
8	-21.7	2.7	350	7.8	2.7	120	24.4	4.7	180
9	-21.1	3.9	340	8.9	3.1	130	26.1	5.8	180
10	-20.6	3.9	310	7.8	4.3	130	28.3	6.6	203
11	-20.6	4.7	310	8.3	4.7	130	30	6.2	203
12	-20.6	3.9	320	8.9	4.3	140	30.6	6.2	203
13	-20.6	4.3	320	8.9	4.7	140	31.1	7	203
14	-20	5.1	300	8.3	6.2	120	31.1	7.4	203
15	-20	4.7	290	8.9	6.2	110	31.1	6.6	203
16	-20.6	4.3	310	8.9	5.8	130	31.1	6.6	203
17	-21.1	3.5	290	9.4	5.1	130	28.9	4.7	203
18	-22.8	3.1	280	9.4	5.4	130	29.4	4.7	180
19	-23.3	2.7	280	11.1	5.4	160	27.8	4.7	180
20	-24.4	3.1	300	11.7	5.8	170	26.1	4.3	180
21	-25	3.1	280	11.1	6.2	180	24.4	3.9	180
22	-25.6	2.7	280	11.1	5.8	200	23.9	3.9	180
23	-27.2	2.3	240	10.6	6.2	220	23.3	4.7	158
24	-28.9	2.3	240	7.8	2.7	240	22.8	4.3	180

Table 6 - Minneapolis weather data

Outdoor pollutant concentrations vary by location and over time at any one location. The concentrations used as boundary conditions for the indoor sources in the simulations were selected as typical outdoor conditions and are not meant to represent the actual conditions at any specific location. The values used were specified per the schedules in Table 7. The CO and NO_2 concentrations were chosen based on review of US EPA air quality documents (11, 12, 13). They were chosen to have a diurnal pattern with morning and afternoon peaks. The selected CO and NO_2 concentration schedules are very similar to values measured outside a research house in Chicago (Figure 3.2 of 14). Fine particles and TVOCs are not discussed in the EPA documents. The ambient fine particle concentration was chosen based on the average of reported average measurements for four US cities (Table 4 of 15). The TVOC concentration chosen is in the

middle of the reported range of 10 to 211 μ g/m³ measured at 68 sites in the US (16). The fine particle and TVOC concentrations were assumed to be constant throughout the day.

In addition to the ambient concentrations in Table 7 that served as the boundary conditions for the indoor sources, elevated levels of CO, coarse particles, and NO_2 were simulated in order to evaluate the effect of the IAQ control technologies on pollutants brought into residences from the outdoors. These elevated pollutant concentrations were selected based on review of US EPA air quality documents (11, 12, 13) and were specified per the schedules in Table 8.

Table 7 - Outdoor portulant concentration schedules							
Hour of day	0 - 7	7-9	9 -17	17 - 19	19 - 24		
CO (ppm)	1	2	1.5	3	1.5		
NO ₂ (ppm)	0.02	0.04	0.02	0.04	0.02		
Fine particles (µg/m ³)	13	13	13	13	13		
TVOCs (µg/m³)	100	100	100	100	100		

Table 7 - Outdoor pollutant concentration schedules

Table 8 - Elevated outdoor pollutar	t concentrations schedule
-------------------------------------	---------------------------

	non po				
Hour of day	0 - 7	7-9	9 - 17	17 - 19	19 - 24
CO (ppm)	4	8	7	12	6
NO ₂ (ppm)	0.2	0.4	0.2	0.4	0.2
Coarse particles (µg/m ³)	75	75	75	75	75

The Phase I report (2) described the pollutant sources considered for inclusion in the study. The pollutant sources used in the baseline simulations included several VOC burst sources (medium strength source based on a polish and high strength source based on a spray carpet cleanser (17)), a constant VOC area source (based on a PVC flooring material with high emissions (18)), and combustion sources (based on medium source strengths for ovens and space heaters (19)) of CO, NO₂, and fine particles. While the source strength used for the flooring material isbased on a material with high emissions, it is only moderately higher than the range of 0.17 to 2.11 mg/m²h recently reported in 5 day emission tests of finished particleboard (20). Table 9 lists detailed information on these sources including the zones (see Figures 1 and 2 for zone labels, also BMT is the basement zone) in which they are located, source strengths, and schedules.

Source name	Pollutant	Zone(s)	Source strength	Schedule
Burst (medium)	TVOCs	Several	300 mg/h	9 - 9:30 am 7 - 7:30 p.m.
Burst (high)	TVOCs	GAR and BMT	1100 mg/h	9 - 10 am 7 - 8 p.m.
Flooring material	TVOCs	All but GAR, ATC	7.0 mg/h m ²	constant
Oven	СО	KIT (ranch house), KFA (two-story house)	1900 mg/h	7 - 7:30 am 6 - 7 p.m.
Oven	NO ₂	KIT (ranch house), KFA (two-story house)	160 mg/h	7 - 7:30 am 6 - 7 p.m.
Oven	Fine particles	KIT (ranch house), KFA (two-story house)	0.2 mg/h	7 - 7:30 am 6 - 7 p.m.
Heater	СО	GAR and BMT	1000 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)
Heater	NO ₂	GAR and BMT	250 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)
Heater	Fine particles	GAR and BMT	2 mg/h	7 - 10 am (GAR) 7 - 9 p.m. (BMT)

Table 9 - Pollutant sources

In addition to the sources listed in Table 9, the simulation plan in the Phase I report (2) included a newly-finished floor as a floor-area based decaying source of VOCs. A test simulation with a medium strength source, modeled as a first order exponential decay source with initial emission rate of 17400 mg/m²h and decay constant of 1.24 h⁻¹ (based on a stain product (21)) was performed for the Miami ranch house. This source resulted in extremely high concentrations of TVOCs with a peak concentration of over 2 g/m³ and a concentration of 37 mg/m³ at the end of the day. None of the IAQ control retrofits being evaluated can be expected to have a significant impact on the extremely high concentrations from this source during the one-day simulation period. Therefore, this source was not included in the remaining baseline simulations. Decaying high-strength sources such as this one are of interest and may be studied in the future with simulations of longer duration.

Reversible sink effects for the VOCs were modeled with sink elements based on a boundary layer diffusion controlled (BLDC) model with a linear adsorption isotherm. The BLDC adsorption model is described by Axley (22). The parameters required for this sink model are the film mass transfer coefficient, the adsorbent mass, and the isotherm partition coefficient, and these parameters would vary over time and by location within a house. However, since little real data is available for these parameters (which depend on factors such as gas diffusion properties, airflow rates, and adsorbent material) and because the goal was to obtain a reasonable estimate of the reversible sink effects, constant values were used for all of the parameters and only the adsorbent mass was varied by zone. The film mass transfer coefficient used was 35 μ m/s and was calculated from equation 3.17a of Axley (22) with an assumed air velocity of 0.001 m/s, effective length of 4 m, Schmidt number of 1.0, and binary diffusion coefficient of 1.0 x 10⁻⁵ m²/s. The partition coefficient used was 0.5 g-air/g-sorbent and was estimated from parameters reported for

an empirical sink model for an experimental case of alkanes emitted by a wood stain in a test house (23). The adsorbent mass used was based on a mass of 6 kg per m^2 of adsorbent surface area which was assumed to be equal to half of the zone interior surface area.

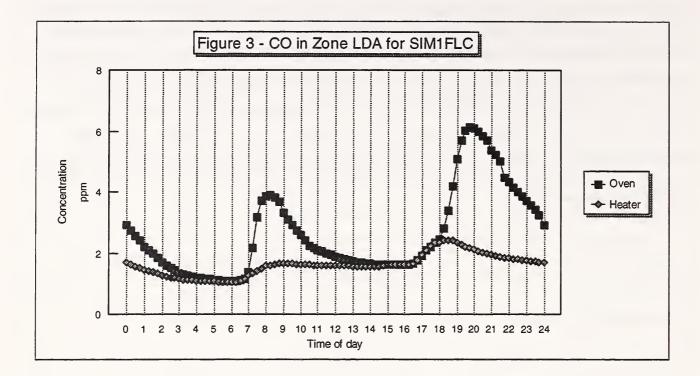
Nitrogen dioxide decay and particle deposition were modeled as single-reactant first order reactions with a single, constant value in all rooms of the houses. Nitrogen dioxide decay depends strongly on the materials present in a house (e.g., floor and wall coverings, furnishings, etc.) and a wide range of measured values have been reported including a range of 0.09 - 13.74 h^{-1} by Lee et al. (24). Other studies have reported average NO₂ decay rates of 0.17, 0.29, 0.65, 0.8, 0.82, and 2.07 h^{-1} (25, 26, 27, 28, 29, 24). The kinetic rate coefficient used for NO₂ decay was 0.87 h^{-1} and is based on the average of measurements in a contemporary research house reported by Leslie et al. (14).

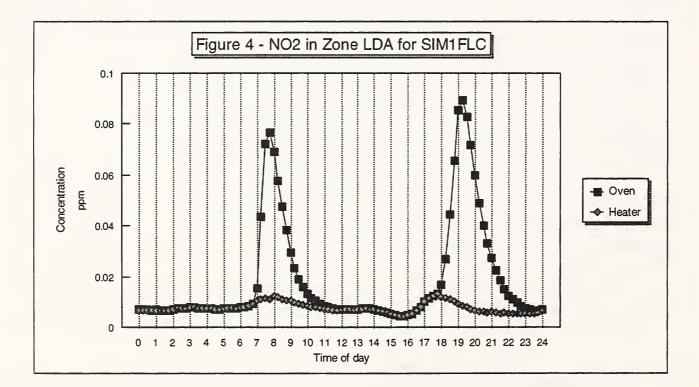
Particle deposition depends on the size and type of particles, particle concentration, airflow conditions, and surfaces available for deposition. The particle decay rate used for fine particles was 0.08 h⁻¹ and was reported by Traynor et al. (30) for combustion products from a wood-burning stove in a test house. Offerman et al. (31) reported a similar mass-averaged value of 0.1 h⁻¹ for tobacco smoke particles in a research house. The decay rate can be calculated as the product of an average deposition velocity and a room surface-to-volume ratio. Assuming a room surface-to-volume ratio of 2 m⁻¹ (the actual value will depend on room geometry, furnishings, and surface finishes), a decay rate of 0.08 h⁻¹ corresponds to a deposition velocity of approximately 0.001 cm/s. Sinclair et al. (32, 33) reported higher average deposition velocities of 0.005 cm/s for fine-mode sulfate in telephone equipment buildings. However, the nature of the indoor environment, and especially the airflow conditions, in a detached single-family home and a commercial building are very different. Nazaroff et al. (34) discusses the use of deposition velocity and warns that "Deposition velocities determined for one indoor environment can only be applied to another to the extent that the air flow conditions are similar."

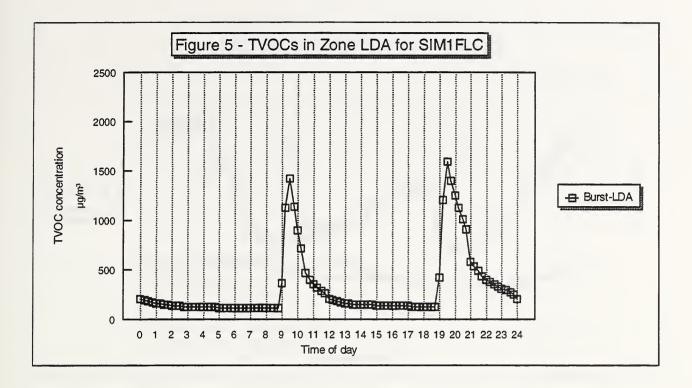
In the only report of coarse particle deposition rates in a test house found in the literature, Byrne et al. (35) reported values of 1.51 and 2.10 h⁻¹ for 4 μ m particles in an unfurnished and furnished room, respectively. The reported mean deposition velocities of 0.027 to 0.038 cm/s fall within the range of approximately .01 to 0.1 cm/s calculated from a natural convection deposition model by Nazaroff and Cass (36). The actual decay rate for the coarse outdoor air particles modeled in the simulations would depend on the size distribution of the particles. Since no specific distribution has been assumed , a decay rate of 1.5 h⁻¹ was chosen based on the lower value reported by Byrne.

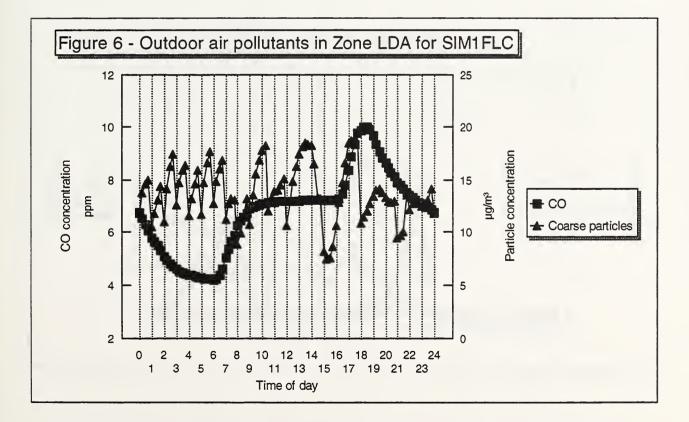
Baseline Simulation Results

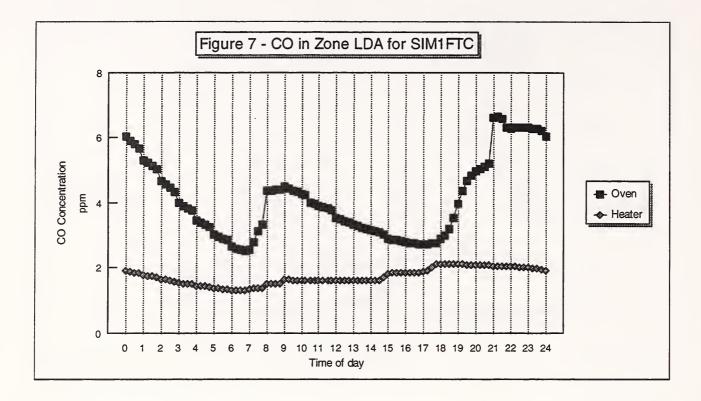
The results of each of the 24 simulations listed in Table 1 include pollutant concentrations for up to 18 pollutants in each of the building zones for each 15-minute time step of the 24-hour simulation period. The complete transient simulation results are not presented here but are available in spreadsheet files. Instead, this section presents examples of the transient pollutant concentrations for selected simulations. Figures 3 through 6 show the pollutant concentrations in Zone LDA resulting from selected pollutant sources for simulation SIM1FLC (the typical Miami

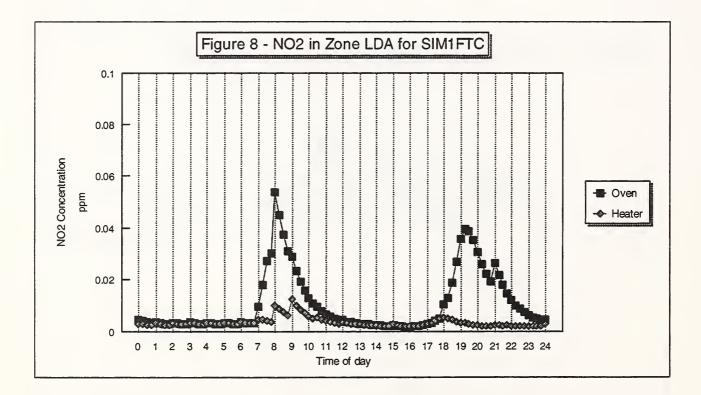

ranch house in cold weather). Figures 7 through 10 show the corresponding results for SIM1FTC (the tight Miami ranch house in cold weather). Although these figures are only examples of transient results, some observations can be made into trends and factors affecting the predicted contaminant concentrations. A complete summary of peak and 24-hour, 4-hour, and 1-hour average concentrations for all baseline simulations are included in Tables 1a through 24e of Appendix B.

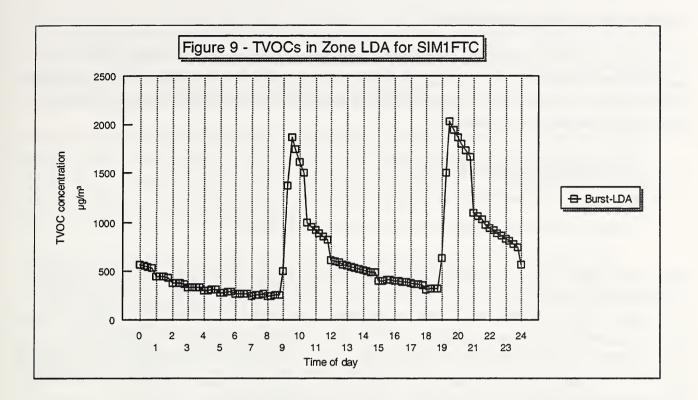

Figures 3 and 7 show the CO concentrations in Zone LDA resulting from the oven and heater sources (CO.1 and CO.2 in Tables 1 and 4 of Appendix B) for SIM1FLC and SIM1FTC, respectively. Both graphs show two daily peaks due to the operation of the oven. For the tight house, the peaks are shifted to a slightly later time due to reduced outdoor airflow into the house which resulted in less mixing of CO from the kitchen into the rest of the house. The heater source causes much lower concentrations than the oven source due to the low airflow rate from the garage into the house and the lower source emission rate. The resulting CO concentrations for the heater source are influenced primarily by the outdoor level. There is more damping of the outdoor variations in the tight house than the typical house due to the reduced air infiltration rate.

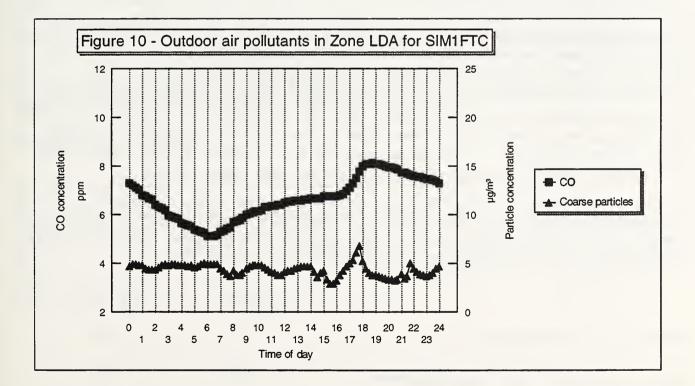

Figures 4 and 8 show the NO₂ concentrations (NO2.1 and NO2.2 in Tables 1 and 4 of Appendix B) in Zone LDA resulting from the oven and heater sources for SIM1FLC and SIM1FTC. The NO₂ concentrations show some of the same characteristics as the CO concentrations, with two peaks from the oven and a damped dependence on the outdoor concentration for the heater. However, the NO, peaks in the tight house are significantly less than in the typical house despite the reduced outdoor airflow into the house. In fact, the whole-house average NO₂ concentrations are lower in the tight house than in the typical house (0.025 ppm vs. 0.026 ppm for the oven source, and 0.003 ppm vs. 0.008 ppm for the heater source). These results may seem surprising as one might expect the reduced infiltration to result in higher NO₂ concentrations in the tight house. However, these results may be explained by the impact of NO₂ decay. The NO₂ in the house is either generated by the indoor sources or brought in from outside. During much of the day, when the combustion appliances are not operated, the outdoor air is the source of indoor NO₂ and, due to NO₂ decay, the indoor concentrations are lower than the outdoor concentration. Therefore, reducing the infiltration actually results in lower indoor NO₂ concentrations. When there is an indoor source of NO₂, a lower infiltration rate may still result in lower NO₂ concentrations in the zones without the source. However, the source-zone will have higher NO₂ concentrations when the infiltration rate is lower (the peak kitchen concentration from the oven is 1.686 ppm for the tight house and 1.434 ppm for the typical house). It is important to note that this result of lower NO₂ concentrations in tighter houses cannot be generalized to all cases. If the NO₂ decay rate was lower, the indoor NO₂ generation rate was higher, or the outdoor NO₂ concentration was lower, the tighter house could have higher concentrations. See Tables 1b and 4b of Appendix B for the peak and average NO₂ concentrations results for these simulations.


The TVOC concentrations in Zone LDA resulting from the burst source located in the LDA Zone (VOC4 in Tables 1 and 4 of Appendix B) are shown in Figures 5 and 9 for SIM1FLC and SIM1FTC. As expected, this source results in two daily peaks due to the source schedule and higher concentrations in the tight house due to the reduced airflow into the house.


Figures 6 and 10 show the CO and coarse particle concentrations (CO.3 and PART.3 of Tables 1 and 4 in Appendix B) for SIM1FLC and SIM1FTC, respectively, due to the elevated outdoor pollutant concentrations of Table 8. The CO concentration in the typical house tracks the outdoor concentration with a time lag based on the building time constant (related to the inverse of the building air change rate). The particle concentration shows the effect of the HVAC system cycling which changes the air change rate of the house and filters particles from the air. When the furnace is on, the concentration of coarse particles decreases due to the impact of the furnace filter. The tight house results exhibit damped CO peaks and valleys due to the longer time constants. Because the particles come from outdoors, the lower air change rates result in lower particle concentrations.







Indoor Air Quality Controls

This section describes the indoor air quality control technologies that will be evaluated in the study. These technologies will be incorporated into the baseline house models to determine their effectiveness in controlling the selected pollutant sources. The three technologies described in this section include the following:

Electrostatic particulate filtration Heat recovery ventilation Outdoor air intake damper on the forced-air system return

This section describes each of these technologies and includes revisions of the baseline house duct drawings. In addition, this section contains an estimate of the equipment and installation costs and a revision of the thermal load calculations based on the modifications. Finally, the impacts of each of these technologies on "other contaminants" are discussed. These other contaminants, as described in the original project work statement, include contaminants that have typically been of concern to designers of residential ventilation systems including cooking odors, tobacco smoke, moisture, outdoor pollen, outdoor odors, and ozone.

Electrostatic Particulate Filtration

The first IAQ control technology is increased particulate filtration through the installation of passive, electrostatic particulate filters. These filters were chosen based on the availability of performance data. In addition, the low pressure drop through these filters enables their installation without modification of the existing forced-air distribution system. The baseline houses are assumed to have standard furnace filters with an ASHRAE dust spot efficiency of less than 20% and an arrestance of 90%. These values are based on tests conducted in accordance with ASHRAE Standard 52.1 (37). The increased filtration is based on the use of electrostatic filters with an ASHRAE dust spot efficiency of 30% and an arrestance of 95%.

Although the efficiencies of particulate filters change over time as they become loaded, the computer simulations in this project will employ a constant filter efficiency. The efficiencies of the baseline and improved filters used in the simulations will be as follows:

	Baseline	Control #1
Particles <2.5 µm in diameter	5%	30%
Particles between 2.5 and 10 μ m in diameter	90%	95%

The improved filters are installed in place of the regular furnace filters. Their location is indicated in the revised duct drawings showing all of the IAQ control technologies, Figures 13 through 16.

The installation of the improved filters are assumed not to affect the thermal loads of the houses. Due to a higher pressure drop through the filters, they may cause a slight reduction in the airflow rate through the system, which could affect the pressures across the building envelope and the resultant building infiltration rates. However, this effect is expected to be small, and the thermal load calculations were not modified for this control technology.

The cost of this first control technology includes the cost of the filters themselves and their installation. For comparison, the furnace filters in the baseline houses are assumed to cost \$2 each and to be changed every month. Therefore, the annual cost of the baseline filters is \$24. The improved filters are assumed to cost \$15 each and to be changed every 2 months. Therefore, the annual cost of the improved filters is \$90.

The installation of improved filters will reduce the concentrations of the so-called "other contaminants" in the houses to the degree that the filtration of each contaminant is increased. The concentrations of particulate contaminants with outdoor sources (pollen) will be reduced due to the increased particulate filtration. The concentrations of VOCs associated with outdoor odors will not be decreased. The increased filtration will not affect indoor ozone levels due to outdoor sources, since ozone removal rates will be unaffected by the new filters. In addition, these electrostatic filters are not sources of ozone themselves. The concentrations of other contaminants with indoor sources will also be affected to the degree that the filtration of each contaminant is increased. The levels of cooking odors and tobacco smoke will be decreased based on the increased filter efficiency for both fine and coarse particulates. Indoor moisture levels will be unaffected by the new filters. Indoor moisture levels will be unaffected by the new filters are not sources for both fine and coarse particulates. Indoor moisture levels will be unaffected by the new filters have no humidification or dehumidification impacts.

Electronic air cleaners are also of interest and may be investigated in follow-up work. The existence of reliable performance data is being investigated.

Heat Recovery Ventilator

The second IAQ control technology is the installation of a heat recovery ventilator (HRV) in conjunction with the forced-air distribution system. As seen in Figure 11, the device brings outdoor air into the building where it exchanges heat with an airstream leaving the return side of the forced air system. Under heating conditions, the outdoor air is warmed by the outgoing airstream, and under cooling the outdoor air is cooled. The outgoing airstream is exhausted to the outdoors after leaving the heat recovery ventilator. The airstream from outdoors flows into the return side of the forced-air system after leaving the HRV.

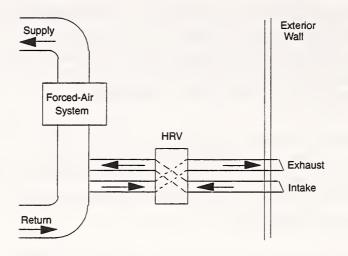


Figure 11 - Schematic of Heat Recovery Ventilator

The HRV specifications are based on a commercially-available model designed for residential use and installation in conjunction with forced-air systems. The airflow rate capacity of the device was selected to obtain an air change rate of at least 0.5 air changes per hour (ach) at full flow. The actual outdoor airflow rate during operation was selected to provide 0.35 ach through the HRV. The actual whole building air change rate will also include envelope infiltration, which in turn depends on the airtightness of the house, weather conditions and ventilation equipment operation. The HRV specifications for the four houses are as follows:

Miami, 2-story

Airflow capacity: 30 to 60 L/s (65 to 127 cfm), roughly 0.25 to 0.5 ach Airflow rate during operation: 44 L/s (93 cfm) Efficiency: 69% at 0 °C (32 °F), 60% at -25 °C (-13 °F) Maximum power consumption: 115 W No defrost

Miami, Ranch

Airflow capacity: 30 to 60 L/s (65 to 127 cfm), roughly 0.4 to 0.8 ach Airflow rate during operation: 26 L/s (55 cfm) Efficiency: 69% at 0 °C (32 °F), 60% at -25 °C (-13 °F) Maximum power consumption: 115 W No defrost

Minneapolis, 2-story

Airflow capacity: 55 to 95 L/s (115 to 200 cfm), roughly 0.3 to 0.5 ach Airflow rate during operation: 66 L/s (140 cfm) Efficiency: 68% at 0 °C (32 °F), 61% at -25 °C (-13 °F) Maximum power consumption: 216 W Defrost cycle Minneapolis, Ranch

Airflow capacity: 30 to 70 L/s (65 to 150 cfm), roughly 0.2 to 0.5 ach Airflow rate during operation: 52 L/s (110 cfm) Efficiency: 76% at 0 °C (32 °F), 56% at -25 °C (-13 °F) Maximum power consumption: 105 W Defrost cycle

The defrost cycle involves closing the outdoor air dampers for 5 minutes when the outdoor temperature is below -5 °C (23 °F). For outdoor temperatures between -5 and -30 °C (23 and -22 °F), each 5-minute defrost cycle is followed by a 35 minute period of air exchange before the next defrost cycle. For outdoor temperatures below -30 °C (-22 °F), each 5-minute defrost cycle is followed by 20 minutes of air exchange.

The HRV can be operated in several different control modes. The operation of the device and the fan speed (high or low) can be controlled by a timer, manually by the occupant or by a dehumidistat.

The installation of the HRV in each of the four houses is indicated in the revised duct drawings in Figures 13 through 16.

The thermal loads of the houses are affected by the installation and operation of the HRV due to the increased outdoor air change rate of the house when the devices are in operation. The air change rate due to the HRV operation is assumed to be additive to the baseline infiltration rate of 0.75 ach assumed for the design thermal load calculations. The thermal loads are increased by only a fraction of the increased outdoor air change rate based on the heat exchange efficiencies of the devices. For an additional air change rate of 0.35 ach and the rated heat exchange efficiencies of the HRVs, the revised design thermal loads for the four houses are given below. The baseline design thermal loads are described in detail in the Phase I report (2).

Miami, 2-story	Baseline	With HRV
Heating	2.87 kW	3.14 kW
Cooling	6.43 kW	6.60 kW
Miami, Ranch	Baseline	With HRV
Heating	1.83 kW	1.99 kW
Cooling	5.76 kW	5.88 kW
Minneapolis, 2-story	Baseline	With HRV
Heating	12.64 kW	13.59 kW
Cooling	6.21 kW	6.36 kW
Minneapolis, Ranch	Baseline	With HRV
Heating	9.25 kW	9.86 kW
Cooling	4.89 kW	4.97 kW

The cost of the HRVs includes the cost of the equipment and installation, the operating costs for the fans in the devices and the increased energy consumption due to the additional outdoor air change of the building. The cost of the equipment is \$500 for both of the Miami houses, \$600 for the Minneapolis ranch house and \$700 for the Minneapolis two-story house. These are list prices from the manufacturer of the HRV on which the specifications are based. The installation costs are more variable, based on the layout of the house and local labor rates, and they can range from \$200 to \$500. The cost of the energy consumed by the device and by the additional outdoor air change rate requires detailed thermal modeling of the building and system. As discussed in the Phase I report of the project, such modeling is beyond the scope of this project.

The installation of the HRV will impact the so-called "other contaminants" in the houses due to the increased outdoor air change rate. Due to the additional outdoor airflow into the houses, the concentrations of contaminants with outdoor sources (pollen, outdoor odors and ozone) will increase. For a simple, nonreactive and unfiltered contaminant, there will be an increased contaminant load equal to the outdoor concentration multiplied by the outdoor airflow rate. The impact of particulates will be reduced based on the efficiency of the filters in the HRV and of the furnace filter. The impact of outdoor ozone will be reduced somewhat by losses on the interior surfaces of the HRV ductwork. The concentrations of other contaminants with indoor sources (cooking odors and tobacco smoke) will be reduced based on the increased air change rate of the building. The impact of the additional ventilation on moisture will depend on the building location, indoor moisture sources, and season. Indoor humidity levels will be increased when there are large indoor sources and low relative humidity outdoors, but will be increased when the outdoor humidity is higher than the indoor level. Detailed modeling of moisture transport is required to assess these impacts and is beyond the scope of the current project.

Outdoor Intake Duct

The third IAQ control technology is the installation of an outdoor air intake duct on the return side of the forced air distribution system. As seen in Figure 12, the system consists of an intake, a duct, a motorized damper, and a volume damper for adjusting the airflow rate, and is connected to the return side of the return duct. The maximum airflow rate capacity of the intake is 78 L/s (165 cfm), which corresponds to the following air change rates for the four houses:

Miami, 2-story: 0.62 ach Miami, Ranch: 1.05 ach Minneapolis, 2-story: 0.41 ach Minneapolis, Ranch: 0.53 ach

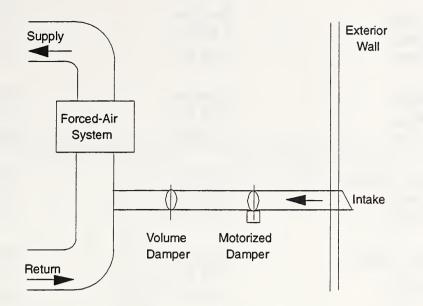
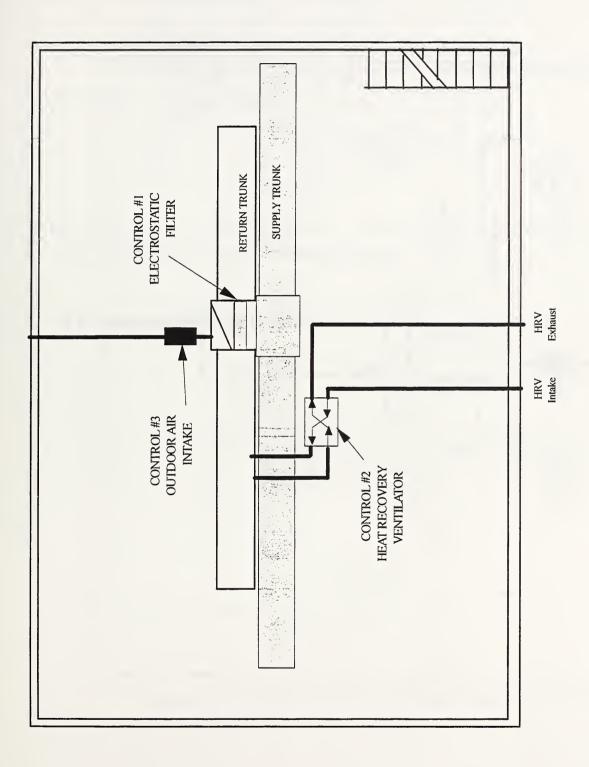


Figure 12 - Schematic of Outdoor Air Intake Duct

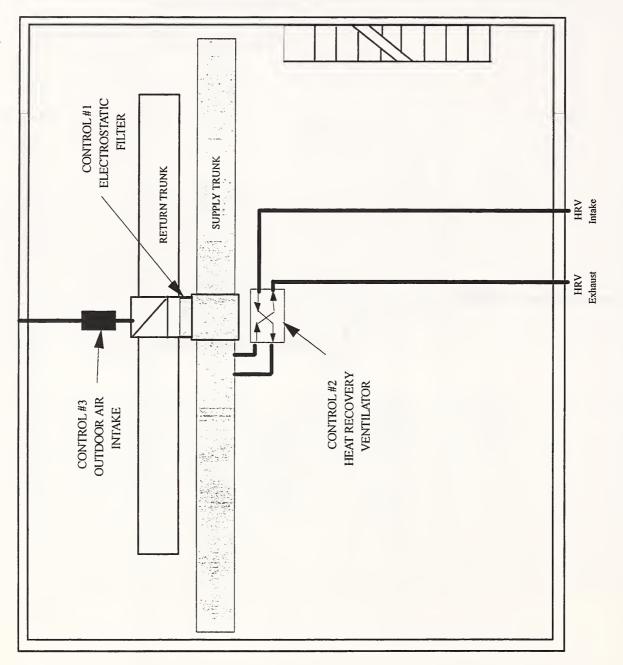
The actual airflow rate through the intake depends on the position of the volume damper, the overall airflow resistance of the intake system, and the pressure developed by the forced-air fan. In the computer simulations, it is assumed that the volume damper is adjusted such that the intake system provides 0.35 ach to the building when the furnace fan is in operation. This air change rate corresponds to the following outdoor air intake rates for the four buildings:

Miami, 2-story: 44 L/s (93 cfm) Miami, Ranch: 26 L/s (55 cfm) Minneapolis, 2-story: 66 L/s (140 cfm) Minneapolis, Ranch: 52 L/s (110 cfm)

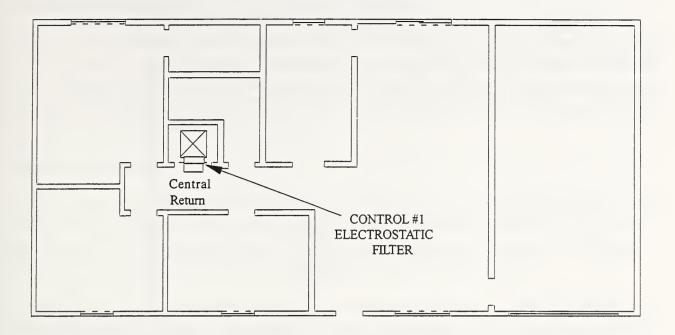
The motorized damper can be controlled in several different ways. It is generally interlocked with the forced-air system fan so that it opens only when the forced-air fan is operating. The motorized damper can also be controlled to open based on a timer, dehumidistat or pollutant (e.g. carbon monoxide or carbon dioxide) sensor.

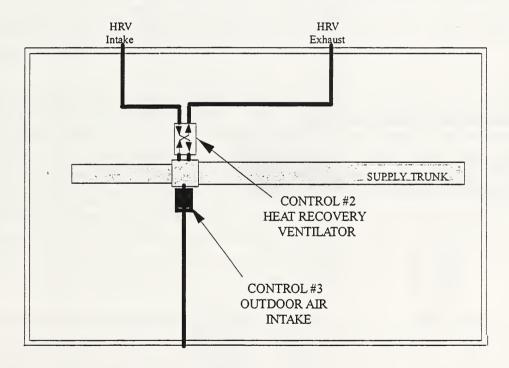

The installation of the outdoor air intake duct in each of the four houses is indicated in the revised duct drawings in Figures 13 through 16.

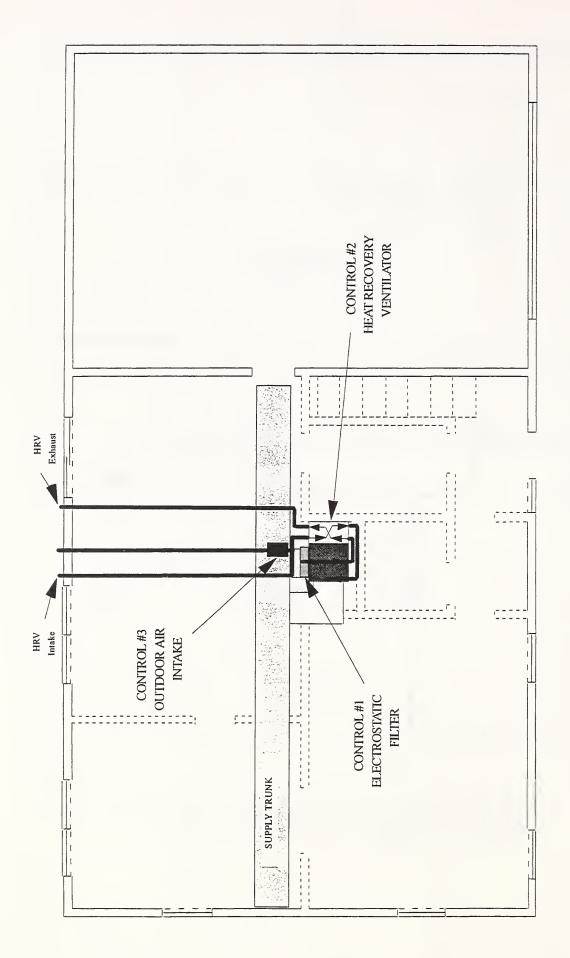
The thermal loads of the houses are affected by the installation and operation of the outdoor air intake duct due to the increased outdoor air change rate of the house when the devices are in operation. The air change rate due to the HRV operation is assumed to be additive to the baseline infiltration rate of 0.75 ach assumed for the design thermal load calculations. Based on an additional air change rate of 0.35 ach and no heat exchange, the design thermal loads for the four houses are given below. The baseline thermal loads were described in detail in the Phase I report (2).


Miami, 2-story	Baseline	With OAID
Heating	2.87 kW	3.54 kW
Cooling	6.43 kW	6.96 kW
Miami, Ranch	Baseline	With OAID
Heating	1.83 kW	2.23 kW
Cooling	5.76 kW	6.09 kW
Minneapolis, 2-story	Baseline	With OAID
Heating	12.64 kW	15.00 kW
Cooling	6.21 kW	6.71 kW
Minneapolis, Ranch	Baseline	With OAID
Heating	9.25 kW	10.73 kW
Cooling	4.89 kW	5.18 kW

The cost of the outdoor air intake duct includes the cost of the equipment and installation and the increased energy consumption due to the additional outdoor air change of the building. The cost of the equipment, including the controls and the motorized dampers, is \$750 based on list prices from the manufacturer of the outdoor air intake duct on which the specifications are based. The installation costs are more variable, based on the layout of the house and local labor rates, and they can range from \$100 to \$300. The cost of the energy consumed by the device and by the additional outdoor air change rate requires detailed thermal modeling of the building and system. As discussed in the Phase I report of the project (2), such modeling is beyond the scope of this project.


The installation of the outdoor air intake duct will impact the so-called "other contaminants" in the houses. Due to the additional outdoor airflow into the houses, the concentrations of contaminants with outdoor sources (pollen, outdoor odors and ozone) will increase. For a simple, nonreactive and unfiltered contaminant, the impact will be an increased contaminant load equal to the outdoor concentration multiplied by the outdoor airflow rate. The impact of particulates will be lessened based on the removal efficiency of the furnace filter. The impact of ozone will be lessened by losses on the interior surfaces of the ductwork. The concentrations of other contaminants with indoor sources (cooking odors and tobacco smoke) will be reduced based on the increased air change rate of the building. As in the case of the HRV, the impact of the additional ventilation on moisture will depend on the building location, indoor moisture sources, and season.





ATTIC

Figure 15 - IAQ Controls for Miami Ranch House

Figure 16 - IAQ controls for Miami 2-Story House

Preliminary Simulation of IAQ Control Retrofits

This section describes the preliminary simulations of the IAQ control retrofits. These simulations involved modifying selected baseline simulation cases with the IAQ control retrofits described above. The preliminary simulations were performed to verify the ability of the program to model the control technologies. In Phase II.B of the study, all of the baseline cases will be modified to incorporate each of the IAQ control retrofits.

IAQ Control Retrofits

The IAQ control retrofits selected for modeling in this study are an electrostatic particulate filter, a heat recovery ventilator, and an outdoor air intake damper installed on the forced-air system return. These three technologies were described in detail in the previous section. This section discusses only the details important to modeling them with CONTAM93 (1).

The electrostatic particulate filters selected for the study have a filter efficiency of 30% for fine particles (emitted by the combustion sources in these simulations) and 95% for coarse particles (associated with the elevated outdoor air concentrations). The filters will be modeled by replacing the standard furnace filters in the baseline HVAC systems with the electrostatic filters. The filter efficiency will be modeled as constant over time and impacts on airflow through the system will be neglected.

The second IAQ control retrofit is the installation of a heat recovery ventilator (HRV) in conjunction with the HVAC system. The HRV draws air from the return side of the forced-air system and replaces it with outdoor air drawn through the heat exchanger. The outdoor airflow rate supplied will be 44 L/s for the Miami 2-story house, 26 L/s for the Miami ranch house, 66 L/s for the Minneapolis 2-story house, and 52 L/s for the Minneapolis ranch house. The HRV will be modeled by setting the outdoor airflow rate for each HVAC system to the appropriate fraction of the total system supply airflow rate. Thus, the desired amount of outdoor air will be supplied whenever the HVAC system is operating. The HVAC systems will be operated on the same schedules determined for the baseline simulations based on thermal loads. Other possible control options (such as constant operation or demand control) will not be studied.

Other considerations in modeling the HRV include filtration of the incoming outdoor air and the HRV defrost cycle. A standard furnace filter (with efficiencies of 5% for fine particles and 90% for coarse particles) will be included in the outdoor air intake path of the HRV. The HRV employs a defrost cycle in cold weather which involves periodically closing the outdoor air damper. However, operation of the defrost cycle will be neglected in the simulations.

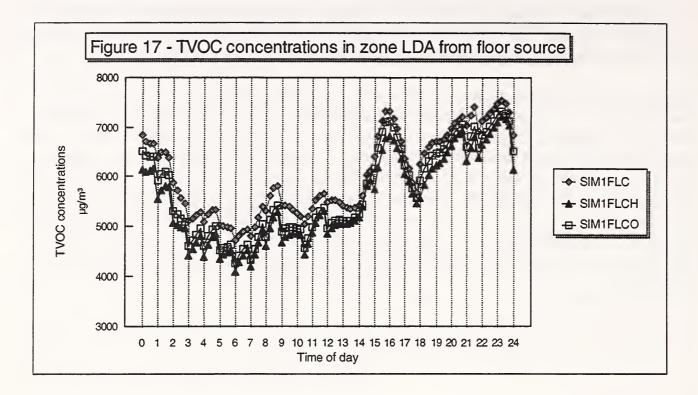
The third IAQ control retrofit is the installation of an outdoor air intake duct on the return side of the HVAC system, which draws outdoor air into the return side of the forced-air system whenever it is operating. This retrofit will be modeled similar to the HRV. The baseline HVAC system will be modified to include a constant fraction of outdoor air whenever the HVAC system is operating. The outdoor air supply airflow rates will be the same as listed above for the HRV, and a standard furnace filter will be included in the outdoor air intake path. The primary

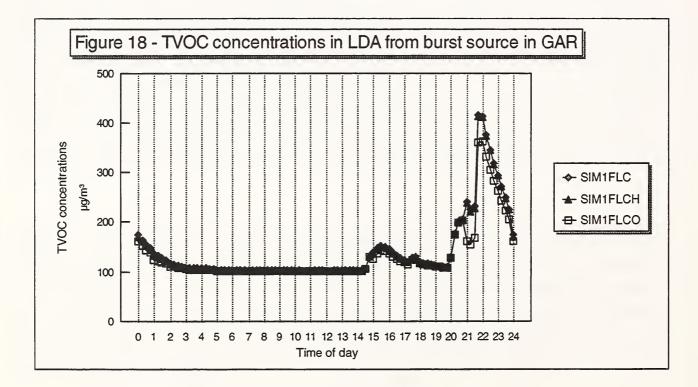
difference between the outdoor air intake damper and the HRV is that the outdoor air intake damper does not include an exhaust duct. Therefore, the outdoor airflow will tend to pressurize the house. This effect will be modeled by reducing the HVAC return flows by an amount equal to the outdoor air supplied to the system.

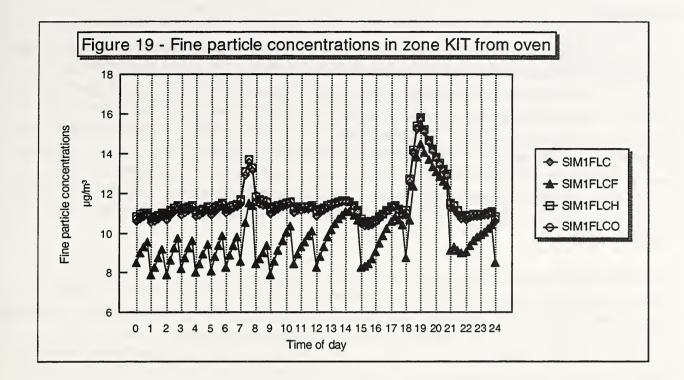
Results of Preliminary Simulation of IAQ Control Retrofits

The baseline case selected for modification with the IAQ control retrofits was SIM1FLC, the Miami ranch house with typical airtightness in cold weather. The simulations with the electrostatic particulate filtration, the HRV, and the outdoor air intake damper are referred to as SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively.

The results of each simulation includes pollutant concentrations for up to 18 pollutants in each of the building zones for each 15 minute time step of the 24 hour simulation period. As was the case for the baseline simulations, the complete transient simulation results are not presented here but are available in spreadsheet files. Figures 17 through 20 show examples of the transient pollutant concentrations and Tables 25a through 27e of Appendix B present a complete summary of peak and 24-hour, 4-hour, and 1-hour average concentrations for the preliminary IAQ control retrofit simulations as described for the baseline simulations.


Figure 17 shows total volatile organic compound (TVOC) concentrations in Zone LDA resulting from the constant floor source (VOC2 of Tables 1, 26, and 27 of Appendix B) for SIM1FLC, SIM1FLCH, and SIM1FLCO. Since SIM1FLCF differs from SIM1FLC by improved particle filtration efficiency, all VOC concentrations in SIM1FLCF are identical to SIM1FLC and are not shown. Both outdoor air intake devices result in modest reductions in the TVOC concentrations in the zone, with the HRV having a slightly greater effect. The HRV may have a greater effect because it has a neutral effect on indoor pressure (compared to the outdoor air intake damper which pressurizes the building) resulting in a greater average air change rate. The 24-hour average TVOC concentration in Zone LDA is 6040 μ g/m³, 5545 μ g/m³, and 5720 μ g/m³ for SIM1FLC, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 26c, and 27c of Appendix B).


Figure 18 shows TVOC concentrations in Zone LDA resulting from a burst VOC source in the garage (VOC5 of Tables 1, 26, and 27 of Appendix B). The VOC concentrations for SIM1FLC and SIM1FLCH are nearly identical while the concentrations for SIM1FLCO are somewhat lower. The 24 hour average TVOC concentration in Zone LDA for this source is 141 μ g/m³, 140 μ g/m³, and 132 μ g/m³ for SIM1FLC, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 26c, and 27c of Appendix B). The slightly reduced concentrations for SIM1FLCO is due to the effect of the outdoor air pressurizing the interior of the house which reduces the transport of the contaminant from the garage.


Figure 19 shows fine particle concentrations in the kitchen resulting from the oven source (PART.1 of Tables 1, 25, 26, and 27 of Appendix B). The improved filtration in case SIM1FLCF resulted in lower concentrations while the outdoor air intake devices had very little impact, possibly because the outdoor air particle concentration of 13 μ g/m³ is close to the 24 hour

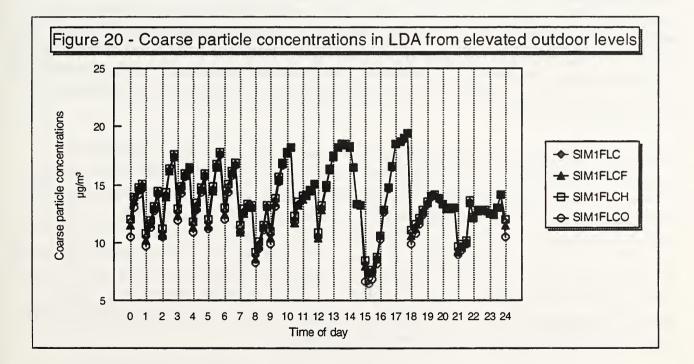

average baseline concentration. The 24 hour average fine particle concentration in Zone KIT is 11.4 μ g/m³, 9.8 μ g/m³, 11.6 μ g/m³, and 11.6 μ g/m³ for SIM1FLC, SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 25c, 26c, and 27c of Appendix B).

Figure 20 shows coarse particle concentrations in Zone LDA resulting from elevated outdoor levels (PART.3 of Tables 1, 25, 26, and 27 of Appendix B). None of the IAQ control retrofits resulted in a significant impact on the coarse particle concentrations. The 24 hour average coarse particle concentration in Zone LDA is 13.7 μ g/m³, 13.6 μ g/m³, 13.8 μ g/m³, and 13.5 μ g/m³ for SIM1FLC, SIM1FLCF, SIM1FLCH, and SIM1FLCO, respectively (see Tables 1c, 25c, 26c, and 27c of Appendix B). Possible explanations for the small changes include the relatively small increase in filtration efficiency for the electrostatic particulate filter (from 90% to 95%) and the inclusion of a standard filter in the outdoor air intake path for both the HRV and the outdoor air intake damper. The outdoor air intake filter limits the number of particles brought in with the outdoor air.

Summary

The National Institute of Standards and Technology (NIST) has completed Phase II.A of a project for the U.S. Consumer Product Safety Commission (CPSC) to study the impact of HVAC systems on residential indoor air quality and to assess the potential for using residential forced-air systems to control indoor pollutant levels. In this effort, NIST is performing whole building airflow and contaminant dispersal computer simulations with the program CONTAM93 to assess the ability of modifications of central forced-air heating and cooling systems to control pollutant sources relevant to the residential environment. During Phase II.A of this project, three major efforts were completed: baseline simulations of contaminant levels without IAQ controls, design of the IAQ control retrofits, and preliminary simulations of contaminant levels with the IAQ control retrofits.

It is important to note that the project is essentially a scoping study to conduct a preliminary assessment, using computer simulation, of the potential for using forced-air HVAC systems to improve residential IAQ. The project results are also limited by the lack of high quality input data for some simulation inputs and the lack of a thorough empirical evaluation of the model's predictive capability. Despite these limitations, the project is expected to identify key issues for further analysis and experimental work to meet the overall goal of cost-effective IAQ control in residential buildings.

This report described the input data used to model the baseline houses with CONTAM93 including the configuration of the building zones, the air leakage of the building envelopes and of interior partitions, wind pressure profile on the building envelope, pollutant source strengths and temporal profiles, heating and cooling system flows, furnace filter efficiency, pollutant sinks, pollutant decay or deposition, and ambient weather and pollutant concentrations. The results of the baseline simulations including transient pollutant concentrations for selected simulations and a summary of peak and average concentrations for all baseline simulations were also presented. It should be noted that the results for any one simulation may be counter-intuitive and should not be generalized to all cases.

Three indoor air quality control technologies were then selected for incorporation into the baseline house models to determine their effectiveness in controlling the modeled pollutant sources. The technologies selected include the following: an electrostatic particulate filter with efficiencies of 30% for fine particles and 95% for coarse particles, a heat recovery ventilator (HRV) providing an actual outdoor airflow of 0.35 ach, and an outdoor air intake damper on the forced-air system return also providing an actual outdoor airflow of 0.35 ach. The annual cost of the filters was estimated at \$90. The estimated installation and equipment costs of the HRV and of the outdoor air intake duct were \$700 to \$1200 and \$850 to \$1050, respectively. Detailed thermal modeling of the building and system would be required to determine the annual energy costs of these devices and is beyond the scope of this project.

Selected baseline cases were then modified to implement these IAQ control retrofits and preliminary simulations were performed to verify the ability of the program to model the control technologies. The results for the IAQ control retrofits are presented as examples only and are not

intended to be used to evaluate the effectiveness of the controls. In Phase II.B of the study, all of the baseline cases will be modified to incorporate each of the IAQ control retrofits. The Phase II.B simulation results will be compared to the baseline simulation results to determine the effectiveness of the IAQ control technologies at reducing contaminant levels in single-family residential buildings.

References

1. Walton GN. CONTAM93 - User Manual (1994) NISTIR 5385, National Institute of Standards and Technology.

2. Emmerich SJ and Persily AK. Indoor Air Quality Impacts of Residential HVAC Systems Phase I Report: Computer Simulation Plan (1994) NISTIR 5346, National Institute of Standards and Technology.

3. ASHRAE. <u>1993 Handbook of Fundamentals</u> (1993) American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

4. Strathopoulos T, Chiovitti D, and Dodaro L. "Wind Shielding Effects of Trees on Low Buildings" (1994) Building and Environment 29:141-150.

5. Walker IS and Wilson DJ. "Practical Methods for Improving Estimates of Natural Ventilation Rates" (1994) Proceedings of the 15th AIVC Conference.

6. Klote JH and Milke JA. <u>Design of Smoke Management Systems</u> (1992) American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. and Society of Fire Protection Engineers.

7. Shaw CY, Magee RJ, and Rousseau J. "Overall and Component Airtightness Values of a Five-story Apartment Building (1991) ASHRAE Transactions, Vol. 97, Pt. 2.

8. Cummings JB, Tooley, Jr. JJ, Moyer N. Investigation of Air Distribution System Leakage and Its Impact in Central Florida Homes - Final Report (1991) Report No. FSEC-CR-397-91, Florida Solar Energy Center.

9. Yingling RK, Luebs DF, and Johnson RJ. Residential Duct Systems - Selection and Design of Ducted HVAC Systems (1981) National Association of Home Builders of the United States.

10. Crow LW. Development of hourly data for weather year for energy calculations (WYEC), including solar data, at 29 stations throughout the United States and 5 stations in southern Canada (1983) ASHRAE RP 364, Bulletin.

11. EPA. National Air Quality and Emissions Trends Report, 1992 (October 1993) U.S. Environmental Protection Agency.

12. EPA. *Air Quality Criteria for Carbon Monoxide* (December 1991) U.S. Environmental Protection Agency.

13. EPA. *Air Quality Criteria for Oxides of Nitrogen*, Volume I of III (August 1993) U.S. Environmental Protection Agency.

14. Leslie NP, Ghassan PG and Krug EK. Baseline Characterization of Combustion Products at the GRI Conventional Research House (1988) GRI-89/0210, Gas Research Institute.

15. Sinclair JD, Psota-Kelty LA, Weschler CJ and Shields HC. "Measurement and Modeling of Airborne Concentrations and Indoor Surface Accumulation Rates of Ionic Substances at Neenah, Wisconsin" (1990) Atmospheric Environment 24A:627-638.

16. Shields HC and Fleischer DM. VOC Survey: Sixty-eight Telecommunication Facilities (1993) Proceedings of Indoor Air '93, Vol. 2.

17. Colombo A, de Bortoli M, Pecchia E, Schauenburg H, Schlitt H and Vissers H. "Chamber Testing of Organic Emission from Building and Furnishing Materials" (1990) The Science of the Total Environment 91:237-249.

18. Saarela K and Sandell E. "Comparative Emission Studies of Flooring Materials with Reference to Nordic Guidelines" (1991) Proceedings of ASHRAE IAQ 91.

19. DOE. Indoor Air Quality Environmental Information Handbook: Combustion Sources (1990) DOE/EH/79079-H1, U.S. Department of Energy.

20. Hoag M and Cade D. "Particleboard and MDF VOC Emissions Testing" (1994) presented at the 28th International Particleboard/Composite Materials Symposium.

21. Tichenor BA and Guo Z. "The Effect of Ventilation on Emission Rates of Wood Finishing Materials" (1991) Environment International 17:317-323.

22. Axley JW. "Adsorption Modeling for Macroscopic Contaminant Dispersal Analysis" (1990) NIST-GCR-90-573, National Institute of Standards and Technology.

23. Chang JCS and Guo Z. "Modeling of Alkane Emissions from a Wood Stain" (1993) Proceedings of Indoor Air '93, Vol. 2.

24. Lee K, Yanagisawa Y, Spengler JD, and Billick IH. "Determination of Nitrogen Dioxide Generation and Decay Rates using Mass Balance Model" (1993) Proceedings of Indoor Air '93, Vol. 3.

25. Leslie NP and Billick IH. "Examination of Combustion Products in an Unoccupied Research House" (1990) Proceedings of Indoor Air '90.

26. Ozkaynak H, Ryan PB, Allen GA, and Turner WA. "Indoor Air Quality Modeling: Compartmental Approach with Reactive Chemistry" (1982) Environment International 8:461-471. 27. Borrazzo JE, Osborn JF, Fortmann RC, Keefer RL, and Davidson CI. "Modeling and Monitoring of CO, NO and NO_2 in a Modern Townhouse" (1987) Atmospheric Environment 21:299-311.

28. Spicer CW, Coutant RW, Ward GF, Joseph DW, Gaynor AJ, and Billick IH. "Rates and Mechanisms of NO2 Removal from Indoor Air by Residential Materials" (1989) Environment International 15:643-654.

29. Tamura GT. "Measurement of Combustion Products from Kerosene Space Heaters in a Two-Story House" (1987) ASHRAE Transactions V. 94, Pt. 1.

30. Traynor GW, Apte MG, Carruthers AR, Dillworth JF, Grimsrud DT, and Gundel LA. "Indoor Air Pollution due to Emissions from Wood-Burning Stoves" (1987) Environ. Sci. Technol. 21:691-697.

31. Offerman FJ, Sextro RG, Fisk WJ, Grimsrud DT, Nazaroff WW, Nero AV, Revzan KL, and Yater J. "Control of Respirable Particles in Indoor Air with Portable Air Cleaners" (1985) Atmospheric Environment 19:1761-1771.

32. Sinclair JD, Psota-Kelty LA, and Weschler CJ. "Indoor/outdoor Ratios and Indoor Surface Accumulations of Ionic Substances at Newark, New Jersey" (1988) Atmospheric Environment 22:461-469.

33. Sinclair JD, Psota-Kelty LA, and Weschler CJ. "Indoor/outdoor Concentrations and Indoor Surface Accumulations of Ionic Substances" (1985) Atmospheric Environment 19:315-323.

34. Nazaroff WW, Gadgil AJ, and Weschler CJ. "Critique of the Use of Deposition Velocity in Modeling Indoor Air Quality" (1993) *Modeling of Indoor Air Quality and Exposure* by American Society for Testing and Materials.

35. Byrne MA, Lange C, Goddard AJH, and Roed J. "Indoor Aerosol Deposition Measurements for Exposure Assessment Calculations" (1993) Proceedings of Indoor Air '93.

36. Nazaroff WW and Cass GR. "Mass-transport Aspects of Pollutant Removal at Indoor Surfaces" (1989) Environment International 15:567-584.

37. ASHRAE. Gravimetric and Dust Spot Procedures for Testing Air Cleaning Devices Used in General Ventilation for Removing Particulate Matter (1992) ASHRAE Standard 52.1-1992.

Appendix A Airflow Modeling Results

CONTAM93 was used to analyze airflow in the houses using two approaches: simulated fan pressurization tests and directly calculated whole building air change rates under a range of wind speed and indoor - outdoor temperature differences.

Fan pressurization tests in the houses were simulated with CONTAM93 by including a constant flow element in the door of each house and adjusting the flow until a pressure differences of 4 and 50 Pa was achieved. The airflow rates at 50 Pa were divided by the interior volumes of the houses to determine the 50 Pa air change rates, and the 4 Pa flows were converted to effective leakage areas using Equation 27 in Chapter 23 of ASHRAE (3). The results of the fan pressurization simulations are shown in Table 1. The difference between the Miami and Minneapolis houses is due primarily to the existence of the basement in the Minneapolis houses. In terms of both measures of airtightness, the tight houses are about 66% tighter than the houses of typical leakage.

House	ach ₅₀ (hr ⁻¹)	Leakage area (cm ²)
Typical Miami ranch	13.2	680
Tight Miami ranch	4.1	220
Typical Minneapolis ranch	6.6	720
Tight Minneapolis ranch	2.2	230
Typical Miami 2 story	12.9	1,120
Tight Miami 2 story	4.6	390
Typical Minneapolis 2 story	8.8	1,170
Tight Minneapolis 2 story	3.1	410

Table 1 - Fan pressurization simulation result	Table 1	1 - Fan	pressurization	simulation	results
--	---------	---------	----------------	------------	---------

CONTAM93 was used to calculate whole building air change rates for wind speeds from 0 to 10 m/s and indoor-outdoor temperature differences from -10 to 30 °C. The wind direction was held constant throughout the simulations. These simulations were performed with the HVAC systems both on and off. Whole building air change rates were calculated by adding the airflow entering the conditioned space of the house through all leakage paths. The results of these airflow simulations are shown in Tables 2 through 9 for the system off.

Several general trends are shown by these tables. Using 'tight' values for the airflow elements vs. 'typical' or best estimate values reduced the whole building air change rate by up to a factor of four as compared to a factor of three for the fan pressurization results. Also, over the range considered here, the wind speed had a much greater impact on the whole building air change rate than the temperature difference. However, the tight airflow elements reduced the impact of the wind speed more than the impact of the temperature difference.

Table 2 - Whole house air change rate for typical Miamiranch house (ach)

		0		rejpiea					
Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.33	0.21	0.00	0.22	0.35	0.46	0.57	0.67	0.76
2	0.40	0.32	0.33	0.38	0.47	0.54	0.65	0.74	0.84
4	0.75	0.78	0.82	0.85	0.89	0.94	1.00	1.08	1.15
6	1.3 1	1.34	1.38	1.42	1.46	1.50	1.54	1.61	1.67
8	1.92	1.96	2.01	2.06	2.11	2.16	2.21	2.27	2.33
10	2.57	2.63	2.69	2.75	2.81	2.87	2.94	3.01	3.08

Table 3 - Whole house air change rate for tight Miamiranch house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.10	0.07	0.00	0.07	0.11	0.14	0.17	0.20	0.23
2	0.11	0.09	0.08	0.10	0.14	0.17	0.20	0.23	0.26
4	0.18	0.18	0.19	0.21	0.22	0.24	0.26	0.28	0.31
6	0.30	0.31	0.32	0.33	0.34	0.36	0.38	0.39	0.42
8	0.44	0.46	0.47	0.48	0.49	0.51	0.53	0.54	0.57
10	0.60	0.61	0.63	0.64	0.65	0.67	0.69	0.71	0.73

Table 4 - Whole house air change rate for typical Minneapolis ranch house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.25	0.16	0.00	0.16	0.26	0.34	0.42	0.49	0.56
2	0.29	0.23	0.18	0.23	0.31	0.39	0.46	0.53	0.59
4	0.45	0.41	0.44	0.47	0.50	0.54	0.59	0.64	0.69
6	0.69	0.72	0.75	0.78	0.81	0.83	0.87	0.91	0.95
8	1.03	1.06	1.09	1.12	1.16	1.19	1.22	1.26	1.29
10	1.39	1.43	1.46	1.50	1.54	1.57	1.62	1.66	1.70

Table 5 - Whole house air change rate for tight Minneapolis ranch house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.06	0.00	0.06	0.10	0.13	0.16	0.19	0.21
2	0.09	0.07	0.04	0.07	0.11	0.14	0.17	0.20	0.22
4	0.13	0.10	0.11	0.12	0.14	0.16	0.19	0.21	0.24
6	0.17	0.18	0.19	0.19	0.21	0.22	0.23	0.25	0.27
8	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
10	0.34	0.35	0.36	0.37	0.38	0.39	0.41	0.42	0.44

Table 6 - Whole house air change rate for typical Miami 2 story house (ach	h)
--	----

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.38	0.24	0.00	0.25	0.40	0.53	0.64	0.76	0.87
2	0.44	0.34	0.36	0.42	0.51	0.62	0.72	0.81	0.91
4	0.82	0.86	0.89	0.93	0.96	1.02	1.08	1.15	1.2 1
6	1.43	1.47	1.5 1	1.55	1.60	1.64	1.68	1.74	1.80
8	2.10	2.15	2.20	2.25	2.30	2.36	2.41	2.47	2.53
10	2.82	2.88	2.94	3.01	3.07	3.14	3.21	3.28	3.35

Table 7 - Whole house air change rate for tight Miami 2 story house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.13	0.08	0.00	0.09	0.14	0.18	0.22	0.26	0.30
2	0.14	0.10	0.09	0.12	0.16	0.21	0.25	0.28	0.32
4	0.20	0.22	0.23	0.24	0.26	0.28	0.30	0.34	0.38
6	0.36	0.37	0.38	0.40	0.41	0.43	0.44	0.47	0.49
8	0.53	0.54	0.56	0.57	0.59	0.60	0.62	0.64	0.66
10	0.71	0.73	0.75	0.76	0.78	0.80	0.82	0.84	0.86

Table 8 - Whole house air change rate for typical Minneapolis 2 story house (ach)

in - Tout (K)	20 25 3	30
id speed (m/s)		
0	0.43 0.50	0.58
2	0.48 0.54	0.61
4	0.74 0.78	0.83
6	1.16 1.20	1.24
8	1.67 1.71	1.75
10	2.22 2.27	2.32
6 8	0.48 0.54 0.74 0.78 1.16 1.20 1.67 1.71	(

Table 9 - Whole house air change rate for tight Minneapolis 2 story house (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.06	0.00	0.06	0.09	0.12	0.15	0.18	0.20
2	0.10	0.07	0.06	0.08	0.11	0.14	0.17	0.19	0.21
4	0.14	0.15	0.16	0.17	0.18	0.19	0.21	0.23	0.26
6	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
8	0.37	0.38	0.39	0.40	0.41	0.42	0.44	0.45	0.47
10	0.50	0.51	0.53	0.54	0.55	0.56	0.58	0.59	0.61

Tables 10 through 17 present the results of the airflow simulations with the HVAC system on. Operation of the HVAC system increased the building air change rate as much as 0.31 ach at zero wind speed and temperature difference due to supply duct leakage in the attic. The effect of the system fan was less than 0.07 ach at high wind speeds (> 4 m/s) and temperature differences (> $10 \,^{\circ}$ C).

racie io finicie i	loube un	•mang• i	ute 101 tj	Produtitie			10109000	in on (uo	
Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.45	0.38	0.31	0.39	0.52	0.63	0.73	0.83	0.93
2	0.59	0.52	0.41	0.50	0.63	0.74	0.84	0.93	1.03
4	0.86	0.81	0.85	0.89	0.95	102	1.10	1.17	1.24
6	1.34	1.37	141	1.45	149	1.55	161	167	173
8	195	199	2.04	2.09	2.14	2.19	2.25	2.30	2.38
10	2.60	2.66	2.72	2.78	2.84	2.91	2.97	3.04	3.11

Table 10 - Whole house air change rate for typical Miami ranch house with system on (ach)

Table 11- Whole house air change rate for tight Miami ranch house with system on (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.29	0.29	0.30	0.30	0.30	0.31	0.31	0.33	0.37
2	0.30	0.30	0.30	0.30	0.30	0.31	0.32	0.36	0.39
4	0.37	0.36	0.34	0.33	0.31	0.32	0.36	0.41	0.44
6	0.46	0.45	0.44	0.43	0.41	0.40	0.42	0.46	0.49
8	0.56	0.55	0.53	0.52	0.53	0.55	0.57	0.58	0.61
10	0.65	0.64	0.64	0.66	0.69	0.71	0.73	0.75	0.77

Table 12 - Whole house air change rate for typical Minneapolis ranch house with system on (ach)

Tin - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.24	0.16	0.00	0.15	0.25	0.33	0.41	0.48	0.55
2	0.28	0.22	0.18	0.22	0.30	0.38	0.45	0.52	0.58
4	0.44	0.41	0.44	0.47	0.50	0.53	0.59	0.64	0.68
6	0.69	0.72	0.75	0.78	0.80	0.83	0.87	0.91	0.94
8	1.03	1.06	1.09	1.12	1.16	1.19	1.22	1.26	1.29
10	1.39	1.42	1.46	1.50	1.53	1.57	1.61	1.65	1.70

Table 13 - Whole house air change rate for tight Minneapolis ranch house with system on (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.05	0.00	0.05	0.09	0.12	0.15	0.18	0.21
2	0.08	0.06	0.04	0.06	0.10	0.13	0.16	0.19	0.21
4	0.12	0.10	0.11	0.12	0.13	0.15	0.18	0.21	0.23
6	0.17	0.18	0.18	0.19	0.20	0.22	0.23	0.25	0.26
8	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.34
10	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.42	0.43

Table 14 - Whole house air change rate for typical Miami 2 story house with system on (ach)

Tm - Tout (K)	-10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.38	0.24	0.00	0.25	0.40	0.53	0.64	0.76	0.87
2	0.44	0.34	0.36	0.42	0.51	0.62	0.72	0.81	0.91
4	0.82	0.86	0.89	0.93	0.96	102	108	115	1.21
6	143	147	1.52	156	160	164	168	174	180
8	2.10	2.15	2.20	2.25	2.31	2.36	2.41	2.47	2.53
10	2.82	2.88	2.94	3.00	3.07	3.14	3.21	3.28	3.35

Table 15 - Whole house air change rate for tight Miami 2 story house with system on (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)			_						
0	0.13	0.08	0.00	0.09	0.14	0.18	0.22	0.26	0.30
2	0.14	0.10	0.09	0.12	0.16	0.21	0.25	0.28	0.32
4	0.20	0.22	0.23	0.24	0.26	0.27	0.30	0.34	0.38
6	0.36	0.37	0.38	0.39	0.41	0.43	0.44	0.47	0.49
8	0.53	0.54	0.56	0.57	0.59	0.60	0.62	0.64	0.66
10	0.71	0.73	0.75	0.76	0.78	0.80	0.82	0.84	0.87

Table 16 - Whole house air change rate for typical Minneapolis 2 story house with system on (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.25	0.16	0.01	0.17	0.27	0.35	0.43	0.51	0.58
2	0.31	0.24	0.25	0.29	0.35	0.42	0.48	0.55	0.61
4	0.57	0.60	0.62	0.64	0.66	0.70	0.74	0.79	0.83
6	0.99	102	105	108	1.11	113	1.16	120	124
8	146	149	153	156	160	163	167	171	175
10	195	2.00	2.04	2.08	2.13	2.17	2.22	2.27	2.32

Table 17 - Whole house air change rate for tight Minneapolis 2 story house with system on (ach)

Tin - Tout (K)	- 10	-5	0	5	10	15	20	25	30
Wind speed (m/s)									
0	0.09	0.06	0.00	0.06	0.09	0.12	0.15	0.18	0.20
2	0.10	0.07	0.06	0.08	0.11	0.14	0.17	0.19	0.21
4	0.15	0.15	0.16	0.17	0.18	0.19	0.21	0.23	0.26
6	0.26	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
8	0.38	0.38	0.39	0.40	0.41	0.42	0.44	0.45	0.47
10	0.50	0.51	0.53	0.54	0.55	0.56	0.58	0.59	0.61

Appendix B Baseline and Preliminary Simulation Results

Tables 1a through 24e of Appendix B summarize the results of all 24 baseline simulations. Tables 25a through 27e summarize the results of the 3 preliminary simulations of the IAQ control retrofits. Tables 1a through 27a show the overall peak concentrations (excluding the basement, attic, garage and closet zones), the location of that overall peak, and the whole house 24-hour average concentrations (excluding the basement, garage, and attic zones). Tables 1b through 27b show the individual zone peak concentrations for the main living space zones. Tables 1c through 27c show the individual zone 24-hour average concentrations. Tables 1d through 27d show the individual zone 4-hour average concentrations. The 4-hour average was calculated for the VOC burst sources from 7 p.m. to 11 p.m., for the oven from 6 p.m. to 10 p.m., and for the heater from 7 am to 11 am. No 4-hour average was calculated for the oven from 7 p.m. to 8 p.m. and for the heater from 9 am to 10 am.

						2001		0000	2020	5	NOO I	DADT 1	000	ALOO O	C T U A U			
						222		322	222	201	1.201	1.1.1.1.1	7.00	NU2.2	FAR1.4	C0.3	N02.3	PART.3
(24 hr avg	(µg/m³) 265	(µg/m³) 6067	(µg/m ³) 218	(µg/m³) 183	(µg/m³) 117	(µg/m³) 225	(µg/m³) 219	(µg/m³) 217	(µg/m³) 205	ppm 2.75	ррт 0.026	(µg/m³) 10.86	ppm 1.60	ppm 0.008	(µg/m³) 10.75	(PPM) 6.77	(PPM) 0.079	(µg/m³) 14.63
able 1h -	SIMIFI	C zone n	Table 1h - SIMIEI C zone neak concentrations	ntrations														
	VOCI	VOC2	VOC3	VOC4	VOCS	VOC6		VOC8	VOC9	CO.1	N02.1	PART.1	C0.2	N02.2	PART.2	CO.3	NO2.3	PART 3
-				(mg/m ³)		(µg/m ³)	~	(µg/m³)	(mg/m ³)	(Mdd)	(MPM)	(µg/m ³)	(Mdd)	(Mdd)	(ug/m ³)	(Mdd)	(MAA)	(em/an)
	303		645			393	347	13163	281	4.93	0.056	10.42	2.25	0.010	10.40	9.48	0.104	8.89
			384			314		253	234	4.10	0.047	11.47	2.35	0.017	11.47	9.84	0.165	22.93
BR3	164	10907	672	206	126	347		274	4099	4.57	0.046	10.43	2.30	0.011	10.41	9.65	0.107	16.59
AL	333	7967	1630	303		462		390	407	5.50	0.083	11.88	2.46	0.017	11.86	10.15	0.166	26.34
Ш	141	7974	297	274		4332		258	236	44.43	1.434	15.67	2.41	0.014	11.57	10.00	0.140	23.95
LDA	138	7537	337	1593		482		237	215	6.14	0.089	11.19	2.42	0.013	11.18	10.03	0.132	19.44
MBA	142	6409	293	208		312		266	247	3.92	0.054	12.14	2.51	0.019	12.14	10.35	0.191	33.43
MBR	155	6516	2430	178		256		221	214	3.33	0.045	12.16	2.51	0.021	12.14	10.34	0.210	35.53
able 1c -	SIMIFL	C zone 2	Table 1c - SIM1FLC zone 24-hr avg concentrations	concentra	tions													
				V0C4		VOC6	VOC7	VOC8	VOC9	C0.1	N02.1	PART.1	CO.2	N02.2	PART.2	CO.3	N02.3	PART.
-	(hg/m³)		(mg/m ³)	(hg/m³)	(e	(fug/m3)	(µg/m ³)	(µg/m ³)	(mg/m))	(MPM)	(MPM)	(fug/m3)	(MPM)	(MPM)	(ng/m ³)	(Mdd)	(MPM)	(mg/m ³)
				138		190	200	1915	160	2.38	0.009	9.84	1.61	0.005	9.78	6.80	0.047	3.65
R2		6422	172	124		157	155	149	137	2.09	0.010	10.66	1.61	0.007	10.62	6.81	0.075	13.18
BR3	113	8211	252	132	107	178	196	165	727	2.30	0.009	10.01	1.62	0.005	96.6	6.82	0.050	5.27
AL		5249	316	128		177	223	155	145	2.32	0.016	11.10	1.60	0.009	11.04	6.77	0.086	16.19
IT		5540	149	133		647	142	142	132	6.59	0.124	11.43	1.60	0.008	10.90	6.74	0.084	15.82
LDA	106	6040	162	312	141	206	147	141	131	2.62	0.018	10.84	1.61	0.008	10.75	6.77	0.076	13.73
IBA	104	4130	136	116		136	1051	133	125	1.92	0.013	11.41	1.59	0.010	11.38	6.71	0.105	22.41
IBR	107	3982	345	113	103	129	256	127	122	1.85	0.012	11.54	1.59	0.011	11.52	6.72	0.108	24.49

	NOOI	NOCO	NOCA	NOON	NOCE	JUUN	EUC/A	0000	NOCO	100	NOO I	DADT	000	ALOO O	C H C A C
	5	2201	332	*25×	202	322	33	s n n n	2002	1.00	1.20N	PAKI.I	7.0.7	7.20N	PAK1.2
	(fug/m3)	(fug/m3)	(вd/m3)	(mg/m3)	(mg/m3)	(mg/m3)	(mg/m3)	(fug/m³)	(rm/gη)	(MPM)	(MPM)	(hg/m ³)	(Mdd)	(Mdd)	(mg/m ³)
A2	147	NA	449	170	118	276	274	5479	204	3.51	0.015	9.50	1.55	0.007	10.13
BR2	114	NA	289	145	113	209	202	175	167	2.93	0.012	10.23	1.66	0.012	11.12
R3	114	NA	426	153	114	243	249	190	1958	3.36	0.015	9.75	1.54	0.007	10.20
IAL	138	NA	170	168	126	327	394	200	213	4.21	0.036	10.98	1.65	0.012	11.32
E	104	NA	186	181	126	1808	168	170	161	23.65	0.515	13.06	1.60	0.011	10.99
DA	105	NA	204	768	244	325	164	160	151	5.09	0.046	10.85	1.59	0.010	10.84
IBA	102	NA	181	137	108	174	3126	159	152	2.59	0.013	11.30	1.64	0.013	11.37
IBR	108	NA	922	133	108	164	551	150	152	2.47	0.012	11.33	1.69	0.015	11.75

LEGEND	Burst - UCL CO.1	Floor NO2.1	Burst - MBR PART.1	Burst - LDA CO.2	Burst - GAR NO2.2	VOC6 Burst - KIT PART.2 Heater	Burst - MBA CO.3 (Burst - BA2 NO2.3 (VOC9 Burst - BR3 PART.3 Outdoor air	
Table 1e - SIM1FLC zone 1-hr avg concentrations		(PPM) (PPM)			2.58 1.65	3.54 1.66	33.72 1.64		2.55 1.63	
Table			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

PART.3 (μg/m ³) 18.45	PART.3 (μg/m³) 29.63 27.41 32.57 30.25 39.74 39.74 34.94 34.94 (μg/m³) (μg/m³) (μg/m³) 15.28 15.28 19.02	26.70 21.74
NO2.3 ppm 0.086	NO2.3 (PPM) 0.177 0.143 0.124 0.198 0.152 0.139 0.152 0.124 0.204 0.204 0.201 0.081 0.081 0.085 0.105 0.089	0.085 0.114 0.098
CO.3 ppm 6.68	CO.3 (PPM) 11.12 10.54 10.20 11.02 10.28 10.38 10.38 10.38 10.42 11.17 11.17 11.17 11.17 11.17 10.42 6.61 6.61 6.61 6.66	6.66 6.71 6.71 0.0ven 0.ven 0.ven 0.ven Neater Heater Heater Heater Outdoor air Outdoor air
PART.1 (μg/m ³) 11.41	PART.1 (ug/m ³) (12.12 11.89 11.89 12.03 12.45 12.28 12.45 12.28 12.29 12.28 12.29 12.20	II.42 II.42 II.59 II.95 II.95 II.95 II.48 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.43 II.63 II.63 II.63 II.63 II.63 II.63 II.65 II.75 II.65 II.75 II.65 II.75 II.65 II.75 II.65 II.75 II.65 II.75 II.65 II.75 II.65 II.75 II.65
NO2.1 ppm 0.025	NO2.1 (PPM) 0.022 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.009 0.009 0.007 0.013 0.125	0.019 0.012 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.018 0.466 0.052 0.018 0.466 0.052 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.012 0.009 0.012 0.012 0.009 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.022 0.012 0.012 0.022 0.012 0.022 0.012 0.0200 0.02200000000
CO.1 ppm 2.50	CO.I (PPM) 2.72 2.73 2.54 3.53 40.62 6.04 2.74 2.74 2.74 2.74 2.74 1.67 1.75 1.75 1.75 6.77 6.77 6.77 6.77	2.50 1.61 1.61 1.64 2.01 2.09 2.13 2.09 2.13 2.09 2.13 2.09 2.13 2.09 2.13 2.09 2.13 2.09 2.13 2.09 2.13 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0
VOC9 (µg/m ³) 183	VOC9 (µg/m³) 134 137 137 137 127 121 129 123 123 123 123 123 123 123 123 123 123	105 101 101 103 109 109 100 109 100 100 100 100 100 100
VOC8 (µg/m ³) 218	VOC8 (µg/m³) 9702 647 647 403 350 350 369 149 321 321 (µg/m³) 151 153 153	172 104 104 112 112 1058 2384 311 99 99
VОС7 (µg/m³) 189	VOC7 (µg/m ⁴) 148 148 142 139 147 133 1232 1123 112 112 131 131 131 131 1	109 1070 1070 104 104 104 104 101 101 101 101
VОС6 (µg/m³) 206		202 103 104 104 104 103 133 330 99 99
VOC5 (µg/m³) 98	IS VOC5 (µg/m ³) 99 99 99 99 98 98 98 98 98 98	99 98 98 98 98 98 98 98 98 98 98 98 98
VOC4 (µg/m³) 152	Centration VOC4 (µµ/m ⁴) 117 114 116 116 116 116 110 110 (µµ/m ³) (µµ/m ³) 110 110 110 100 100 100 100 100 100 10	269 99 99 98 98 98 98 98 98 98 98 98 98 98
VOC3 (µg/m³) 165	Peak con. VOC3 (µµ/m ¹) 137 137 137 137 132 136 132 126 126 126 126 126 126 126 126 126 12	108 101 101 104 104 104 104 109 99 99 1131 1131 1131
VOC2 (µg/m³) 4899	M zone VOC2 (µ(µ)) 9379 9379 9379 9379 6376 6980 6980 6980 6980 6980 6980 6980 698	4874 3127 4115 4115 NA NA NA NA NA NA NA NA NA NA NA NA NA
VOCI (µg/m³) 235	- SIMIFI VOCI 800 800 800 800 825 1408 147 147 147 147 147 147 147 147 147 147	157 103 179 179 179 179 581 581 581 581 581 581 581 581 581 581
VOC1 VOC2 VOC3 VOC4 VOC5 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) 24 hr avg 235 4899 165 152 98	Table 2b - SIMIFLM zone peak concentrations VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC5	LDA 157 4874 108 269 99 MBA 103 3127 101 99 98 MBR 179 4115 406 99 98 Table 2d - SIM1FLM 20021 VOC1 VOC4 VOC VOC1 VOC2 VOC3 VOC4 VOC BR2 581 NA 105 98 98 BR3 112 NA 106 99 98 BR3 112 NA 106 99 98 LDA 553 NA 106 99 98 MBA 99 NA 101 631 98 MBR 370 NA 101 631 98 MBR 370 NA 103 98 98 BR2 2.61 NA 103 98 98 MBR 370 NA 103 98 98 BR2 2.61

	PART.3 (μg/m ³) 7.52		ART 3	(ful)	1.05	5.21	6.14	5.70	7.45	7.28	10.81			ART.3	(cm/gr	3.99	9.40	8.81	7.64	4.40	9.25	4.37 5 76	07.0										
	NO2.3 P/ ppm (J 0.078		1								0.151 1	1		-								0.074											
	CO.3 ppm 6.97										10.58			CO.3	(PPM)	6.97	6.97	6.97	6.96	6.97	6.97	6.96 6.06	06.0										
	PART.1 (μg/m³) 8.93		PART 1	(m/дп)	9.71	10.24	10.35	10.14	11.81	10.49	9.68 0.81			PART.1	(hg/m ³)	8.59	9.08	9.01	8.94	8.74	9.09	8.61 9.69	0.00		PART.1	(m/дл)	8.94	9.12	9.11	9.20	9.26	9.24	9.02
	NO2.1 ppm 0.023		NO2.1	(Mdd)	0.157	0.142	0.145	0.190	0.932	0.133	0.149			N02.1	(Mdd)	0.020	0.020	0.020	0.022	0.054	0.019	0.020	610.0		N02.1	(Mdd)	0.060	0.057	0.058	0.067	0.169	0.054	0.058
	CO.1 ppm 2.54		C0.1	(Mdd)	6.94	6.64	69.9	7.73	24.57	6.35	6.70 6 37			CO.1	(Mdd)	2.51	2.44	2.46	2.53	3.31	2.43	2.49	11-7		C0.1	(PPM)	4.82	4.75	4.76	4.95	7.38	4.63	4.73
	VOC9 (μg/m ³) 198		VOC9	(m/gn)	522	459	2923	599	489	453	512 460			VOC9	(fmg/m)	193	185	284	198	192	183	192	120		VOC9	(µg/m³)	321	308	645	334	319	301	317
	VOC8 (μg/m ³) 198	1	VOC8	(m/gn)	7594	506	508	774	516	465	540 483			VOC8	(вд/m³)	430	188	189	203	195	186	195	7/1		VOC8	(mg/m3)	1101	322	325	368	331	313	328
	VOC7 (μg/m ³) 201		V0C7	(m/g/l)	470	456	459	529	450	429	6599 1062			V0C7	(hg/m³)	189	181	183	193	188	180	406 738	067		VOC7	(fug/m³)	320	305	308	338	317	298	1019
	VOC6 (μg/m³) 196		VOC6	(mg/m ³)	534	500	505	598	2923	477	524 460			VOC6	(mg/m3)	194	186	188	198	274	185	193	5		VOC6	(mg/m ³)	334	322	325	350	608	318	329
trations			VOC5	(m/m3)	292	269	271	336	338	498	291 282		ations	VOC5	(mg/m3)	185	174	175	188	195	215	184 187	701	ions	VOC5	(_с ш/дл)	224	208	212	236	249	305	222
g concen	VOC4 (μg/m³) 199	entratione	VOC4	(m/m3)	466	449	452	546	581	1327	464 438		concentra	V0C4	(m/grl)	190	183	184	194	199	226	189 187	61	oncentrat	VOC4	(fug/m3)	318	304	307	331	346	447	313
24-hr av	2 VOC3 VOC4 VOC5 ³) (µg/m ³) (µg/m ³) 195 199 191	eak conc	VOC3	(m/m3)	494	466	469	567	462	439	485 464 2		24-hr avg concentrations	VOC3	(mg/m3)	190	183	184	196	189	181	190 353	007	-hr avg c	VOC3	(εm/gμ) (εm/gμ) (εm/gμ)	322	310	313	345	320	303	318
H overall	VOC2 (μg/m³) (6289	H 20ne n	VOC2	(m/m)		8185	8101				9804 9722		CN O	VOC2	(mg/m ³) (6505	5918	5997	6197	6570	5976	6510 6604	5000	H zone 4	V0C2	(mg/m3)		NA			NA		
SIMIFL	VOCI (µg/m³) (319	SIMIFI	VOCI	(mg/m ³) (295		295 315		SIMIFL		(mg/m3) (184	195 203	007	SIMIFL	VOCI	(µg/m³) (242	315	249	235	249
Table 3a - SIMIFLH over	24 hr avg	Tahla 3h - SIMIFI H zone	of aron -	_		BR2	BR3	HAL	KIT	LDA	MBA		Table 3c - SIMIFLH zone				BR2	BR3	HAL	KIT	LDA	MBA	VICINI	Table 3d - SIMIFLH zone				BR2	BR3	HAL	KIT	LDA	MBA

FLH zone 1-hr avg concentrations	able 3e - SIM1FLH zone 1-hr avg concentrations CO.1 (PPM) A2 5.25 R3 5.03 AL 5.92 IT 14.73 DA 4.85 DA 4.85 DA 4.85 DA 4.85	LEGEND	Burst - UCL CO.1	Floor NO2.1	Burst - MBR PART.1	Burst - LDA CO.2	Burst - GAR NO2.2	VOC6 Burst - KIT PART.2 Heater	Burst - MBA CO.3 (Burst - BA2 NO2.3 (VOC9 Burst - BR3 PART.3 Outdoor air	

Table 4a	- SIMIF	TC overa	Table 4a - SIM IETC overall 24-hr ave concentrations	vø concei	ntrations													
and the	VOCI (µg/m ³)	VOC2 (µg/m ³)	VOC3 (µg/m ³)	VOC4 (µg/m ³)	VOC5 (µg/m ³)	VOC6 (μg/m ³)	VOC7 (µg/m ³)	VOC8 (µg/m ³)	VOC9 (µg/m ³)	CO.1 ppm	NO2.1 ppm	PART.1 (μg/m³) 7 ος	CO.2 ppm	NO2.2 ppm	PART.2 (μg/m ³)	CO.3 (PPM)	NO2.3 (PPM)	PART.3 (μg/m ³)
24 III 4VB	907	04761	164	704	101	004	714	CC+	Ĥ	60.4	C70.0	<i>CC</i> -1	00'1	c	00.1	0.00	700.0	70°C
Table 4b	- SIMIF	TC zone	Table 4b - SIM1FTC zone peak concentrations	centration	SL													
	VOCI	V0C2	VOC3	V0C4	VOC5	V0C6	V0C7	VOC8	VOC9	CO.1	N02.1	PART.1	C0.2	N02.2	PART.2	CO.3	N02.3	PART.3
	(hg/m³)	(вд/ш3)	(вд/ш3)	(µg/m³)	(hg/m³)	(µg/m³)	(µg/m³)	(fug/m³)	(μg/m ³)	(Mdd)	(MPM)	(µg/m³)	(Mdd)	(MPM)	(µg/m³)	(MPM)	(MPM)	(fug/m3)
BA2	745	26616	663	473	202	651	499	15042	566	6.93	0.062	7.92	1.94	0.006	7.72	7.84	0.050	3.57
BR2	266	24005	540	403	188	547	435	518	480	5.78	0.049	8.61	1.95	0.008	8.56	7.98	0.071	8.16
BR3	263	27100	604	427	196	583	480	550	4999	6.09	0.050	7.84	1.92	0.005	7.64	7.81	0.047	4.70
HAL	562	21531	1664	595	242	786	781	735	700	8.69	0.093	8.68	2.02	0.008	8.57	8.23	0.064	8.40
KIT	245	21679	528	564	227	5238	434	517	480	55.25	1.686	13.81	2.03	0.007	8.53	8.17	0.058	8.02
LDA	241	22088	506	2037	514	575	429	476	442	6.66	0.054	8.19	2.11	0.012	8.16	8.14	0.056	6.87
MBA MBR	245 304	19220 18640	543 3273	417 349	188 175	567 468	12243	535 445	495 412	6.25	0.059 0.045	9.39 9.50	2.07 2.06	0.007	9.37 9.50	8.47 8.47	0.073	16.11
Table 4c	- SIMIF	TC zone	Table 4c - SIM1FTC zone 24-hr avg concentrations	concentr	rations													
	VOCI	VOC2	VOC3	V0C4	VOC5	VOC6	VOC7	VOC8	V0C9	C0.1	N02.1	PART.1	C0.2	N02.2	PART.2	CO.3	NO2.3	PART.3
	(рд/т ³)	(mg/m3)	(mg/m3)	(hg/m³)	(mg/m3)	(mg/m ³)	(hg/m ³)	(mg/m ³)	(mg/m3)	(MPM)	(MPM)	(_с ш/дл)	(MPM)	(MPM)	(hg/m ³)	(MPM)	(MAA)	(mg/m ³)
BA2	370	21831	435	332	167	423	397	2989	392	4.15	0.007	7.06	1.64	0.002	6.96	6.63	0.019	1.17
BR2	199	19345	360	287	154	361	337	355	336	3.64	0.007	7.76	1.63	0.003	7.68	6.63	0.031	4.72
BR3	215	22228	425	320	163	407	387	399	1368	4.01	0.006	7.05	1.64	0.002	6.96	6.62	0.020	1.72
HAL	244	18147	559	310	164	393	453	382	362	4.01	0.011	8.08	1.65	0.003	7.98	6.69	0.032	4.62
KIT	192	18356	347	332	169	1182	324	344	326	11.45	0.156	8.80	1.65	0.004	7.92	6.67	0.034	5.42
LUA	c61	19330	965 205	500	122	404	331	345 202	175	4.09	0.011	61.1	1.72	0.003	11.1	6.67	0.029	4.36
MBA	184 203	15191	525 782	241	141	328 296	579	322 291	307 277	3.40 3.17	0.00 0.008	8.52 8.80	1.63 1.62	0.005	8.44 8.74	6.70 6.69	0.045 0.048	9.21
Table 4d	- SIMIF	TC zone	Table 4d - SIM1FTC zone 4-hr avg concentrations	concentra	tions													
	VOCI	V0C2	VOC3	V0C4	VOC5	VOC6	V0C7	VOC8	V0C9	C0.1	N02.1	PART.1	C0.2		PART.2			
64.0	(mg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(μg/m³)	(μg/m³)	(m/g/u3)	(mg/m ³)	(µg/m³)	(MPM)	(PPM)	(mg/m³)	(PPM)	(MPM)	(hg/m ³)			
DA2 RR7	40 1	AN NA	400 401	371	101	200	361	0011	378	3 71	0.000	0.01	1.47		24.1			
BR3	216	AN	495	351	173	461	405	443	3063	3.95	0.008	6.64	1.46		7 47			
HAL	264	NA	956	381	187	522	538	465	451	5.07	0.021	7.76	1.52		8.29			
KIT	188	NA	392	404	192	2859	336	387	363	37.17	0.675	11.35	1.50		8.13			
LDA	190	NA	390	1322	363	479	334	372	350	5.01	0.025	7.64	1.54		8.03			
MBA	179 208	AN N	387	296 266	156	382	5928 •••	368	346	3.70	0.010	8.35	1.52		8.52			
VICIAI	700		0701	700	140	600	700	070	010	+C.C	600.0	0.49	<u>(()</u>		10.6			

LEGENDVOC1Burst - UCLCO.1OvenVOC2FloorNO2.1OvenVOC3Burst - MBRPART.1OvenVOC3Burst - LDACO.2HeaterVOC4Burst - LDACO.2HeaterVOC5Burst - KTTPART.1OvenVOC5Burst - KTTPART.2HeaterVOC5Burst - MBACO.2HeaterVOC7Burst - MBACO.3Outdoor airVOC9Burst - BR3PART.3Outdoor air
 Table 4e - SIM IFTC zone
 I-hr avg concentrations

 CO.1
 CO.2

 RPM)
 (PPM)

 BA2
 3.02

 BR2
 2.91

 1.55
 1.55

 BR2
 2.91

 1.55
 1.55

 BR3
 3.02

 1.55
 1.56

 HAL
 3.3.3

 LDA
 3.41

 LDA
 3.41

 MBR
 2.73

 MBR
 2.73

PAPT 3	(μg/m ³) 7.32		PART.3	(fug/m3)	13.30	9.94	8.70	24.15	11.10	11.07	15.94		PART.3	(m/gh)	6.76	5.94	4.88	18.7	7.09	10.40	8.23																			
NO2 3	0.039		N02.3	(MPM)	0.084	0.062	0.054	0.142	0.061	0.065	0.083 0.083		N02.3	(MPM)	0.037	0.034	0.062	0.040	0.038	0.052	0.043																			
103	ppm 6.94		CO.3	(PPM)	9.23	8.79	8.52	10.22	8.75	8.88	9.19 8.60		CO.3	(MPM)	7.05	7.04	00.7	6.88	6.93	6.84	0.82												Oven	Oven	Oven	Henter	Heater	Outdoor air	Outdoor air	Outdoor air
PART 1	(µg/m³) 9.23		PART.1	(hg/m³)	10.39	9.88	06.6	96.11	15.24	10.26	10.73 10.04		PART.1	(em/gн)	8.98	8.79	0 03	10.26	9.25	9.76	16.6		PAPT 1	(ug/m ³)	10.21	9.49	9.10	17.11	20.01	10.17	9.38		CO.1	N02.1	PAKI.I	N02 2	PART.2		NO2.3	PART.3
NO2 I	ppm 0.025		N02.1	(MPM)	0.025	0.021	0.021	0.037	1.558	0.071	0.025 0.020		N02.1	(MPM)	0.005	0.004	0.004	0.163	0.012	0.006	c00.0		NO2 1	(PPM)	0.006	0.004	0.004	600.0	0.039	0.006	0.004		Burst - UCL	Floor	Burst - MBK	Burst - CDA	Burst - KIT	Burst - MBA	Burst - BA2	Burst - BR3
0.01	ppm 4.18		CO.1	(MPM)	4.48	3.89	4.04	5.52	50.31	5.98	4.15 3.66		CO.1	(Mdd)	2.50	2.41	15.0	14.24	4.01	2.20	7.19		0.01	(PPM)	2.09	2.13	2.14	20.2	5.23	2.10	2.08	EGEND	VOCI	VOC2	2007	4004 V0C5	VOC6	VOC7	VOC8	VOC9
VOC0	(нg/m ³) 510		VOC9	(m/gµ)	473	381	8600	0/0	394	369	403 328		VOC9	(ғш/дл)	355	270	0007	250	257	222	661		VOC 0	(mg/m ³)	347	263	4424	010	234	184	179	-								_
VOC8	(μg/m ³) 505		VOC8	(m/gu))	16/64	406	664	6/9	419	394	428 349		VOC8	(rm/дл)	5792	285	000 205	259	271	229	504		VOC8	(m/m))	11952	273	334	007	242	188	181									
VOCT	(µg/m ³) 507		VOC7	(μg/m³)	482	353	403	080	364	362	12871 985		VOC7	(rm/gн)	410	276	115	249	277	3606	100		VOC7	(m/m ³)	422	280	377	100	253	8311	703									
VOC6	(μg/m³) 525		VOC6	(hg/m³)	5 55	426	482	040	5588	582	451 365		VOC6	(cm/grl)	400	298	350	1948	452	237	117				404															
ntrations VOC5	(μg/m³) 136	S	VOC5	(m/grl)	136	127	051	4CI	148	321	130	rations	VOC5	(rm/gн)	122	114	117	122	182	109	101	tione	VOC5	(m/m))	124	116	121	171	232	107	107	ations								
voca	(μg/m ³) 407	centratio	VOC4	(mg/m3)	338	278	305	414	393	2126	293 244	concent	VOC4	(_с ш/д́п)	259	207	574	247	845	175	101	concentre	VOC4	(m/m ³)	258	205	241	020	1637	152	150	zone 1-hr avg concentrations								
II 24-hr a	(μg/m³) 485	neak con	VOC3	(m/gл)	688	423	880	1094	447	480	422 3333	24-hr ave	VOC3	(m/grl)	531	314	4/3	275	328	242	444	A-hr ave	VOC3	(ug/m ³)	617	318	495	1171	294	234	2236	1-hr avg	,							
5	vocz (µg/m³) 21165	rM zone	VOC2	(m/gr)	33912	26965	33220	11622	22296	24215	17811 422 293 13 17054 3333 244 12	TM zone	VOC2	(µg/m³)	28144	21431	18787	19565	21558	15095	14002	TM 2000	VIOC)	(m/m))	NA	NA	AN N	AN A	A N	AN	NA 2236 150 107									
- SIMIF		I WIS -	VOCI		649	166	168				143 202	- SIMIF	VOCI	(fm/gh)	324	138	186	127	134	121	142	CIMIN		(ug/m ³)	346	137		104		115	- 1	Table 5e - SIMIFTM	CO.1	(MPM)	2.30	07.7	2.47	37.36	3.53	2.29
Table 5a	24 hr avg						BK3	HAL	KIT	LDA	MBA	Table 5c	ac aron y		BA2	BR2	BKJ	KIT	LDA 134 21558 328 845 182	MBA	MBK	Toble 5d			BA2	BR2	BR3	HAL VIT	VUI	MBA	MBR	Table 5e			BA2	BR3	HAL	KIT	LDA	MBA

PART.1 CO.3 NO2.3 PART.3 (μg/m ³) ppm (μg/m ³) (1.2/m ³)	PART.1 CO.3 NO2.3 PART.3 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) 8.15 9.63 0.108 4.59 8.17 9.63 0.110 6.50 8.14 9.63 0.111 6.77 8.54 9.63 0.111 6.77 8.54 9.63 0.111 9.25 10.40 9.65 0.114 8.88 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 8.21 9.60 0.103 5.00 9.50 0.103 5.00 0.	PART.1 CO.3 NO2.3 PART.3 (µg/m³) (PPM) (PPM) (µg/m³) 7.29 6.99 0.054 2.63 7.55 6.98 0.057 4.83 7.54 6.99 0.056 4.75 7.54 6.99 0.056 4.75 7.47 6.99 0.055 3.16 7.68 6.99 0.055 3.16 7.37 6.98 0.055 3.34 7.43 6.99 0.055 3.34	PART.1 (µg/m ³) 7.73 7.87 7.83 8.00 8.11 8.03 7.83 7.87	CO.1 Oven NO2.1 Oven PART.1 Oven CO.2 Heater NO2.2 Heater PART.2 Heater CO.3 Outdoor air
NO2.1 ppm 0.022	NO2.1 (PPM) 0.167 0.147 0.150 0.150 0.150 0.150 0.150 0.136 0.136	NO2.1 (PPM) 0.020 0.019 0.019 0.022 0.025 0.018 0.018	NO2.1 (PPM) 0.064 0.061 0.072 0.177 0.177 0.177 0.056 0.058	Burst - UCL Floor Burst - MBR Burst - LDA Burst - GAR Burst - KIT Burst - MBA
CO.1 ppm 2.91	CO.1 (PPM) 7.26 6.74 6.84 7.93 25.60 6.48 7.05	CO.1 (PPM) 2.89 2.84 2.84 2.79 2.79 2.79 2.87	CO.I CO.I 5.28 5.19 5.19 5.19 7.89 5.20 5.20 5.20	VOCI VOCI VOC2 VOC3 VOC3 VOC5 VOC5 VOC5
VOC9 (µg/m³) 240	VOC9 (µg/m ³) 557 519 3081 635 532 543 543 519	VOC9 (μg/m³) 236 334 230 233 233 234 233 234 233	VOC9 VOC9 380 369 374 375 375 375 367	
VOC8 (µg/m ³) 237	VOC8 (μg/m ³) 8105 533 545 659 552 578 578 578	VOC8 (μg/m ³) 480 232 241 231 234 234 234 231	VOC8 VOC8 1201 372 377 377 377 377 377 377 378	
VОС7 (µg/m ³) 249	VOC7 (µg/m ³) 533 494 504 574 509 475 7217 1187	VOC7 (μg/m ³) 237 233 242 233 245 234 255 225 288	VOC7 (µg/m ³) 376 367 367 393 367 356 350 1142 542	
VОС6 (µg/m ³) 237	VOC6 (µg/m ³) 593 534 534 660 660 579 510 531	VOC6 (μg/m ³) 236 236 232 240 231 234 234 231	VOC6 (µg/m ³) 374 378 378 399 664 399 380 372	
1	s NOC5 (μg/m ³) 690 678 778 737 737 870 680 680	ations VOC5 (μg/m ³) 488 468 473 504 515 581 475	tions VOC5 489 489 484 472 533 663 480 480 463	ions
VОС4 (µg/m ³) 243	peak concentrations VOC3 VOC4 V (µg/m ³) (µg/m ³) ((562 538 521 506 530 516 530 516 533 607 533 631 501 1409 548 532 2211 505	24-hr avg concentrations VOC3 VOC4 VOC3 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) 235 235 488 236 229 468 231 231 473 233 240 204 504 233 243 515 233 243 515 234 270 581 234 233 483 200 231 475 233 243 515 234 233 483 200 231 475 300 231 475	4-hr avg concentrations VOC3 VOC4 VOC VOC3 VOC4 VOC VOC3 VOC4 VOC 1(µµ/m ³) (µµ/m ³) (µµ/m ³) 382 376 489 370 364 464 375 369 472 400 391 520 376 404 533 376 404 533 376 371 480 600 362 463	oncentra
VOC3 (μg/m³) 239	eak conc beak conc (μg/m ³) 562 531 533 533 533 533 511 548 511 548	<u>-4-hr avg</u> (μg/m ³) 235 235 235 235 236 231 240 233 234 233 234 234 234 234 234	<u>-hr avg c</u> VOC3 VOC3 382 370 375 400 376 376 376 500	-hr avg c
VОС2 (µg/m³) 9517				H zone I
VOCI (μg/m³) 465	- SIM1FT - SIM1FT (µg/m ³) 450 303 306 357 304 325 305 325 325	- SIMIFT - SIMIFT 298 231 233 233 233 233 233 233 235 235 237 251 251	- SIMIFT VOCI (µg/m ³) 368 254 257 288 288 247 260 288 247 288 288 288 288 288	SIMIFT CO.1 (PPM) 5.33 4.95 5.02 6.00 6.00 15.11
VOCI VOC2 VOC3 VOC3 VOC4 VOC5 (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) 24 hr avg 465 9517 239 243 507	Table 6b - SIM1FTH zone VOC1 VOC3 VOC1 VOC3 BA2 (μg/m³) BR2 303 12531 BR3 306 12833 HAL 357 12933 KIT 304 13565 LDA 295 12422 MBR 305 13392	Table 6c - SIM1FTH zone VOC1 VOC2 VOC1 VOC2 (µg/m ³) (µg/m ³) BA2 231 9417 BR3 233 9446 HAL 248 9378 KIT 235 9647 MBA 233 9446 HAL 248 9378 MBA 237 9590 MBA 237 9504 MBR 251 9639	Table 6d - SIMIFTH zone VOCI VOC2 VOCI VOC3 BA2 368 Ig/m ³) (µg/m ³) BR2 354 NA BR3 254 NA BR3 257 NA HAL 288 NA KIT 238 NA MBA 247 NA MBR 284 NA	Table 6e - SIM1FTH zone 1-hr avg concentrationsCO.1BA2CO.1BR25.33BR24.95BR35.02HAL6.00HAL6.0015.1117.11

NO2.3 РАКТ.3 (PPM) (µg/m ³) 0.102 14.46	NO2.3 PART.3 NO2.3 PART.3 (PPM) (μg/m ³) 0.129 5.39 0.139 19.51 0.170 29.73 0.180 24.14 0.168 20.75 0.216 33.26 0.220 38.91	NO2.3 PART.3 (PPM) (μg/m ³) (1080) 2.24 0.108 16.86 0.087 7.32 0.103 15.64 0.101 13.38 0.101 13.38 0.011 13.38 0.113 17.77 0.113 17.77		
CO.3 (PPM) 6.70	CO.3 (PPM) (PPM) 10.02 10.12 10.25 10.26 10.26 10.26 11.06	CO.3 (PPM) 6.70 6.69 6.72 6.72 6.72 6.72 6.72 6.72 6.72		
PART.2 (μg/m³) 10.58	PART.2 (μg/m ³) 11.96 12.23 11.94 12.02 12.02 12.02 12.16 12.16	PART.2 (μg/m ³) 9.89 10.14 10.69 10.51 10.51 10.51 10.76 11.16	PART.2 (μg/m ³) (μg/m ³) 11.03 11.19 11.24 11.24 11.24 11.24 11.29 11.41	
NO2.2 (PPM) 0.018	NO2.2 (PPM) 0.112 0.083 0.095 0.095 0.097 0.076	NO2.2 (PPM) 0.018 0.017 0.017 0.019 0.019 0.020 0.020 0.020	NO2.2 (PM) 0.062 0.054 0.054 0.054 0.054 0.054 0.054	
CO.2 (PPM) 1.84	CO.2 (PPM) 3.37 2.85 3.15 2.98 3.12 3.12 3.09 3.09 3.09 3.09	CO.2 (PPM) 1.91 1.81 1.86 1.86 1.86 1.86 1.86 1.86 1.79	CO.2 (PPM) 2.98 2.52 2.73 2.73 2.73 2.73 2.73 2.73	Oven Oven Oven Heater Heater Meater Outdoor air Outdoor air
PART.1 (μg/m³) 10.23	PART.1 (µg/m ³) 9.84 11.16 10.36 11.42 11.41 11.41 11.38 11.38	PART.1 (µg/m ³) 9.43 9.76 9.76 10.33 10.23 10.12 10.40 10.87	PART.1 (μg/m ³) 9.15 9.59 9.57 9.68 9.68 9.76 9.76 9.76	C0.1 N02.1 PART.1 C0.2 N02.2 PART.2 C0.3 C0.3
NO2.1 (PPM) 0.020	NO2.1 (PPM) 0.108 0.092 0.082 0.544 0.112 0.095 0.077	NO2.1 (PPM) 0.016 0.016 0.016 0.016 0.018 0.018 0.018	NO2.1 (PPM) 0.022 0.020 0.020 0.020 0.020 0.022 0.022 0.022	Burst - UCL Floor Burst - MBR Burst - LDA Burst - GAR Burst - KIT Burst - MBA Burst - BMT
CO.I (PPM) 2.01	CO.1 (PPM) 5.27 4.33 4.81 4.56 14.70 5.28 4.78 4.78 4.78	CO.1 (PPM) 2.01 1.96 1.91 1.91 1.91 1.91 1.91 1.85	CO.1 (PPM) 2.91 2.48 2.63 3.03 2.73 2.63 2.63 2.63 2.63	EGEND VOCI VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3
VOC9 (µg/m³) 144	VOC9 (µg/m ³) 356 285 2820 285 2820 265 294 294 294 243	VOC9 (μg/m ³) 140 127 128 132 132 132 128 128	VOC9 (µg/m ³) 205 171 171 171 181 188 188 187 184 164	
VOC8 (µg/m³) 364	VOC8 (µg/m ³) 1237 924 1111 963 1061 1065 1034 836	VOC8 (µg/m³) 452 452 347 347 379 379 379 379 379	VOC8 (µg/m³) 865 620 620 763 664 731 719 719 719 577	
VOC7 (µg/m³) 143	VOC7 (µg/m ³) 314 250 306 583 583 276 583 583 583 583 583 804	VOC7 (µg/m³) 134 122 131 144 128 128 128 128 339	VOC7 (µg/m ³) 181 152 168 209 171 171 168 875 256	
VOC6 (μg/m³) 145	VOC6 (µg/m ³) 380 331 279 2864 413 308 257 257	VOC6 (µg/m³) 143 130 138 130 138 130 140 131 124	VOC6 (µg/m ³) 209 174 174 180 523 207 187 167	
VOC5 (µg/m ³) 127	nns VOC5 (µg/m ³) 221 187 208 192 204 355 201 179	trations VOC5 (µg/m ³) 128 119 124 121 121 121 121 121 121	ations VOC5 (µg/m ³) 191 161 178 166 177 270 174 174	ations
VOC4 (μg/m ³) 140	ncentratic VOC4 (µg/m ³) 342 342 300 252 280 1079 281 281 236	<u>μ</u> <u>β</u> <u>concen</u> VOC4 (μg/m ³) 140 128 136 136 132 132 132 123 123	(concent VOC4 (µg/m ³) 203 170 176 187 291 187 291 163	concent
VOC3 (μg/m ³) 144	2 peak coi VOC3 (µg/m ³) 387 294 365 909 355 298 1588 1588	24-hr av VOC3 (µg/m ³) 143 127 138 138 134 135 135 129 129	2 4-hr avg VOC3 (µg/m ³) 213 192 192 192 192 182 182 346	l -hr avg
VOC2 (μg/m ³) 2767	Table 7b - SIM1MLC zone peak concentrations VOC1 VOC3 VOC4 V (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) BA2 98 3837 387 377 20 2 BR2 98 3537 365 300 2 4 2 BR3 98 3537 365 300 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 3 <td>Table 7c - SIMIMLC zone 24-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC5 NA2 98 3213 143 149 128 BA2 98 3213 143 140 128 BR2 98 3213 143 140 128 BR3 98 3157 138 136 124 HAL 98 2741 159 128 121 KIT 98 2719 134 132 123 MBA 98 2719 135 123 123 MBA 98 2719 135 165 142 MBA 98 2396 129 123 123</td> <td>Table 7d - SIMIMLC zone 4-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC Hg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) BA2 98 NA 213 203 191 BR3 98 NA 192 190 170 161 BR3 98 NA 192 187 177 177 LDA 98 NA 192 291 270 MBA 98 NA 192 291 270</td> <td>Table 7e - SIM IMLC zone I-hr avg concentrations CO.1 CO.2 CO.1 CO.2 RA2 4.46 BR2 3.87 BR3 4.09 I.73 HAL BR1 1.73 KIT 12.99 LDA 4.61</td>	Table 7c - SIMIMLC zone 24-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC5 NA2 98 3213 143 149 128 BA2 98 3213 143 140 128 BR2 98 3213 143 140 128 BR3 98 3157 138 136 124 HAL 98 2741 159 128 121 KIT 98 2719 134 132 123 MBA 98 2719 135 123 123 MBA 98 2719 135 165 142 MBA 98 2396 129 123 123	Table 7d - SIMIMLC zone 4-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC Hg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) BA2 98 NA 213 203 191 BR3 98 NA 192 190 170 161 BR3 98 NA 192 187 177 177 LDA 98 NA 192 291 270 MBA 98 NA 192 291 270	Table 7e - SIM IMLC zone I-hr avg concentrations CO.1 CO.2 CO.1 CO.2 RA2 4.46 BR2 3.87 BR3 4.09 I.73 HAL BR1 1.73 KIT 12.99 LDA 4.61
VOCI (μg/m ³) 182	- SIMIN VOCI (µg/m ³) 98 98 98 98 98 98 98	- SIMIN VOCI 98 98 98 98 98 98 98 98	SIMIN VOCI (µg/m ³) 98 98 98 98 98	- <u>SIMIN</u> CO.1 (PPM) 4.46 3.87 4.09 3.88 12.99 4.61
24 hr avg	Table 7b BA2 BR2 BR3 HAL KIT LDA MBA MBA	Table 7c BA2 BR3 BR3 HAL KIT KIT MBA MBR	Table 7d BA2 BR3 BR3 BR3 HAL KIT LDA MBA MBR	Table 7c BA2 BR2 BR3 HAL KIT LDA

Table 8a	- SIMIN	Table 8a - SIM1 MLM overall 24-hr avg concentrations	all 24-hr	ave conc	entrations													
24 hr avg	VOC1 (µg/m ³) 265	VOC2 (μg/m ³) 3489	VOC3 (μg/m ³) 133	VOC4 (μg/m ³) 146	VOC5 (μg/m ³) 176	VOC6 (μg/m ³) 145	VOC7 (μg/m ³) 133	VOC8 (μg/m ³) 325	VOC9 (µg/m ³) 153	CO.1 (PPM) 1.99	NO2.1 (PPM) 0.020	PART.1 (μg/m³) 10.85	CO.2 (PPM) 1.93	NO2.2 (PPM) 0.018	PART.2 (μg/m ³) 11.32	CO.3 (PPM) 6.69	NO2.3 (PPM) 0.096	PART.3 (μg/m ³) 18.68
Table 8b	- SIMIN	- SIM1MLM zone peak concentrations	peak cor	ncentratic	SUC													
	VOCI	VOC2	VOC3	VOC4	005	VOC6	V0C7	VOC8	VOC9	CO.1	N02.1	PART.1	CO.2	N02,2	PART.2	CO.3	N02.3	PART.3
1	(µg/m³)	(εm/gμ)	(μg/m³)	(hg/m³)		(μg/m³)	(fug/m3)	(fug/m ³)	(µg/m³)	(Mdd)	(Mdd)	(µg/m³)	(Mdd)	(Mdd)	(hg/m³)	(MPM)	(MPM)	(fug/m³)
BA2	201	6676 5720	276	341	404	334	172	1012	399	3.59	0.045	11.44	2.72	0.076	12.82	10.02	0.118	16.43
BK2	81	0/00	017	243		241	148	693	502	2.80	0.037	12.57	2.74	0.052	12.97	11.10	0.205	45.70
BK3	106	5680	202	241		240	149	693 702	3319	2.84	0.038	12.64	2.78	0.052	13.01	11.26	0.225	47.60
HAL	1/9	0043	CU2	C70		600	141	123	086	17.0	611.0	12.48	2.83	0.068	13.00	10.01	0.185	40.18
	601	0680	240	06C		5115	001	890	301	76.82	1.042	14.11	2.96	0.064	12.82	10.01	0.133	24.40
	108	67023	617	1200		000	(CI	CC/	407 707	C 0. 7	950.0	10.21	3.00	0.134	25.01	17.11	0.213	44.53
MBR	761 161	5966	2192	378	404	343 343	586 586	811	427 568	4.77	0.082	11.02	2.63	0.072	12.68	10.69	0.138	32.30
Table 8c	- SIMIN	Table 8c - SIM1MI M zone 24-hr ave concentrations	24-hr av	ແອວແບວ ລ.	trations													
I duir or	VOC1	VOC2	VOC3	VOC4	VOC5	VOC6	V0C7	VOC8	VOC9	01	NO2 1	PART 1	CO 2	000 J	PART 2	CO 3	NO7 3	PAPT 3
	(110/m3)	(110/m3)	(110/m ³)	(fulp/m ³)	(110/m ³)	(110/m ³)	(m/a))	(110/m ³)	(10/m3)	(PPM)	(DPM)	(ine/m ³)	(PPM)	(DPM)	(ing/m3)	(Mdd)	(Wdd)	(Em/pii)
BA2	107	4709	122	143	169	139	111	476	152	1.87	0.010	9.80	2.03	0.013	10.39	6.66	0.060	4 72
BR2	66	2946	109	115	125	114	104	285	115	1.70	0.013	11.16	1.83	0.014	11.45	6.72	0.111	24.28
BR3	66	2755	108	114	122	112	103	276	289	1.70	0.013	11.26	1.83	0.015	11.55	6.75	0.117	25.98
HAL	104	3281	110	143	169	136	105	308	175	1.93	0.019	10.96	1.92	0.017	11.41	6.70	0.098	19.41
KIT	66	4031	115	157	199	342	107	391	126	3.77	0.082	10.58	2.00	0.016	10.94	6.66	0.074	10.09
LDA	66	2539	108	174	219	112	103	291	114	1.69	0.013	11.22	1.99	0.026	11.86	6.72	0.112	24.12
MBA	101	4537	171	140	167	136	636	430	153	1.86	0.011	10.03	1.97	0.013	10.55	6.60	0.065	7.02
MBR	103	4057	224	139	167	134	134	354	162	1.89	0.014	10.52	1.91	0.014	10.96	6.62	0.078	12.51
Table 8d	- SIMIN	Table 8d - SIM1MLM zone 4-hr ave concentrations	t-hr ave	r concenti	rations													
	VOCI	V0C2	VOC3	V0C4	V0C5	VOC6	VOC7	VOC8	V0C9	C0.1	NO2.1	PART.1	CO 2	NO2.2	PART 2			
	(µg/m³)	(µg/m³)	(hg/m³)	(fug/m³)	(mg/m ³)	(mg/m³)	(mg/m ³)	(µg/m³)	(hg/m ³)	(PPM)	(Mdd)	(µg/m ³)	(Mdd)	(Mdd)	(m2/m3)			
BA2	100	NA	150	186	207	178	118	471	214	2.29	0.016	10.98	2.26	0.028	11.78			
BR2	98	NA	117	124	119	123	105	225	124	1.76	0.016	12.24	1.81	· 0.022	12.54			
BR3	98	NA	115	121	117	120	104	217	409	1.73	0.016	12.31	1.79	0.022	12.59			
HAL	66	NA	118	166	207	148	105	242	237	1.94	0.019	12.14	1.84	0.021	12.44			
KIT	66	NA	134	215	302	555	112	369	149	3.77	0.060	11.66	2.10	0.025	12.07			
LDA	98	NA	116	223	331	121	105	243	123	1.75	0.015	12.20	1.83	0.023	12.54			
MBA	66	NA	252	182	208	172	1028	420	222	2.35	0.018	11.16	2.20	0.026	11.84			
MBR	66	NA	317	172	208	157	165	306	228	2.18	0.019	11.72	1.99	0.022	12.14			
:																		
Table 8e	- SIMIN	Table 8e - SIMIMLM zone 1-hr avg concentrations	: I-hr avg	concent	rations													
	CO.1	CO.2								VOCI	Burst - UCL	CO.1	Oven					

		402.1	3 Burst - MBR PART.1 Oven	CO.2	402.2	ART.2	CO.3	402.3	9 Burst - BR3 PART.3 Outdoor air	
	00	000	000	000	000	000	000	000	000	
ALLON ALLON A	CO.2	(Mdd)	2.43	2.03	2.00	2.66	2.76	3.39	2.37	2.47
AT TATES	CO.1	(MPM)	2.99	2.60	2.59	4.80	24.09	2.61	3.23	4.03
			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

9a - SIMIMLH overall 24-hr avg concentrations VOCI VOC3 VOC4 VOC5 9b - SIMIMLH overall 24-hr avg concentrations (µg/m²) (µg/m²) µg/m²) µg/m²) 9b - SIMIMLH zone peak concentrations 00C1 VOC3 VOC4 VOC5 9b - SIMIMLH zone peak concentrations 98 331 365 273 131 98 8561 331 365 278 285 285 98 3559 266 289 224 994 514 98 3559 279 946 514 946 514 98 3559 279 946 514 946 514 98 3559 279 946 514 946 514 98 3553 117 120 115 121 115 98 2533 118 122 116 98 967 134 98 253 118 120 117 121 116 98 253 117 121 130 125 98 <td< th=""><th>Table 9a - SIMI MLH overall 24-hr avg concentrations vOCCI VOC3 VOC6 VOC5 VOC6 <th colspan<="" th=""><th>II 24-Irr avg concentrations VOC3 VOC4 VOC5 VOC6 VOC7 (µµm) (µµm) (µµm) (µµm) (µµm) 132 137 131 136 128 Peak Concentrations Pool VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YU 286 289 234 293 197 331 365 270 361 6040 278 286 289 242 279 946 514 309 242 279 366 274 309 242 279 366 274 309 246 279 346 514 309 206 279 366 270 361 6040 131 140 134 137 122 117 121 114 121 112 118 120 134 137 122 118 120 134 137 122 121 130 128 144 122</th><th>VOC6 136 2743 369 369 361 136 330 361 137 112 137 112 137 112 137 112 137 137 137 137 137 137 137 137 137 137</th><th>VOC6 VOC7 ug/m³) [136 128 136 128 128 369 242 293 369 242 199 369 242 199 369 242 199 361 128 197 363 300 209 361 6040 206 361 6040 206 361 6040 209 320 776 111 121 112 112 122 113 122 132 133 124 132 131 122 132 131 122 132 133 126 133 126 111 127 113 122 132 133 125 133 126 131 137 126 131 137 135 155 <t< th=""><th>VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm³ (µg/m³) (µg/m³) (µg/m³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124</th><th>Table 9a - SIM IMLH overa VOC1 VOC2 (µg/m³) (µg/m³) 24 hr ave 243</th><th>1/1/C C+2 By III</th><th>I able 90 - SIMI MLH Zonc peak concentrations VOC1 VOC2 VOC3 VOC4 VOC3 HA2 98 8561 331 365 277 BR2 98 3661 331 365 277 BR2 98 3467 267 290 228 HAL 98 3781 266 289 285 HAL 98 3765 277 290 285 HAL 98 3765 278 365 285 LDA 98 3765 279 286 285 MBA 98 7059 314 394 316 MBA 98 3559 279 946 514 MBR 98 7578 1556 328 270</th><th>ble 9c - SIM IMLH zone VOCI VOC2 (µg/m³) (µg/m³) 2 98 2533 3 98 2533 L 98 2533 C 98 2533 1 98 2533 1 98 2533 1 98 2571 1 98 3858 1 98 3858 1 98 3858 1 98 3858 1 98 3920</th><th>Table 9d - SIMIMLH zone VOCI VOC2 BA2 98 NA BR2 98 NA BR2 98 NA BR3 98 NA BR3 98 NA LDA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA</th><th>Table 9e - SIMIMLH zone CO.I BA2 3.92 BR2 3.48 BR3 3.46 HAL 3.77</th></t<></th></th></th></td<>	Table 9a - SIMI MLH overall 24-hr avg concentrations vOCCI VOC3 VOC6 VOC5 VOC6 VOC6 <th colspan<="" th=""><th>II 24-Irr avg concentrations VOC3 VOC4 VOC5 VOC6 VOC7 (µµm) (µµm) (µµm) (µµm) (µµm) 132 137 131 136 128 Peak Concentrations Pool VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YU 286 289 234 293 197 331 365 270 361 6040 278 286 289 242 279 946 514 309 242 279 366 274 309 242 279 366 274 309 246 279 346 514 309 206 279 366 270 361 6040 131 140 134 137 122 117 121 114 121 112 118 120 134 137 122 118 120 134 137 122 121 130 128 144 122</th><th>VOC6 136 2743 369 369 361 136 330 361 137 112 137 112 137 112 137 112 137 137 137 137 137 137 137 137 137 137</th><th>VOC6 VOC7 ug/m³) [136 128 136 128 128 369 242 293 369 242 199 369 242 199 369 242 199 361 128 197 363 300 209 361 6040 206 361 6040 206 361 6040 209 320 776 111 121 112 112 122 113 122 132 133 124 132 131 122 132 131 122 132 133 126 133 126 111 127 113 122 132 133 125 133 126 131 137 126 131 137 135 155 <t< th=""><th>VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm³ (µg/m³) (µg/m³) (µg/m³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124</th><th>Table 9a - SIM IMLH overa VOC1 VOC2 (µg/m³) (µg/m³) 24 hr ave 243</th><th>1/1/C C+2 By III</th><th>I able 90 - SIMI MLH Zonc peak concentrations VOC1 VOC2 VOC3 VOC4 VOC3 HA2 98 8561 331 365 277 BR2 98 3661 331 365 277 BR2 98 3467 267 290 228 HAL 98 3781 266 289 285 HAL 98 3765 277 290 285 HAL 98 3765 278 365 285 LDA 98 3765 279 286 285 MBA 98 7059 314 394 316 MBA 98 3559 279 946 514 MBR 98 7578 1556 328 270</th><th>ble 9c - SIM IMLH zone VOCI VOC2 (µg/m³) (µg/m³) 2 98 2533 3 98 2533 L 98 2533 C 98 2533 1 98 2533 1 98 2533 1 98 2571 1 98 3858 1 98 3858 1 98 3858 1 98 3858 1 98 3920</th><th>Table 9d - SIMIMLH zone VOCI VOC2 BA2 98 NA BR2 98 NA BR2 98 NA BR3 98 NA BR3 98 NA LDA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA</th><th>Table 9e - SIMIMLH zone CO.I BA2 3.92 BR2 3.48 BR3 3.46 HAL 3.77</th></t<></th></th>	<th>II 24-Irr avg concentrations VOC3 VOC4 VOC5 VOC6 VOC7 (µµm) (µµm) (µµm) (µµm) (µµm) 132 137 131 136 128 Peak Concentrations Pool VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YU 286 289 234 293 197 331 365 270 361 6040 278 286 289 242 279 946 514 309 242 279 366 274 309 242 279 366 274 309 246 279 346 514 309 206 279 366 270 361 6040 131 140 134 137 122 117 121 114 121 112 118 120 134 137 122 118 120 134 137 122 121 130 128 144 122</th> <th>VOC6 136 2743 369 369 361 136 330 361 137 112 137 112 137 112 137 112 137 137 137 137 137 137 137 137 137 137</th> <th>VOC6 VOC7 ug/m³) [136 128 136 128 128 369 242 293 369 242 199 369 242 199 369 242 199 361 128 197 363 300 209 361 6040 206 361 6040 206 361 6040 209 320 776 111 121 112 112 122 113 122 132 133 124 132 131 122 132 131 122 132 133 126 133 126 111 127 113 122 132 133 125 133 126 131 137 126 131 137 135 155 <t< th=""><th>VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm³ (µg/m³) (µg/m³) (µg/m³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124</th><th>Table 9a - SIM IMLH overa VOC1 VOC2 (µg/m³) (µg/m³) 24 hr ave 243</th><th>1/1/C C+2 By III</th><th>I able 90 - SIMI MLH Zonc peak concentrations VOC1 VOC2 VOC3 VOC4 VOC3 HA2 98 8561 331 365 277 BR2 98 3661 331 365 277 BR2 98 3467 267 290 228 HAL 98 3781 266 289 285 HAL 98 3765 277 290 285 HAL 98 3765 278 365 285 LDA 98 3765 279 286 285 MBA 98 7059 314 394 316 MBA 98 3559 279 946 514 MBR 98 7578 1556 328 270</th><th>ble 9c - SIM IMLH zone VOCI VOC2 (µg/m³) (µg/m³) 2 98 2533 3 98 2533 L 98 2533 C 98 2533 1 98 2533 1 98 2533 1 98 2571 1 98 3858 1 98 3858 1 98 3858 1 98 3858 1 98 3920</th><th>Table 9d - SIMIMLH zone VOCI VOC2 BA2 98 NA BR2 98 NA BR2 98 NA BR3 98 NA BR3 98 NA LDA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA</th><th>Table 9e - SIMIMLH zone CO.I BA2 3.92 BR2 3.48 BR3 3.46 HAL 3.77</th></t<></th>	II 24-Irr avg concentrations VOC3 VOC4 VOC5 VOC6 VOC7 (µµm) (µµm) (µµm) (µµm) (µµm) 132 137 131 136 128 Peak Concentrations Pool VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YOC3 VOC4 VOC5 VOC6 VOC7 YU 286 289 234 293 197 331 365 270 361 6040 278 286 289 242 279 946 514 309 242 279 366 274 309 242 279 366 274 309 246 279 346 514 309 206 279 366 270 361 6040 131 140 134 137 122 117 121 114 121 112 118 120 134 137 122 118 120 134 137 122 121 130 128 144 122	VOC6 136 2743 369 369 361 136 330 361 137 112 137 112 137 112 137 112 137 137 137 137 137 137 137 137 137 137	VOC6 VOC7 ug/m³) [136 128 136 128 128 369 242 293 369 242 199 369 242 199 369 242 199 361 128 197 363 300 209 361 6040 206 361 6040 206 361 6040 209 320 776 111 121 112 112 122 113 122 132 133 124 132 131 122 132 131 122 132 133 126 133 126 111 127 113 122 132 133 125 133 126 131 137 126 131 137 135 155 <t< th=""><th>VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm³ (µg/m³) (µg/m³) (µg/m³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124</th><th>Table 9a - SIM IMLH overa VOC1 VOC2 (µg/m³) (µg/m³) 24 hr ave 243</th><th>1/1/C C+2 By III</th><th>I able 90 - SIMI MLH Zonc peak concentrations VOC1 VOC2 VOC3 VOC4 VOC3 HA2 98 8561 331 365 277 BR2 98 3661 331 365 277 BR2 98 3467 267 290 228 HAL 98 3781 266 289 285 HAL 98 3765 277 290 285 HAL 98 3765 278 365 285 LDA 98 3765 279 286 285 MBA 98 7059 314 394 316 MBA 98 3559 279 946 514 MBR 98 7578 1556 328 270</th><th>ble 9c - SIM IMLH zone VOCI VOC2 (µg/m³) (µg/m³) 2 98 2533 3 98 2533 L 98 2533 C 98 2533 1 98 2533 1 98 2533 1 98 2571 1 98 3858 1 98 3858 1 98 3858 1 98 3858 1 98 3920</th><th>Table 9d - SIMIMLH zone VOCI VOC2 BA2 98 NA BR2 98 NA BR2 98 NA BR3 98 NA BR3 98 NA LDA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA</th><th>Table 9e - SIMIMLH zone CO.I BA2 3.92 BR2 3.48 BR3 3.46 HAL 3.77</th></t<>	VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm ³ (µg/m ³) (µg/m ³) (µg/m ³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124	Table 9a - SIM IMLH overa VOC1 VOC2 (µg/m³) (µg/m³) 24 hr ave 243	1/1/C C+2 By III	I able 90 - SIMI MLH Zonc peak concentrations VOC1 VOC2 VOC3 VOC4 VOC3 HA2 98 8561 331 365 277 BR2 98 3661 331 365 277 BR2 98 3467 267 290 228 HAL 98 3781 266 289 285 HAL 98 3765 277 290 285 HAL 98 3765 278 365 285 LDA 98 3765 279 286 285 MBA 98 7059 314 394 316 MBA 98 3559 279 946 514 MBR 98 7578 1556 328 270	ble 9c - SIM IMLH zone VOCI VOC2 (µg/m ³) (µg/m ³) 2 98 2533 3 98 2533 L 98 2533 C 98 2533 1 98 2533 1 98 2533 1 98 2571 1 98 3858 1 98 3858 1 98 3858 1 98 3858 1 98 3920	Table 9d - SIMIMLH zone VOCI VOC2 BA2 98 NA BR2 98 NA BR2 98 NA BR3 98 NA BR3 98 NA LDA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA MBA 98 NA	Table 9e - SIMIMLH zone CO.I BA2 3.92 BR2 3.48 BR3 3.46 HAL 3.77
avg concentration VOC4 VOC5 (μg/m²) [137] [131] Isy Leentrations VOC4 VOC5 (μg/m²) (μg/m²) (μg/m²) (μg/m²) (μg/m²) 336 272 289 224 335 316 946 514 946 514 946 514 936 272 928 928 936 273 235 226 273 236 265 946 514 946 514 936 216 946 514 936 265 946 514 937 194 137 194 137 194 137 194 137 194 134	Arg concentrations VOC4 VOC5 VOC6 (µg/m³) (µg/m³) (µg/m³) (µg/m³) 137 131 136 Lientrations vocs voc6 voc4 voc5 voc6 ug/m³) (µg/m³) (µg/m³) 365 272 369 290 228 294 336 200 228 346 514 309 346 514 309 356 270 361 365 270 369 366 2743 399 366 2743 399 366 274 309 376 134 121 121 115 122 130 125 120 140 134 137 131 133 122 130 125 120 131 137 122 140 134	VOC6 136 2743 369 369 361 136 330 361 137 112 137 112 137 112 137 112 137 137 137 137 137 137 137 137 137 137	VOC6 VOC7 ug/m³) [136 128 136 128 128 369 242 293 369 242 199 369 242 199 369 242 199 361 128 197 363 300 209 361 6040 206 361 6040 206 361 6040 209 320 776 111 121 112 112 122 113 122 132 133 124 132 131 122 132 131 122 132 133 126 133 126 111 127 113 122 132 133 125 133 126 131 137 126 131 137 135 155 <t< td=""><td>VOC6 VOC7 VOC8 Ig6m³) Iugm³) Iugm³) Iugm³) Ig6 128 333 369 242 1285 369 242 1285 369 242 1283 369 242 1283 369 242 1283 369 242 1283 369 242 1283 361 6040 1273 361 6040 1273 313 320 776 1142 121 122 445 121 122 287 121 122 445 121 122 374 122 144 316 122 111 279 123 124 445 120 1112 287 123 124 374 126 111 279 127 1127 374 </td></t<> <td>VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm³ (µg/m³) (µg/m³) (µg/m³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124</td> <td>UII 24-hr VOC3 (µg/m³)</td> <td>201 100 Apad</td> <td>Deak cor VOC3 (µg/m³) 331 267 266 278 314 314 314 279 534 534 1556</td> <td>24-hr av. VOC3 (µg/m³) 131 117 118 118 118 118 118 118 118 118</td> <td>4-hr avg VOC3 (μg/m³) 179 147 147 143 152 152 152 146 230 230 337</td> <td>l-hr avg</td>	VOC6 VOC7 VOC8 Ig6m ³) Iugm ³) Iugm ³) Iugm ³) Ig6 128 333 369 242 1285 369 242 1285 369 242 1283 369 242 1283 369 242 1283 369 242 1283 369 242 1283 361 6040 1273 361 6040 1273 313 320 776 1142 121 122 445 121 122 287 121 122 445 121 122 374 122 144 316 122 111 279 123 124 445 120 1112 287 123 124 374 126 111 279 127 1127 374	VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 I36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm ³ (µg/m ³) (µg/m ³) (µg/m ³) 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 369 242 1285 413 3743 320 1766 1142 491 320 776 1123 329 123 320 123 123 124 123 121 122 445 123 124 123 123 123 124 123 121 122 112 213 214 121 123 316 124 124	UII 24-hr VOC3 (µg/m ³)	201 100 Apad	Deak cor VOC3 (µg/m ³) 331 267 266 278 314 314 314 279 534 534 1556	24-hr av. VOC3 (µg/m ³) 131 117 118 118 118 118 118 118 118 118	4-hr avg VOC3 (μg/m ³) 179 147 147 143 152 152 152 146 230 230 337	l-hr avg	
centration: VOC5 VOC5 (µg/m³) 131 131 131 131 131 131 131 131 131 131 131 272 272 273 274 275 276 276 270 270 270 270 270 270 270 270 270 270 275 276 116 129 129 129 129 120 121 275 275 275 275 276 275 275 275 275 275	cutrations cutrations VOC5 VOC6 (µg/m ³) [µg/m ³) 131 136 VOC5 VOC6 (µg/m ³) (µg/m ³) 272 369 272 369 274 369 270 361 270 361 270 361 270 361 270 361 270 361 270 361 270 361 270 361 270 361 270 361 270 373 116 137 115 137 129 137 129 137 129 137 120 137 121 137 123 137 124 137 125 137 126 137 127 137	VOC6 136 2743 369 369 361 330 361 137 137 137 137 137 137 137 137 137 13	VOC6 VOC7 UP 136 128 136 128 128 369 200 242 369 242 293 369 242 199 369 244 199 2743 209 206 361 6040 776 362 361 6040 361 107 112 111 112 111 121 112 119 132 132 145 132 132 132 132 126 114 121 112 119 121 122 119 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 133	VOC6 VOC7 VOC8 Ig6m ³) Iugm ³) Iugm ³) Iugm ³) Ig6 128 333 369 242 1285 293 197 947 369 242 1283 369 242 1285 369 242 1283 369 242 1283 361 6040 1273 361 6040 1273 361 6040 1273 310 222 119 399 137 122 445 121 122 287 121 122 287 121 122 339 132 124 316 222 119 399 132 122 445 137 122 445 137 122 445 137 122 445 137 132 334	VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 IJ56 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm ³ (µg/m ³) (µg/m ³) (µg/m ³) 369 242 1285 413 369 242 1285 413 293 197 947 2211 293 197 947 2211 293 197 947 2211 293 197 947 2211 214 1142 411 239 300 209 1049 739 310 776 1142 491 121 112 245 137 123 112 316 124 121 112 287 137 123 123 123 124 123 123 316 124 123 122	VOC4 VOC4 (µg/m ³)	151 Internatio	Centrality VOC4 (µg/m ³) 336 336 336 336 336 336 336 336 336 33	g concen VOC4 (µg/m ³) 140 122 121 121 130 140 140 140 140 135	concent VOC4 VOC4 (μg/m³) 202 158 158 154 154 202 213 213 243 202 213 203 213 203 213 203 213	concentr	
	x VOC6 (µg/m ³) 136 (µg/m ³) 369 361 330 361 330 3743 300 2743 300 2743 300 2743 300 2743 300 2743 300 2743 300 120 120 121 137 121 137 120 137 137 137 137 137 137 137 137 137 137	VOC6 136 2743 369 369 361 330 361 137 137 137 137 137 137 137 137 137 13	VOC6 VOC7 UP 136 128 136 128 128 369 200 242 369 242 293 369 242 199 369 244 199 2743 209 206 361 6040 776 362 361 6040 361 107 112 111 112 111 121 112 119 132 132 145 132 132 132 132 126 114 121 112 119 121 122 119 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 133	VOC6 VOC7 VOC8 Ig6m ³) Iugm ³) Iugm ³) Iugm ³) Ig6 128 333 369 242 1285 293 197 947 369 242 1283 369 242 1285 293 197 947 369 242 1283 330 209 938 2793 197 947 361 6040 1273 313 200 1049 314 122 1142 315 124 316 137 122 445 121 122 445 121 122 287 132 124 316 137 122 445 137 122 445 137 122 445 137 122 445 137 122 445 13	VOC6 VOC7 VOC8 VOC9 IJ36 128 333 141 IJ36 128 333 141 VOC5 VOC7 VOC8 VOC9 Wighm ³ (µg/m ³) (µg/m ³) (µg/m ³) 369 242 1285 413 369 242 1285 413 293 197 947 2211 293 197 947 2211 293 197 947 2211 293 197 947 2211 214 1142 411 233 300 209 1049 739 310 776 1142 491 121 112 245 133 123 112 316 124 121 112 445 123 122 111 279 124 123 123 445 124 123 122	VOC5 VOC5 (µg/m ³)	101	228 VOC5 (µg/m ³) 272 228 228 228 228 216 514 216 216 216 216 265	trations VOC5 (µg/m ³) 134 115 115 115 125 137 134 134	(ug/m ³) 207 207 156 156 191 226 275 275 206	ations	
VOC8 VOC9 CO.1 (lig/m ³) (lig/m ³) (lig/m ³) (lig/m ³) 333 141 1.94 733 141 1.94 938 308 4.12 938 308 4.12 947 2211 4.05 1285 4.13 4.91 938 308 4.12 947 2211 4.93 947 2211 4.91 938 3.08 4.12 947 2211 4.91 931 375 2.357 1033 329 4.13 1142 491 4.63 316 137 4.14 1142 491 1.75 309 137 4.14 1.94 316 137 1.21 4.03 316 1.37 3.16 1.75 316 1.44 1.94 1.76 316 1.21 4.0	VOC9 CO.1 (µg/m³) (PPM) 141 1.94 181 1.94 197 4.0 308 4.12 308 4.12 308 4.12 308 4.12 308 4.12 3175 2.211 491 4.63 329 4.20 411 4.87 491 4.63 329 4.23 329 4.26 123 1.81 137 1.94 137 1.94 137 1.94 137 1.94 137 1.94 137 1.97 145 1.97 162 2.10 200 3.08 163 2.16 214 1.94 163 2.16 216 2.12 200 3.08 163 2.16	CO.1 (PPM) (PART.1 (μg/m ³) 10.59	60.01	PART.1 (µg/m ³) 10.49 12.13 12.32 12.32 12.03 12.17 12.20 10.50	PART.1 (µg/m ³) 9.66 11.05 11.16 11.16 10.75 10.12 10.95 9.64	PART.1 (µg/m ³) 9.63 11.05 11.05 11.23 10.01 11.10 9.62 9.62		
VOC8 VOC9 CO.1 NO2.1 (µg/m ³) µg/m ³) [µg/m ³) [µg/m ³) (PPM) 333 141 1.94 0.020 333 141 1.94 0.020 1285 413 4.91 0.020 947 2211 4.91 0.099 938 308 4.12 0.076 947 2211 4.91 0.099 937 23.557 0.086 0.066 1142 491 0.096 0.086 1142 491 0.096 0.086 1142 491 0.096 0.066 1142 491 0.096 0.066 1142 411 4.87 0.006 316 1273 0.175 0.016 330 124 1.73 0.016 3316 153 1.81 0.013 3316 153 1.75 0.016 3316 153 1.73 <td>VOC9 CO.1 NO2.1 (µg/m³) (PPM) (PPM) 141 1.94 0.020 141 1.94 0.020 141 1.94 0.020 141 1.94 0.020 141 4.91 0.020 133 4.91 0.099 308 4.12 0.076 315 2.3.57 0.080 329 4.20 0.086 315 2.3.57 0.086 411 4.87 0.016 137 3.16 0.016 137 3.175 0.016 137 3.175 0.016 137 3.16 0.016 137 3.175 0.016 137 3.175 0.016 137 3.16 0.013 144 1.94 0.016 137 3.175 0.016 137 0.016 1.77 123 1.73 0.016<td>CO.1 NO2.1 (PPM) (PPM) 1.94 0.020 1.94 0.020 4.91 0.020 4.91 0.020 4.91 0.020 4.12 0.076 4.13 0.080 4.12 0.076 4.12 0.076 4.12 0.076 4.12 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 1.73 0.016 1.73 0.016 1.74 0.016 1.75 0.016 1.76 0.016 1.77 0.016 1.77 0.016 1.77 0.016 1.76 0.016 <</td><td>NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.096 0.080 0.096 0.096 0.096 0.080 0.096 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0018 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.00</td><td>NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.086 0.095 0.086 0.095 0.085 0.085 0.095 0.016 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.0119 0.019 0.0119 0.00</td><td></td><td>CO.3 (PPM) 6.67</td><td>10.0</td><td>CO.3 (PPM) 10.29 11.15 11.31 11.31 11.31 11.33 11.23 10.34 10.31</td><td>CO.3 (PPM) 6.78 6.61 6.63 6.63 6.63 6.73 6.63 6.73 6.73</td><td></td><td>Oven Oven Oven Heater Heater</td></td>	VOC9 CO.1 NO2.1 (µg/m ³) (PPM) (PPM) 141 1.94 0.020 141 1.94 0.020 141 1.94 0.020 141 1.94 0.020 141 4.91 0.020 133 4.91 0.099 308 4.12 0.076 315 2.3.57 0.080 329 4.20 0.086 315 2.3.57 0.086 411 4.87 0.016 137 3.16 0.016 137 3.175 0.016 137 3.175 0.016 137 3.16 0.016 137 3.175 0.016 137 3.175 0.016 137 3.16 0.013 144 1.94 0.016 137 3.175 0.016 137 0.016 1.77 123 1.73 0.016 <td>CO.1 NO2.1 (PPM) (PPM) 1.94 0.020 1.94 0.020 4.91 0.020 4.91 0.020 4.91 0.020 4.12 0.076 4.13 0.080 4.12 0.076 4.12 0.076 4.12 0.076 4.12 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 1.73 0.016 1.73 0.016 1.74 0.016 1.75 0.016 1.76 0.016 1.77 0.016 1.77 0.016 1.77 0.016 1.76 0.016 <</td> <td>NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.096 0.080 0.096 0.096 0.096 0.080 0.096 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0018 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.00</td> <td>NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.086 0.095 0.086 0.095 0.085 0.085 0.095 0.016 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.0119 0.019 0.0119 0.00</td> <td></td> <td>CO.3 (PPM) 6.67</td> <td>10.0</td> <td>CO.3 (PPM) 10.29 11.15 11.31 11.31 11.31 11.33 11.23 10.34 10.31</td> <td>CO.3 (PPM) 6.78 6.61 6.63 6.63 6.63 6.73 6.63 6.73 6.73</td> <td></td> <td>Oven Oven Oven Heater Heater</td>	CO.1 NO2.1 (PPM) (PPM) 1.94 0.020 1.94 0.020 4.91 0.020 4.91 0.020 4.91 0.020 4.12 0.076 4.13 0.080 4.12 0.076 4.12 0.076 4.12 0.076 4.12 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.080 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 4.87 0.086 1.73 0.016 1.73 0.016 1.74 0.016 1.75 0.016 1.76 0.016 1.77 0.016 1.77 0.016 1.77 0.016 1.76 0.016 <	NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.080 0.096 0.096 0.080 0.096 0.096 0.096 0.080 0.096 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0119 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0018 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.0019 0.0019 0.0019 0.0018 0.0019 0.00	NO2.1 (PPM) 0.0200 0.020 0.099 0.076 0.099 0.076 0.099 0.080 0.096 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.086 0.095 0.086 0.095 0.085 0.085 0.095 0.016 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.0119 0.019 0.0119 0.00		CO.3 (PPM) 6.67	10.0	CO.3 (PPM) 10.29 11.15 11.31 11.31 11.31 11.33 11.23 10.34 10.31	CO.3 (PPM) 6.78 6.61 6.63 6.63 6.63 6.73 6.63 6.73 6.73		Oven Oven Oven Heater Heater	
VOC8 VOC9 CO.1 NO2.1 PART.1 (µg/m ³) µg/m ³) µg/m ³) µg/m ³) µg/m ³) 333 141 1.94 0.020 10.59 333 141 1.94 0.020 10.59 1333 141 1.94 0.020 10.59 1285 413 0.099 10.49 938 308 4.12 0.076 12.13 947 2211 4.05 0.016 12.13 947 2211 4.05 0.006 12.03 1142 4.13 0.096 12.32 1142 4.63 0.006 12.03 1142 4.63 0.016 11.05 1142 4.63 0.016 11.05 1142 1.31 1.36 0.016 11.05 1142 1.34 1.36 0.016 11.05 1142 1.37 0.016 11.05 1.13 1142 1.31	VOC9 CO.1 NO2.1 PART.1 (µg/m ³) (PPM) (PPM) (µg/m ³) 141 1.94 0.020 10.59 141 1.94 0.020 10.59 141 1.94 0.020 10.59 141 4.91 0.099 10.49 133 4.91 0.099 10.49 308 4.12 0.076 12.13 2211 4.91 0.099 10.49 308 4.12 0.076 12.13 329 4.23 0.088 12.10 329 4.23 0.088 12.16 329 4.23 0.088 12.16 329 4.23 0.088 12.16 329 4.23 0.016 11.16 123 1.75 0.016 11.16 123 1.75 0.016 11.16 123 1.75 0.016 11.16 123 1.73 0.016 <t< td=""><td>CO.1 NO2.1 PART.1 (PPM) (PPM) (ppM) 1.94 0.020 10.59 1.94 0.020 10.59 4.01 (pPM) (ppM) 4.91 0.099 10.49 4.12 0.099 10.49 4.12 0.096 10.49 4.12 0.096 12.33 4.33 0.080 12.03 4.405 0.080 12.03 4.405 0.080 12.03 4.53 0.080 12.03 4.63 0.085 11.30 4.87 0.096 10.50 4.87 0.096 10.50 1.73 0.016 11.05 1.73 0.016 11.05 1.73 0.016 11.16 1.73 0.016 11.15 1.73 0.016 11.16 1.73 0.016 11.16 1.74 0.013 9.64 1.75 <</td><td>NO2.1 PART.1 (PPM) (µg/m³) 0.0200 10.59 0.099 10.49 0.099 10.49 0.099 10.49 0.099 10.49 0.099 10.49 0.096 12.13 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.016 11.16 0.016 11.16 0.016 11.16 0.013 9.64 0.013 9.63 0.013 9.63 0.019 9.63 0.019 9.63 0.019 9.62 0.019 9.62 0.019 9.62 0.019</td><td>NO2.1 PART.1 (PPM) (µg/m³) 0.0200 10.59 0.021 PART.1 (PPM) (µg/m³) 0.099 10.49 0.0076 12.13 0.0080 12.13 0.0080 12.13 0.0880 12.10 0.0880 12.10 0.086 10.49 0.086 12.13 0.088 12.17 0.088 12.17 0.088 12.17 0.086 12.20 0.096 10.25 0.016 11.16 0.016 11.16 0.016 11.16 0.016 11.16 0.013 9.64 0.013 9.061 0.014 9.063 0.018 11.23 0.019 9.063 0.019 9.061 0.019 9.072 0.019 9.072 0.019 0.072 <</td><td>PART.1 (µg/m³) 10.59 10.59 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.20 10.25 10.05 10.25 10.0001 10.05 10.00</td><td>NO2.3 (PPM) 0.099</td><td>660.0</td><td>NO2.3 (PPM) 0.136 0.214 0.231 0.197 0.136 0.136 0.136</td><td>NO2.3 (PPM) 0.070 0.117 0.117 0.115 0.077 0.115 0.068 0.068</td><td></td><td></td></t<>	CO.1 NO2.1 PART.1 (PPM) (PPM) (ppM) 1.94 0.020 10.59 1.94 0.020 10.59 4.01 (pPM) (ppM) 4.91 0.099 10.49 4.12 0.099 10.49 4.12 0.096 10.49 4.12 0.096 12.33 4.33 0.080 12.03 4.405 0.080 12.03 4.405 0.080 12.03 4.53 0.080 12.03 4.63 0.085 11.30 4.87 0.096 10.50 4.87 0.096 10.50 1.73 0.016 11.05 1.73 0.016 11.05 1.73 0.016 11.16 1.73 0.016 11.15 1.73 0.016 11.16 1.73 0.016 11.16 1.74 0.013 9.64 1.75 <	NO2.1 PART.1 (PPM) (µg/m ³) 0.0200 10.59 0.099 10.49 0.099 10.49 0.099 10.49 0.099 10.49 0.099 10.49 0.096 12.13 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.080 12.03 0.016 11.16 0.016 11.16 0.016 11.16 0.013 9.64 0.013 9.63 0.013 9.63 0.019 9.63 0.019 9.63 0.019 9.62 0.019 9.62 0.019 9.62 0.019	NO2.1 PART.1 (PPM) (µg/m³) 0.0200 10.59 0.021 PART.1 (PPM) (µg/m³) 0.099 10.49 0.0076 12.13 0.0080 12.13 0.0080 12.13 0.0880 12.10 0.0880 12.10 0.086 10.49 0.086 12.13 0.088 12.17 0.088 12.17 0.088 12.17 0.086 12.20 0.096 10.25 0.016 11.16 0.016 11.16 0.016 11.16 0.016 11.16 0.013 9.64 0.013 9.061 0.014 9.063 0.018 11.23 0.019 9.063 0.019 9.061 0.019 9.072 0.019 9.072 0.019 0.072 <	PART.1 (µg/m ³) 10.59 10.59 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.20 10.25 10.05 10.25 10.0001 10.05 10.00	NO2.3 (PPM) 0.099	660.0	NO2.3 (PPM) 0.136 0.214 0.231 0.197 0.136 0.136 0.136	NO2.3 (PPM) 0.070 0.117 0.117 0.115 0.077 0.115 0.068 0.068			
VOC8 VOC9 CO.1 NO2.1 PART.1 CO.3 igrm) (igrm) (PM) (PM) (igrm) (igrm) (igrm) 333 (id1 194 0.020 10.29 (igrm) (iPM) 333 (id1 194 0.020 10.39 (ifPM) (iPM) 133 141 194 0.099 10.49 10.39 (ifPM) 1255 413 4.12 0.099 10.49 10.23 11.15 947 2211 4.01 0.096 12.33 11.31 11.33 1033 375 2.3.57 0.086 12.33 11.31 1142 411 147 10.49 0.014 0.23 1142 411 147 10.49 0.014 0.23 1142 131 177 0.014 0.26 6.3 1142 133 11.43 0.014 0.13 11.3 1142 136 0.016 </td <td>VOC9 CO.1 NO2.1 PART.1 CO.3 (µg/m³) (PPM) (µg/m³) (PPM) (PPM) 1 194 0.020 (µg/m³) (PPM) 1 194 0.0201 PART.1 CO.3 1 199 0.0201 PART.1 CO.3 1 1 4.91 0.076 12.13 11.15 2211 4.91 0.076 12.13 11.16 6.61 739 4.12 0.036 12.03 11.16 6.61 739 4.12 0.096 12.03 11.16 6.61 739 4.23 0.080 12.03 11.16 6.61 739 4.12 0.096 10.39 6.63 11.31 739 1.23 11.30 72.20 11.23 11.13 731 1.73 0.016 11.16 6.61 11.23 1131 1.73 0.016 11.16 6.61 11.23 <</td> <td>CO.1 NO2.1 PART.1 CO.3 (PPM) (PPM) (ug/m) (rPM) 194 0.020 10.59 6.67 194 0.020 10.59 6.67 7 0.099 0.049 6.67 4.05 0.076 12.13 11.15 4.05 0.076 12.13 11.15 4.12 0.076 12.13 11.15 4.39 0.080 12.03 11.09 2.3.57 0.889 12.17 10.34 4.87 0.096 12.203 11.23 4.87 0.080 12.203 11.23 4.87 0.086 11.30 0.733 4.87 0.096 10.26 6.63 1.75 0.016 11.16 6.61 1.73 0.016 11.16 6.61 1.75 0.016 11.16 6.61 1.73 0.016 11.16 6.61 1.73 0.016 11.23</td> <td>NO2.1 PART.1 CO.3 (PPM) (ug/m³) (PPM) 0.0200 10.59 6.67 0.021 PART.1 CO.3 (PPM) (ug/m³) (PPM) 0.099 10.49 6.67 0.076 12.13 11.15 0.096 12.13 11.15 0.096 12.20 10.34 0.080 12.20 10.34 0.086 12.20 11.30 0.086 12.20 11.33 0.086 12.20 11.33 0.086 12.20 11.33 0.086 12.20 11.33 0.086 11.16 6.61 0.016 11.16 6.61 0.016 11.16 6.61 0.018 11.23 0.013 0.019 9.66 6.73 0.019 9.63 0.033 0.019 0.031 0.014 0.019 0.031 0.014 <t< td=""><td>NO2.1 PART.1 CO.3 (PPM) (ug/m³) (PPM) 0.0200 10.59 6.67 0.0201 PART.1 CO.3 0.099 10.49 (PPM) 0.076 12.13 11.15 0.076 12.13 11.15 0.099 10.49 10.29 0.096 12.207 11.31 0.080 12.207 11.33 0.096 12.207 11.33 0.080 12.207 10.34 0.080 12.207 10.34 0.080 12.207 10.34 0.086 12.207 10.34 0.086 11.166 6.61 0.016 11.165 6.63 0.016 10.12 6.73 0.013 0.014 9.66 0.016 10.12 6.71 0.013 0.014 6.71 0.015 10.12 6.63 0.016 11.105 6.63</td><td>PART.1 CO.3 (µg/m³) (µg/m³) (µg/m³) (PPM) 10.59 6.67 (µg/m³) (PPM) 12.13 11.15 12.13 11.15 12.13 11.15 12.13 11.16 12.13 11.16 12.17 10.24 12.17 10.34 12.17 10.34 12.10 10.31 11.30 10.36 11.30 10.39 11.16 6.61 11.16 6.61 11.16 6.61 10.12 6.63 9.66 6.73 10.12 6.63 10.12 6.61 10.12 6.63 9.64 6.81 10.12 6.73 10.25 6.63 10.25 6.73 10.26 6.61 10.21 0.73 10.22 0.73 11.23</td><td>PART.3 (μg/m³) 23.44</td><td>H.C7</td><td>PART.3 (µg/m³) 23.12 23.12 44.15 36.34 44.15 36.34 22.78 41.04 22.69 22.69 25.50</td><td>PART.3 (µg/m³) 13.53 29.54 31.44 23.93 15.31 28.60 12.80 12.80 12.80</td><td></td><td></td></t<></td>	VOC9 CO.1 NO2.1 PART.1 CO.3 (µg/m ³) (PPM) (µg/m ³) (PPM) (PPM) 1 194 0.020 (µg/m ³) (PPM) 1 194 0.0201 PART.1 CO.3 1 199 0.0201 PART.1 CO.3 1 1 4.91 0.076 12.13 11.15 2211 4.91 0.076 12.13 11.16 6.61 739 4.12 0.036 12.03 11.16 6.61 739 4.12 0.096 12.03 11.16 6.61 739 4.23 0.080 12.03 11.16 6.61 739 4.12 0.096 10.39 6.63 11.31 739 1.23 11.30 72.20 11.23 11.13 731 1.73 0.016 11.16 6.61 11.23 1131 1.73 0.016 11.16 6.61 11.23 <	CO.1 NO2.1 PART.1 CO.3 (PPM) (PPM) (ug/m) (rPM) 194 0.020 10.59 6.67 194 0.020 10.59 6.67 7 0.099 0.049 6.67 4.05 0.076 12.13 11.15 4.05 0.076 12.13 11.15 4.12 0.076 12.13 11.15 4.39 0.080 12.03 11.09 2.3.57 0.889 12.17 10.34 4.87 0.096 12.203 11.23 4.87 0.080 12.203 11.23 4.87 0.086 11.30 0.733 4.87 0.096 10.26 6.63 1.75 0.016 11.16 6.61 1.73 0.016 11.16 6.61 1.75 0.016 11.16 6.61 1.73 0.016 11.16 6.61 1.73 0.016 11.23	NO2.1 PART.1 CO.3 (PPM) (ug/m ³) (PPM) 0.0200 10.59 6.67 0.021 PART.1 CO.3 (PPM) (ug/m ³) (PPM) 0.099 10.49 6.67 0.076 12.13 11.15 0.096 12.13 11.15 0.096 12.20 10.34 0.080 12.20 10.34 0.086 12.20 11.30 0.086 12.20 11.33 0.086 12.20 11.33 0.086 12.20 11.33 0.086 12.20 11.33 0.086 11.16 6.61 0.016 11.16 6.61 0.016 11.16 6.61 0.018 11.23 0.013 0.019 9.66 6.73 0.019 9.63 0.033 0.019 0.031 0.014 0.019 0.031 0.014 <t< td=""><td>NO2.1 PART.1 CO.3 (PPM) (ug/m³) (PPM) 0.0200 10.59 6.67 0.0201 PART.1 CO.3 0.099 10.49 (PPM) 0.076 12.13 11.15 0.076 12.13 11.15 0.099 10.49 10.29 0.096 12.207 11.31 0.080 12.207 11.33 0.096 12.207 11.33 0.080 12.207 10.34 0.080 12.207 10.34 0.080 12.207 10.34 0.086 12.207 10.34 0.086 11.166 6.61 0.016 11.165 6.63 0.016 10.12 6.73 0.013 0.014 9.66 0.016 10.12 6.71 0.013 0.014 6.71 0.015 10.12 6.63 0.016 11.105 6.63</td><td>PART.1 CO.3 (µg/m³) (µg/m³) (µg/m³) (PPM) 10.59 6.67 (µg/m³) (PPM) 12.13 11.15 12.13 11.15 12.13 11.15 12.13 11.16 12.13 11.16 12.17 10.24 12.17 10.34 12.17 10.34 12.10 10.31 11.30 10.36 11.30 10.39 11.16 6.61 11.16 6.61 11.16 6.61 10.12 6.63 9.66 6.73 10.12 6.63 10.12 6.61 10.12 6.63 9.64 6.81 10.12 6.73 10.25 6.63 10.25 6.73 10.26 6.61 10.21 0.73 10.22 0.73 11.23</td><td>PART.3 (μg/m³) 23.44</td><td>H.C7</td><td>PART.3 (µg/m³) 23.12 23.12 44.15 36.34 44.15 36.34 22.78 41.04 22.69 22.69 25.50</td><td>PART.3 (µg/m³) 13.53 29.54 31.44 23.93 15.31 28.60 12.80 12.80 12.80</td><td></td><td></td></t<>	NO2.1 PART.1 CO.3 (PPM) (ug/m ³) (PPM) 0.0200 10.59 6.67 0.0201 PART.1 CO.3 0.099 10.49 (PPM) 0.076 12.13 11.15 0.076 12.13 11.15 0.099 10.49 10.29 0.096 12.207 11.31 0.080 12.207 11.33 0.096 12.207 11.33 0.080 12.207 10.34 0.080 12.207 10.34 0.080 12.207 10.34 0.086 12.207 10.34 0.086 11.166 6.61 0.016 11.165 6.63 0.016 10.12 6.73 0.013 0.014 9.66 0.016 10.12 6.71 0.013 0.014 6.71 0.015 10.12 6.63 0.016 11.105 6.63	PART.1 CO.3 (µg/m ³) (µg/m ³) (µg/m ³) (PPM) 10.59 6.67 (µg/m ³) (PPM) 12.13 11.15 12.13 11.15 12.13 11.15 12.13 11.16 12.13 11.16 12.17 10.24 12.17 10.34 12.17 10.34 12.10 10.31 11.30 10.36 11.30 10.39 11.16 6.61 11.16 6.61 11.16 6.61 10.12 6.63 9.66 6.73 10.12 6.63 10.12 6.61 10.12 6.63 9.64 6.81 10.12 6.73 10.25 6.63 10.25 6.73 10.26 6.61 10.21 0.73 10.22 0.73 11.23	PART.3 (μg/m ³) 23.44	H .C7	PART.3 (µg/m ³) 23.12 23.12 44.15 36.34 44.15 36.34 22.78 41.04 22.69 22.69 25.50	PART.3 (µg/m ³) 13.53 29.54 31.44 23.93 15.31 28.60 12.80 12.80 12.80			

VOC1 VOC2 VOC3 VOC4 VOC5 (μg/m ³) (μg/m ³) (μg/m ³) (μg/m ³) (24 hr avg 213 5161 185 186 266	Table 10b - SIM1MTC zone neak concentrations	() BR2 BR3 BR3 HAL KIT	MBA 98 5351 500 1102 702 MBA 98 5458 392 381 426 MBR 98 5135 2073 334 392 Table 10c - SIM1MTC zone 24-hr ave concentrations	(f) BA2 BR2 BR3 BR3 HAL LDA MBA MBR	Table 10d - SIM1MTC zone 4-hr avg concentrations vOC1 VOC2 VOC3 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 NOC4 VOC5 NOC5 S61 388 BR2 388 BR3 388 MA 231 236 336 336 336 MA 244 249 358 MA 247 260 371 LDA 98 NA 236 361 MI MA 247 250 371 LDA 98 NA 236 361 MI MA 234 360 361 MBA 98 NA 231 233 231 328 360	Table 10e - SIM1MTC zone 1-hr avg concentrations CO.1 CO.2 BA2 4.67 2.13 BR2 4.57 2.13 BR3 4.33 2.12 HAL 4.09 2.08 KIT 14.42 2.08 MBA 4.54 2.08 MBA 4.44 2.06
VOCI (µg/m³) 213	SIMIN	VOCI (µg/m ³) 98 98 98 98	98 98 SIMIN	VOCI (µg/m³) 98 98 98 98 98 98 98	I-SIM1N VCOCI 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98	- SIM1N CO.1 (PPM) 4.67 4.24 4.33 4.33 4.09 14.42 4.81 4.54 4.54 4.67 4.67 4.67 4.67 4.64 4.64 4.64 4.6
VOC2 (µg/m ³) 5161	ATC zon	VOC2 (µg/m ³) 6328 5232 5232 6145 5983 5826 5826	5458 5458 5135 ATC 2010	VOC2 VOC2 5530 4967 5392 5343 5343 4859 4923 4729	MTC ZON VOC2 (μg/m³) NA NA NA NA NA NA NA NA NA NA NA NA NA	ATC ZON CO.2 (PPM) 2.13 2.08 2.12 2.08 2.12 2.09 2.09 2.09 2.09 2.09 2.09
VOC3 (μg/m³) 185	e neak co	VOC3 (µg/m³) 420 360 380 623 378	302 392 2073 e 24-hr a	VOC3 (µg/m³) 182 167 175 192 173 173 173 173 241	<u>voc3</u> voc3 voc3 voc3 voc3 261 261 281 281 282 285 285 285 285 285 285	e I-hr av
VOC4 (µg/m³) 186	ncentrati	VOC4 (µg/m ³) 417 355 374 463 392 392	334 334 vg concel	VOC4 (µg/m³) 186 171 179 181 179 211 211 175 166	g concen VOC4 VOC3 Lug/m³) 266 249 264 263 264 264 264 263 264 263 264 265 266 267 268 268 269 261 257 268 269 256 256 256 256 258 258 258 258 258 260 258 258 258 258 258 258 258 258 258 258 258 258 258 258 258 258	g concen
V ОС5 (µg/m³) 266	suo	VOC5 (µg/m³) 453 399 423 423 433	426 392 ntrations	VOC5 VOC5 (µg/m³) 267 267 253 253 255 253 311 246 253 311 246 230	Trations VOC5 VOC5 336 336 358 358 358 356 371 561 360 328	trations
VOC6 (μg/m³) 187		VOC6 (μg/m ³) 432 370 390 537 3104	394 348 348	VОСб (µg/m³) 185 170 178 181 299 174 174 174	VOC6 (µg/m³) 267 267 249 249 243 248 248 248 231	
VОС7 (µg/m³) 183		VOC7 (µg/m ³) 366 311 327 481 328 328	1052 1052	VOC7 (µg/m³) 170 158 164 179 163 163 160 160 210	VOC7 (µg/m³) 233 209 219 219 212 212 1042 363	
VOC8 (µg/m³) 728		VOC8 (μg/m ³) 1672 1447 1550 1550 1565 1565	1465 1549 1402	VOC8 (µg/m³) 826 705 768 753 756 756 739 666 666	VOC8 (µg/m³) 1309 1101 1193 1173 1173 1173 1139 1139 1197	
VOC9 (μg/m³) 188		VOC9 (µg/m ³) 418 363 3067 378 378	370 382 342	VOC9 (µg/m³) 183 169 305 179 175 171 171 173 164	VOC9 (µg/m³) 262 234 639 249 249 247 247 247 229	
CO.1 (PPM) 2.79		CO.1 (PPM) 5.88 5.30 5.49 5.49 16.44	5.28 5.22 5.22	CO.I (PPM) 2.80 2.66 3.54 2.72 3.54 2.72 2.69 2.69	CO.I (PPM) 4.18 3.90 4.09 4.53 4.04 4.04 4.03 3.86	LEGEND VOC1 VOC2 VOC3 VOC3 VOC4 VOC5 VOC6 VOC6 VOC6
NO2.1 (PPM) 0.018		NO2.1 (PPM) 0.121 0.102 0.107 0.097 0.607	0.115 0.115 0.098	NO2.1 (PPM) 0.015 0.014 0.013 0.013 0.015 0.015 0.015	NO2.1 (PPM) 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026	Burst - UCL Floor Burst - MBR Burst - LDA Burst - KIT Burst - KIT Burst - BMT Burst - BMT
PART.1 (μg/m ³) 6.83		PART.1 (µg/m ³) 6.61 7.52 6.87 7.37 8.15 8.15	8.33 8.33	PART.1 (µg/m ³) 6.30 6.98 6.70 6.79 6.79 6.79 6.79 6.79 6.79 7.37	PART.1 (µg/m ³) (µg/m ³) 6.91 6.93 6.43 6.43 6.43 6.43 6.61 6.61 6.51	CO.1 NO2.1 NO2.1 CO.2 PART.1 CO.2 PART.2 CO.3 CO.3 PART.2 PART.3
CO.2 (PPM) 2.43		CO.2 (PPM) 4.24 3.96 4.11 4.10	4.07 4.13 3.93	CO.2 (PPM) 2.51 2.41 2.45 2.45 2.45 2.43 2.43 2.43 2.43 2.43	CO.2 (PPM) 3.58 3.29 3.43 3.45 3.46 3.46 3.46 3.46	Oven Oven Oven Heater Heater Outdoor air Outdoor air
NO2.2 (PPM) 0.016		NO2.2 (PPM) 0.128 0.107 0.113 0.115 0.115	0.102 0.102 0.102	NO2.2 (PPM) 0.017 0.016 0.016 0.015 0.015 0.018 0.018 0.018	NO2.2 (PPM) 0.073 0.062 0.066 0.066 0.066 0.066 0.066	[]
PART.2 (μg/m³) 7.62		PART.2 (µg/m ³) 9.94 10.13 9.92 9.94 9.94	10.01 10.06 10.14	PART.2 (μg/m ³) 7.18 7.75 7.73 7.51 7.51 7.51 7.58 7.73 8.11 8.11	PART.2 (µg/m ³) 8.75 9.13 8.83 8.97 8.97 8.98 8.97 8.98 9.17	
CO.3 (PPM) 6.66		CO.3 (PPM) 8.24 8.61 8.30 8.34 8.34 8.34 8.31	8.35 8.35 8.72	CO.3 (PPM) 6.66 6.67 6.67 6.65 6.65 6.65 6.65 6.65		
NO2.3 (PPM) 0.045		NO2.3 (PPM) 0.059 0.063 0.064 0.062 0.076	0.078 0.092 0.098	NO2.3 (PPM) 0.035 0.049 0.049 0.044 0.044 0.044 0.044		
PART.3 (μg/m³) 4.96		PART.3 (µg/m ³) 0.80 0.80 10.48 6.76 6.94 8.10	8.93 11.46 15.41	РАКТ.3 (µg/m ³) 0.71 6.00 2.59 3.53 4.38 4.33 4.33 4.33 5.75 9.05		

arg 2.30 1004 2.37 2.97 2.94 2.91 1.14 2.00 2.01 1.021 PMN1 e 11b<-SIMIMTM zone peak concentrations (gg/m) (gg	way 2.00 1.00 2.0 2.01 1.01 2.00 2.01 1.01 vOC1 VOC2 VOC3 VOC4 VOC3 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3	Weig 2.00 1.00 2.3 2.1 1.14 2.0 2.3 0.01 7.84 VOCI VOC2 VOC3 VOC3 </th <th>Weigen Dirac Dira Dirac Dirac <th< th=""><th>Wei Sol Total Zi Zi Total Zi <thzi< th=""> <thzi< th=""></thzi<></thzi<></th><th>Mag Sol Uord L33 L31 L34 L33 L34 L33 L34 L34<th></th><th>(fm/m3)</th><th>(m/m3)</th><th>VOC3 (µg/m³)</th><th>VOC4 (μg/m³)</th><th>VOC5 (µg/m³)</th><th>VOC6 (µg/m³)</th><th>VOC/ (µg/m³)</th><th>VOC8 (µg/m³)</th><th>VUC9 (µg/m³)</th><th>CO.1 (PPM) 2.85</th><th>(PPM)</th><th>PART.1 (μg/m³)</th><th></th><th>CO.2 (PPM)</th><th></th><th>NO2.2 (PPM)</th><th></th><th>NO2.2 PART.2 (PPM) (μg/m³)</th></th></th<></th>	Weigen Dirac Dira Dirac Dirac <th< th=""><th>Wei Sol Total Zi Zi Total Zi <thzi< th=""> <thzi< th=""></thzi<></thzi<></th><th>Mag Sol Uord L33 L31 L34 L33 L34 L33 L34 L34<th></th><th>(fm/m3)</th><th>(m/m3)</th><th>VOC3 (µg/m³)</th><th>VOC4 (μg/m³)</th><th>VOC5 (µg/m³)</th><th>VOC6 (µg/m³)</th><th>VOC/ (µg/m³)</th><th>VOC8 (µg/m³)</th><th>VUC9 (µg/m³)</th><th>CO.1 (PPM) 2.85</th><th>(PPM)</th><th>PART.1 (μg/m³)</th><th></th><th>CO.2 (PPM)</th><th></th><th>NO2.2 (PPM)</th><th></th><th>NO2.2 PART.2 (PPM) (μg/m³)</th></th></th<>	Wei Sol Total Zi Zi Total Zi Zi <thzi< th=""> <thzi< th=""></thzi<></thzi<>	Mag Sol Uord L33 L31 L34 L33 L34 L33 L34 L34 <th></th> <th>(fm/m3)</th> <th>(m/m3)</th> <th>VOC3 (µg/m³)</th> <th>VOC4 (μg/m³)</th> <th>VOC5 (µg/m³)</th> <th>VOC6 (µg/m³)</th> <th>VOC/ (µg/m³)</th> <th>VOC8 (µg/m³)</th> <th>VUC9 (µg/m³)</th> <th>CO.1 (PPM) 2.85</th> <th>(PPM)</th> <th>PART.1 (μg/m³)</th> <th></th> <th>CO.2 (PPM)</th> <th></th> <th>NO2.2 (PPM)</th> <th></th> <th>NO2.2 PART.2 (PPM) (μg/m³)</th>		(fm/m3)	(m/m3)	VOC3 (µg/m ³)	VOC4 (μg/m ³)	VOC5 (µg/m ³)	VOC6 (µg/m³)	VOC/ (µg/m ³)	VOC8 (µg/m ³)	VUC9 (µg/m ³)	CO.1 (PPM) 2.85	(PPM)	PART.1 (μg/m ³)		CO.2 (PPM)		NO2.2 (PPM)		NO2.2 PART.2 (PPM) (μg/m ³)
c 11b - SIMIMTM zone peak concentrations c 11b - SIMIMTM zone peak concentrations vVCI VOC3	C IIIb - SIMIMTM zone peak concentrations (1001 VOC2 VOC3 VOC3 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 (1001 11807 324 467 427 464 301 944 403 5.22 0066 813 110 11807 333 172 939 48 374 263 1601 474 411 0049 1035 126 1365 373 373 172 939 428 264 1651 474 411 0049 1035 128 1160 373 172 939 428 264 1651 474 411 0049 1035 128 1160 373 172 939 428 1199 104 441 0049 1035 128 1160 373 172 939 428 1199 107 446 443 1036 813 119 1180 73 71 100 287 183 425 4433 1248 110 1180 739 730 428 1199 107 446 443 10066 842 128 11160 733 172 939 428 264 153 1093 426 443 128 11160 739 730 428 1199 107 446 73 70 0066 842 128 11160 738 219 264 291 107 466 1030 287 183 425 4433 1248 120 11788 219 264 291 206 109 827 120 11788 219 264 292 246 192 197 466 1009 659 120 11788 219 264 292 246 192 197 268 2000 659 120 11788 219 264 292 246 192 248 206 0101 778 120 11788 219 264 292 246 192 238 000 659 120 11788 219 264 292 246 192 238 000 869 110 12032 773 202 232 246 193 226 0009 837 120 11788 219 264 291 207 107 164 1030 282 246 0011 778 120 11788 219 264 291 207 107 1007 708 120 1178 219 264 291 207 107 109 734 120 1178 211 2037 435 249 244 31 206 1010 778 202 246 0009 837 120 1178 211 2037 435 249 244 310 107 109 734 120 1178 237 291 234 241 306 173 139 226 0009 837 120 103 838 117 202 254 292 246 193 236 0009 837 120 1178 233 773 202 232 246 193 228 246 000 1010 778 278 246 0009 837 120 103 838 773 202 244 241 306 778 202 246 0009 837 120 103 838 773 202 244 241 306 778 202 246 0009 837 121 10 2037 403 778 241 206 0001 715 121 2037 435 249 241 206 0001 715 121 2037 435 241 221 188 706 7001 7023 901 715 120 100 100 203 941 9007 1007 903 847 121 101 2037 404 9007 903 846 946 1000 1000 1090 1000 1000 1000 1000 100	 c IIb - SIMIMTM zone peak concentrations v OC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3	c IIb - SIMIMTM zone peak concentrations c (Ib - SIMIMTM zone peak concentrations) (w/voc) VOC3	e (1b - SIMIMTM zone peak concentrations voc: voc: voc: vocs vocs vocs vocs vocs vocs vocs vocs	e (1b - SIMIMTM zone peak concentrations voc: voc2 voc3 voc5 voc6 voc7 voc8 voc9 co1 N021 MMT, voc1 voc2 voc3 voc6 voc7 voc8 voc9 co1 N021 MMT, (qgm) (qgm) (qgm) (qgm) (qgm) (qgm) (qgm) (qgm) (qgm) (qgm) (1997 393 31 90 93 171 411 0049 003 261 1199 1203 31 110 0135 31 91 410 0146 013 261 1199 1203 31 110 0135 31 100 110 0146 261 111 111 411 0049 003 261 110 1203 31 110 0135 110 0146 261 111 111 411 0049 003 261 110 1203 31 110 0135 010 0146 261 111 111 411 411 0049 003 261 112 0121 110 013 110 0146 261 112 0121 110 013 110 013 110 0146 261 112 0121 110 013 110 013 110 014 261 113 112 012 112 0	24 hr avg	526	10674	235	1	1	254	231		270	2.85	0.021	7.84		2.79		0.012	0.012 8.91	0.012 8.91 6.72
e IIb - SIMI IMI zone prak concentrations e IIb - SIMI IMI zone prak concentrations e IIb - SIMI IMI zone concentrations 136 1902 423 427 464 301 1944 477 471 473 471 473	e IID - SIMI MM zone prack concentrations e IID - SIMI MM zone prack concentrations PART-1 (µµm) (µµm) (µµm) (µµm) (µµm) (µµm) (µµm) (µµm) 110 11897 33 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 371 471 0009 1036	CILID - SIMIMI MI Zone Feat concentrations Concord Vol2: VOC3	c IID - SIMI MI M. ZONE park concentrations. viol vio	et IID - SIMI MITM zone park concentrations (ug/m)	et IIP FMM TIM MART MART MART (gr/m)																			
(i) (i) <td>(i) (i) (i)<td>(w) (w) (w)<td>(W) (W) (W)<td>(i) (i) (i)<td>(i) (i) (i)<td>Table 11</td><td>P - SIMI</td><td>MTM zo</td><td>ne peak c</td><td>oncentrat</td><td>IONS</td><td>NOCK</td><td>LUUM</td><td>NOC0</td><td>NOCO</td><td>100</td><td>I CON</td><td>DADTI</td><td>0</td><td></td><td></td><td></td><td>NOOA BABTO</td><td>NOT BART CON</td></td></td></td></td></td>	(i) (i) <td>(w) (w) (w)<td>(W) (W) (W)<td>(i) (i) (i)<td>(i) (i) (i)<td>Table 11</td><td>P - SIMI</td><td>MTM zo</td><td>ne peak c</td><td>oncentrat</td><td>IONS</td><td>NOCK</td><td>LUUM</td><td>NOC0</td><td>NOCO</td><td>100</td><td>I CON</td><td>DADTI</td><td>0</td><td></td><td></td><td></td><td>NOOA BABTO</td><td>NOT BART CON</td></td></td></td></td>	(w) (w) <td>(W) (W) (W)<td>(i) (i) (i)<td>(i) (i) (i)<td>Table 11</td><td>P - SIMI</td><td>MTM zo</td><td>ne peak c</td><td>oncentrat</td><td>IONS</td><td>NOCK</td><td>LUUM</td><td>NOC0</td><td>NOCO</td><td>100</td><td>I CON</td><td>DADTI</td><td>0</td><td></td><td></td><td></td><td>NOOA BABTO</td><td>NOT BART CON</td></td></td></td>	(W) (W) <td>(i) (i) (i)<td>(i) (i) (i)<td>Table 11</td><td>P - SIMI</td><td>MTM zo</td><td>ne peak c</td><td>oncentrat</td><td>IONS</td><td>NOCK</td><td>LUUM</td><td>NOC0</td><td>NOCO</td><td>100</td><td>I CON</td><td>DADTI</td><td>0</td><td></td><td></td><td></td><td>NOOA BABTO</td><td>NOT BART CON</td></td></td>	(i) (i) <td>(i) (i) (i)<td>Table 11</td><td>P - SIMI</td><td>MTM zo</td><td>ne peak c</td><td>oncentrat</td><td>IONS</td><td>NOCK</td><td>LUUM</td><td>NOC0</td><td>NOCO</td><td>100</td><td>I CON</td><td>DADTI</td><td>0</td><td></td><td></td><td></td><td>NOOA BABTO</td><td>NOT BART CON</td></td>	(i) (i) <td>Table 11</td> <td>P - SIMI</td> <td>MTM zo</td> <td>ne peak c</td> <td>oncentrat</td> <td>IONS</td> <td>NOCK</td> <td>LUUM</td> <td>NOC0</td> <td>NOCO</td> <td>100</td> <td>I CON</td> <td>DADTI</td> <td>0</td> <td></td> <td></td> <td></td> <td>NOOA BABTO</td> <td>NOT BART CON</td>	Table 11	P - SIMI	MTM zo	ne peak c	oncentrat	IONS	NOCK	LUUM	NOC0	NOCO	100	I CON	DADTI	0				NOOA BABTO	NOT BART CON
ji6 j402 424 467 477 464 301 1944 494 522 0.066 8:33 110 11807 339 375 331 370 264 1637 473 414 0.048 103 267 12553 323 731 590 670 264 1635 801 841 0.048 1035 267 12553 323 731 590 670 264 1630 473 1049 1049 1046 1049 1045	ji6 j402 424 467 477 464 301 194 494 522 0.066 8:33 110 11807 339 375 331 370 264 1637 473 414 0.048 103 267 12553 323 773 590 670 264 1635 801 841 0.048 103 126 13682 379 430 448 1139 425 1193 1038 1109 126 131 14489 730 430 434 425 1193 1794 519 533 1066 843 131 14489 730 430 424 425 1193 1794 519 533 1066 843 131 14489 730 494 425 1193 199 179 179 1066 843 1064 843 1093 1794 519 533 0053 94	316 1402 447 477 471 664 301 944 472 306 873 119 12009 341 773 341 774 253 137 341 770 411 0048 085 267 13553 323 731 590 670 264 1637 473 414 0.048 0.085 123 1160 333 1721 959 428 1199 1917 443 1099 0.085 945 131 14489 706 430 443 1199 1917 445 1099 0.85 131 14489 706 430 443 1199 1917 445 119 1046 0.85 945 131 14489 706 430 443 119 107 108 119 1046 945 119 945 103 110 1046 945 110 147 110 <td>316 1402 424 467 477 411 0046 8.33 267 12553 373 351 370 264 1617 377 4.11 0046 1033 267 12553 373 351 370 264 1630 473 4.41 1019 1046 126 1160 353 1721 939 478 443 1019 1046 1033 128 1166 353 1721 939 488 1139 1946 490 363 433 124 131 14483 706 430 438 1139 1917 493 367 945 133 1448 1000 406 430 438 106 945 131 1981 1970 1997 1997 1997 1997 1997 1997 133 1039 1988 244 125 1199 1976 1071 1</td> <td>316 1402 421 464 301 1944 452 0066 8.53 119 1807 331 373 351 370 351 370 351 370 351 370 351 370 353 129 906 670 264 1651 434 0.191 1046 533 234 131 1438 1046 841 1109 1045 133 148 1049 1035 345 1046 134 1448 1049 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1046 1046 1035 345 1046 1046 1035 345 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 <td< td=""><td>110 1402 43 467 427 464 47 427 466 431 431 532 6006 8.33 110 1100 12000 341 379 348 374 264 1653 801 843 141 0.006 8.43 123 1106 333 123 1109 1200 341 1031 1046 123 1106 333 123 1109 1209 1034 1139 131 1468 304 430 441 905 533 0055 945 131 1468 1399 139 139 139 139 134 131 1400 4900 4000 4000 4000 4000 403 131 1400 4900 4900 4900 4900 4900 446 1301 1708 244 129 246 129 250 260 0113 761</td></td<><td></td><td>(µg/m³)</td><td>(fug/m³)</td><td>(mg/m³)</td><td>(µg/m³)</td><td>(mg/m³)</td><td>(mg/m)</td><td>(hg/m³)</td><td>(hg/m³)</td><td>(hg/m³)</td><td>(PPM)</td><td>(PPM)</td><td>(fm/gu)</td><td>(PPM</td><td></td><td>(PPM) (IPPM)</td><td>(PPM)</td><td>(PPM)</td><td>(PPM) (µg/m³)</td></td>	316 1402 424 467 477 411 0046 8.33 267 12553 373 351 370 264 1617 377 4.11 0046 1033 267 12553 373 351 370 264 1630 473 4.41 1019 1046 126 1160 353 1721 939 478 443 1019 1046 1033 128 1166 353 1721 939 488 1139 1946 490 363 433 124 131 14483 706 430 438 1139 1917 493 367 945 133 1448 1000 406 430 438 106 945 131 1981 1970 1997 1997 1997 1997 1997 1997 133 1039 1988 244 125 1199 1976 1071 1	316 1402 421 464 301 1944 452 0066 8.53 119 1807 331 373 351 370 351 370 351 370 351 370 351 370 353 129 906 670 264 1651 434 0.191 1046 533 234 131 1438 1046 841 1109 1045 133 148 1049 1035 345 1046 134 1448 1049 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1035 345 1046 1046 1046 1035 345 1046 1046 1035 345 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 1046 <td< td=""><td>110 1402 43 467 427 464 47 427 466 431 431 532 6006 8.33 110 1100 12000 341 379 348 374 264 1653 801 843 141 0.006 8.43 123 1106 333 123 1109 1200 341 1031 1046 123 1106 333 123 1109 1209 1034 1139 131 1468 304 430 441 905 533 0055 945 131 1468 1399 139 139 139 139 134 131 1400 4900 4000 4000 4000 4000 403 131 1400 4900 4900 4900 4900 4900 446 1301 1708 244 129 246 129 250 260 0113 761</td></td<> <td></td> <td>(µg/m³)</td> <td>(fug/m³)</td> <td>(mg/m³)</td> <td>(µg/m³)</td> <td>(mg/m³)</td> <td>(mg/m)</td> <td>(hg/m³)</td> <td>(hg/m³)</td> <td>(hg/m³)</td> <td>(PPM)</td> <td>(PPM)</td> <td>(fm/gu)</td> <td>(PPM</td> <td></td> <td>(PPM) (IPPM)</td> <td>(PPM)</td> <td>(PPM)</td> <td>(PPM) (µg/m³)</td>	110 1402 43 467 427 464 47 427 466 431 431 532 6006 8.33 110 1100 12000 341 379 348 374 264 1653 801 843 141 0.006 8.43 123 1106 333 123 1109 1200 341 1031 1046 123 1106 333 123 1109 1209 1034 1139 131 1468 304 430 441 905 533 0055 945 131 1468 1399 139 139 139 139 134 131 1400 4900 4000 4000 4000 4000 403 131 1400 4900 4900 4900 4900 4900 446 1301 1708 244 129 246 129 250 260 0113 761		(µg/m ³)	(fug/m ³)	(mg/m ³)	(µg/m ³)	(mg/m ³)	(mg/m)	(hg/m ³)	(hg/m ³)	(hg/m³)	(PPM)	(PPM)	(fm/gu)	(PPM		(PPM) (IPPM)	(PPM)	(PPM)	(PPM) (µg/m ³)
	119 11897 339 375 351 370 267 1230 341 379 4411 0.049 10.35 267 12309 331 379 351 379 361 670 254 1633 473 1448 10.91 10.46 126 1368 373 751 593 450 460 264 1653 473 1448 10.91 10.46 131 14489 730 450 450 453 1033 10.46 8.42 131 14489 730 450 473 1193 174 507 0056 9.45 131 14489 730 450 473 1193 1074 1076 1076 1074 1076 1046 1076 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 <t< td=""><td>119 1189 331 371 251 371 311 0049 035 267 12353 321 379 368 774 256 1617 377 411 0049 1035 267 12353 321 771 590 670 256 1653 801 8.41 0191 1046 267 12353 321 770 473 475 4453 1438 1049 1049 1046 131 14489 70 450 424 425 1193 1794 519 533 1068 8.42 131 14489 70 424 425 1193 1794 519 533 1068 8.45 103 1049 108/m3 (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) 1093 8.42 2.48 12.48 103 103 103 103 103 103 103</td><td>119 1190 1307 331 370 264 1617 377 411 0.048 10.35 267 12553 321 730 253 601 433 1.41 0.048 10.35 267 12553 321 731 590 670 253 801 8.41 0.049 10.35 267 12553 321 730 4664 400 423 455 413 1.48 11.09 131 14489 706 430 423 1193 1794 519 533 0.055 9.45 131 14489 706 406 473 1193 704 8.41 0.101 10.46 131 14489 706 423 423 1193 706 8.41 10.91 10.46 131 1493 206 901 991 991 991 991 991 991 991 991 991 991</td><td>110 1180 339 375 351 370 264 1607 370 411 0.048 1035 267 12553 323 371 341 370 244 370 441 0.048 1035 267 12553 323 373 531 500 264 1655 801 437 411 0.048 1035 261 1366 373 413 159 519 533 0.065 945 131 14489 730 420 423 423 1193 1748 1091 1046 131 14489 700 421 423 423 119 274 239 0065 945 131 1468 1070 1090 1090 1091 1090 1093 841 131 1031 1920 264 207 206 0009 831 131 1031 1091 1091 109</td><td>119 11807 339 375 351 370 264 1607 377 4.11 0048 1035 267 12553 323 731 540 4600 373 11.99 1035 267 12553 323 731 590 473 411 0.048 1035 131 14489 730 450 460 460 473 1031 1036 945 131 14489 730 410 4690 253 1033 1035 945 103 946 443 11.0 1036 945 131 14489 70. 410 490 473 119 107 1035 945 103 946 945 945 104 945 945 104 103 107 1035 945 103 946 103 1047 103 1047 103 1046 103 103 103 104 103 103</td><td>BA2</td><td>316</td><td>14022</td><td>424</td><td>467</td><td>427</td><td>464</td><td>301</td><td>1944</td><td>494</td><td>5.22</td><td>0.066</td><td>8.53</td><td>3.50</td><td></td><td></td><td></td><td>0.084 11.03</td><td>0.084 11.03 8.12</td></t<>	119 1189 331 371 251 371 311 0049 035 267 12353 321 379 368 774 256 1617 377 411 0049 1035 267 12353 321 771 590 670 256 1653 801 8.41 0191 1046 267 12353 321 770 473 475 4453 1438 1049 1049 1046 131 14489 70 450 424 425 1193 1794 519 533 1068 8.42 131 14489 70 424 425 1193 1794 519 533 1068 8.45 103 1049 108/m3 (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) 1093 8.42 2.48 12.48 103 103 103 103 103 103 103	119 1190 1307 331 370 264 1617 377 411 0.048 10.35 267 12553 321 730 253 601 433 1.41 0.048 10.35 267 12553 321 731 590 670 253 801 8.41 0.049 10.35 267 12553 321 730 4664 400 423 455 413 1.48 11.09 131 14489 706 430 423 1193 1794 519 533 0.055 9.45 131 14489 706 406 473 1193 704 8.41 0.101 10.46 131 14489 706 423 423 1193 706 8.41 10.91 10.46 131 1493 206 901 991 991 991 991 991 991 991 991 991 991	110 1180 339 375 351 370 264 1607 370 411 0.048 1035 267 12553 323 371 341 370 244 370 441 0.048 1035 267 12553 323 373 531 500 264 1655 801 437 411 0.048 1035 261 1366 373 413 159 519 533 0.065 945 131 14489 730 420 423 423 1193 1748 1091 1046 131 14489 700 421 423 423 119 274 239 0065 945 131 1468 1070 1090 1090 1091 1090 1093 841 131 1031 1920 264 207 206 0009 831 131 1031 1091 1091 109	119 11807 339 375 351 370 264 1607 377 4.11 0048 1035 267 12553 323 731 540 4600 373 11.99 1035 267 12553 323 731 590 473 411 0.048 1035 131 14489 730 450 460 460 473 1031 1036 945 131 14489 730 410 4690 253 1033 1035 945 103 946 443 11.0 1036 945 131 14489 70. 410 490 473 119 107 1035 945 103 946 945 945 104 945 945 104 103 107 1035 945 103 946 103 1047 103 1047 103 1046 103 103 103 104 103 103	BA2	316	14022	424	467	427	464	301	1944	494	5.22	0.066	8.53	3.50				0.084 11.03	0.084 11.03 8.12
110 1200 341 379 374 263 1603 4320 414 0.049 10.85 126 1285 333 1721 939 670 284 1653 403 413 10.19 10.66 126 1160 333 1721 959 428 264 1653 606 433 10.95 945 126 11480 773 7721 959 428 1193 1917 415 10.65 945 128 11480 774 420 443 1193 1917 415 10.76 945 945 198 1488 706 470 197 169 197 161 197 161 197 167 197 </td <td>110 1200 341 379 374 263 1603 4320 414 0.049 1085 126 1265 333 7721 939 670 284 1633 423 10.19 10.66 126 1160 333 1721 939 428 1539 1917 443 10.96 81.3 128 11480 770 450 430 264 1630 453 10.96 12.4 128 11480 774 509 670 287 1833 906 9.45 9.45 198 1464 3046 470 286 1970 1970 187 10.021 1073 128 12.48 11.09 1091 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 10</td> <td>110 12000 341 379 348 374 263 603 4130 0191 0056 123 1106 353 1721 393 533 1731 309 603 4130 1049 1045 123 11480 353 1721 393 423 1193 1148 1448 1191 1091 1045 131 14484 3046 430 433 143 123 1143 1248 1148 14684 3046 430 435 1193 1714 537 0065 945 1301 1981 14684 3046 430 424 123 1193 1248 1201 177 304 925 1005 845 1248 1201 177 307 266 312 14971 14971 14971 14971 1201 1771 1291 1297 1397 236 200 234</td> <td>110 12309 341 779 348 774 263 1603 4730 414 0.090 1035 123 1168 330 773 534 604 4600 287 1833 423 4143 0.090 1035 123 11480 330 772 939 473 1037 0065 945 131 14480 730 473 1037 1046 414 0.090 1035 131 14480 730 424 425 1193 1794 519 513 0.055 945 131 14480 706 400 4007 VOC1 VOC2 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3</td> <td>110 12353 311 579 348 574 263 1603 814 0.090 1085 123 1166 330 172 1193 133 423 414 0.090 1085 131 14489 336 172 193 456 433 1091 1095 945 131 14489 336 430 446 430 446 433 1093 1035 1035 945 132 1448 253 193 172 193 149 1096 1096 1035 130 172 193 244 122 1193 1194 1109 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1085 133 1093 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091<</td> <td>110 1200 341 374 263 453 414 0.0490 1085 125 1368 373 173 136 473 1464 1049 1045 131 1448 730 473 153 173 174 1049 1045 131 1448 730 473 1464 400 241 153 1458 12.4 131 1448 730 473 153 1794 513 1065 945 132 1194 1490 1490 1490 1490 164 1301 1490 1490 1490 1490 1490 1490 1301 1490 1490 1490 1490 1490 1490 1490 1301 1491 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1411 1411 1411 1411<td>3R2</td><td>119</td><td>11897</td><td>339</td><td>375</td><td>351</td><td>370</td><td>264</td><td>1617</td><td>377</td><td>4.11</td><td>0.048</td><td>10.78</td><td>3.38</td><td></td><td>0.063</td><td></td><td>11.58</td><td>11.58 8.88</td></td>	110 1200 341 379 374 263 1603 4320 414 0.049 1085 126 1265 333 7721 939 670 284 1633 423 10.19 10.66 126 1160 333 1721 939 428 1539 1917 443 10.96 81.3 128 11480 770 450 430 264 1630 453 10.96 12.4 128 11480 774 509 670 287 1833 906 9.45 9.45 198 1464 3046 470 286 1970 1970 187 10.021 1073 128 12.48 11.09 1091 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 109101 10	110 12000 341 379 348 374 263 603 4130 0191 0056 123 1106 353 1721 393 533 1731 309 603 4130 1049 1045 123 11480 353 1721 393 423 1193 1148 1448 1191 1091 1045 131 14484 3046 430 433 143 123 1143 1248 1148 14684 3046 430 435 1193 1714 537 0065 945 1301 1981 14684 3046 430 424 123 1193 1248 1201 177 304 925 1005 845 1248 1201 177 307 266 312 14971 14971 14971 14971 1201 1771 1291 1297 1397 236 200 234	110 12309 341 779 348 774 263 1603 4730 414 0.090 1035 123 1168 330 773 534 604 4600 287 1833 423 4143 0.090 1035 123 11480 330 772 939 473 1037 0065 945 131 14480 730 473 1037 1046 414 0.090 1035 131 14480 730 424 425 1193 1794 519 513 0.055 945 131 14480 706 400 4007 VOC1 VOC2 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3 VOC3 VOC4 VOC3	110 12353 311 579 348 574 263 1603 814 0.090 1085 123 1166 330 172 1193 133 423 414 0.090 1085 131 14489 336 172 193 456 433 1091 1095 945 131 14489 336 430 446 430 446 433 1093 1035 1035 945 132 1448 253 193 172 193 149 1096 1096 1035 130 172 193 244 122 1193 1194 1109 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1085 133 1093 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091<	110 1200 341 374 263 453 414 0.0490 1085 125 1368 373 173 136 473 1464 1049 1045 131 1448 730 473 153 173 174 1049 1045 131 1448 730 473 1464 400 241 153 1458 12.4 131 1448 730 473 153 1794 513 1065 945 132 1194 1490 1490 1490 1490 164 1301 1490 1490 1490 1490 1490 1490 1301 1490 1490 1490 1490 1490 1490 1490 1301 1491 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490 1411 1411 1411 1411 <td>3R2</td> <td>119</td> <td>11897</td> <td>339</td> <td>375</td> <td>351</td> <td>370</td> <td>264</td> <td>1617</td> <td>377</td> <td>4.11</td> <td>0.048</td> <td>10.78</td> <td>3.38</td> <td></td> <td>0.063</td> <td></td> <td>11.58</td> <td>11.58 8.88</td>	3R2	119	11897	339	375	351	370	264	1617	377	4.11	0.048	10.78	3.38		0.063		11.58	11.58 8.88
267 12553 323 731 500 670 264 1655 801 841 0.191 10.46 128 1106 333 731 590 450 450 264 1655 801 841 10.46 131 14480 730 450 408 448 11599 1917 455 413 10.46 131 14480 730 450 408 448 1159 1074 1074 1005 11.0 131 14480 730 450 425 1193 1794 519 5.33 1065 9.45 101 10201 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 1093 1997 1093 1093 1093 1093 1093 1093 1093 1093 1093 1005 5.945 101 1138 219 254 237 2083 2.03 0.005	267 12553 323 731 500 670 264 1655 801 8.41 0.191 10.46 125 13682 379 430 430 430 431 0.191 10.46 131 14489 730 450 438 1193 1721 0065 9.43 131 14489 730 450 438 1193 1794 519 5.33 0.065 9.45 131 14489 730 450 438 1193 1194 119 1017 1005 8.43 1005 8.43 c1Lc-SIMIMTM zonc 24-In avg concentrations voc1 voc2 voc2 voc3 2.53 1.45 2.06 9.07 1005 8.43 1046 107 1097 1097 1097 1097 1097 1097 1097 1065 9.45 2.46 107 1093 1071 1097 1071 1093 1093 1091 1093 1065	267 12533 323 731 500 670 264 1635 801 841 0.146 131 1488 770 490 494 833 473 1458 123 131 14489 730 490 448 1139 1917 445 103 131 14489 730 490 448 1139 1917 445 103 131 14489 730 406 434 0054 842 133 1901 1970 448 1199 1917 445 109 131 14489 730 406 434 109 1441 VOCI<	267 12553 323 731 500 670 264 1635 801 841 0.191 10.46 131 1488 730 430 480 733 1731 909 473 11.93 10.46 131 14489 730 430 489 173 905 934 1034 11.09 10.46 131 14489 730 430 448 1139 1017 445 11.09 10.46 131 14489 730 406 434 1037 103 1034 103 11.0 131 14489 730 406 434 1037 103 1034 103 1034 103 1034 103 1034 <t< td=""><td>267 1253 333 731 500 670 264 1653 801 841 0.191 1046 126 1160 333 1721 939 428 1139 917 453 1458 1036 842 131 14489 730 450 430 443 1193 1066 843 1036 843 1109 131 14489 706 450 458 1193 1917 455 531 0065 843 131 14489 706 490 438 1193 1917 1458 100 843 131 1468 206 4005 VOC1 VOC3 VOC3 VOC3 VOC3 VOC3 1478 100 843 1201 1383 219 237 236 312 1890 1997 148 100 946 900 946 900 946 900 946 946 946 9</td><td>267 1253 333 731 590 670 264 1653 801 841 0.191 1046 123 11160 333 1721 959 428 133 134 1458 101 1458 103 1448 1006 842 123 11160 333 1721 959 428 1193 1917 445 1109 944 131 14644 906 430 438 1193 1917 445 1109 944 131 1007 49073 V0C4 V0C5 V0C5 V0C5 V0C5 1008 845 103 9391 183 207 234 238 246 139 239 266 0008 845 103 9391 183 207 236 238 236 200 238 241 200 200 151 146 150 151 154 151 151 151<!--</td--><td>BR3</td><td>119</td><td>12009</td><td>341</td><td>379</td><td>348</td><td>374</td><td>263</td><td>1603</td><td>4320</td><td>4.14</td><td>0.049</td><td>10.85</td><td>3.37</td><td></td><td>0.064</td><td></td><td>11.56</td><td>11.56 9.05</td></td></t<>	267 1253 333 731 500 670 264 1653 801 841 0.191 1046 126 1160 333 1721 939 428 1139 917 453 1458 1036 842 131 14489 730 450 430 443 1193 1066 843 1036 843 1109 131 14489 706 450 458 1193 1917 455 531 0065 843 131 14489 706 490 438 1193 1917 1458 100 843 131 1468 206 4005 VOC1 VOC3 VOC3 VOC3 VOC3 VOC3 1478 100 843 1201 1383 219 237 236 312 1890 1997 148 100 946 900 946 900 946 900 946 946 946 9	267 1253 333 731 590 670 264 1653 801 841 0.191 1046 123 11160 333 1721 959 428 133 134 1458 101 1458 103 1448 1006 842 123 11160 333 1721 959 428 1193 1917 445 1109 944 131 14644 906 430 438 1193 1917 445 1109 944 131 1007 49073 V0C4 V0C5 V0C5 V0C5 V0C5 1008 845 103 9391 183 207 234 238 246 139 239 266 0008 845 103 9391 183 207 236 238 236 200 238 241 200 200 151 146 150 151 154 151 151 151 </td <td>BR3</td> <td>119</td> <td>12009</td> <td>341</td> <td>379</td> <td>348</td> <td>374</td> <td>263</td> <td>1603</td> <td>4320</td> <td>4.14</td> <td>0.049</td> <td>10.85</td> <td>3.37</td> <td></td> <td>0.064</td> <td></td> <td>11.56</td> <td>11.56 9.05</td>	BR3	119	12009	341	379	348	374	263	1603	4320	4.14	0.049	10.85	3.37		0.064		11.56	11.56 9.05
126 1362 379 534 604 460 287 1833 425 44,33 1721 939 133 1721 939 133 1721 939 130 133 1721 939 428 1193 1914 519 5,33 0.065 9,45 1100 842 1100 842 1100 844 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400	126 1362 373 504 460 287 1833 425 41,33 1731 9065 9,45 131 11100 333 1701 938 428 1193 1193 1149 730 10065 9,45 131 1449 730 424 425 1193 1194 519 533 0.065 9,45 131 14408 730 424 425 1193 1194 1006 8,42 104 19704 187 7062 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC3 1391 1891 1304 1493 1491 </td <td>126 1362 379 534 604 4600 287 1833 475 475 1058 1109 131 14489 730 470 456 430 458 1139 1974 519 533 1055 945 131 14489 730 470 424 425 1193 1794 519 533 0065 945 131 14489 730 470 425 1193 1794 519 533 0065 945 131 14489 700 4705 4707 1794 519 533 0065 945 131 1490 1190 1490 1490 1490 1490 1490 149</td> <td>126 1308 373 574 664 4600 287 183 425 413 1146 730 873 124 1054 113 11489 730 450 430 448 1199 1191 4133 1454 533 0.055 945 945 131 14489 730 450 430 448 1199 1917 454 507 0054 845 131 14489 730 450 430 448 1199 1917 454 507 0056 945 c11c 531 1097 1097 1098 1197 1098 1197 1005 841 1200 1778 219 254 227 206 1009 823 131 10312 192 254 222 246 137 252 268 0.009 831 131 1031 1931 1937 132 193 231</td> <td>13 1160 33 534 604 466 430 287 1833 425 4136 133 1109 131 14489 730 457 939 438 1193 1794 513 0.065 945 131 14489 730 450 430 438 1193 1794 519 533 0.065 945 131 14489 730 450 438 1193 1794 519 533 0.065 945 c11c<-SIMIMTM zone 24-In ang concentrations</td> c 103 9391 183 207 208 0.003 639 103 9391 183 207 236 1093 1997 1997 1997 199 1997 166 1095 543 248 346 397 265 0.003 639 545 266 0.003 563 566 0.003 563 566 0.003 563 566 0.003 57	126 1362 379 534 604 4600 287 1833 475 475 1058 1109 131 14489 730 470 456 430 458 1139 1974 519 533 1055 945 131 14489 730 470 424 425 1193 1794 519 533 0065 945 131 14489 730 470 425 1193 1794 519 533 0065 945 131 14489 700 4705 4707 1794 519 533 0065 945 131 1490 1190 1490 1490 1490 1490 1490 149	126 1308 373 574 664 4600 287 183 425 413 1146 730 873 124 1054 113 11489 730 450 430 448 1199 1191 4133 1454 533 0.055 945 945 131 14489 730 450 430 448 1199 1917 454 507 0054 845 131 14489 730 450 430 448 1199 1917 454 507 0056 945 c11c 531 1097 1097 1098 1197 1098 1197 1005 841 1200 1778 219 254 227 206 1009 823 131 10312 192 254 222 246 137 252 268 0.009 831 131 1031 1931 1937 132 193 231	13 1160 33 534 604 466 430 287 1833 425 4136 133 1109 131 14489 730 457 939 438 1193 1794 513 0.065 945 131 14489 730 450 430 438 1193 1794 519 533 0.065 945 131 14489 730 450 438 1193 1794 519 533 0.065 945 c11c<-SIMIMTM zone 24-In ang concentrations	126 130 131 14489 730 543 604 405 247 133 1106 313 1038 1139 1200 1139 1200 1139 1200 133 204 213 1391 2131	HAL	267	12553	323	731	590	670	264	1655	801	8.41	0.191	10.46	3.45		0.050		11.34	11.34 8.85
123 11100 533 1721 930 428 259 428 1390 1391 1489 300 842 131 14480 330 1721 1191 425 1193 191 445 0004 842 c11c-SIMIMTM 2onc 24-hr 304 430 445 1191 1917 451 537 0060 842 c11c-SIMIMTM 2onc 24-hr voc1 voc2 voc3 voc4 voc5 voc6 voc7 voc8 170 181 204 234 238 246 172 1197 262 268 0009 815 103 9391 183 204 237 197 164 103 262 266 0109 815 103 113 10312 192 234 234 1397 262 266 0109 784 103 1033 103 1034 1034 1036 1393 261	123 11100 533 1721 939 428 259 1937 446 4.34 0.004 1103 138 14489 730 470 426 430 430 430 430 430 430 430 430 430 1917 445 537 0.004 1103 947 944 944 944 944	11 1100 533 1/21 939 428 1/39 1/39 4/39 1/30 4/31 1/39	113 11100 533 1040 430 430 425 1193 1794 513 0065 845 123 14684 3046 430 425 1193 1794 513 0065 945 116 1501 1050 420 425 1193 1593 1794 519 533 0065 945 110 1201 10501 10501 420 425 1193 533 0065 945 101 9704 183 207 200 107 1097 1090 10901 10901 10901 10901 10901 10901 10901 1090 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1091 1191 1091	1 1	1 11 </td <td>KIT</td> <td>126</td> <td>13682</td> <td>379</td> <td>534</td> <td>604</td> <td>4690</td> <td>287</td> <td>1833</td> <td>425</td> <td>44.53</td> <td>1.458</td> <td>12.48</td> <td>3.48</td> <td></td> <td>0.071</td> <td></td> <td>11.03</td> <td>11.03 8.46</td>	KIT	126	13682	379	534	604	4690	287	1833	425	44.53	1.458	12.48	3.48		0.071		11.03	11.03 8.46
Image Total Total <th< td=""><td>Image Image <th< td=""><td>0 193 14403 704 430 425 1133 1794 519 533 0.065 945 c 11c - SIMIMTM zone 24-hr avg concentrations voc1 voc2 voc3 voc3 voc3 voc3 voc4 voc4</td><td>c 103 1440 530 430 423 1133 1794 519 533 00055 945 c I1c - SIMIMTM zonc 241hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3</td><td>0 133 1449 300 430 430 430 430 430 430 430 430 430 430 430 430 430 430 433 1033 1031 533 0.0050 945 c ILc - SIMI MTM zonc 24-hr avg concentrations voc1 voc2 voc3 voc4 voc5 voc5 voc3 voc3 voc4 voc3 voc3 voc4 voc3 vo</td><td>e II c - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations z z z z z z z z z z z z z z z z z z z</td><td>LDA</td><td>123</td><td>11160</td><td>555</td><td>1721</td><td>904</td><td>428</td><td>204</td><td>1030</td><td>406</td><td>4.34</td><td>0.054</td><td>0.11</td><td>3.87</td><td></td><td>0.076</td><td></td><td>11.87</td><td>11.87 9.20</td></th<></td></th<>	Image Image <th< td=""><td>0 193 14403 704 430 425 1133 1794 519 533 0.065 945 c 11c - SIMIMTM zone 24-hr avg concentrations voc1 voc2 voc3 voc3 voc3 voc3 voc4 voc4</td><td>c 103 1440 530 430 423 1133 1794 519 533 00055 945 c I1c - SIMIMTM zonc 241hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3</td><td>0 133 1449 300 430 430 430 430 430 430 430 430 430 430 430 430 430 430 433 1033 1031 533 0.0050 945 c ILc - SIMI MTM zonc 24-hr avg concentrations voc1 voc2 voc3 voc4 voc5 voc5 voc3 voc3 voc4 voc3 voc3 voc4 voc3 vo</td><td>e II c - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations z z z z z z z z z z z z z z z z z z z</td><td>LDA</td><td>123</td><td>11160</td><td>555</td><td>1721</td><td>904</td><td>428</td><td>204</td><td>1030</td><td>406</td><td>4.34</td><td>0.054</td><td>0.11</td><td>3.87</td><td></td><td>0.076</td><td></td><td>11.87</td><td>11.87 9.20</td></th<>	0 193 14403 704 430 425 1133 1794 519 533 0.065 945 c 11c - SIMIMTM zone 24-hr avg concentrations voc1 voc2 voc3 voc3 voc3 voc3 voc4	c 103 1440 530 430 423 1133 1794 519 533 00055 945 c I1c - SIMIMTM zonc 241hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC3 VOC4 VOC3 VOC3 VOC4 VOC3 VOC4 VOC3 VOC3	0 133 1449 300 430 430 430 430 430 430 430 430 430 430 430 430 430 430 433 1033 1031 533 0.0050 945 c ILc - SIMI MTM zonc 24-hr avg concentrations voc1 voc2 voc3 voc4 voc5 voc5 voc3 voc3 voc4 voc3 voc3 voc4 voc3 vo	e II c - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations e II d - SIMI IMTIM zone 24-hr avg concentrations z z z z z z z z z z z z z z z z z z z	LDA	123	11160	555	1721	904	428	204	1030	406	4.34	0.054	0.11	3.87		0.076		11.87	11.87 9.20
e II c - SIM IMTM zone 24-hr avg concentrations e II c - SIM IMTM zone 24-hr avg concentrations (µg/m ³) (µg/m ³	e II c - SIMI MTM zone 24-hr avg concentrations e II c - SIMI MTM zone 24-hr avg concentrations (µg/m ³) (µg/m ³) (PPM) (PPM) (PPM) (µg/m ³) (µg/m ³) (PPM) (PPM) (µg/m ³) (µg/m ³) (µg/m ³) (PPM) (PPM) (PPM) (µg/m ³) (µg/m ³) (PPM) (PPM) (PPM) (µg/m ³) (µg/m ³) (µg/m ³) (PPM) (PPM) (µg/m ³) (µg/m ³) (µg/m	e IIc - SIMIMTM zone 24-hr avg concentrations VOCI VOC3 VOC4 VOC3 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PAKT.I VOC1 VOC3 VOC4 VOC3 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PAKT.I (µg/m ³) (µg/m ³) 120 11788 219 254 288 246 192 1397 262 2.68 0.009 6.90 115 10512 192 254 292 246 172 1139 290 2.82 0.019 7.84 115 10512 192 254 292 246 172 1139 290 2.82 0.019 7.84 116 12037 435 249 284 291 306 1234 193 290 2.82 0.019 7.84 111 12037 435 249 284 241 306 1278 255 2.69 0.010 7.15 111 12037 435 249 284 241 306 1278 265 0.008 6.89 111 12037 435 249 284 241 306 177 130 259 2.66 0.010 7.15 111 12037 435 249 284 241 306 177 338 6.06 0.010 7.15 111 12037 435 249 284 241 306 177 30 259 2.66 0.010 7.15 111 12037 435 249 284 241 306 1778 255 2.69 0.010 7.15 111 12037 435 249 284 241 306 1778 259 2.60 0.010 7.15 111 12037 435 249 284 241 306 1778 255 2.69 0.010 7.15 111 12037 435 249 284 241 306 1778 255 2.69 0.010 7.15 111 12037 435 314 337 232 1344 306 259 2.66 0.008 6.89 111 12037 130 28 344 337 232 1344 306 201 0.021 0.021 102 NA 218 323 331 6µg/m ³ (µg/m ³)	e IIe - SIMI MTM zone 24-hr avg concentrations vocci vocc2 vocc3 vocc4 vocc5 vocc vocc3 vocc9 co.1 No2.1 PART.1 vocci vocc2 vocc3 vocc4 vocc5 vocc vocc3 vocc9 co.1 No2.1 PART.1 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³)	e IIc - SIMI MTM zone 24-Irr ary concentrations VOCI VOCS VOC3 VOC3 VOC5 VOC5 VOC3 VOC9 CO.1 NO2.1 PARTI.1 VOCI VOC3 VOC3 VOC3 VOC5 VOC5 VOC3 VOC9 CO.1 NO2.1 PARTI.1 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³)	e IIc - SIMI MTM zone 24-hr avg concentrations vOCCI VOC2 VOC3 VOC3 VOC5 VOC5 VOC5 VOC3 VOC9 CO.1 NO2.1 PART.1 (ug/m ¹) (ug/m ³) (ug/m ³) (ug/m ³) (ug/m ³) (ug/m ³) (BA BR	198	14489	3046	430	408	448	6611 193	1794	404 519	5.33	0.065	8.42 9.45	3.47		0.079	0.079 10.82		10.82
e IIc - SIMIMTM zone 24-br avg concentrations VOCI VOC2 VOC3 VOC3 VOC4 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) 120 11788 219 254 292 246 192 1397 252 2.68 0.009 6.90 121 15 10512 192 254 292 246 172 1139 290 2.82 0.019 7.84 103 9391 183 204 227 197 164 1050 544 2.30 0.009 6.90 115 10512 192 254 292 246 172 1139 290 2.82 0.019 7.84 103 8385 177 302 332 195 160 1024 199 2.28 0.009 8.46 101 12007 435 232 243 173 1380 259 2.66 0.008 6.89 111 2007 435 249 284 204 1054 1380 259 2.66 0.003 8.46 111 2007 435 249 284 204 1054 1380 259 2.66 0.003 8.46 111 2007 435 249 284 204 1054 1380 259 2.66 0.003 8.46 111 2007 435 249 284 241 054 1380 259 2.66 0.003 8.46 111 2007 435 249 284 241 054 1380 259 2.66 0.003 8.46 111 2007 435 249 284 241 054 1380 259 2.66 0.003 8.46 102 1007 2002 VOC3 VOC4 VOC5 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PART.1 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) 108 NA 218 323 343 344 337 222 1344 368 404 0023 807 102 NA 218 323 343 344 221 168 796 933 2.76 0017 9.07 102 NA 218 323 331 316 176 911 416 331 0.037 9.87 102 NA 218 323 331 0.017 10.07 102 NA 464 340 332 331 2020 1357 363 4.06 0017 10.07 102 NA 464 340 332 334 2020 1357 363 4.06 0017 10.07 103 NA 464 340 332 334 2020 1357 363 4.06 0017 10.07 104 NA 464 340 332 334 2020 1357 363 4.06 0017 10.07 102 NA 464 340 332 344 2020 1357 363 4.06 0017 10.07 102 NA 464 340 332 344 2020 1357 363 4.06 0017 10.07 103 NA 464 340 332 344 2020 1357 363 4.06 0017 10.07 104 NA 464 340 332 344 2020 1357 363 4.06 0017 10.07 105 NA 464 340 332 344 2020 1357 363 4.06 10217 10.20 107 4017 10.07 108 103 4.06 0017 10.07 108 NA 464 340 332 344 2020 1357 363 4.06 0017 10.07 109 1007 1007 1007 1007 1007 1007 1007 100 1007 1007	e II c - SIM IMTM zone 24-hr avg concentrations v VoC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 CO.1 NO2.1 PART.1 (µg/m ³) (µg/m	e IIc - SIMI MTTM zone 24-Inr avg concentrations voct voc2 voc3 voc4 voc5 voc5 voc7 voc8 voc9 co.1 No2.1 PART.1 (µg/m ³) (µg/m ³) (µ	e II c - SIMI MTTM zone 24-Inr avg concentrations vOCI vOC2 vOC3 vOC4 vOC5 vOC7 vOC8 vOC9 C0.1 NO2.1 PART.1 (µg/m ³) (µg/m	e IIc - SIMIMTM zone 24-hr avg concentrations vocci vocc3 vocc3 vocc4 vocr5 vocc6 voc7 vocc8 voc9 co.1 No2.1 PART.1 voc1 voc2 voc3 voc4 voc5 voc7 voc8 voc9 co.1 No2.1 PART.1 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m	e IIc - SIMI MTM zone 24-Iir avg concentrations vOCE1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 C01 N02.1 PARTI. (µg/m³) (µg		2	1001	200	251	2		~~~			000	200.0	61.17	11-0		6000		61.01	70.0 61.01
VOCI VOC2 VOC3 VOC4 VOC5 VOC3 VOC1 VOC1 <th< td=""><td>voci voci <th< td=""><td>VOCI VOC3 <th< td=""><td>voct voct <thvoct< th=""> voct voct <thv< td=""><td>voci (ug/m) (ug/m) (u</td><td>voct voct <th< td=""><td>tl olde</td><td>- SIMI</td><td>MTM 201</td><td>o 24-hr 2</td><td>va conce</td><td>ntratione</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></thv<></thvoct<></td></th<></td></th<></td></th<>	voci voci <th< td=""><td>VOCI VOC3 <th< td=""><td>voct voct <thvoct< th=""> voct voct <thv< td=""><td>voci (ug/m) (ug/m) (u</td><td>voct voct <th< td=""><td>tl olde</td><td>- SIMI</td><td>MTM 201</td><td>o 24-hr 2</td><td>va conce</td><td>ntratione</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></thv<></thvoct<></td></th<></td></th<>	VOCI VOC3 VOC3 <th< td=""><td>voct voct <thvoct< th=""> voct voct <thv< td=""><td>voci (ug/m) (ug/m) (u</td><td>voct voct <th< td=""><td>tl olde</td><td>- SIMI</td><td>MTM 201</td><td>o 24-hr 2</td><td>va conce</td><td>ntratione</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></thv<></thvoct<></td></th<>	voct voct <thvoct< th=""> voct voct <thv< td=""><td>voci (ug/m) (ug/m) (u</td><td>voct voct <th< td=""><td>tl olde</td><td>- SIMI</td><td>MTM 201</td><td>o 24-hr 2</td><td>va conce</td><td>ntratione</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></thv<></thvoct<>	voci (ug/m) (ug/m) (u	voct voct <th< td=""><td>tl olde</td><td>- SIMI</td><td>MTM 201</td><td>o 24-hr 2</td><td>va conce</td><td>ntratione</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	tl olde	- SIMI	MTM 201	o 24-hr 2	va conce	ntratione													
(µg/m³) (µg/m³) <t< td=""><td></td><td>(µg/m³) (µg/m³) <t< td=""><td>(µg/m) (µg/m) (µg/m)<</td><td>(ug/m³) (ug/m³) <t< td=""><td>(µg/m³) (µg/m³) <t< td=""><td></td><td>VOCI</td><td>V0C2</td><td>VOC3</td><td>VOC4</td><td>VOC5</td><td></td><td>VOC7</td><td>VOC8</td><td>V0C9</td><td>CO.1</td><td>N02.1</td><td>PART.1</td><td>C0.2</td><td>2</td><td>N02.2</td><td></td><td>PART.2</td><td>PART.2 CO.3</td></t<></td></t<></td></t<></td></t<>		(µg/m³) (µg/m³) <t< td=""><td>(µg/m) (µg/m) (µg/m)<</td><td>(ug/m³) (ug/m³) <t< td=""><td>(µg/m³) (µg/m³) <t< td=""><td></td><td>VOCI</td><td>V0C2</td><td>VOC3</td><td>VOC4</td><td>VOC5</td><td></td><td>VOC7</td><td>VOC8</td><td>V0C9</td><td>CO.1</td><td>N02.1</td><td>PART.1</td><td>C0.2</td><td>2</td><td>N02.2</td><td></td><td>PART.2</td><td>PART.2 CO.3</td></t<></td></t<></td></t<>	(µg/m) (µg/m)<	(ug/m ³) (ug/m ³) <t< td=""><td>(µg/m³) (µg/m³) <t< td=""><td></td><td>VOCI</td><td>V0C2</td><td>VOC3</td><td>VOC4</td><td>VOC5</td><td></td><td>VOC7</td><td>VOC8</td><td>V0C9</td><td>CO.1</td><td>N02.1</td><td>PART.1</td><td>C0.2</td><td>2</td><td>N02.2</td><td></td><td>PART.2</td><td>PART.2 CO.3</td></t<></td></t<>	(µg/m ³) (µg/m ³) <t< td=""><td></td><td>VOCI</td><td>V0C2</td><td>VOC3</td><td>VOC4</td><td>VOC5</td><td></td><td>VOC7</td><td>VOC8</td><td>V0C9</td><td>CO.1</td><td>N02.1</td><td>PART.1</td><td>C0.2</td><td>2</td><td>N02.2</td><td></td><td>PART.2</td><td>PART.2 CO.3</td></t<>		VOCI	V0C2	VOC3	VOC4	VOC5		VOC7	VOC8	V0C9	CO.1	N02.1	PART.1	C0.2	2	N02.2		PART.2	PART.2 CO.3
120 1178 219 254 288 246 192 1397 262 2.68 0.009 6.90 2.99 103 9704 185 207 230 200 1008 8.15 2.65 103 9704 185 207 230 200 130 7.61 2.97 115 10512 192 254 292 246 172 1139 290 282 0.019 7.84 2.79 103 8585 177 302 352 195 160 1024 199 2.86 0.019 7.84 2.79 1017 12025 275 283 244 1054 1380 2.56 0.010 7.61 2.92 111 12025 275 283 244 306 1278 2.66 0.010 7.84 2.75 107 12025 279 283 241 306 1278 2.66 0.010	120 11788 219 254 288 246 197 164 197 168 197 169 197 168 207 239 0.009 6.90 2.99 115 10512 192 234 237 206 113 7.61 2.92 103 8785 177 302 332 197 166 1024 199 2.82 0.009 8.15 2.65 103 8585 177 302 332 193 1297 2.38 6.06 0.113 7.61 2.92 101 12025 275 244 1054 138 2.96 0.009 8.46 2.78 111 12025 275 244 1054 138 2.56 0.009 8.46 2.78 111 12025 275 244 1054 138 2.66 0.010 7.161 2.92 1107 12025 1070 1024 1054 <td>120 11788 219 234 288 246 197 139 200 239 265 290 239 200 239 200 239 266 231 200 239 200 239 200 239 200 239 230 230 230 230 230 231 230 231 230 231 230 231<!--</td--><td>120 11788 219 234 240 192 1391 222 2.68 0.009 6.90 2.99 103 9391 183 207 233 200 109 784 279 115 10312 192 254 292 246 172 1139 290 283 213 200 81/5 292 103 1833 207 266 312 580 183 1297 238 0.009 6.39 293 103 12037 435 249 284 241 1054 138 255 2.69 0.010 7.15 223 111 12037 435 249 284 241 1056 1778 265 2.69 0.010 7.15 237 111 12037 435 249 284 1054 1380 259 2.69 0.010 7.15 237 100 12025 243 <td< td=""><td>120 11788 219 234 238 246 197 150 1788 219 236 200 6.90 6.90 5.90 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 238 209 238 209 238 200 813 219 239 266 0.009 6.30 239 265 266 0.009 8.13 265 266 0.009 6.30 239 237 235 235 235 236 236 237 236 237 236 237 236 237 236 237 237 237 237 237 236 239 237 237 237 238 237 237 237 244 237 243 237 243 237 243 237 246 237 246 237 246 237</td><td>120 11738 219 254 238 246 193 203 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 531 539 539 539 539 539 539 539 539 539 539 536 539 566 0039 8537 273 555 536 139 239 238 500 539 256 0309 8537 273 255 258 139 259 266 0309 846 279 258 238 244 1054 139 256 0309 846 279 258 258 258 259 266 0309 846 279 258 258 259 265 0309 640 279 258 258 256 0309 261 279 259 258 256 0301 713 273</td><td></td><td>(fug/m³)</td><td>(m/g/l)</td><td>(mg/m)</td><td>(fug/m3)</td><td>(fm³)</td><td></td><td>(fm/gu)</td><td>(hg/m³)</td><td>(hg/m³)</td><td>(Mdd)</td><td>(Mdd)</td><td>(μg/m³)</td><td>(Mdd)</td><td>5</td><td>(Mdd)</td><td></td><td></td><td>(hg/m3)</td></td<></td></td>	120 11788 219 234 288 246 197 139 200 239 265 290 239 200 239 200 239 266 231 200 239 200 239 200 239 200 239 230 230 230 230 230 231 230 231 230 231 230 231 </td <td>120 11788 219 234 240 192 1391 222 2.68 0.009 6.90 2.99 103 9391 183 207 233 200 109 784 279 115 10312 192 254 292 246 172 1139 290 283 213 200 81/5 292 103 1833 207 266 312 580 183 1297 238 0.009 6.39 293 103 12037 435 249 284 241 1054 138 255 2.69 0.010 7.15 223 111 12037 435 249 284 241 1056 1778 265 2.69 0.010 7.15 237 111 12037 435 249 284 1054 1380 259 2.69 0.010 7.15 237 100 12025 243 <td< td=""><td>120 11788 219 234 238 246 197 150 1788 219 236 200 6.90 6.90 5.90 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 238 209 238 209 238 200 813 219 239 266 0.009 6.30 239 265 266 0.009 8.13 265 266 0.009 6.30 239 237 235 235 235 236 236 237 236 237 236 237 236 237 236 237 237 237 237 237 236 239 237 237 237 238 237 237 237 244 237 243 237 243 237 243 237 246 237 246 237 246 237</td><td>120 11738 219 254 238 246 193 203 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 531 539 539 539 539 539 539 539 539 539 539 536 539 566 0039 8537 273 555 536 139 239 238 500 539 256 0309 8537 273 255 258 139 259 266 0309 846 279 258 238 244 1054 139 256 0309 846 279 258 258 258 259 266 0309 846 279 258 258 259 265 0309 640 279 258 258 256 0309 261 279 259 258 256 0301 713 273</td><td></td><td>(fug/m³)</td><td>(m/g/l)</td><td>(mg/m)</td><td>(fug/m3)</td><td>(fm³)</td><td></td><td>(fm/gu)</td><td>(hg/m³)</td><td>(hg/m³)</td><td>(Mdd)</td><td>(Mdd)</td><td>(μg/m³)</td><td>(Mdd)</td><td>5</td><td>(Mdd)</td><td></td><td></td><td>(hg/m3)</td></td<></td>	120 11788 219 234 240 192 1391 222 2.68 0.009 6.90 2.99 103 9391 183 207 233 200 109 784 279 115 10312 192 254 292 246 172 1139 290 283 213 200 81/5 292 103 1833 207 266 312 580 183 1297 238 0.009 6.39 293 103 12037 435 249 284 241 1054 138 255 2.69 0.010 7.15 223 111 12037 435 249 284 241 1056 1778 265 2.69 0.010 7.15 237 111 12037 435 249 284 1054 1380 259 2.69 0.010 7.15 237 100 12025 243 <td< td=""><td>120 11788 219 234 238 246 197 150 1788 219 236 200 6.90 6.90 5.90 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 238 209 238 209 238 200 813 219 239 266 0.009 6.30 239 265 266 0.009 8.13 265 266 0.009 6.30 239 237 235 235 235 236 236 237 236 237 236 237 236 237 236 237 237 237 237 237 236 239 237 237 237 238 237 237 237 244 237 243 237 243 237 243 237 246 237 246 237 246 237</td><td>120 11738 219 254 238 246 193 203 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 531 539 539 539 539 539 539 539 539 539 539 536 539 566 0039 8537 273 555 536 139 239 238 500 539 256 0309 8537 273 255 258 139 259 266 0309 846 279 258 238 244 1054 139 256 0309 846 279 258 258 258 259 266 0309 846 279 258 258 259 265 0309 640 279 258 258 256 0309 261 279 259 258 256 0301 713 273</td><td></td><td>(fug/m³)</td><td>(m/g/l)</td><td>(mg/m)</td><td>(fug/m3)</td><td>(fm³)</td><td></td><td>(fm/gu)</td><td>(hg/m³)</td><td>(hg/m³)</td><td>(Mdd)</td><td>(Mdd)</td><td>(μg/m³)</td><td>(Mdd)</td><td>5</td><td>(Mdd)</td><td></td><td></td><td>(hg/m3)</td></td<>	120 11788 219 234 238 246 197 150 1788 219 236 200 6.90 6.90 5.90 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 239 209 238 209 238 209 238 200 813 219 239 266 0.009 6.30 239 265 266 0.009 8.13 265 266 0.009 6.30 239 237 235 235 235 236 236 237 236 237 236 237 236 237 236 237 237 237 237 237 236 239 237 237 237 238 237 237 237 244 237 243 237 243 237 243 237 246 237 246 237 246 237	120 11738 219 254 238 246 193 203 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 539 531 539 539 539 539 539 539 539 539 539 539 536 539 566 0039 8537 273 555 536 139 239 238 500 539 256 0309 8537 273 255 258 139 259 266 0309 846 279 258 238 244 1054 139 256 0309 846 279 258 258 258 259 266 0309 846 279 258 258 259 265 0309 640 279 258 258 256 0309 261 279 259 258 256 0301 713 273		(fug/m³)	(m/g/l)	(mg/m)	(fug/m3)	(fm ³)		(fm/gu)	(hg/m³)	(hg/m³)	(Mdd)	(Mdd)	(μg/m³)	(Mdd)	5	(Mdd)			(hg/m3)
104 9,004 183 201 230 100 1008 241 200 100 8,13 2.03 115 1051 183 204 227 197 164 1050 544 2.30 0.009 8.413 2.75 103 1855 177 302 352 195 160 1024 199 2.28 0.019 7.84 2.79 2.65 107 12025 275 283 244 1054 1380 2.59 2.66 0.010 7.15 2.78 2.97 111 12037 435 249 284 241 306 1278 2.65 0.009 8.46 2.78 107 12037 435 249 284 1054 1380 2.59 2.66 0.003 8.46 2.78 111 12037 435 249 284 1054 128 2.69 0.010 7.15 2.87 107 </td <td>104 9/04 103 201 201 200 103 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201<td>(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (11) (10) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12) (12) (12) (13) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (11) (13) (11) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) <th< td=""><td>109 9,004 183 247 250 100 1008 2.11 0.008 8.13 2.05 113 10512 192 234 227 197 160 1008 2.32 0.009 8.13 2.05 103 8385 177 302 332 195 160 1024 199 2.26 0.009 8.13 2.07 101 12025 275 232 195 160 1024 199 2.26 0.010 7.61 2.92 111 12037 375 232 283 244 1054 1380 259 2.66 0.010 7.15 2.92 111 12037 375 232 246 177 305 256 0.010 7.15 2.92 111 12037 375 244 1054 1380 275 2.66 0.010 7.15 2.87 2.65 101 12037 234 1054 1380 278 266 0.010 7.15 2.92 108</td><td>103 9301 183 201 200 100 9301 183 201 200 1008 84.13 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 20</td><td>103 9704 183 207 206 1008 206 200 0008 8.13 2.05 115 1051 192 254 227 197 164 1008 8.13 209 2.65 105 11433 207 266 312 580 183 1297 2.86 0.019 7.84 2.79 107 8585 177 302 352 195 166 1036 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89</td><td>2 2</td><td>120</td><td>11788</td><td>219</td><td>254</td><td>288</td><td>246</td><td>192</td><td>1397</td><td>262</td><td>2.68</td><td>0.009</td><td>6.90</td><td>2.99</td><td>0'0</td><td>0.010</td><td></td><td>8.14</td><td>8.14 6.72</td></th<></td></td>	104 9/04 103 201 201 200 103 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 <td>(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (11) (10) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12) (12) (12) (13) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (11) (13) (11) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) <th< td=""><td>109 9,004 183 247 250 100 1008 2.11 0.008 8.13 2.05 113 10512 192 234 227 197 160 1008 2.32 0.009 8.13 2.05 103 8385 177 302 332 195 160 1024 199 2.26 0.009 8.13 2.07 101 12025 275 232 195 160 1024 199 2.26 0.010 7.61 2.92 111 12037 375 232 283 244 1054 1380 259 2.66 0.010 7.15 2.92 111 12037 375 232 246 177 305 256 0.010 7.15 2.92 111 12037 375 244 1054 1380 275 2.66 0.010 7.15 2.87 2.65 101 12037 234 1054 1380 278 266 0.010 7.15 2.92 108</td><td>103 9301 183 201 200 100 9301 183 201 200 1008 84.13 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 20</td><td>103 9704 183 207 206 1008 206 200 0008 8.13 2.05 115 1051 192 254 227 197 164 1008 8.13 209 2.65 105 11433 207 266 312 580 183 1297 2.86 0.019 7.84 2.79 107 8585 177 302 352 195 166 1036 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89</td><td>2 2</td><td>120</td><td>11788</td><td>219</td><td>254</td><td>288</td><td>246</td><td>192</td><td>1397</td><td>262</td><td>2.68</td><td>0.009</td><td>6.90</td><td>2.99</td><td>0'0</td><td>0.010</td><td></td><td>8.14</td><td>8.14 6.72</td></th<></td>	(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (11) (10) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (11) (12) (12) (12) (13) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (11) (13) (11) (13) (13) (13) (13) (11) (13) (11) (12) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) <th< td=""><td>109 9,004 183 247 250 100 1008 2.11 0.008 8.13 2.05 113 10512 192 234 227 197 160 1008 2.32 0.009 8.13 2.05 103 8385 177 302 332 195 160 1024 199 2.26 0.009 8.13 2.07 101 12025 275 232 195 160 1024 199 2.26 0.010 7.61 2.92 111 12037 375 232 283 244 1054 1380 259 2.66 0.010 7.15 2.92 111 12037 375 232 246 177 305 256 0.010 7.15 2.92 111 12037 375 244 1054 1380 275 2.66 0.010 7.15 2.87 2.65 101 12037 234 1054 1380 278 266 0.010 7.15 2.92 108</td><td>103 9301 183 201 200 100 9301 183 201 200 1008 84.13 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 20</td><td>103 9704 183 207 206 1008 206 200 0008 8.13 2.05 115 1051 192 254 227 197 164 1008 8.13 209 2.65 105 11433 207 266 312 580 183 1297 2.86 0.019 7.84 2.79 107 8585 177 302 352 195 166 1036 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89</td><td>2 2</td><td>120</td><td>11788</td><td>219</td><td>254</td><td>288</td><td>246</td><td>192</td><td>1397</td><td>262</td><td>2.68</td><td>0.009</td><td>6.90</td><td>2.99</td><td>0'0</td><td>0.010</td><td></td><td>8.14</td><td>8.14 6.72</td></th<>	109 9,004 183 247 250 100 1008 2.11 0.008 8.13 2.05 113 10512 192 234 227 197 160 1008 2.32 0.009 8.13 2.05 103 8385 177 302 332 195 160 1024 199 2.26 0.009 8.13 2.07 101 12025 275 232 195 160 1024 199 2.26 0.010 7.61 2.92 111 12037 375 232 283 244 1054 1380 259 2.66 0.010 7.15 2.92 111 12037 375 232 246 177 305 256 0.010 7.15 2.92 111 12037 375 244 1054 1380 275 2.66 0.010 7.15 2.87 2.65 101 12037 234 1054 1380 278 266 0.010 7.15 2.92 108	103 9301 183 201 200 100 9301 183 201 200 1008 84.13 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 20	103 9704 183 207 206 1008 206 200 0008 8.13 2.05 115 1051 192 254 227 197 164 1008 8.13 209 2.65 105 11433 207 266 312 580 183 1297 2.86 0.019 7.84 2.79 107 8585 177 302 352 195 166 1036 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89 2.89	2 2	120	11788	219	254	288	246	192	1397	262	2.68	0.009	6.90	2.99	0'0	0.010		8.14	8.14 6.72
113 1051 102 254 222 246 172 1139 290 2.20 0.009 0.821 2.70 103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.79 103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 283 244 1054 1380 259 2.66 0.010 7.15 2.87 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 2.95 111 12037 433 344 1054 1278 265 2.69 0.010 7.15 2.87 2.97 111 12037 434 306 1278 265 2.69 0.010 7.15 2.87 2.	113 1051 102 254 202 246 172 1139 200 2.80 0.009 7.84 2.79 103 8585 177 302 352 195 160 1024 199 2.80 0.013 7.84 2.79 103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 283 244 1054 1380 259 2.66 0.010 7.15 2.87 2.87 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 433 244 1054 1380 2.55 2.69 0.010 7.15 2.87 2.97 107 12037 434 337 2.65 2.69 0.010 7.15 2.87 2.87 2.97 2	113 10512 192 254 222 146 172 1139 290 282 0.009 784 279 103 8585 177 302 352 195 160 1024 199 2.28 0.009 7.44 2.97 101 12037 435 232 195 160 1024 199 2.28 0.009 8.46 2.78 101 12037 435 232 284 1054 1380 259 2.66 0.010 7.15 2.87 111 12037 435 243 346 173 306 1278 2.65 0.010 7.15 2.87 111 12037 435 243 346 138 255 2.69 0.010 7.15 2.87 111 12037 433 241 306 1278 2.65 0.010 7.15 2.87 102 108 NA 288 33 344 337 149 306 178 2.65 0.010 7.15 2.87	c113 10512 102 254 222 16 172 1139 297 288 6.06 0.113 7.61 229 103 8585 177 302 352 195 160 1024 199 2.28 0.019 7.81 2.79 101 12025 275 253 244 1054 1380 259 2.66 0.010 7.15 2.97 111 12037 435 243 1054 1380 259 2.66 0.010 7.15 2.97 101 12025 275 283 244 1054 1380 259 2.66 0.010 7.15 2.97 111 12037 435 244 1054 1380 256 2.69 0.010 7.15 2.97 111 12037 441 306 1278 265 2.69 0.010 7.15 2.97 111 12037 441 306 1278 265 2.69 0.010 7.15 2.95 108 NA	113 0513 102 247 293 103 133 207 266 312 580 133 207 286 312 383 177 302 357 136 278 265 269 0.010 7.81 279 297 103 8385 177 302 352 195 166 1024 199 2.28 0.009 8.46 278 287 111 2037 435 244 1054 138 255 269 0.010 7.15 237 111 2037 435 243 241 306 1278 255 269 0.010 7.15 237 111 2037 435 244 1054 138 244 1054 178 265 269 0.010 7.15 237 111 2037 435 344 337 244 365 269 0.017 109 7.61 292 102 NA 233 344 337 244 368 244 0.017	115 103 103 103 244 220 103 133 207 246 172 1139 200 2.82 0009 78.4 279 105 11433 207 266 312 580 183 1297 238 606 0.113 7.61 292 295 103 103 7.84 279 209 205 283 234 100 7.84 279 205 200 7.84 279 205 201 7.61 292 295 205 2010 7.84 279 285 2.87 2.89 283 2.84 2.41 306 127 103 205 2.05 0.000 7.84 2.79 205 205 205 205 205 205 205 205 205 205 206 2.78 2.95 207 205 207 205 205 206 2010 7.61 202 235 236 2010 216 1010 7.61 202 235 239 237 239 237 239 <td>.7 .7</td> <td>40 G</td> <td>9704</td> <td>C81</td> <td>102</td> <td>062</td> <td>007</td> <td>001</td> <td>1050</td> <td>208</td> <td>2.31</td> <td>0.000</td> <td>61.8 77.9</td> <td>2.65</td> <td>00</td> <td>0100</td> <td></td> <td>70.0</td> <td>70.0</td>	.7 .7	40 G	9704	C81	102	062	007	001	1050	208	2.31	0.000	61.8 77.9	2.65	00	0100		70.0	70.0
105 11433 207 266 312 580 183 1297 238 606 0113 7.61 2.92 107 12025 275 232 195 160 1024 199 2.28 0.009 8.46 2.95 107 12025 275 232 195 160 1024 199 2.28 0.009 8.46 2.95 111 12037 435 249 284 206 0.010 7.15 2.87 2.87 2 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 2.87 2 111 12037 435 244 1054 1278 265 2.69 0.010 7.15 2.87 0 7.61 2.93 2.87 2.87 0 7.61 2.92 2.87 0 7.61 2.93 2.87 2.87 2.87 2.87	105 1143 207 266 312 580 183 1297 238 606 0.113 7.61 2.92 107 12025 275 232 195 160 1024 199 2.28 0.009 8.46 2.95 107 12025 275 232 195 160 1024 199 2.28 0.009 8.46 2.95 111 12037 435 249 284 206 0.010 7.15 2.87 2 100 12025 275 283 241 306 1278 265 2.69 0.010 7.15 2.87 2 101 VOC1 VOC2 VOC3 VOC4 VOC5 VOC1 VOC1 VOC1 VOC1 VOC3 VOC1 VOC3 VOC1 VOC1 VOC3 VOC4 VOC3 VOC4 VOC3 VOC1 VOC3 VOC1 VOC3 VOC3 VOC3 VOC4 VOC4 VOC4 <td< td=""><td>105 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 2.92 107 12025 275 252 283 244 1054 199 2.28 0.009 8.46 2.95 107 12025 275 252 283 244 1054 1380 259 2.66 0.009 8.46 2.95 111 12025 275 283 244 1054 1380 259 2.66 0.000 8.46 2.97 111 12037 435 244 1054 1380 259 2.66 0.009 8.46 2.97 111 12037 VOCC1 VOC3 VOC4 VOC5 2.69 0.010 7.15 2.87 111 12037 VOC4 VOC5 VOC6 VOC5 VOC5 2.69 0.010 7.15 2.87 108 NA 288 343 344 <</td><td>11 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 292 103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 278 101 12025 273 233 244 1054 1380 259 2.66 0.009 8.46 278 111 12037 435 249 306 1278 265 2.69 0.010 7.15 2.87 2 VOC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC3 VOC9 C0.1 NO2.1 PART.1 C0.2 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.91 2.91 2.91 2.91</td><td>103 11433 207 266 312 580 183 1297 238 606 0.113 7.61 292 103 8585 177 302 332 195 160 1024 199 228 0.009 8.46 278 101 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 244 306 1278 265 2.69 0.010 7.15 2.87 102 VOC1 VOC2 VOC3 VOC4 VOC5 VOC9 C0.1 N02.1 6.89 2.93 108 NA 218 331 118/m³ (19/m³) (19/m³) (19/m³) 2.40 102 NA 218 323 316 176 911 416 3.017 9.03 2.42 102</td><td>05 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 292 103 8585 177 302 352 195 160 1034 199 2.28 0.009 8.46 2.78 295 101 12035 375 232 244 1064 1380 259 2.66 0.113 7.61 2.95 111 12035 375 243 306 1788 256 0.000 8.46 2.78 211 12071 12075 740 0071 0023 807 299 295 102 NA 218 333 344 368 234 394 9.31 276 0.017 9.87 299 102 NA 218 233 344 368 234 394 9.93 0.017 9.87 293 102 NA 218 233 334 234 306 234 243 243 243 243 243 243 <td< td=""><td></td><td>115</td><td>10512</td><td>192</td><td>254</td><td>292</td><td>246</td><td>104</td><td>1139</td><td>290</td><td>2.82</td><td>0.019</td><td>0.21 7.84</td><td>C0.2</td><td>ōē</td><td>010.0</td><td></td><td>9.19 8.90</td><td>9.19 0.74 8.90 6.72</td></td<></td></td<>	105 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 2.92 107 12025 275 252 283 244 1054 199 2.28 0.009 8.46 2.95 107 12025 275 252 283 244 1054 1380 259 2.66 0.009 8.46 2.95 111 12025 275 283 244 1054 1380 259 2.66 0.000 8.46 2.97 111 12037 435 244 1054 1380 259 2.66 0.009 8.46 2.97 111 12037 VOCC1 VOC3 VOC4 VOC5 2.69 0.010 7.15 2.87 111 12037 VOC4 VOC5 VOC6 VOC5 VOC5 2.69 0.010 7.15 2.87 108 NA 288 343 344 <	11 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 292 103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 278 101 12025 273 233 244 1054 1380 259 2.66 0.009 8.46 278 111 12037 435 249 306 1278 265 2.69 0.010 7.15 2.87 2 VOC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC3 VOC9 C0.1 NO2.1 PART.1 C0.2 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.97 2.99 2.91 2.91 2.91 2.91	103 11433 207 266 312 580 183 1297 238 606 0.113 7.61 292 103 8585 177 302 332 195 160 1024 199 228 0.009 8.46 278 101 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 111 12037 435 244 306 1278 265 2.69 0.010 7.15 2.87 102 VOC1 VOC2 VOC3 VOC4 VOC5 VOC9 C0.1 N02.1 6.89 2.93 108 NA 218 331 118/m³ (19/m³) (19/m³) (19/m³) 2.40 102 NA 218 323 316 176 911 416 3.017 9.03 2.42 102	05 11433 207 266 312 580 183 1297 238 6.06 0.113 7.61 292 103 8585 177 302 352 195 160 1034 199 2.28 0.009 8.46 2.78 295 101 12035 375 232 244 1064 1380 259 2.66 0.113 7.61 2.95 111 12035 375 243 306 1788 256 0.000 8.46 2.78 211 12071 12075 740 0071 0023 807 299 295 102 NA 218 333 344 368 234 394 9.31 276 0.017 9.87 299 102 NA 218 233 344 368 234 394 9.93 0.017 9.87 293 102 NA 218 233 334 234 306 234 243 243 243 243 243 243 <td< td=""><td></td><td>115</td><td>10512</td><td>192</td><td>254</td><td>292</td><td>246</td><td>104</td><td>1139</td><td>290</td><td>2.82</td><td>0.019</td><td>0.21 7.84</td><td>C0.2</td><td>ōē</td><td>010.0</td><td></td><td>9.19 8.90</td><td>9.19 0.74 8.90 6.72</td></td<>		115	10512	192	254	292	246	104	1139	290	2.82	0.019	0.21 7.84	C0.2	ōē	010.0		9.19 8.90	9.19 0.74 8.90 6.72
103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 232 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 201 306 1278 265 2.69 0.010 7.15 2.87 0 2 111 12037 435 249 284 1054 1380 255 2.69 0.010 7.15 2.87 0 2.87 0 2.87 0 2.87 2.87 0 2.87 2.87 0 2.87 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 0 2.87 2.87 0 0 0 0 0 0 0	103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 232 283 244 1054 1380 259 2.66 0.009 8.46 2.78 111 12037 435 249 284 206 1278 265 2.69 0.010 7.15 2.87 0 2 104 NA 284 206 VOC VOC1 VOC VOC1 VOC VOC1 VOC VOC VOC1 VOC VOC 7.15 2.87 2.87 108 NA 288 343 337 2.22 1344 368 4.04 0.023 8.07 2.99 108 NA 288 343 316 176 830 2.43 0.03 1.95 2.43 2.99 102 NA 288 343 317 2.22 1344 368	103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 232 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 1054 1380 259 2.66 0.009 8.46 2.78 111 12037 435 244 1054 1380 259 2.66 0.009 8.46 2.87 111 12037 405 284 241 306 1278 265 2.69 0.010 7.15 2.87 VOCI VOC2 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 0.017 (qqm) (qm)	103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 252 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12025 275 252 283 244 1054 1380 259 2.66 0.009 8.46 2.57 111 12025 275 283 241 306 1278 265 2.69 0.010 7.15 2.87 1 100 NoC21 VOC3 VOC4 VOC5 VOC6 VOC1 NOC1 NO21 PARTI CO.2 108 NA 288 343 337 212 234 236 9.017 9.87 2.43 102 NA 218 323 316 116 149 109 117 9.81 2.43 2.09 0.017 9.87 2.43 102 NA 218 313 219 221 134 3.81 <td>103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 243 234 1054 1380 259 2.66 0.000 7.15 2.87 2 111 12037 435 243 306 1278 265 2.69 0.010 7.15 2.87 2 102 VOC1 VOC2 VOC3 VOC3</td> <td>103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12005 273 233 244 1054 1380 259 2.66 0.000 8.46 2.78 111 12007 435 234 241 306 1278 265 2.09 0.010 7.15 2.87 211 12007 435 244 1054 1380 259 2.66 0.000 8.46 2.78 2014 VOC1 VOC2 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 2.017 0.03 8.07 2.99 2.97 2.43 2.91 2.93 2.91 2.93 2.91 2.93 2.93 2.94 2.93 2.93 2.94 2.93 2.93 2.94 2.93 2.93 2.93 2.93 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.96 0.017 0.93 2.94</td> <td></td> <td>105</td> <td>11433</td> <td>207</td> <td>266</td> <td>312</td> <td>580</td> <td>183</td> <td>1297</td> <td>238</td> <td>6.06</td> <td>0.113</td> <td>7.61</td> <td>2.92</td> <td>0</td> <td>0.010</td> <td></td> <td>8.42</td> <td>8.42 6.71</td>	103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12025 275 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 243 234 1054 1380 259 2.66 0.000 7.15 2.87 2 111 12037 435 243 306 1278 265 2.69 0.010 7.15 2.87 2 102 VOC1 VOC2 VOC3	103 8585 177 302 352 195 160 1024 199 2.28 0.009 8.46 2.78 107 12005 273 233 244 1054 1380 259 2.66 0.000 8.46 2.78 111 12007 435 234 241 306 1278 265 2.09 0.010 7.15 2.87 211 12007 435 244 1054 1380 259 2.66 0.000 8.46 2.78 2014 VOC1 VOC2 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 2.017 0.03 8.07 2.99 2.97 2.43 2.91 2.93 2.91 2.93 2.91 2.93 2.93 2.94 2.93 2.93 2.94 2.93 2.93 2.94 2.93 2.93 2.93 2.93 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.96 0.017 0.93 2.94		105	11433	207	266	312	580	183	1297	238	6.06	0.113	7.61	2.92	0	0.010		8.42	8.42 6.71
107 12025 215 222 283 244 1054 1380 255 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 211 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 C0.1 NO2.1 PARTI C0.2 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 C0.2 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PARTI C0.2 VOC9 VOT VOC9 VOT VOC9 VOT VOC9 VOC9 VOT VO<9	107 12025 235 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 VOCI VOC2 VOC2 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PARTI CO.2 VOC3 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PARTI CO.2 VOC3 VOC4 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PARTI CO.2 VO<1	107 12025 235 244 1054 1380 255 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 0 VOCI VOC2 VOC3 VOC4 VOC5 VOC7 VOC9 VOL1 NO2.1 PARTI CO.2 2.87 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.010 7.15 2.87 0 0.017 0.007 2.99 0 0.017 0.007 2.49 0.017 0.007 2.49 0.017 0.017 2.93 <td>107 12025 275 225 283 244 1054 1380 255 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 1 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 1 VOCI VOC2 VOC2 VOC3 VOC4 VOC5 VOC7 VOC9 VO1 NO21 PAIN1 (pg/m) (pg/m)</td> <td>107 12025 275 252 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 1054 1380 255 2.69 0.010 7.15 2.87 1 2111 12037 435 249 284 1054 1306 1278 265 2.69 0.010 7.15 2.87 1 2111 12037 VOCC1 VOC3 VOC4 VOC5 VOC6 VOC1 NO2.1 PART1 CO.2 2.87 2.43 2.87 2.43 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.91 1.99 2.91 1.99 2.91 1.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.91 2.91 2.91 2.91 2.91</td> <td>107 12025 275 222 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 2 11d - SIMIMTM zone 4-hr avg concentrations 2.65 2.69 0.010 7.15 2.87 2 102 NOC1 VOC2 VOC3 VOC5 VOC5 VOC6 VOC1 NO21 PART.1 CO.2 108 NA 288 343 337 2.21 134 3.68 7.49 0.033 8.07 2.99 102 NA 218 323 316 176 911 416 3.91 0.017 9.87 2.43 102 NA 219 222 118 330 2.76 0.017 9.87 2.43 102 NA 219 233 116 293 9.51 0.017 9.07 2.43 102 NA 259 316 176 293 9.51 0.017 9.07 2.42 102 NA 253 313 202 1160</td> <td>_</td> <td>103</td> <td>8585</td> <td>177</td> <td>302</td> <td>352</td> <td>195</td> <td>160</td> <td>1024</td> <td>661</td> <td>2.28</td> <td>0.009</td> <td>8.46</td> <td>2.78</td> <td>0.0</td> <td>0.017</td> <td></td> <td>9.70</td> <td>9.70 6.74</td>	107 12025 275 225 283 244 1054 1380 255 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 1 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 1 VOCI VOC2 VOC2 VOC3 VOC4 VOC5 VOC7 VOC9 VO1 NO21 PAIN1 (pg/m)	107 12025 275 252 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 1054 1380 255 2.69 0.010 7.15 2.87 1 2111 12037 435 249 284 1054 1306 1278 265 2.69 0.010 7.15 2.87 1 2111 12037 VOCC1 VOC3 VOC4 VOC5 VOC6 VOC1 NO2.1 PART1 CO.2 2.87 2.43 2.87 2.43 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.91 1.99 2.91 1.99 2.91 1.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.99 2.91 2.91 2.91 2.91 2.91 2.91	107 12025 275 222 283 244 1054 1380 259 2.66 0.008 6.89 2.95 111 12037 435 249 284 241 306 1278 265 2.69 0.010 7.15 2.87 2 11d - SIMIMTM zone 4-hr avg concentrations 2.65 2.69 0.010 7.15 2.87 2 102 NOC1 VOC2 VOC3 VOC5 VOC5 VOC6 VOC1 NO21 PART.1 CO.2 108 NA 288 343 337 2.21 134 3.68 7.49 0.033 8.07 2.99 102 NA 218 323 316 176 911 416 3.91 0.017 9.87 2.43 102 NA 219 222 118 330 2.76 0.017 9.87 2.43 102 NA 219 233 116 293 9.51 0.017 9.07 2.43 102 NA 259 316 176 293 9.51 0.017 9.07 2.42 102 NA 253 313 202 1160	_	103	8585	177	302	352	195	160	1024	661	2.28	0.009	8.46	2.78	0.0	0.017		9.70	9.70 6.74
 2 11d - SIM1MTM zone 4-hr avg concentrations 2 11d - SIM1MTM zone 4-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 C0.1 NO2.1 PART.1 C0.2 (pg/m³) (pg/m³) (pg/m³) (pg/m³) (pg/m³) (pg/m³) (pg/m³) (pg/m³) (pp/m) (pp/m) (pg/m³) (pp/m) (pp/m) (pg/m³) (pp/m) (pg/m³) (pp/m) (pp/m) (pg/m³) (pp/m) (pg/m³) (pp/m) (pp/m) (pg/m³) (pp/m) (pp/m) (pp/m) (pg/m³) (pp/m) (pp/m) (pp/m) (pg/m³) (pp/m) (pp/m) (pg/m³) (pp/m) (pp	c 11d - SIM1MTM zone 4-hr avg concentrations VOCI VOC2 VOC3 VOC5 VOC5 VOC5 VOC3 VOC1 NO2.1 PART.1 CO.2 PART.1 PART.1 CO.2 PART.1	c 11d - SIM1MTM zone 4-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 VOC1 NO2.1 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 CO.2 PART.1 PART.1 CO.2 PART.1 PART.1 CO.2 PART.1 P	c 11d - SIM1MTM zone 4-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC9 CO.1 NO2.1 PART.1 CO.2 VOC1 VOC2 VOC3 VOC5 VOC6 VOC5 VOC9 CO.1 NO2.1 PART.1 CO.2 VOC1 VOC2 VOC3 VOC5 VOC5 VOC5 VOC5 VOC9 CO.1 NO2.1 PART.1 CO.2 108 NA 288 343 337 222 1344 368 4.04 0023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0023 8.07 2.99 102 NA 288 344 317 222 1344 368 4.04 0023 8.07 2.99 102 NA 212 231 219 234 211 168 796 933 2.76 0017 9.07 2.40 102 NA 239 337 202 1160 293 9.51 0.017 9.02 2.41 102 NA 332 334 2020 1357 363 4.06 0.017 10.07 <	5 11d - SIM1MTM zone 4-hr avg concentrations 0 CC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC6 VOC1 NO2.1 PART.1 CO.2 PART.1 CO.2 PM0 (pg/m ³)	2 11d - SIM1MTM zone 4-hr avg concentrations 2 10d - SIM1MTM zone 4-hr avg concentrations 100 VOCI VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 PART.I CO.2 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 218 323 333 316 176 911 416 3.91 0.034 9.64 2.52 102 NA 239 373 443 202 1160 233 4.06 0.017 10.07 2.40 103 NA 239 333 316 176 911 416 3.91 0.034 9.64 2.53 102 NA 239 333 336 178 202 1150 233 4.05 0.0017 10.07 2.40 103 NA 239 333 334 2020 1357 363 4.06 0.017 10.029 2.81 104 NA 239 330 346 324 4.96 1152 379 4.16 0.025 8.45 2.75 107 NA 464 340 332 334 4.06 1152 379 4.16 0.025 8.45 2.75 108 NA 736 330 346 324 4.96 1152 379 4.16 0.025 8.45 2.75 109 NA 736 9.30 1357 100 1357 100 100 10.029 2.41 100 NA 664 340 NA 736 7.60 100 100 10.29 2.42 107 NA 664 340 NA 736 7.60 100 100 10.29 2.42 107 NA 736 7.75 7.70 100 100 10.025 8.45 2.75 108 NA 736 7.75 7.75 0.001 7.002 8.45 2.75 109 NA 736 7.75 7.75 0.001 7.000 100 10.000	K X	101	12025	275 435	252 249	283 284	244 241	1054 306	1380	259 265	2.69 2.69	0.008	6.89 7.15	2.95 2.87	0.0	0.010 0.008	10 8.09 08 8.24		8.09 8.24
111d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC5 VOC5 VOC6 VOC1 NO2.1 PART.1 CO.2 PART.1 PART.1 CO.2 PART.1 PART.1 <td>2 11d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PART.1 C0.2 PART.1 PART.1 C0.2 PART.1 PART.1</td> <td>111d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 PART.1 CO.2 VOC1 VOC2 VOC3 VOC3 VOC4 VOC5 VOC5 VOC5 VOC5 VOC3 VOC3 PART.1 CO.2 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 212 231 219 228 171 830 234 3.807 2.99 102 NA 212 231 219 228 171 830 2.34 2.83 0.017 9.87 2.43 102 NA 233 333 316 176 9.39 0.017 9.87 2.43 102 NA 259 373 415 702 116 735 2.43 2.74 102 NA 256 211 161 716 2.53 0.017 9.64 2.52</td> <td>111d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 PART.1 CO.2 VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC3 PART.1 CO.2 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (PPM) (PPM) (PPM) (PPM)</td> <td>2 11d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC3 VOC5 VOC5 VOC5 VOC5 VOC5 VOC3 PMM) (µg/m³) (µg/m³)</td> <td>2 IId - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC3 VOC5 VOC1 NO2.1 PART.1 CO.2 PART.1 CO.2 PM0 (µg/m³) (PPM) (PPM) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (PPM) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) <</td> <td></td>	2 11d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC7 VOC8 VOC9 C0.1 NO2.1 PART.1 C0.2 PART.1 PART.1 C0.2 PART.1	111d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC3 VOC4 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 PART.1 CO.2 VOC1 VOC2 VOC3 VOC3 VOC4 VOC5 VOC5 VOC5 VOC5 VOC3 VOC3 PART.1 CO.2 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 212 231 219 228 171 830 234 3.807 2.99 102 NA 212 231 219 228 171 830 2.34 2.83 0.017 9.87 2.43 102 NA 233 333 316 176 9.39 0.017 9.87 2.43 102 NA 259 373 415 702 116 735 2.43 2.74 102 NA 256 211 161 716 2.53 0.017 9.64 2.52	111d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 PART.1 CO.2 VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC3 PART.1 CO.2 (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (PPM) (PPM) (PPM) (PPM)	2 11d - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC3 VOC5 VOC5 VOC5 VOC5 VOC5 VOC3 PMM) (µg/m³)	2 IId - SIM1MTM zone 4-Irr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC3 VOC5 VOC1 NO2.1 PART.1 CO.2 PART.1 CO.2 PM0 (µg/m³) (PPM) (PPM) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (PPM) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) (µg/m³) <																			
VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 CO.2 1 [Hg/m ³) (Hg/m	VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 VOC4 VOC5 VOC5 VOC3 VOC1 NO2.1 PART.1 CO.2 108 NA 288 343 337 322 1344 368 4.04 0.023 8.07 2.99 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 316 171 830 234 2.93 8.07 2.43 102 NA 219 228 171 830 234 3.91 0.017 9.077 2.43 104 NA 219 223 316 176 911 416 3.91 0.017 9.077 2.43 102 NA 259 373 <t< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 VOC3 VOC4 VOC3 VO17 VO33 VO17 Z.99 VO33 Z.91 Z.93 Z.91 Z.93 Z.93 Z.91 Z.93 <thz.93< th=""> Z.93 Z.93 <thz< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 CO.2 (µg/m³) (µg/m³) (µg/m³</td><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 <th< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 RNT:1 CO22 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0.017 0.017 2.99 8.07 2.99 102 NA 212 231 219 223 136 176 911 416 3.91 0.017 10.07 2.43</td></th<></td></thz<></thz.93<></td></t<> <td>ble 11</td> <td>d - SIMI</td> <td>MTM zo</td> <td>ne 4-hr av</td> <td>g concen</td> <td>trations</td> <td></td>	VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 VOC3 VOC4 VOC3 VO17 VO33 VO17 Z.99 VO33 Z.91 Z.93 Z.91 Z.93 Z.93 Z.91 Z.93 Z.93 <thz.93< th=""> Z.93 Z.93 <thz< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 CO.2 (µg/m³) (µg/m³) (µg/m³</td><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 <th< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 RNT:1 CO22 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0.017 0.017 2.99 8.07 2.99 102 NA 212 231 219 223 136 176 911 416 3.91 0.017 10.07 2.43</td></th<></td></thz<></thz.93<>	VOCI VOC2 VOC3 VOC4 VOC5 VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 CO.2 (µg/m ³) (µg/m ³	VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 VOC3 <th< td=""><td>VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 RNT:1 CO22 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0.017 0.017 2.99 8.07 2.99 102 NA 212 231 219 223 136 176 911 416 3.91 0.017 10.07 2.43</td></th<>	VOCI VOC2 VOC3 VOC4 VOC5 VOC5 VOC3 RNT:1 CO22 108 NA 288 343 337 222 1344 368 4.04 0.023 8.07 2.99 102 NA 288 343 317 222 1344 368 4.04 0.017 0.017 2.99 8.07 2.99 102 NA 212 231 219 223 136 176 911 416 3.91 0.017 10.07 2.43	ble 11	d - SIMI	MTM zo	ne 4-hr av	g concen	trations													
UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UPBIRD UPBIRD<	Hugarey Hugarey <t< td=""><td>Hughrey Hughrey Hughrey</td><td>Lighter Lighter <thlighter< th=""> Lighter</thlighter<></td><td>UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UPBIRD UPBIRD</td><td>UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UPBIRD UBBIRD UPBIRD UPBIRD</td><td></td><td>VOCI</td><td>VOC2</td><td>VOC3</td><td>VOC4</td><td>VOC5</td><td>VOC6</td><td>VOC7</td><td>VOC8</td><td>VOC9</td><td>CO.I</td><td>NO2.1</td><td>PART.1</td><td>CO.2</td><td>N02.2</td><td>2</td><td></td><td></td><td></td></t<>	Hughrey	Lighter Lighter <thlighter< th=""> Lighter</thlighter<>	UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UPBIRD	UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UBBIRD UPBIRD UBBIRD UPBIRD		VOCI	VOC2	VOC3	VOC4	VOC5	VOC6	VOC7	VOC8	VOC9	CO.I	NO2.1	PART.1	CO.2	N02.2	2			
102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.43 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.50 104 NA 259 373 435 1037 202 1160 293 9.51 0.017 10.07 2.43 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 </td <td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98<td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.17 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 332 324 496 1152 379<td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 202 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 107 NA 256 330 334 2020 1357 363 4.06 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 324 496 1152</td><td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 205 214 221 166 796 933 2.76 0.017 9.87 2.43 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.79 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.08 107 NA 464 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 1152 379 4.16<td>102 NA 212 231 219 228 171 830 234 283 0.017 9.07 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 214 221 168 796 933 2.76 0.017 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 330 334 2020 1357 363 4.06 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 <t< td=""><td>0</td><td></td><td>NA</td><td>288</td><td>143 143</td><td>344</td><td>Lingah</td><td>Cundit</td><td>1344</td><td>268 11/1</td><td>4 04</td><td>(FTM)</td><td>('m/gµ)</td><td>2 00</td><td></td><td>Ê s</td><td>(-m/gµ) (M</td><td>_</td><td>_</td></t<></td></td></td></td>	102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 <td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.17 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 332 324 496 1152 379<td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 202 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 107 NA 256 330 334 2020 1357 363 4.06 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 324 496 1152</td><td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 205 214 221 166 796 933 2.76 0.017 9.87 2.43 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.79 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.08 107 NA 464 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 1152 379 4.16<td>102 NA 212 231 219 228 171 830 234 283 0.017 9.07 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 214 221 168 796 933 2.76 0.017 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 330 334 2020 1357 363 4.06 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 <t< td=""><td>0</td><td></td><td>NA</td><td>288</td><td>143 143</td><td>344</td><td>Lingah</td><td>Cundit</td><td>1344</td><td>268 11/1</td><td>4 04</td><td>(FTM)</td><td>('m/gµ)</td><td>2 00</td><td></td><td>Ê s</td><td>(-m/gµ) (M</td><td>_</td><td>_</td></t<></td></td></td>	102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.17 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 332 324 496 1152 379 <td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 202 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 107 NA 256 330 334 2020 1357 363 4.06 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 324 496 1152</td> <td>102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 205 214 221 166 796 933 2.76 0.017 9.87 2.43 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.79 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.08 107 NA 464 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 1152 379 4.16<td>102 NA 212 231 219 228 171 830 234 283 0.017 9.07 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 214 221 168 796 933 2.76 0.017 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 330 334 2020 1357 363 4.06 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 <t< td=""><td>0</td><td></td><td>NA</td><td>288</td><td>143 143</td><td>344</td><td>Lingah</td><td>Cundit</td><td>1344</td><td>268 11/1</td><td>4 04</td><td>(FTM)</td><td>('m/gµ)</td><td>2 00</td><td></td><td>Ê s</td><td>(-m/gµ) (M</td><td>_</td><td>_</td></t<></td></td>	102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 202 224 214 221 168 796 933 2.76 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 107 NA 256 330 334 2020 1357 363 4.06 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 324 496 1152	102 NA 212 231 219 228 171 830 234 2.83 0.017 9.87 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 206 224 214 221 168 796 933 2.76 0.017 9.87 2.43 104 NA 205 214 221 166 796 933 2.76 0.017 9.87 2.43 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.79 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.08 107 NA 464 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 1152 379 4.16 <td>102 NA 212 231 219 228 171 830 234 283 0.017 9.07 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 214 221 168 796 933 2.76 0.017 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 330 334 2020 1357 363 4.06 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 <t< td=""><td>0</td><td></td><td>NA</td><td>288</td><td>143 143</td><td>344</td><td>Lingah</td><td>Cundit</td><td>1344</td><td>268 11/1</td><td>4 04</td><td>(FTM)</td><td>('m/gµ)</td><td>2 00</td><td></td><td>Ê s</td><td>(-m/gµ) (M</td><td>_</td><td>_</td></t<></td>	102 NA 212 231 219 228 171 830 234 283 0.017 9.07 2.43 102 NA 206 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 224 214 221 168 796 933 2.76 0.017 9.07 2.40 104 NA 205 214 221 168 796 933 2.76 0.017 10.07 2.40 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 330 334 2020 1357 363 4.06 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 <t< td=""><td>0</td><td></td><td>NA</td><td>288</td><td>143 143</td><td>344</td><td>Lingah</td><td>Cundit</td><td>1344</td><td>268 11/1</td><td>4 04</td><td>(FTM)</td><td>('m/gµ)</td><td>2 00</td><td></td><td>Ê s</td><td>(-m/gµ) (M</td><td>_</td><td>_</td></t<>	0		NA	288	143 143	344	Lingah	Cundit	1344	268 11/1	4 04	(FTM)	('m/gµ)	2 00		Ê s	(-m/gµ) (M	_	_
102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 2.15 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98	102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 107 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 216-5.5.1 105 334 496 1152 379 4.16 0.025	102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 195 419 562 2.11 161 778 2.15 2.88 0.017 10.29 2.42 107 NA 406 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 1152 379 </td <td>102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 239 373 435 1037 202 1160 293 9.51 0.017 10.07 2.40 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.31 102 NA 195 419 562 211 161 778 2.15 2.68 0.017 10.29 2.42 107 NA 464 340 332 344 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 316 1152 379 4.16 0.025 8.45 2.75 106 NA 192</td> <td>10</td> <td>102</td> <td>AN</td> <td>212</td> <td>231</td> <td>219</td> <td>228</td> <td>171</td> <td>830</td> <td>234</td> <td>2.83</td> <td>0.017</td> <td>9.87</td> <td>2.43</td> <td>0.0</td> <td>22</td> <td></td> <td></td> <td></td>	102 NA 206 224 214 221 168 796 933 2.76 0.017 10.07 2.40 104 NA 239 373 435 1037 202 1160 293 9.51 0.017 10.07 2.40 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.31 102 NA 195 419 562 211 161 778 2.15 2.68 0.017 10.29 2.42 107 NA 464 340 332 344 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 316 1152 379 4.16 0.025 8.45 2.75 106 NA 192	10	102	AN	212	231	219	228	171	830	234	2.83	0.017	9.87	2.43	0.0	22			
104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 3322 334 2020 1357 363 4.06 0.021 7.81 2.98	104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 107 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	104 NA 218 323 383 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.08 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 116 - SIMIMTM zone 1-hr avg concentrations LEGEND O.025 8.45 2.75 (PPM) (PPM) (PPM) POL VOC21 Burst- UCL	104 NA 218 323 316 176 911 416 3.91 0.034 9.64 2.52 104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 330 346 1152 379 4.16 0.025 8.45 2.75 2161 RMIMTM 201 1152 379 4.16 0.025 8.45 2.75 2161 RMM PMMI PMMI <t< td=""><td>BR3</td><td>102</td><td>NA</td><td>206</td><td>224</td><td>214</td><td>221</td><td>168</td><td>796</td><td>933</td><td>2.76</td><td>0.017</td><td>10.07</td><td>2.40</td><td>0.0</td><td>25</td><td></td><td></td><td></td></t<>	BR3	102	NA	206	224	214	221	168	796	933	2.76	0.017	10.07	2.40	0.0	25			
104 NA 259 373 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 2.11 161 778 2.15 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98	104 NA 259 3/3 435 1037 202 1160 293 9,51 0,137 9,29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	104 NA 259 3/3 435 1037 202 1160 293 9,51 0,137 9,29 2,81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	104 NA 259 3/3 435 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 c Ile - SIMIMTM zone 1-hr avg concentrations LEGEND	104 NA 259 3/3 4.45 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 116 - SIMIMTM zone 1-hr avg concentrations LEGEND VOCI Burst-UCL CO.1 Oven VOC2 Plost-NO2 10ven	104 NA 259 3/3 4.45 1037 202 1160 293 9.51 0.137 9.29 2.81 102 NA 195 419 562 211 161 778 215 2.68 0.017 10.29 2.42 107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 106 NA 736 324 496 1152 379 4.16 0.025 8.45 2.75 2 116<- SIMIMTM zone 1-hr avg concentrations	7	<u>5</u>	VZ :	218	323	383	316	176	116	416	3.91	0.034	9.64	2.52	0.0	24	24 10.45		
107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98	107 NA 464 340 332 334 2020 1357 253 2.00 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	107 NA 464 340 332 334 2020 1357 263 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 c I e - SIMIMTM zone 1-hr avg concentrations LEGEND	107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 2 116 SIMIMTM zone 1-hr avg concentrations LEGEND LEGEND VOC1 Burst - UCL CO1 Oven	107 NA 464 340 332 334 2020 1357 363 4.06 0.021 7.81 2.98 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 2 106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 2 116- SIMI MTM zone 1-hr avg concentrations LEGENID VOC1 Burst- UCL CO.1 Oven 2.67 3.03 3.03 346 324 496 1152 379 4.16 0.025 8.45 2.75	V	40 E	V N	607	5/5	669 567	115/	707	1160	275	10.6	0.137	02.6	2.81	0.0	67			
	106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75	106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 c: Ile - SIMIMTM zone 1-hr avg concentrations LEGEND LEGEND Legend 100 100 100	106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 2: ILe - SIM1MTM zone 1-hr avg concentrations CO.1 CO.2 Burst - UCL CO.1 Oven (PPM) (PPM) (PPM) VOC2 Floor NO2.1 Oven	106 NA 736 330 346 324 496 1152 379 4.16 0.025 8.45 2.75 c 11e - SIM1MTM zone 1-hr avg concentrations CO.1 CO.2 Burst - UCL CO.1 Oven 2.67 3.03 2.67 Burst - MBR PART,1 Oven	N N	107	٩N	464	340	332	334	2020	1357	363	4.06	0.021	7.81	2.98	0.0	30	30 9.15		
e 11e - SIM1MTM zone 1-hr avg concentrations CO.1 CO.2 (PPM) (PPM) 2.67 3.03 2.43 2.76 Burst - LDA CO.1 VOC3 Burst - MBR PART.1 VOC4 Burst - LDA CO.2 CO.1 CO.1 VOC3 Burst - LDA CO.2 CO.1 CO.1 VOC3 Burst - LDA CO.2 CO.2 CO.1 CO.1 VOC3 Burst - LDA CO.2 CO.2 CO.1 VOC3 Burst - LDA CO.2	COLICOL 2013/01 COLICOL 202 (PPM) (PPM) 2.67 3.03 2.67 3.03 2.67 3.03 2.63 2.76 5.02 2.64 Burst - MBR PART.1 2.63 COLIC COLICOL 2.61 2.67 3.03 2.67 COLIC COLICOL 2.61 2.67 COLICOL 2.61 COLICOL 2.61 2.67 COLICOL 2.61 2.67 COLICOL 2.61 COLICOL 2.61 2.67 COLICOL 2.61 CO	(PPM) (PPM) (PPM) (POC1 Dians Oc1 Dians Dians <thdians< th=""> Dians <thdians< th=""> <thdians< th=""> <thdians< th=""></thdians<></thdians<></thdians<></thdians<>	2.67 3.03 Summary VOC3 Burst - MBR PART.1 2.43 2.76 VOC4 Burst - LDA CO.2	2.43 2.76 VOC4 Burst - LDA CO.2		ສ :	2.46	2.73								VOC5	Burst - GAR	N02.2	Heater					
c IIe - SIMIMTM zone 1-hr avg concentrations LEGFND CO.1 CO.2 CO.1 CO.2 PPMD (PPM) 2.67 3.03 2.43 2.76 2.46 2.73 2.46 2.73	COLICOL 2013/01/2016 1-10 avg concentrations COLICOL 202 (PPM) (PPM) 2.67 3.03 2.43 2.76 2.43 2.73 2.46 2.73 2.47 2.73 2.48 2.74 2.48	(PPM) (PPM) (PPM) (POC1 DULT COL DULT DOL DULT DOL DULT DOL DULT DOL DULT DOL DULT DULT <thdult< th=""> <thdult< th=""> DULT</thdult<></thdult<>	2.67 3.03 2.67 3.03 PART.I 2.43 2.76 2.73 VOC3 Burst - MBR PART.I 2.46 2.73 VOC5 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2	2.43 2.76 2.73 2.46 2.73 VOC4 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2	2.46 2.73 2.46 2.73 VOC5 Burst - GAR NO2.2	2 6	34.0	3.10								V0C6	Burst - KIT		Heater					
c IIe - SIMIMTM zone 1-hr avg concentrations LEGFND CO.1 CO.2 CO.1 CO.2 PPM) (PPM) 2.67 3.03 2.43 2.76 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.47 VOC5 2.48 NOC5 2.49 NOC5 2.40 2.73 2.46 2.73 2.47 VOC5 2.48 NOC5<	Construction Construction<	(PPM) (PPM) (PPM) 2.67 3.03 2.67 3.03 2.67 3.03 VOC3 Burst - LDA VOC3 2.43 2.76 2.73 VOC3 Burst - LDA CO.2 2.46 2.73 VOC4 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2 2.46 2.73 VOC5 Burst - GAR NO2.2 2.46 2.73 VOC5 Burst - GAR NO2.2 2.40 2.73 VOC5 Burst - GAR NO2.2 2.40 2.73 VOC5 Burst - GAR NO2.2	2.67 3.03 2.67 3.03 2.43 2.76 2.73 VOC3 Burst-LDA CO.2 2.46 2.73 2.46 2.73 VOC5 Burst-LDA CO.2 5.98 3.10 VOC5 Burst-KIT PART.1	2.43 2.76 VOC4 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2 5.98 3.10 VOC5 Burst - KIT PATT2 3.00 3.00 VOC5 Burst - KIT PATT2	2.46 2.73 2.46 2.73 5.98 3.10 VOC5 Burst - KIT PART.2 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2	PDA	2.49	3.62									Burst - RMT		Outdoor air					
c IIe - SIMIMTM zone 1-hr avg concentrations LEGFND CO.1 CO.2 CO.1 CO.2 CO.1 CO.2 2.67 3.03 2.43 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.46 2.73 2.47 VOC5 3.40 MBrst - MBr 2.40 MBrst - MBr 2.40 MBrst - MBr 2.40 MBrst - MBr 2.40 MBrst - MBr	CO.1 CO.2 I.I.G.1 CO.1 CO.2 Burst - UCL CO.1 VOC2 Burst - GAR NO2.2 S.46 CO.2 S.30 S.31.0	(PPM) (POC1 Durst - DUC1 COL1 COL2 COL1 COL1 COL2 COL1 COL2 COL2 COL2 COL2 COL1 COL2 COL1 COL2 COL2 COL2 COL2 COL2 COL2 COL2 Su141 COL3 Su141 COL3 Su141 COL3 Su141 COL3 Su23 <	2.67 3.03 2.67 3.03 Burst - MBR PART.I 2.43 2.76 2.73 VOC3 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - LDA CO.2 2.98 3.10 VOC5 Burst - KIT PART.1 34.20 3.03 VOC5 Burst - KIT PART.2 2.49 3.62 YOC7 Burst - BMT NO2.3	2.43 2.76 2.00C4 Burst - LDA CO.2 2.46 2.73 2.05 Burst - GAR NO2.2 5.98 3.10 VOC5 Burst - GAR NO2.2 34.20 3.03 VOC5 Burst - MBA CO.3 2.49 3.62 VOC7 Burst - BMA NO2.3	2.46 2.73 2.48 2.73 5.98 3.10 VOC5 Burst - KIT PART NO2.2 34.20 3.08 VOC6 Burst - KIT PART.2 249 3.62 VOC7 Burst - BMT NO2.3	MBA	2.46	3.01									Burst - BR3		Outdoor air					
c IIc - SIMIMTM zone 1-hr avg concentrations LEGFNID C0.1 C0.2 C0.1 C0.2 2.67 3.03 2.43 2.76 2.43 2.76 2.43 2.76 2.43 2.77 2.43 2.76 2.43 2.76 2.43 2.76 2.43 2.76 3.10 VOC3 3.4.20 3.03 3.4.20 3.01 2.49 3.62 2.46 3.01 2.46 3.01 2.49 3.62 2.46 3.01	CO.1 CO.2 Inst- UCL CO.1 CPM0 (PPM) (PPM) (POC) Burst- UCL CO.1 2.67 3.03 2.67 3.03 NO2.1 VOC2 Burst- UCL CO.1 2.67 3.03 2.43 2.76 NOC3 Burst- MBR PART.1 2.43 2.76 VOC3 Burst- MBR PART.1 VOC3 Burst- MBR PART.1 2.43 2.76 VOC3 Burst- MBR PART.1 VOC3 Burst- KIT PART.1 2.49 3.03 3.10 VOC5 Burst- KIT PART.2 VOC5 Burst- KIT PART.2 2.49 3.62 VOC5 Burst- BMT NO2.3 VOC5 Burst- BMT NO2.3 2.46 3.01 VOC9 Burst- BMT NO2.3 VOC9 Burst- BMT NO2.3 2.46 3.01 VOC9 Burst- BMT NO2.3 VOC9 Burst- BM7 NO2.3	(PPM) (POC) (PPM) (POC) (PPM) (POC) (PPM) (POC) (PPM) (PPM) <th< td=""><td>2.67 3.03 2.67 3.03 PART.I 2.43 2.76 3.03 VOC3 Burst - MBR PART.I 2.46 2.73 2.46 2.73 VOC5 Burst - LDA C0.2 2.46 2.73 VOC5 Burst - KIT NO22 VOC5 Burst - KIT PART.2 3.40 3.01 VOC5 Burst - KIT PART.2 VOC5 Burst - KIT PART.2 3.40 3.02 3.08 VOC7 Burst - MBA C0.3 2.46 3.01 VOC8 Burst - BMT NO23 2.46 3.01 VOC9 Burst - BMT NO23</td><td>2.43 2.76 VOC4 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2 5.98 3.10 VOC6 Burst - KIT PART.2 34.20 3.08 VOC6 Burst - MBA CO.3 2.49 3.62 VOC7 Burst - MBA CO.3 2.46 3.01 VOC9 Burst - BMT NO2.3</td><td>2.46 2.73 2.46 2.73 5.98 3.10 VOC5 Burst - GAR NO2.2 34.20 3.08 VOC6 Burst - MBA CO.3 2.49 3.62 VOC8 Burst - BMT NO2.3 2.46 3.01 VOC9 Burst - BMT NO2.3</td><td>BR</td><td>3.13</td><td>2.99</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2.67 3.03 2.67 3.03 PART.I 2.43 2.76 3.03 VOC3 Burst - MBR PART.I 2.46 2.73 2.46 2.73 VOC5 Burst - LDA C0.2 2.46 2.73 VOC5 Burst - KIT NO22 VOC5 Burst - KIT PART.2 3.40 3.01 VOC5 Burst - KIT PART.2 VOC5 Burst - KIT PART.2 3.40 3.02 3.08 VOC7 Burst - MBA C0.3 2.46 3.01 VOC8 Burst - BMT NO23 2.46 3.01 VOC9 Burst - BMT NO23	2.43 2.76 VOC4 Burst - LDA CO.2 2.46 2.73 VOC5 Burst - GAR NO2.2 5.98 3.10 VOC6 Burst - KIT PART.2 34.20 3.08 VOC6 Burst - MBA CO.3 2.49 3.62 VOC7 Burst - MBA CO.3 2.46 3.01 VOC9 Burst - BMT NO2.3	2.46 2.73 2.46 2.73 5.98 3.10 VOC5 Burst - GAR NO2.2 34.20 3.08 VOC6 Burst - MBA CO.3 2.49 3.62 VOC8 Burst - BMT NO2.3 2.46 3.01 VOC9 Burst - BMT NO2.3	BR	3.13	2.99																

PART.3 (µg/m³) 9.09	PART.3 (µg/m ³) 9.92 16.85 18.47 11.52 9.44 9.44 9.74 10.02	PART:3 (µg/m ³) 4.90 11.21 12.03 7.48 5.35 12.57 4.72 4.72		
NO2.3 (PPM) 0.044	NO2.3 (PPM) 0.060 0.100 0.107 0.058 0.107 0.058 0.107	NO2.3 (PPM) 0.029 0.051 0.055 0.040 0.031 0.031 0.031 0.028		
CO.3 (PPM) 6.88	CO.3 (PPM) 8.62 9.18 9.18 8.78 8.78 8.78 8.63 9.31 8.59 8.59	CO.3 (PPM) 7.10 6.77 6.83 6.23 6.23 6.23 6.23 7.19 7.19		Oven Oven Oven Heater Heater Outdoor air Outdoor air
PART.1 (μg/m³) 7.38	PART.1 (µg/m³) 6.81 9.33 9.19 9.12 9.12 10.16 6.75 7.04	PART.1 (µg/m ³) 6.39 7.78 7.42 6.93 8.08 8.08 6.17 6.56	PART.1 (µg/m ³) 6.41 7.71 7.71 7.71 7.71 7.71 7.71 7.89 6.67 7.89 6.67 6.67 6.63 6.34	CO.I NO2.I PART.I CO.2 NO2.2 PART.2 CO.3 NO2.3 PART.3 PART.3
NO2.1 (PPM) 0.019	NO2.1 (PPM) 0.121 0.104 0.104 1.028 0.104 0.118 0.118	NO2.1 (PPM) 0.013 0.013 0.014 0.014 0.014 0.012 0.012	NO2.1 (PPM) 0.026 0.024 0.024 0.027 0.025 0.025 0.026	Burst - UCL Floor Burst - MBR Burst - LDA Burst - LDA Burst - LDA Burst - BMT Burst - BMT Burst - BMT
CO.1 (PPM) 2.80	CO.1 (PPM) 5.80 5.25 5.25 5.73 5.73 5.73 5.73 5.73 5.73	CO.1 (PPM) 2.53 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.98 2.98	CO.I (PPM) 4.16 3.73 3.65 3.865 3.865 3.865 4.83 3.61 4.19 4.20	EGEND VOC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3
VОС9 (µg/m ³) 238	VOC9 (μg/m ³) 495 437 437 488 688 485 485 489 459	VOC9 (μg/m ³) 250 214 214 244 239 266 254 254 254	V OC9 (μg/m ³) 349 303 365 343 343 349 349 352	
VOC8 (μg/m³) 1025	VOC8 (µg/m ³) 1972 1972 1972 2192 2158 2158 2188 2105	VOC8 (μg/m ³) 1229 959 959 959 11144 901 1176	V OC8 (μg/m ³) 1598 1305 1362 1527 1527 1530 1530	
VOC7 (µg/m³) 223	VOC7 (μg/m ³) 414 381 381 381 381 384 7540 1209	VOC7 (μg/m ³) 224 192 192 202 215 188 484 484 276	VOC7 (μg/m ³) 300 265 265 274 274 253 254 1138 476	
/0C6 ug/m³) 232	VOC6 (μg/m ³) 491 435 435 464 478 478 478 451	VOC6 (µg/m ³) 244 210 223 344 204 249 239	VOC6 (μg/m ³) 338 338 297 297 293 340 336	
VOC5 (μg/m³) 205			тations VOC5 (µg/m ³) 254 218 215 215 383 383 251 251 251	ations
VOC4 (µg/m ³) 232	One peak concentrations : VOC3 VOC4 VOC3) (µg/m³) (µg/m³) (µg/m³) 478 478 296 423 423 273 424 423 273 429 467 326 456 477 338 451 1194 508 552 471 294 252 440 203	ne 24-hr avg concentrations VOC3 VOC4 VOC5 (µg/m³) (µg/m³) (µg/m³) 237 247 206 205 213 170 202 209 166 213 226 204 213 226 204 213 238 230 213 238 230 213 238 230 219 238 230 309 243 206	me 4-hr avg concentrations VOC3 VOC4 VOC5 VOC3 VOC4 VOC5 (µg/m³) (µg/m³) (µg/m³) 326 337 254 287 295 218 281 289 215 281 289 215 281 289 215 298 327 269 319 342 272 355 339 251 581 335 251 581 335 251	concent
VOC3 (µg/m³) 227	L peak con VOC3 (µg/m ³) 478 424 424 425 431 431 552 552	: 24-hr av VOC3 (ңg/m³) 237 205 202 202 213 227 197 249 309	2 4-hr avg VOC3 326 281 281 281 281 319 319 315 581 581	: I-hr avg
VOC2 (µg/m³) (9448	ATH zone VOC2 (µg/m ³) (17962 17962 12331 11254 12252 15709 15709 10416 20365 20365	<u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	ATH zone VOC2 NA NA NA NA NA NA NA NA NA NA NA NA NA	ITH zone
VOCI (µg/m³) (446	- SIMIM VOCI (μg/m ³) 98 <	SIMIM VOC1 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98	1 SIMIM VOC1 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98	- SIM1M CO.I CO.I 4.15 3.84 4.31 4.12 4.02 4.02
VOCI VOC2 VOC3 VOC4 VOC5 V (μg/m ³) (μg/m ³) (μg/m ³) (μg/m ³) (μg/m ³) (24 hr avg 446 9448 227 232 205	Table 12b - SIMIMTH zo VOCI VOC3 VOC3 VAC1 VOC3 VOC3 BA2 98 17962 BR3 98 1774 BR4 98 1254 HAL 98 1254 HAL 98 1254 MAL 98 10416 MBA 98 10416 MBR 98 10774	Table 12c - SIMIMTH zo VOCI VOC2 VOCI VOC2 VBA2 98 BR2 98 10703 BR3 98 8217 HAL 98 8217 HAL 98 8217 MBA 98 10703 MBA 98 10245 MBA 98 11316 MBR 98 11316	Table 12d - SIMIMTH zo VOCI VOC2 VDCI VOC2 BA2 98 NA BR2 98 NA BR3 98 NA HAL 98 NA LDA 98 NA MBA 98 NA	Table 12e - SIM1MTH zone 1-hr avg concentrations CO.1 CO.1 RA2 BR2 BR2 3.81 BR2 3.84 HAL 4.31 KTT LDA LDA 4.12 MBA 4.05

PART.3 (µg/m ³) 15.79	PART.3 (4)(9)(1,5) 1,51 1,51 1,51 1,51 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 33,53 31,87 7,17 7,17 7,17 7,17 7,17 7,17 7,17	PART.3 (ug/m ²) 3.47 0.91 19.84 16.80 17.01 17.01 17.01 17.82 21.48 16.50 17.82 3.03 3.03		
1				
NO2.3 (PPM) 0.086	NO2.3 (PPM) 0.120 0.129 0.196 0.195 0.195 0.193 0.193 0.191 0.191 0.191 0.191	NO2.3 (PPM) (PPM) 0.056 0.093 0.093 0.093 0.092 0.104 0.005 0.053		
CO.3 (PPM) 6.68	CO.3 9.67 9.67 9.28 10.40 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.35 10.36 10.36 10.36 10.37 10.36 10.37 10.36 10.37 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.37 10.36 10.37 10.36 10.37 10.36 10.37 10.3	CO.3 (PPM) 6.78 6.78 6.78 6.79 6.79 6.73 6.73 6.73 6.73 6.70 6.70 6.70 6.71		
PART.2 (µg/m ³) 10.81	PART.2 (Jug/m ³) 10.65 10.65 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.63	PART:2 (µg/m ³) (µg/m ³) 10.13 9.69 11.21 11.21 11.21 11.21 11.22 11.29 11.29 11.29 11.29 11.29 11.29 10.05	РАКТ.2 (µg/m ³) 9.80 8.92 8.92 8.92 8.92 11.18 11.18 11.13 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34	Oven Oven Oven Heater Heater Heater Heater Outdoor air Outdoor air
NO2.2 (PPM) 0.009	NO2.2 (PPM) 0.015 0.018 0.020 0.023 0.023 0.023 0.023 0.019 0.014 0.014	N02.2 (PPM) 0.006 0.009 0.010 0.011 0.009 0.011 0.009 0.011 0.009 0.009 0.009 0.001 0.005	NO2.2 (PPM) (PPM) 0.005 0.005 0.009 0.009 0.008 0.008 0.008 0.004 0.004 0.004	CO.I NO2.1 PART.1 CO.2 NO2.2 PART.2 CO.3 NO2.3 PART.3
CO.2 (PPM) 1.59	CO.2 CO.2 (PPM) 2.31 2.19 2.53 2.55 2.55 2.55 2.55 2.55 2.55 2.55	CO.2 (PPM) (CO2 CO2 (PPM) 2.17 2.17 2.17 2.10 2.10 2.10 2.10 2.10 2.11 2.11 2.11	Burst - CLO Burst - CLO Floor Burst - DR Burst - DR Burst - LR Burst - BA2 Burst - GAR Burst - BA2 Burst - BA3
PART.1 (μg/m ³) 10.87	PART.1 (µg/m ³) 10.73 10.73 11.99 11.29 11.97 11.97 11.97 11.93 11.93 11.93 11.93	PART.1 (µg/m ³) (µg/m ³) (0.17 9.74 11.23 11.23 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.24 11.72	PART.I (ug(m ³) 9.94 9.05 11.23 11.23 11.23 11.23 11.19 11.11 11.11 11.13 11.23 11.23 11.13 11.23 11.	VOC: VOC: VOC: VOC: VOC: VOC: VOC: VOC:
NO2.1 (PPM) 0.019	NO2.1 (PPM) 0.064 0.055 0.055 0.055 0.055 0.055 0.056 0.056 0.056 0.056 0.056	NO2.1 (PPM) 0.011 0.013 0.013 0.013 0.013 0.013 0.015 0.015 0.017 0.011	NO2.1 NO2.1 0.023 0.018 0.018 0.019 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068	
CO.1 (PPM) 2.26	C01 (PPM) 4.22 3.35 3.35 3.35 3.35 5.45 5.45 5.45 5.73 5.73 5.73	CO.1 (PPM) (PPM) 2.22 1.92 1.92 1.92 2.20 2.10 2.10 2.12 2.12	CO.1 (PPM) 3.72 3.63 2.63 2.63 2.63 3.72 8.07 8.07 8.07 3.51 3.55	
VOC9 (µg/m³) 157	VOC9 (µUm ³) (µUm ³) (104 104 118 167 167 168 178 632 632 178	VOC9 (µg/m ³) (µg/m ³) (10 111 111 111 111 113 113 113 113	VOC9 (µg/m ³) 246 156 158 158 158 158 158 158 116 116 117 117 226 226	
VOC8 (µg/m³) 121	VOC8 (µg/m ³) (µg/m ³) (181 165 165 165 153 258 457 457 186 188	VOC8 (µg/m ³) 121 119 110 110 110 120 119 120 120	VOC8 (µg/m ³) 153 140 140 141 186 255 255 136 136 136	
VOC7 (µg/m ³) 144	VOC7 (µg/m ³) (µg/m ³) 11511 11511 1151 177 178 178 178 178 178 178 178 178 17	VOC7 (ug/m ³) 1356 113 115 116 116 110 110 110	VOC7 (µg/m ³) 4308 111 111 112 112 112 113 113 113	
VOC6 (μg/m ³) 178	VOC6 (µg/m ³) 325 325 325 244 434 434 471 1627 236 471 236	VOC6 (µg/m ³) 167 167 134 138 138 138 153 153 153 153	VOC6 VOC6 (µg/m ³) 221 228 150 150 150 150 150 339 239 204 216	
VOC1 VOC2 VOC3 VOC4 VOC3 (1g/m²) (1g/m²) (1g/m²) (1g/m²) (1g/m²) (4hr avg 813 9167 127 165 149	ns VOC5 (VOC5 412 200 146 146 146 153 234 211 153 214 153 213 234 211 153 234 211 237 234 211 237 237 237 237 237 237 237 237 237 237	c 24-hr avg concentrations (ug/m) (ug/m) (ug/m)	Table 13d - SIM2FLC zone 4-hr avg concentrations VOC1 VOC3 VI VIC3 VIC3	ations
VOC4 (µg/m ³) 165	Epeak concentrations VOC3 VOC4 VOC5 VIOC3 VOC3 VOC5 (µg/m) (µg/m) (µg/m) 107 384 412 108 253 203 108 193 193 107 226 234 107 225 234 107 225 234 107 226 234 103 265 233 103 265 133 103 355 234 103 365 133 103 365 153 103 465 153 103 334 373 103 334 372 103 334 373 103 105 153 103 498 348	g concen VOC4 VOC4 164 116 115 116 117 118 113 113 113 113 113 113 113 113 113 113 129 200 210 210	2 concenti VOC4 (µgm ³) 258 169 128 126 128 126 128 126 128 126 128 126 232 232 317	- SIM2FLC zone 1-br avg concentrations - SIM2FLC zone 1-br avg concentrations (PPM) 3.36 1.76 3.36 1.77 3.16 1.68 3.16 1.77 3.26 1.70 3.26 1.70 3.26 1.70 3.26 1.70 3.26 1.71 3.26 1.70 3.26 1.70 3.27 1.70 3.27 1.70 3.26 1.70 3.27 1.70 3
VOC3 (µg/m ³) 127	2 peak co VOC3 (µ0/m) (µ2/m) 107 107 107 107 105 105 103 103 103 103 103 103 103 103 103 103	24-hr av VOC3 (µg/m ³) (µg/m ³) 100 100 100 100 100 100 100 10	24-hr ave v voc3 (ugm ³) 103 103 101 101 101 101 101 100 100 100	l-hr avg
VOC2 (µg/m ³) 9167	FLC zonk (µg/m ³) 12014 12014 14271 6456 6586 6586 6514 6514 8057 8057 8057 8299	H_C zonc VOC2 (128m ³) (128m ³) (1	HLC ZOIN VOC2 (μg/m ³) NA NA NA NA NA NA NA NA NA NA NA NA	Cone CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2
VOCI (μg/m ³) 813	Table 13b - SIM2FLC zone VOCI VOC3 VOC1 VOC3 VPC1 VOC3 VPC2 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VPC3 VP1 120 VP3 120 VP3 120 VP3 120 VP3 120 VP3 120 VP3 1371 VP4 108 VP4 108 VP4 108 VP4 114 VP4 114 VP4 116 VP3 116	36 - SIM2FLC zone 2. VOCI VOCI VOCI VOCI VOCI VOCI Verticity 0.0 10.0 285 7728 110 285 7728 103 110 8222 103 110 8222 103 101 3657 104 101 3657 106 102 4991 107 103 4315 106 103 3637 106 103 8309 105 104 8309 6333	d - SIM2 VOCI (ugm ³) 112 112 112 103 104 101 101 101 103	
24 hr avg	Table 13 BA2 BA3 BR3 BR3 BR3 BR3 BR3 BR4 ENT HAL KFA MBA MBA	Table 13c BA3 BA3 BA3 BR3 BR3 BR3 BR3 BR3 BR3 BR3 MBA MBA MBR	Table 13 BA2 BA3 BA3 BB3 BB3 BB3 BB3 BB3 BB3 BB3 BB3	Table 13e BA2 BA3 BR3 BR3 BR3 BR3 BR3 BR3 BR4 CF1 KF1 KF1 KF1 MBA

PART.3 (μg/m³) 20.38	PART3 (ug/m ³) 33,01 31,16 31,16 31,16 48,18 48,18 48,18 48,18 44,16 35,67 31,42 31,42 31,42 31,42 31,42 31,42 31,42	PART3 PART3 (µg/m²) 18.41 2.11 2.11 2.1.6 2.1.07 2.1.6 2.2.19 13.31 13.93 17.98 17.99 17.9		
NO2.3 (PPM) 0.092	NO2.3 (PPM) (PPM) (0.189 0.185 0.185 0.239 0.219 0.219 0.219 0.213 0.213 0.213 0.213 0.213 0.213 0.213	NO2.3 (PPM) 0.099 0.032 0.035 0.038 0.113 0.038 0.118 0.118 0.118 0.118 0.095		
CO.3 (PPM) 6.60	CO.3 (PPM) (CO.3 CO.3 C.58 C.58 C.58 C.58 C.58 C.59 C.59 C.53 C.53 C.53 C.53 C.53 C.53 C.53 C.53		
PART.1 (μg/m³) 11.22	PART:1 (ug/m ³) 12.22 10.13 12.13 12.13 12.13 12.20 12.42 12.47 12.47 12.47 12.47 12.42 12.42 12.42	PART.1 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) 8.98 8.98 11.39 11.46 11.46 11.46 11.43 11.54 11.54 11.53	PART.1 (ug/m ³) (1206 8.26 8.26 8.26 11.35 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.22 12.22 12.23	Oven Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
NU2.1 (PPM) 0.017	NO2.1 (PPM)	NO2.1 (PPM) 0.012 0.001 0.011 0.012 0.012 0.013 0.013 0.013 0.013 0.011 0.011	NO2.1 (PPM) 0.012 0.002 0.005 0.014 0.014 0.014 0.014 0.014 0.013	CO.I NO2.1 PART.1 CO.2 PART.2 CO.3 CO.3 NO2.3 PART.3 PART.3
(PPM) 1.94	CO.1 (PPM) 3.19 3.19 3.25 2.95 2.95 2.95 2.95 2.86 2.88 2.89 2.89 2.89 2.81 2.87	CO.I (PPM) (CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2	Burst - CLO Burst - CLO Floor Burst - DBR Burst - LR Burst - LR Burst - BA2 Burst - BR3 Burst - BR3
vосу (µg/m³) 153	VOC9 (µg/m²) (µg/m²) 139 139 118 214 471 118 215 532 137 160	VOC9 (µg/m ³) 107 113 113 113 113 113 113 113 113 113 11	VOC9 (160 ^(m)) 111 111 111 111 100 100 100 100 100 10	EGEND VOC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3
99 99	VOC8 (µg/m ²) 102 102 102 112 112 112 102 102 102	(fe ^{te} d) (fete ⁽¹⁾ (fete ⁽¹⁾ (fete ⁽¹⁾) (fete ⁽¹⁾) (fet ⁽¹⁾	VOC8 (418/m ³) 98 98 98 98 98 98 98 98	
VOC/ (µg/m ³) 167	VOC7 (µg/m²) (µg/m²) 141 141 157 157 116 543 543 648 648 648 112 123	VOC7 (lug/m ⁴) 1270 1234 123 113 157 157 157 156 156 156 157 156	VOC7 (ug/m ³) 3223 119 119 119 232 292 292 291 291 291	
VUC0 (µg/m ³) 145	VOC6 (µg/m²) 151 151 142 143 143 133 135 135 132 132 132 132 132	VOC6 (µg/m ¹) 107 104 104 103 108 108 108 108 105 105	VOC6 (48/m ¹) 120 99 99 99 99 99 99	
(Jug/m ³) 134	Ons VOC5 (µg/m²) 112 110 110 1110 112 113 1347 112 112	Mutations (ug/m ¹) (ug/m ²) 103 103 103 103 104 104 102 102 102	rations VOC5 99 98 98 98 99 99 99 99	rations
v.0.4 (µg/m³) 137	k concentrations 3 VOC4 VOC5 9) (µg/m ³) (µg/m ³) 126 [12] 128 [19] 121 [10] 121 [10] 121 [10] 121 [10] 121 [10] 123 [13] 130 [31] 130 [31] 131 [13] 132 [13] 132 [13] 131 [13]	avg concentrations 1 VOC4 VOC5 1 Vigun') (µgm²) 1 (µgm²) (µgm²) 102 (µg 103 114 102 101 102 101 103 103 102 101 103 102 101 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 103 102 103 102 102 103 102 102 103 102 102	g concentrations VOC4 VOC3 UppmP) (upmP) (upmP) (upmP) 99 99 98 98 98 98 98 98 98 98 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99	3 concent
v.0.c. (µg/m³) 135	e peak co VOC3 (µg/m ³) (µg/m ³) 117 221 117 113 113 325 529 621 325 529 621 325 529 621 114 114	0 0 3 3 5 3 3 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e 4-hr avg. VOC3 / 99 114 114 113 237 237 237 237 234 234 234 234 234 237 237 237 237 234	e I-hr avi
VUC2 (µg/m³) 7974	FLM zon VOC2 (µg/m²) 8966 6493 7895 6493 7895 6493 7190 6320 6320 6320 6320 7190 7190	ELM zon VOC2 5116 5116 5116 5116 4705 4705 4406 4406 4406 4406 4406 4406 4406 44	TLM zon VOC2 (ug/m) NA NA NA NA NA NA NA NA NA NA NA NA NA	TM ZOT
vuci vuci vuce vuce vuce vuce vuce vuce vuce vuce	b - SIM2FLM zone peak cc wmm wmm wmm wmm 278 wmm 279 113 109 7895 109 7895 109 7895 109 7895 113 6530 123 6319 132 6320 132 6330 123 7408 124 7408 125 757 123 757	C - SIM2FLM zone 2 voc1 voc2 v (ugin*) (ugin*) (u 132 1132 1132 1132 388 13935 1 102 4340 1 101 2719 1 100 2719 1 100 3449 1 154 4700 1 154 4700 1 166 3449 1 166 4239 2 108 4338 1 108 4338 1 108 4338 1 108 4339 1 108 4338 1 108 4358 1 108 435	Table 14d - SIM2FLM zone 4-hr avg VOC1 VOC2 VOC3 106 NA 99 BA3 601 NA 99 BA3 601 NA 99 BR3 90 NA 133 BR3 99 NA 133 BR4 98 NA 133 BR4 98 NA 133 BR4 98 NA 133 BR4 98 NA 237 BR4 98 NA 237 BR4 98 NA 237 BR4 98 NA 237 HAL 99 NA 237 HA 174 90 NA MBR 100 NA 244 MBR 90 NA 244	Table 14e - SIM2FLM zone 1-hr avg concentrations (CO.I (PPM) BA2 2.62 BA3 1.84 BA3 2.64 BR2 2.64 BR3 2.64 BR4 2.66 CKT 2.66 BR5 2.66 BR5 2.66 BR5 2.66 BR5 2.66 BR5 2.66
24 hr avg	Table 14b - 4 14b - 14b - 14b - 14b	Table 14c BA2 BA3 BBA3 BR4 BR3 BR3 BR3 BR4 BR4 CFA HAL KFA MBA	Table 14 BA2 BA3 BBA3 BBA3 BBA DR DR DR HAL HAL LR MBA MBR	Table 14 BA2 BBA3 BBR3 BBR3 BBR4 BBR4 ENT HAL KFA LR

1.1. Startisti frameration 1.1. Startisti frameration 1.1. Startisti frameration 1.1. Startisti	VXX VXX <th>24 hr avg</th> <th>VOCI VOC2 VOC3 VOC3 VOC4 VOC5 V (192/m²) (192/m²) (192/m²) (192/m²) (1 24 hr avg 1441 13042 186 178 178</th> <th>(ug/m³) 13042</th> <th>V UC:3 (µg/m³) 186</th> <th>v 0.0-4 (fug/m³) 178</th> <th>(ful/gu)</th> <th>V.0Co (µg/m²) 181</th> <th>(ng/m³)</th> <th>v.0.08 (µg/m²) 102</th> <th>VOC9 (µg/m³) 185</th> <th>CO.1 (PPM) 2.37</th> <th>NO2.1 (PPM) 0.016</th> <th>(µg/m³) 8.49</th> <th>(PPM) (PPM) 6.93</th> <th>0.063 (PPM)</th> <th>1.92 (µg/m³) 7.92</th>	24 hr avg	VOCI VOC2 VOC3 VOC3 VOC4 VOC5 V (192/m²) (192/m²) (192/m²) (192/m²) (1 24 hr avg 1441 13042 186 178 178	(ug/m ³) 13042	V UC:3 (µg/m ³) 186	v 0.0-4 (fug/m ³) 178	(ful/gu)	V.0Co (µg/m²) 181	(ng/m ³)	v.0.08 (µg/m²) 102	VOC9 (µg/m ³) 185	CO.1 (PPM) 2.37	NO2.1 (PPM) 0.016	(µg/m ³) 8.49	(PPM) (PPM) 6.93	0.063 (PPM)	1.92 (µg/m ³) 7.92
WORE WORD WORD <th< td=""><td>WORD WORD <th< td=""><td>able 1</td><td>5b - SIM2</td><td>FLH zon</td><td>e peak ce</td><td>ncentrali</td><td>ons</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></th<>	WORD WORD <th< td=""><td>able 1</td><td>5b - SIM2</td><td>FLH zon</td><td>e peak ce</td><td>ncentrali</td><td>ons</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	able 1	5b - SIM2	FLH zon	e peak ce	ncentrali	ons										
Hyber Hyber <th< td=""><td>Hybrin Hybrin Hybrin<</td><td></td><td>VOCI</td><td>V0C2</td><td>voc3</td><td>VOC4</td><td>vocs</td><td>VOC6</td><td>VOCT</td><td>voc8</td><td>V0C9</td><td>C0.1</td><td>NO2.1</td><td>PART.1</td><td>CO.3</td><td>N02.3</td><td>Ē.</td></th<>	Hybrin Hybrin<		VOCI	V0C2	voc3	VOC4	vocs	VOC6	VOCT	voc8	V0C9	C0.1	NO2.1	PART.1	CO.3	N02.3	Ē.
600 601 700 601 700 <td>000 000<td>5</td><td>(m/gu)</td><td>(Fm/gu)</td><td>(m/grl)</td><td>(AU/Brl)</td><td>(un/gu)</td><td>(40/8rl)</td><td>(400/Brl)</td><td>(m/gu)</td><td>(-m/8rl)</td><td>(M'I') 5.82</td><td>(W.I.I)</td><td>(Jul/Bil)</td><td>(M-1-1)</td><td>(M/1/1)</td><td>g i</td></td>	000 000 <td>5</td> <td>(m/gu)</td> <td>(Fm/gu)</td> <td>(m/grl)</td> <td>(AU/Brl)</td> <td>(un/gu)</td> <td>(40/8rl)</td> <td>(400/Brl)</td> <td>(m/gu)</td> <td>(-m/8rl)</td> <td>(M'I') 5.82</td> <td>(W.I.I)</td> <td>(Jul/Bil)</td> <td>(M-1-1)</td> <td>(M/1/1)</td> <td>g i</td>	5	(m/gu)	(Fm/gu)	(m/grl)	(AU/Brl)	(un/gu)	(40/8rl)	(400/Brl)	(m/gu)	(-m/8rl)	(M'I') 5.82	(W.I.I)	(Jul/Bil)	(M-1-1)	(M/1/1)	g i
100 301 131 310 531 0111 930 030 0101 930 0101 930 0101 930 0101 930 0101 930 0101 933 931 933 933 933 933 933 933 933 933	410 391 123 379 554 0111 9.05 9.09 418 123 310 544 0097 0007 0009	:5	227	13888	429	436	397	489	469	124	420	6,30	0.138	9.04	6.63	0.102	
4:8 4:34 1:23 3161 5:00 0.111 9:30 9:30 0:010 3:8 4:13 1:13 4:12 5:14 0:07 9:31 0:00 0:113 3:8 4:10 1:19 4:17 5:14 0:07 9:31 0:00 0:113 3:8 4:10 1:19 4:17 1:10 0:37 0:10 0:103 0:103 3:8 4:20 1:23 3:14 0:010 0:37 0:11 0:37 0:103	438 424 123 316 5.60 0.101 9.30 9.	2	188	12399	375	379	341	410	393	123	379	5.54	0.111	9.65	9.89	0.103	13.
47 421 121 382 530 0.070 0.031	47 472 173 573 500 0007<	9	190	13589	404	399	366	438	424	123	3161	5.60	0.113	9.30	9.89	0.103	10.0
88 418 121 412 514 0.097 0.016	9.8 8.18 7.21 4.12 5.46 0.009 0.005	2	188	13277	403	397	365	437	422	122	382	5.30	0.107	9.82	10.00	0.131	16.2
41 630 120 642 544 0.008 1003 0.008 0.003 0.013	41 625 129 642 544 0.008 10.03 0.035 0.036 0.036	~ 1	220	12860	381	1799	202	398	418	121	412	5.46	0.099	10.09	0.00	0.114	15.5
381 0.02 1.01 0.037 9.016 0.037 0.016 0.037 0.016 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.035 0.013 0.0	381 0.02 1.0 0.07 1.000 0.001	=	100	11544	414	198	343	411	482	671	4/12	14.0	0.108	10.68	10.32	0.168	597
1138 410 113 420 113 420 113 420 113 420 113 420 113 420 113 420 113 420 113 123 371 0.030 923 1033 <	11/10 41/1 10/1 10/1 00/1 </td <td>5</td> <td>081</td> <td>12202</td> <td>594</td> <td>356</td> <td>328</td> <td>186</td> <td>632</td> <td>071</td> <td>90 90 90</td> <td>5.14</td> <td>160.0</td> <td>0.00</td> <td>90.01</td> <td>0.140</td> <td>2.5</td>	5	081	12202	594	356	328	186	632	071	90 90 90	5.14	160.0	0.00	90.01	0.140	2.5
50 720 116 331 436 0081 0.03 <th0.03< th=""> 0.03 0.03<!--</td--><td>00 470 100 0.001<</td><td><i>,</i></td><td>512</td><td>13914</td><td>288 288</td><td>150</td><td>500</td><td>6971</td><td>410</td><td>R 2</td><td>403</td><td>01.10</td><td>116.0</td><td>1.6</td><td>9.94</td><td>0.105</td><td>4.4</td></th0.03<>	00 470 100 0.001<	<i>,</i>	512	13914	288 288	150	500	6971	410	R 2	403	0 1 .10	116.0	1.6	9.94	0.105	4.4
430 329 110 323 4.86 0081 10.23 0.023 <td>430 529 116 323 4.36 0.081 10.23 10.24 90m3 (ag/m3) (ag/m3)</td> <td>N N</td> <td>187</td> <td>13071</td> <td>60</td> <td>366</td> <td>368</td> <td>450</td> <td>429</td> <td>124</td> <td>387</td> <td>5.71</td> <td>0.120</td> <td>9.76</td> <td>10.00</td> <td>0.129</td> <td>14.6</td>	430 529 116 323 4.36 0.081 10.23 10.24 90m3 (ag/m3)	N N	187	13071	60	366	368	450	429	124	387	5.71	0.120	9.76	10.00	0.129	14.6
VOC6 VOC7 VOC8 VOC9 VOC1 VOC1 <th< td=""><td>VOC6 VOC7 VOC8 VOC9 VOC9 VOC9 VOC1 NO21 PART1 CO13 197 400 103 186 2.44 0016 8.22 700 197 400 103 186 2.44 0016 8.23 700 198 103 112 2.44 0016 8.23 700 117 198 103 182 2.44 0016 8.23 700 117 199 103 182 2.44 0015 8.24 700 117 199 103 182 2.44 0015 8.24 700 117 199 102 183 2.44 0016 8.36 599 117 102 183 2.44 0016 8.36 599 117 102 183 2.41 0016 8.36 599 117 102 103 1030 1030 1030 103<td>BR</td><td>167</td><td>10972</td><td>1472</td><td>324</td><td>286</td><td>345</td><td>329</td><td>116</td><td>323</td><td>4.86</td><td>0.081</td><td>10.23</td><td>10.29</td><td>0.148</td><td>16.8</td></td></th<>	VOC6 VOC7 VOC8 VOC9 VOC9 VOC9 VOC1 NO21 PART1 CO13 197 400 103 186 2.44 0016 8.22 700 197 400 103 186 2.44 0016 8.23 700 198 103 112 2.44 0016 8.23 700 117 198 103 182 2.44 0016 8.23 700 117 199 103 182 2.44 0015 8.24 700 117 199 103 182 2.44 0015 8.24 700 117 199 102 183 2.44 0016 8.36 599 117 102 183 2.44 0016 8.36 599 117 102 183 2.41 0016 8.36 599 117 102 103 1030 1030 1030 103 <td>BR</td> <td>167</td> <td>10972</td> <td>1472</td> <td>324</td> <td>286</td> <td>345</td> <td>329</td> <td>116</td> <td>323</td> <td>4.86</td> <td>0.081</td> <td>10.23</td> <td>10.29</td> <td>0.148</td> <td>16.8</td>	BR	167	10972	1472	324	286	345	329	116	323	4.86	0.081	10.23	10.29	0.148	16.8
VOC6 VOC7 VOC8 VOC7 VOC8 VOC7 VOC8 VOC7 VOC3 VOC3 <th< td=""><td>VOCS VOC7 VOC8 VOC9 VOC1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></th<>	VOCS VOC7 VOC8 VOC9 VOC1 VOC1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
WOLD WOLD <th< td=""><td>WOUD WOUD <th< td=""><td>ble 1</td><td>5c - SIM2</td><td>FLH zon</td><td>c 24-hr a</td><td>vg concer</td><td>ntrations</td><td>1001</td><td>1000</td><td>0000</td><td>1000</td><td>100</td><td></td><td>5 6 10 1</td><td>000</td><td>0.0014</td><td></td></th<></td></th<>	WOUD WOUD <th< td=""><td>ble 1</td><td>5c - SIM2</td><td>FLH zon</td><td>c 24-hr a</td><td>vg concer</td><td>ntrations</td><td>1001</td><td>1000</td><td>0000</td><td>1000</td><td>100</td><td></td><td>5 6 10 1</td><td>000</td><td>0.0014</td><td></td></th<>	ble 1	5c - SIM2	FLH zon	c 24-hr a	vg concer	ntrations	1001	1000	0000	1000	100		5 6 10 1	000	0.0014	
No. No. <td>1 1</td> <td></td> <td>VOCI</td> <td></td> <td>COOA</td> <td></td> <td>VUC5</td> <td>VUC6</td> <td>VOC1</td> <td>VUC8</td> <td>V UCY</td> <td>DPMI)</td> <td>UD201</td> <td>PART.1</td> <td>CO.3</td> <td>NU2.3</td> <td>HAR Jour</td>	1 1		VOCI		COOA		VUC5	VUC6	VOC1	VUC8	V UCY	DPMI)	UD201	PART.1	CO.3	NU2.3	HAR Jour
195 198 100 194 2.52 0016 7.87 7.00 0001 184 187 103 182 2.44 0015 8.39 6.99 0003 184 190 184 2.41 0015 8.39 6.99 0033 177 199 103 184 2.34 0016 8.86 6.99 0033 177 199 103 184 2.33 0014 8.86 6.99 0035 184 103 184 2.33 0014 8.34 6.99 0035 184 103 184 2.34 0016 8.34 6.99 0035 184 103 187 003 8.17 0016 8.34 6.99 0035 184 103 187 003 8.17 100 8.34 6.99 0035 173 101 203 0044 9.34 0044 8.43 6.99 <	193 193 103 194 2.52 0.016 7.87 7.03 184 187 103 182 2.43 0.015 8.83 6.93 185 188 103 184 2.44 0.015 8.83 6.93 177 193 103 184 2.33 0.014 8.69 6.97 177 193 103 184 2.33 0.014 8.69 6.97 184 103 184 2.33 0.014 8.69 6.97 184 103 184 2.33 0.014 8.69 6.97 184 103 184 2.33 0.014 8.69 6.97 184 103 184 2.44 0.015 8.84 6.99 173 101 2.99 0.014 8.69 6.99 173 101 2.99 0.014 8.69 6.99 291 103 197 197	2	167		185		175	187	460	103	186	2.44	0.016	8.22	7.00	0.058	4.18
184 187 103 18.2 2.40 0.015 8.39 6.98 0.003 183 193 103 18.2 2.43 0.015 8.43 7.03 0.033 173 188 103 18.4 2.43 0.015 8.43 7.03 0.033 173 188 103 18.4 2.33 0.014 8.69 6.99 0.033 184 187 103 183 2.41 0.015 8.43 7.04 0.035 184 187 103 183 2.41 0.016 8.44 6.99 0.035 184 103 183 2.41 0.016 8.44 6.99 0.035 173 1172 101 209 4.30 0.014 8.18 6.99 0.035 173 101 209 4.41 0.015 8.18 6.99 0.005 173 1173 101 209 4.43 0.016	184 187 103 182 2.40 0.015 8.39 6.99 183 193 131 2.45 0.015 8.43 7.01 173 193 103 132 2.43 0.015 8.43 7.01 173 193 103 184 2.43 0.015 8.43 7.01 173 193 103 184 2.73 0.014 8.66 6.97 173 187 103 183 2.41 0.015 8.43 7.03 184 187 103 183 2.43 0.014 8.23 6.96 184 103 183 2.44 0.015 8.43 7.03 184 103 193 193 193 193 193 193 197 1173 112 103 994 4.73 0.014 8.53 6.96 206 203 203 4.73 0.014 8.53 <t< td=""><td>12</td><td>178</td><td></td><td>661</td><td></td><td>182</td><td>561</td><td>861</td><td>601</td><td>194</td><td>2.52</td><td>0.016</td><td>7.87</td><td>7.03</td><td>0.050</td><td>0.5</td></t<>	12	178		661		182	561	861	601	194	2.52	0.016	7.87	7.03	0.050	0.5
189 92 03 312 245 0015 848 6.99 0038 177 199 003 184 2.41 0015 843 7.99 003 177 199 003 184 2.33 0016 8.86 6.99 0035 184 103 184 2.39 0014 8.86 5.99 0035 184 103 184 2.39 0014 8.86 7.03 0035 184 103 184 103 184 7.03 0035 184 103 164 2.33 0014 9.23 6.96 0035 184 103 1970 1773 101 2094 4.31 1014 9.23 6.96 0035 297 1173 101 2094 4.24 0045 8.63 0035 297 101 290 4.31 0045 8.64 0035 297 1010	189 192 101 312 2.45 0.015 8.03 6.99 177 199 103 184 2.33 0.016 8.83 6.99 177 199 103 184 2.33 0.016 8.83 6.99 177 199 103 183 2.33 0.014 8.83 6.99 181 187 103 183 2.44 0.015 8.47 7.03 181 187 103 183 2.44 0.016 8.83 6.99 181 187 103 183 2.44 0.015 8.47 7.03 181 187 102 184 2.34 0.016 8.85 6.96 189 107 197 197 197 197 197 193 189 1173 101 2.99 0.014 8.85 6.96 203 203 101 2.99 0.014 8.85 <t< td=""><td>2</td><td>161</td><td></td><td>182</td><td></td><td>172</td><td>184</td><td>187</td><td>103</td><td>18.2</td><td>2.40</td><td>0.015</td><td>8.39</td><td>6.98</td><td>0.061</td><td>6.0</td></t<>	2	161		182		172	184	187	103	18.2	2.40	0.015	8.39	6.98	0.061	6.0
183 188 03 184 2,41 0015 8,33 6,99 0003 177 193 103 184 2,33 0015 8,43 7,03 0035 184 193 103 184 2,33 0016 8,46 6,99 0035 184 187 103 184 2,39 0016 8,46 6,99 0035 184 187 103 184 2,39 0016 8,46 6,99 0035 184 187 103 183 2,33 0016 8,45 6,99 0035 184 233 0016 8,45 0016 8,45 6,99 0035 187 103 199 (19014) (19014) 1013 8,43 6,99 0035 2011 1173 101 290 0041 8,18 8,34 2,33 0047 8,43 8,93 2,93 0043 8,43 2,93 0035<	185 188 103 184 2.41 0.015 8.23 6.99 177 193 103 184 2.33 0.016 8.43 7.03 177 193 103 184 2.33 0.016 8.43 7.03 177 193 103 184 2.33 0.016 8.43 7.03 184 103 183 2.33 0.016 8.43 7.03 184 103 183 2.33 0.014 8.69 6.99 184 103 183 2.44 0.015 8.43 7.03 184 103 183 2.44 0.014 8.69 6.99 187 103 103 7.03 2.44 0.014 8.45 6.99 291 101 290 4.010 0.044 8.61 2.45 6.99 291 101 209 4.41 0.043 8.74 2.99 2.94 2.93	5	165		187		177	189	192	103	312	2.45	0.015	8.08	6.99	0.053	3.10
184 190 103 186 243 0.015 8.43 7.03 0.038 177 193 103 184 2.33 0.016 8.45 7.03 0.035 184 187 103 183 2.33 0.016 8.46 5.97 0.035 184 187 103 183 2.41 0.016 8.46 5.99 0.035 184 187 103 183 2.41 0.016 8.46 5.99 0.035 184 187 103 183 2.41 0.016 8.45 5.99 0.035 184 103 183 2.41 0.016 8.44 5.99 0.035 173 101 5.90 0.031 8.18 8.93 0.037 173 101 5.90 0.031 8.18 8.93 0.037 173 101 5.90 0.043 8.43 0.031 8.18 8.18 8.18	184 190 103 186 2.43 0.015 8.43 7.03 177 199 102 193 2.33 0.016 8.86 6.99 177 199 103 183 2.33 0.016 8.86 6.99 184 187 103 183 2.33 0.016 8.86 6.99 184 187 103 183 2.33 0.016 8.86 6.99 184 187 103 183 2.33 0.016 8.84 7.03 184 103 183 2.33 0.014 9.23 6.96 184 103 183 2.44 0.015 8.4 7.03 207 197 1173 101 299 4.74 0.014 8.18 206 203 201 293 4.71 0.014 8.18 207 208 4.74 0.014 8.18 8.53 208 <	4	163		184		174	185	188	103	184	2.41	0.015	8.28	6.99	0.058	5.11
178 188 103 184 233 0.016 8.86 6.97 0.003 131 188 103 184 2.33 0.016 8.86 6.97 0.005 184 187 103 184 2.33 0.014 8.86 6.99 0.005 184 103 184 2.33 0.014 8.86 6.99 0.005 184 103 184 2.33 0.014 8.86 6.99 0.005 184 103 186 2.33 0.014 8.86 6.99 0.005 184 102 189 2.31 0.014 8.86 6.99 0.005 197 1173 101 299 4.91 0.943 8.81 8.93 297 101 299 4.31 0.043 8.83 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	178 188 103 183 2.35 0.016 8.86 6.99 181 187 103 183 2.33 0.016 8.86 6.99 181 187 103 183 2.43 0.016 8.86 6.99 183 187 103 183 2.43 0.016 8.86 6.99 184 103 183 2.43 0.016 8.86 6.99 97 1173 101 200 4.73 0.014 8.86 6.99 297 1173 101 209 4.73 0.013 8.84 5.95 206 207 VCC8 VCC9 CO.1 NO2.1 PART.1 97 1173 101 209 4.73 0.013 8.83 206 207 203 4.73 0.014 8.83 5.93 207 101 209 4.43 0.013 8.83 5.53 5.96	~	182		185		204	184	061	103	186	2.43	0.015	8.43	7.03	0.058	5.91
177 193 103 193 233 0014 839 637 0005 184 187 103 184 2.33 0014 9.33 6.97 0005 184 187 103 184 2.33 0014 9.33 6.99 0005 184 187 103 184 2.33 0016 8.43 6.99 0005 907 167 102 184 2.33 0014 9.33 6.99 0005 907 1173 101 990 4.30 0047 8.63 0005 207 1173 101 390 4.30 0047 8.63 0005 207 1173 101 309 4.43 0047 8.63 0005 208 201 366 0073 8.83 8.73 8.93 8.93 208 201 303 4.43 0043 8.43 8.93 8.93 8.93 <t< td=""><td>177 193 103 193 273 0.014 8.69 597 184 187 103 183 2.31 0.014 8.69 597 184 187 103 183 2.31 0.014 8.59 7.03 184 187 103 183 2.33 0.014 8.59 7.03 185 103 183 2.33 0.014 8.53 5.69 186m) (ug/m) (ug/m) (ug/m) (ug/m) 0.014 8.53 5.69 297 101 309 4.30 0.047 8.64 3.54 5.99 297 101 309 4.27 0.043 8.18 8.8 8.64 3.54 5.99 2013 201 303 4.10 0.043 8.18 8.8 8.64 3.54 5.99 3.54 5.99 3.54 5.99 3.54 5.99 3.54 5.99 3.54 3.54 3.54</td><td>÷</td><td>213</td><td></td><td>184</td><td></td><td>166</td><td>178</td><td>188</td><td>103</td><td>184</td><td>2.35</td><td>0.016</td><td>8.86</td><td>6.99</td><td>0.073</td><td>10.8</td></t<>	177 193 103 193 273 0.014 8.69 597 184 187 103 183 2.31 0.014 8.69 597 184 187 103 183 2.31 0.014 8.59 7.03 184 187 103 183 2.33 0.014 8.59 7.03 185 103 183 2.33 0.014 8.53 5.69 186m) (ug/m) (ug/m) (ug/m) (ug/m) 0.014 8.53 5.69 297 101 309 4.30 0.047 8.64 3.54 5.99 297 101 309 4.27 0.043 8.18 8.8 8.64 3.54 5.99 2013 201 303 4.10 0.043 8.18 8.8 8.64 3.54 5.99 3.54 5.99 3.54 5.99 3.54 5.99 3.54 5.99 3.54 3.54 3.54	÷	213		184		166	178	188	103	184	2.35	0.016	8.86	6.99	0.073	10.8
219 193 103 189 2.76 0.021 8.19 7.04 0.031 181 187 103 183 2.41 0.015 8.19 7.04 0.031 184 187 103 183 2.41 0.016 8.34 6.99 0.003 195 167 102 163 0.014 9.25 6.96 0.003 187 103 189 2.03 0.014 9.23 6.96 0.003 197 1173 101 209 4.90 0.051 8.18 6.99 0.003 201 1173 101 209 4.30 0.041 8.18 8.36 2017 202 101 209 4.30 0.043 8.36 2.33 0.043 8.36 2.34 8.99 0.003 2017 202 101 209 4.31 0.043 8.36 2.34 2.34 2.34 2.34 2.34 2.34	131 133 2.76 0.037 8.19 7.03 134 187 103 183 2.39 0.014 9.23 0.014 9.23 0.014 134 187 103 183 2.34 0.016 8.14 6.99 135 103 183 2.34 0.016 8.14 6.99 137 1173 0.026 VOC7 VOC8 VOC9 CO.1 NO2.1 PART.1 297 1173 0.0914 0.970 8.61 2.93 0.914 9.25 6.96 297 101 309 4.37 0.014 8.63 2.93 6.96 297 101 309 4.91 0.014 8.63 2.94 5.96 296 232 100 306 4.43 0.014 8.63 2.94 5.96 206 233 0.03 4.33 0.043 8.84 8.94 2.96 2.96 2.96 2.96	F	156		197		8	111	<u>8</u>	102	195	2.33	0.014	8.69	6.97	0.065	7.86
18 103 189 103 189 103 189 103 189 103	18 103 183 243 0.015 8.57 7.03 167 102 163 2.23 0.016 8.24 6.96 297 1173 101 290 (1201) 102.1 PARTI. 177 1173 101 290 4.73 0.016 8.24 6.96 297 1173 101 290 4.73 0.013 8.86 5.95 201 203 4.73 0.014 8.18 8.53 5.96 203 292 101 290 4.73 0.013 8.83 5.33 203 295 101 293 4.10 0.013 8.83 5.33 203 203 101 293 4.10 0.014 8.83 5.33 203 203 101 293 4.13 0.014 8.83 5.35 203 203 203 101 293 4.13 0.013 8.83 5.35	<	183		188		561	219	661	5	189	2.76	0.027	8.19	7.04	0.051	3.2
Ios Ios <td>Ios Ios Ios<td></td><td>18/</td><td></td><td>52</td><td></td><td>617</td><td>181</td><td>881</td><td>6</td><td>184</td><td>2.39</td><td>0.01</td><td>8.07</td><td>1.03</td><td>0.005</td><td>8.53</td></td>	Ios Ios <td></td> <td>18/</td> <td></td> <td>52</td> <td></td> <td>617</td> <td>181</td> <td>881</td> <td>6</td> <td>184</td> <td>2.39</td> <td>0.01</td> <td>8.07</td> <td>1.03</td> <td>0.005</td> <td>8.53</td>		18/		52		617	181	881	6	184	2.39	0.01	8.07	1.03	0.005	8.53
VOC6 VOC7 VOC8 VOC9 CO1 NO21 PART.1 297 1173 101 290 430 0.047 8.61 297 1173 101 290 4.30 0.047 8.61 297 292 101 290 4.30 0.047 8.61 297 292 101 290 4.37 0.047 8.61 297 292 101 290 4.31 0.043 8.43 203 206 293 4.31 0.043 8.43 2.93 203 306 100 293 4.31 0.043 8.43 203 305 0.03 5.33 0.043 8.43 203 305 0.03 5.33 0.043 8.43 203 305 0.03 5.33 0.043 8.43 203 201 293 0.043 8.43 2.24 203 201 203	VOC5 VOC7 VOC6 VOC7 VOC9 CO11 NO21 PART.1 291 101 300 4.30 0.047 8.63 8.3 201 302 201 303 4.24 0.043 8.88 8.63 201 302 101 303 3.33 0.043 8.83 8.83 201 302 101 303 3.33 0.043 8.84 8.95 201 302 3.33 0.043 8.84 8.95 8.95 2020 233 0.01 3.93 0.044 8.64 8.95 2030 333 0.035 3.43	s z	162		236		126	184	18/	60	58 59	2.41	0.016	8.34 9.25	6.69	0.060	4.89
VOC6 VOC7 VOC8 VOC9 CO.1 NO2.1 297 1173 101 390 4,30 0.047 297 1173 101 399 4,57 0.047 297 1173 101 399 4,57 0.047 297 101 309 4,57 0.043 297 203 309 4,57 0.043 297 292 101 309 4,57 0.043 297 292 101 309 4,27 0.043 297 296 282 101 299 4,43 0.043 298 286 100 294 4,31 0.043 2042 298 206 101 295 4,10 0.043 2042 298 203 101 293 4,21 0.043 2042 298 203 101 295 3,75 0.043 2042 204 203<	VOC6 VOC7 VOC8 VOC9 CO.1 NO21 NO14 NO21 NO21 NO21 NO14 NO21 NO12 <th< th=""><th></th><th></th><th>1</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			1		1											
VOC5 VOC7 VOC8 VOC3 VOC3 VOC3 VOC3 VOC1 VO21 VO11 VO21 VO11 VO21 VO11 VO11 <th< td=""><td>VOC6 VOC7 VOC8 VOC9 CO.1 N02.1 297 1173 101 290 4.30 0047 297 1173 101 290 4.57 0047 288 282 101 280 4.24 0043 286 282 101 280 4.24 0043 297 292 101 294 4.31 0043 290 296 100 396 0043 333 0043 290 285 100 294 4.31 0043 336 0044 290 281 001 306 339 0043 336 0044 290 281 100 294 4.21 0046 24 0046 24 0045 24 0045 24 0046 24 0046 24 24 24 24 24 24 24 24 24 24 24 24 24</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	VOC6 VOC7 VOC8 VOC9 CO.1 N02.1 297 1173 101 290 4.30 0047 297 1173 101 290 4.57 0047 288 282 101 280 4.24 0043 286 282 101 280 4.24 0043 297 292 101 294 4.31 0043 290 296 100 396 0043 333 0043 290 285 100 294 4.31 0043 336 0044 290 281 001 306 339 0043 336 0044 290 281 100 294 4.21 0046 24 0046 24 0045 24 0045 24 0046 24 0046 24 24 24 24 24 24 24 24 24 24 24 24 24																
WOLG WOLG <th< td=""><td>WOLG WOLG <th< td=""><td>able 1</td><td>5d - SIM2</td><td>FLH zon</td><td>ic 4-hr av</td><td>g concen</td><td>Irations</td><td>1007</td><td>1000</td><td>0000</td><td>00011</td><td>.00</td><td></td><td>5 1 1010 F</td><td>_</td><td></td><td></td></th<></td></th<>	WOLG WOLG <th< td=""><td>able 1</td><td>5d - SIM2</td><td>FLH zon</td><td>ic 4-hr av</td><td>g concen</td><td>Irations</td><td>1007</td><td>1000</td><td>0000</td><td>00011</td><td>.00</td><td></td><td>5 1 1010 F</td><td>_</td><td></td><td></td></th<>	able 1	5d - SIM2	FLH zon	ic 4-hr av	g concen	Irations	1007	1000	0000	00011	.00		5 1 1010 F	_		
Party Party <th< td=""><td>Party Party <th< td=""><td></td><td>VUCI (metad)</td><td>VUC2</td><td>(paper)</td><td>VUC4</td><td>(indat)</td><td>v UCO</td><td>vuci vuci</td><td>VUC8</td><td>VUX VUCU</td><td>CO.I</td><td>1.2ON</td><td>PAK1.1</td><td></td><td></td><td></td></th<></td></th<>	Party Party <th< td=""><td></td><td>VUCI (metad)</td><td>VUC2</td><td>(paper)</td><td>VUC4</td><td>(indat)</td><td>v UCO</td><td>vuci vuci</td><td>VUC8</td><td>VUX VUCU</td><td>CO.I</td><td>1.2ON</td><td>PAK1.1</td><td></td><td></td><td></td></th<>		VUCI (metad)	VUC2	(paper)	VUC4	(indat)	v UCO	vuci vuci	VUC8	VUX VUCU	CO.I	1.2ON	PAK1.1			
317 312 101 309 4.57 0.001 288 282 101 580 4.24 0.045 286 282 101 580 4.24 0.045 286 282 100 580 4.24 0.045 286 282 100 386 4.31 0.043 289 296 100 396 4.10 0.043 293 302 306 306 4.11 0.043 270 326 100 396 4.041 0.044 294 294 101 296 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 293 4.21 0.046 296 281 100 294 1024 1024 296 281 100 293 1026 1024 <tr< td=""><td>317 312 101 309 4.57 0.061 288 282 101 889 4.24 0.045 286 282 101 889 4.24 0.045 286 282 101 889 4.24 0.045 286 282 101 886 4.24 0.045 289 206 100 306 4.10 0.044 280 306 100 306 4.10 0.044 280 306 100 306 4.23 0.046 280 281 101 295 4.23 0.046 286 231 101 295 4.23 0.046 286 231 100 239 4.24 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.24 0.046 286 286 286 4.21 0.046 286 286 286 4.21 0.046 286 286<td>5</td><td>177</td><td>NN</td><td>273</td><td>781</td><td>253</td><td>207</td><td>1173</td><td>101</td><td>200</td><td>4 10</td><td>0.047</td><td>861</td><td></td><td></td><td></td></td></tr<>	317 312 101 309 4.57 0.061 288 282 101 889 4.24 0.045 286 282 101 889 4.24 0.045 286 282 101 889 4.24 0.045 286 282 101 886 4.24 0.045 289 206 100 306 4.10 0.044 280 306 100 306 4.10 0.044 280 306 100 306 4.23 0.046 280 281 101 295 4.23 0.046 286 231 101 295 4.23 0.046 286 231 100 239 4.24 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.23 0.046 286 231 100 239 4.24 0.046 286 286 286 4.21 0.046 286 286 286 4.21 0.046 286 286 <td>5</td> <td>177</td> <td>NN</td> <td>273</td> <td>781</td> <td>253</td> <td>207</td> <td>1173</td> <td>101</td> <td>200</td> <td>4 10</td> <td>0.047</td> <td>861</td> <td></td> <td></td> <td></td>	5	177	NN	273	781	253	207	1173	101	200	4 10	0.047	861			
288 282 101 280 4.24 0.045 297 292 100 685 4.27 0.045 296 296 101 685 4.27 0.045 296 296 100 396 4.10 0.043 278 306 100 396 4.10 0.043 278 305 100 396 4.10 0.043 278 305 100 396 5.33 0.043 201 302 101 300 5.33 0.043 202 201 100 239 4.21 0.043 246 241 100 239 4.21 0.046 246 241 100 239 4.21 0.046 246 241 100 239 4.21 0.046 246 241 100 238 4.21 0.046 245 100 239 4.21 0.046	288 282 101 280 4.24 0.045 297 292 100 685 4.27 0.045 296 296 100 385 4.17 0.045 296 296 100 394 4.31 0.043 278 306 100 306 4.19 0.043 278 302 101 306 5.33 0.034 401 302 101 306 5.33 0.034 294 234 101 295 3.75 0.036 296 285 100 293 4.21 0.046 296 285 100 295 3.75 0.036 296 281 100 293 4.21 0.046 296 281 100 294 100 294 291 100 293 4.21 0.046 292 100 293 4.21 0.046	19	161	ž	290	300	268	317	312	0	306	4.57	0.051	8.18			
27 292 101 685 4.27 0.045 286 282 100 284 4.08 0.045 286 287 306 101 284 4.08 0.045 270 236 100 306 4.10 0.045 284 297 0.045 284 297 100 306 5.33 0.044 287 0.045 284 297 101 295 4.23 0.046 242 0.046 246 241 100 239 4.23 0.046 24 0.046 246 241 100 239 3.75 0.046 24 0.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046 24 10.046<	297 292 101 685 4.27 0.045 286 282 100 284 4.08 0.043 270 236 100 294 4.10 0.043 270 236 100 294 4.10 0.043 270 236 100 396 4.10 0.043 284 297 101 295 4.23 0.044 285 201 00 333 0.043 204 296 285 101 295 4.23 0.046 296 281 100 233 4.21 0.046 296 281 100 233 4.21 0.046 296 281 100 233 3.75 0.046 296 281 100 233 4.21 0.046 296 281 100 238 4.21 0.046 297 100 239 1086 4.21	2	167	¥	263	272	244	288	282	101	280	4.24	0.045	8.63			
286 282 100 281 4.08 0.043 279 296 101 294 4.31 0.043 279 302 100 306 4.10 0.043 279 302 100 306 4.10 0.046 283 297 101 295 4.23 0.086 286 231 100 239 4.21 0.046 296 231 100 239 4.21 0.046 296 231 100 239 4.23 0.046 206 231 206 231 206 206 231 206 231 206 207 208 208 200 208 200 200 208 208	286 282 100 281 4.08 0.043 279 296 101 294 4.31 0.043 279 305 101 294 4.31 0.043 270 326 100 306 4.10 0.046 284 297 101 295 4.23 0.046 286 241 100 283 4.21 0.046 286 241 100 283 4.21 0.046 296 231 100 283 4.21 0.046 297 102 289 4.21 0.046 298 200 289 4.21 0.046 204 700 288 4.21 0.046 204 700 288 100 204 204 700 200 204 700 204 204 700 204 204 700 200 204 700 204 204 700 200 204 700 200 204 700 200 200 200 200 204 700 200 200 200 200 200 200 200 200 200 2	ຄ	172	Ň	274	282	254	297	292	101	685	4.27	0.045	8.54			
290 294 4.31 0.043 278 306 100 306 4.10 0.043 278 302 100 306 4.10 0.043 401 302 101 306 5.33 0.043 294 241 101 296 5.33 0.046 296 241 100 233 4.21 0.046 296 241 100 233 4.21 0.046 296 241 100 239 4.21 0.046 296 241 100 239 4.21 0.046 296 241 100 239 3.75 0.036 291 100 239 3.75 0.036 107 201 202 339 1.01 100 100 202 203 3.75 0.036 102 102 202 100 239 100 100 100 <t< td=""><td>290 294 4.31 0.043 270 326 100 395 4.10 0.043 270 326 100 305 3.33 0.040 403 302 101 306 5.33 0.046 403 307 101 306 5.33 0.046 296 283 4.21 0.046 0.046 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 247 200 239 3.75 0.036 248 200 239 3.75 0.036 249 201 202 202 203 240 201 202 203</td><td>2</td><td>169</td><td>ž</td><td>265</td><td>272</td><td>246</td><td>286</td><td>282</td><td>8</td><td>281</td><td>4.08</td><td>0.043</td><td>8.88</td><td></td><td></td><td></td></t<>	290 294 4.31 0.043 270 326 100 395 4.10 0.043 270 326 100 305 3.33 0.040 403 302 101 306 5.33 0.046 403 307 101 306 5.33 0.046 296 283 4.21 0.046 0.046 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 247 200 239 3.75 0.036 248 200 239 3.75 0.036 249 201 202 202 203 240 201 202 203	2	169	ž	265	272	246	286	282	8	281	4.08	0.043	8.88			
278 306 4.10 0.043 20.413 0.043 30.413 0.043 30.413 0.043 30.413 0.043 30.413 0.043 30.413 0.044 30.413 0.044 30.413 0.044 30.413 0.044 30.413 0.044 30.413 0.044 30.413 0.044 30.413 0.044 30.423 10.023 30.423 10.021 10.411 10.021 10.411 10.411 10.411 10.411 10.4	278 306 0.00 306 4.10 0.043 403 302 100 303 338 0.043 284 297 101 395 4.23 0.043 284 297 101 395 4.23 0.042 286 281 100 239 4.23 0.046 246 241 100 239 3.75 0.046 246 241 100 239 3.75 0.046 246 241 100 239 3.75 0.046 241 100 239 3.75 0.046 241 100 239 3.75 0.046 241 100 238 4.21 0.021 242 100 238 1.017 1.021 245 100 246 1.017 1.021 245 100 1.017 1.021 1.021 245 100 1.018 1.0123<	~	197	ž	112	432	347	290	206	0	294	4.31	0.043	8.53			
270 320 3.98 0.040 284 297 101 305 5.33 0.040 284 297 101 305 4.23 0.046 286 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 246 241 100 239 3.75 0.036 247 VOCCI Burst-CLA) KOL1 VOC1 Burst-DBR NO2.1 VOCCI Burst-DBR NO2.2 VOC2 Burst-DBR NO2.2 VOC5 Burst-DBR NO2.2 VOC5 Burst-DBR NO2.2 VOC5 Burst-CAA Burst-DBR NO2.2 VO2.2 VO2.2 VO2.2 VVC5 Burst-DBR <td>270 326 100 330 538 0.040 284 297 101 305 4.23 0.043 284 297 101 295 4.23 0.046 286 241 100 383 4.21 0.046 286 241 100 239 3.75 0.036 286 241 100 239 4.21 0.046 286 241 100 239 3.75 0.036 280 282 WOZ Burst - CLO 0.046 291 VOC1 Burst - DR VOC1 CO1 VOC3 Burst - DR VOC3 Burst - DR CO2 VVC5 Burst - DR CO2 VO23 VO24 Durst - DR CO2 VVC5 Burst - DR VVC5 Burst - DR CO3 VV23 VV23 VN23 VVC5 Burst - DR VVC5 Burst - DR NV23 VV33 VV33 VV33 VV33</td> <td>=</td> <td>244</td> <td>ž</td> <td>289</td> <td>263</td> <td>236</td> <td>278</td> <td>ŝ</td> <td>8</td> <td>300</td> <td>4.10</td> <td>0.043</td> <td>8.95</td> <td></td> <td></td> <td></td>	270 326 100 330 538 0.040 284 297 101 305 4.23 0.043 284 297 101 295 4.23 0.046 286 241 100 383 4.21 0.046 286 241 100 239 3.75 0.036 286 241 100 239 4.21 0.046 286 241 100 239 3.75 0.036 280 282 WOZ Burst - CLO 0.046 291 VOC1 Burst - DR VOC1 CO1 VOC3 Burst - DR VOC3 Burst - DR CO2 VVC5 Burst - DR CO2 VO23 VO24 Durst - DR CO2 VVC5 Burst - DR VVC5 Burst - DR CO3 VV23 VV23 VN23 VVC5 Burst - DR VVC5 Burst - DR NV23 VV33 VV33 VV33 VV33	=	244	ž	289	263	236	278	ŝ	8	300	4.10	0.043	8.95			
246 24 29 101 205 5.13 0.046 246 24 00 283 4.21 0.046 246 24 00 239 4.21 0.046 247 100 239 4.21 0.046 248 247 100 239 1.75 0.036 1.EGEND VOC2 Burst - LR VOC2 Burst - LR VOC3 Burst - LR VOC5	200 202 001 200 2.1.3 0.046 246 241 000 239 4.21 0.046 246 241 000 239 4.21 0.046 247 001 299 3.75 0.036 1.EGEND VOCT Buss - CLA COL VOCT Buss - DR VOCT Buss - DR VOC3 Buss - DR VOC3 - DR VOC3 Buss - DR VOC3 - DR VOC		10	ž	916	007	167	0/7	076	8	0.00	5.98	0.040	10.6			
249 291 011 293 4,213 00442 246 241 100 239 3,75 0.046 246 241 100 239 3,75 0.046 246 241 100 239 3,75 0.046 246 241 100 239 3,75 0.046 246 241 100 239 4,21 0.046 240 240 100 239 3,75 0.046 240 240 100 239 3,75 0.046 240 240 100 239 3,75 0.046 240 241 100 241 100 100 240 241 100 241 100 100 100 241 241 241 100 100 100 100 100 100 241 100 241 100 100 100 100 100 100	269 291 010 293 4,213 0.0442 246 241 100 239 3,75 0.046 246 241 100 239 3,75 0.046 246 241 100 239 3,75 0.046 241 VOCI Burst-CHO Morel Mor21 241 VOCI Burst-CHO MO21 MO21 241 VOCI Burst-CHO MO21 MO21 242 Burst-HBR PARTI NO22 VOCI Burst-LR NO22 242 VOCI Burst-LR NO22 VOCI Burst-LR NO22 243 VOCI Burst-LR NO22 VOCI Burst-LR	<	961	N :	197	100	515	() 	202	Ē	8	5.55	0.084	6.43			
246 241 100 2.85 4.41 0.036 246 241 100 2.93 3.75 0.036 VOCT Burst - RI VOCT Burst - RIR NO2.1 VOCT Burst - RIR VOC2 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.2 VOC3 Burst - RIR NO2.3 VOC3 Burst - RIR NO2.3 VOC4 Burst - GAR NO2.3 VOC3 Burst - GAR NO2.3 VOC3 Burst - GAR NO2.3 VOC3 Burst - GAR NO2.3	246 241 100 235 4.4.1 0.040 246 241 100 235 4.4.1 0.040 LEGEND VOC1 Burst - LLO CO.1 VOC2 Burst - MBR PARF.1 VOC3 Burst - LR CO.2 VOC4 Burst - LR CO.2 VOC5 Burst - LR CO.3 VOC5 Burst - LR NO.3.2 VOC5 Burst - LR NO.3.2 VOC7 Burst - LR NO.3.2 VOC8 Burst - LR NO.3.2 VOC9 Burst - GR NO.3.2 VOC9 Burst - GR NO.3.2		107	ž	8/7	107	\$	587	167	5	667	4.23	0.042	0/.8			
LEGEND VOCT Buss - CL/) CO.1 VOC2 Buss - DR VOC3 Buss - DR VOC3 Buss - DR VOC3 Buss - DR VOC3 Buss - DR VOC5 Buss - DR VOC5 Buss - DR VOC5 Buss - DR VOC3 Buss - DR	LEGEND VOCT Bust-CLO CO.1 VOCT Bust-CLO CO.1 VOC3 Bust-MBR PART.1 VOC3 Bust-LR N0.22 VOC3 Bust-LR N0.22 VOC3 Bust-LR N0.22 VOC3 Bust-LR N0.22 VOC3 Bust-CAR N0.23 VOC3 Bust-CAR N0.23 VOC3 Bust-CAR N0.23 VOC3 Bust-CAR N0.23	s æ	153	ž	436	233	211	246	241	38	239	3.75	0.036	8./0 9.48			
I.Se SIM2FLJI zone 1-fr avg concentrations LEGEND C0.1 (PPM) VXCI Burst-CIA C0.1 VXCI Burst-CIA C0.1 VXCI M021 4.3 4.3 4.3 4.2 4.2 3.99 VXCI Burst-CIA C0.1 VXCI M021 M021 4.3 4.2 4.2 4.2 3.99 VXCI Burst-CIA C0.1 VXCI M021 M021 4.3 4.1 VXCI Burst-LIA VXCI Burst-LIA M021 4.3 4.1 VXCI Burst-LIA VXCI Burst-LIA M022 4.3 4.1 VXCI Burst-LIA M121 VXCI Burst-LIA M022 4.1 VXCI Burst-LIA M121 VXCI Burst-LIA M023 4.1 VXCI Burst-LIA M121 VXCI M121 M121	- Ise - SIM2FLJI zone 1-fr avg concentrations LEGEND C01 V0C1 burst - CL0 C01 (PM) V0C1 burst - MBR N021 430 430 V0C3 burst - MBR N021 431 433 V0C3 burst - MBR N021 433 433 V0C3 burst - MBR N022 433 433 V0C3 burst - BR C03 433 433 V0C5 burst - BR C03 433 433 V0C5 burst - BR C03 433 416 V0C5 burst - BR3 C03 434 416 V0C5 burst - BR3 C03 446 V0C5 burst - BR3 Burst - BR3 C03 446 V0C9 burst - BR3 PNR C03																
COI VOCI Durst - CLO COI 479M) 4.33 4.00 NO22 Ploor NO21 4.30 4.33 4.39 NOC3 Ploor NO21 4.31 4.30 VOC3 Burst - DR NO22 Ploor NO21 4.33 4.39 VOC3 Burst - DR VOC3 Burst - DR CO2 4.33 4.39 VOC3 Burst - DR CO2 VOC3 Burst - DR CO2 4.16 4.16 VOC3 Burst - DR CO2 VOC3 Burst - DR CO2 4.16 4.16 VOC3 Burst - DR CO3 VOC3 Burst - DR OD2 3.39 7.74 VOC3 Burst - DR DN2 VOC3 Burst - DR DN2 4.11 VOC3 Burst - DR VOC3 Burst - DR DN2	COI COI VOC1 Burst-CL0 COI 433 4.33 4.33 VOC2 Burst-MBR MOZ1 PANT 433 4.33 4.33 VOC3 Burst-MBR MNZ1 PANT 433 4.33 4.33 VOC3 Burst-MBR PANT VOC3 Burst-MBR PANT 4.33 4.33 VOC3 Burst-MBR PANT VOC3 Burst-JBR CO2 4.33 4.33 VOC3 Burst-JBR CO2 PANT CO3 4.16 4.21 VOC5 Burst-JBR CO3 VOC5 Burst-JBR CO3 3.39 7.34 VVC5 Burst-AFX NVC5 Burst-AFX CO3 4.16 VVC5 Burst-AFX VVC5 Burst-AFX NO23 GO3 7.34 4.16 VVC5 Burst-AFX NO23 GO3 GO3 7.34 4.16 VVC5 Burst-AFX NO23 GO3 GO3 GO3 GO3	ble 1	5e - SIM2	FLH zon	e I-hr av	g concent	Irations			-	EGEND						
(PM) 4.53 Poor N0.21 4.53 4.53 VOC2 Floor N0.21 4.53 4.53 VOC3 Burst - MBR PART1 4.53 4.33 VOC3 Burst - MBR PART1 4.33 4.39 VOC3 Burst - MBR PART1 4.34 VOC3 Burst - MBR PART1 4.35 VOC3 Burst - MBR PART1 4.35 VOC3 Burst - MBR PART2 4.16 VOC3 Burst - MR1 NO22 4.23 VOC3 Burst - MR1 NO22 4.24 VOC3 Burst - MR1 NO23 4.11 VOC3 Burst - GAR NO23 7.24 VOC3 Burst - GAR NO23 7.24 VOC3 Burst - GAR NO23	(PM) (PM) 4.53 4.02.1 4.53 4.03 4.03 9.04.1 4.03 9.04.1 4.04 10.02.1 4.05 9.04.1 4.05 9.04.1 4.05 9.04.1 4.05 9.04.1 4.16 10.02.5 4.16 10.02.5 4.16 10.02.5 4.16 10.02.5 4.16 10.02.5 4.16 10.02.5 4.16 10.02.4 4.16 10.02.4 4.16 10.02.4 4.16 10.02.4 4.16 10.02.4 4.16 10.02.4 7.24 10.02.4 4.16 10.02.4 7.17 10.02.4 4.16 10.02.4 4.16 10.02.4		CO.1								VOCI	Burst - CLO	L	Oven			
4.35 4.90 4.31 4.33 4.33 4.34 4.35 4.35 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16	4.33 4.03 4.90 4.00 4.91 VOC3 4.93 4.03 4.93 4.04 4.04 VOC3 4.05 Burst - LR 4.05 Burst - LR 4.05 Burst - LR 4.05 VOC3 4.16 VOC5 4.17 VOC5 4.16 VOC5 4.16 VOC5 4.17 VOC5 4.11 VOC5 4.11 VOC5 4.11 VOC5 4.11 VOC5		(MPM)								V0C2	Floor		Oven			
4.3 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	4.3 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5.3 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 4.2 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7 7.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	4.53								V0C3	Burst - MBR	-	Oven			
4.9 4.21 4.21 4.21 4.22 4.23 4.23 4.23 7.74 4.14 4.11 4.11 4.11 4.11 4.11 4.11	4.9 4.16 4.16 4.16 4.16 4.16 4.16 7.74 4.27 7.74 4.20 7.74 7.74 4.10 7.74 4.10 7.74 4.10 7.74 7.74 4.10 7.74 4.10 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.7	2 5	4.50									ALL - ISING		Heater			
4.21 4.16 4.16 4.22 4.22 3.99 7.74 4.11 4.11 4.11 4.11 4.11 4.11 4.11	4.21 4.16 4.16 4.15 4.22 3.99 7.74 4.16 7.74 4.16 7.74 4.16 7.74 4.16 7.74 8.17 7.74 8.17 7.74 8.17 7.74 7.74 8.17 7.74 8.17 7.77 7.77 7.77 7.77 7.77 7.77 7.77	: 5	4.39									Burst - KI'A					
4.16 4.22 4.22 4.23 4.23 4.11 4.11 4.11 4.11 4.11 4.11 4.11 4.1	416 422 3.99 7.74 4.11 4.11 4.11 4.60 7.74 4.11 4.11 4.10 4.60 7.74 4.11 4.11 4.10 7.74 4.11 4.10 4.00 7.74 7.74 7.74 7.74 7.74 7.74 7.7	2	4.21									Burst - BA2					
422 3.99 7.74 4.11 4.01 4.05	422 3.99 7.14 4.11 4.11 4.15 4.65 7.74 4.11 4.11 4.11 4.15 7.74 4.15 7.74 4.15 7.74 4.15 7.74 4.15 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.7	: ~	4.16									Burst - GAR					
3.99 7.74 4.11 4.41	3.99 1.14 4.16 4.46	. 5	4.22									Burst - BRJ					
		: =	3 60									1 10 - 11 100			_		
			41 L														
		< ~															
		. 2	146														

£ 6		E 2				
PART.3 (μg/m³) 5.24	PART.3 (µg/m ²) 2.08 0.48 12.26 12.26 12.85 12.10 15.10 15.10 14.88 11.93 11.93 11.93 2.45 2.45 2.45 2.45	PART.3 PART.3 (µg/m ¹) 0.57 0.24 7.42 6.15 9.47 9.47 9.47 5.23 5.23 5.23 5.23 0.66 2.72				
NO2.3 (PPM) 0.034	NO2.3 (PPM) 0.045 0.049 0.071 0.073 0.073 0.073 0.073 0.073 0.073	NO2.3 (PPM) 0.019 0.043 0.049 0.049 0.049 0.049 0.049 0.041 0.034 0.041 0.034 0.034				
CO.3 (PPM) 6.49	CO.3 CO.3 7.67 8.33 8.33 8.55 8.55 8.55 8.55 8.55 8.26 8.26 8.20 7.97 7.77	CO.3 (PPM) 6.57 6.65 6.66 6.61 6.66 6.61 6.63 6.64 6.63 6.64				
РАКТ.2 (µg/m ³) 7.82	PART.2 (µg/m ³) 7.81 7.81 9.26 9.26 9.26 9.26 9.11 9.11 9.11 8.85 7.81 7.81	PART.2 (Jular) 7,114 7,114 8,54 8,54 8,54 8,54 8,54 8,54 8,54 8,5	PART.2 PART.2 (197m ⁴) (197m ⁴) (197m ⁴) 8.50 8.50 7.77 7.91 7.77 7.91 7.91 7.91 7.91 7.91	Oven Oven Oven Oven Heater Heater Heater Outdoor afr Outdoor afr		
NO2.2 (PPM) 0.004	N022 (PPM) 0.007 0.007 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000	N02.2 (PPM) 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	N02.2 (PPM) 0.001 0.004 0.004 0.004 0.003 0.003 0.003 0.003	CO.I NO2.I PART.I PART.I CO.2 CO.2 PART.3 PART.3 PART.3		
CO.2 (PPM) 1.62	CO.2 (PPM) 1.96 1.95 2.06 2.06 2.06 2.08 2.08 2.08 2.08 2.09 2.09 2.09 1.98	CO 2 (PPM) (CO2 (PPM) (P	D Burst - CLO Floor Burst - MBR Burst - DR Burst - LR Burst - BA2 Burst - BA3 Burst - BA3		
РАКТ.1 (µg/m³) 7.89	PART.1 (μg/m ²) 7.97 8.07 9.25 9.25 9.25 9.25 8.27 8.27 8.27 8.87 8.10 8.10	PART.1 (µg/m ²) 7.18 7.16 8.53 8.53 8.40 8.40 8.10 8.12 8.12 8.12 8.12 8.13 7.18 7.18	PART.1 (µg/m ²) 6.79 8.59 8.50 8.50 8.50 8.50 7.76 9.45 7.76 7.96 7.09	LEGEND VOC2 Bu VOC3 Bu VOC3 Bu VOC3 Bu VOC3 Bu VOC3 Bu VOC3 Bu VOC3 Bu		
NO2.1 (PPM) 0.017	NO2.1 (PPM) 0.065 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.05	N021 (PPM) 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008	N02.1 (PPM) 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.018 0.018 0.018			
CO.I (PPM) 3.41	CO.1 (PPM) 5.56 5.98 5.98 8.07 5.34 4.62 19.92 5.44 5.44 5.44 5.44 5.44 5.44	CO.1 (PPM) 3.35 3.45 3.36 3.30 3.30 3.30 3.31 3.31 3.31 3.31 3.31	CO.I CO.I 3.94 3.31 3.31 3.31 3.44 5.97 3.33 3.44 5.97 3.38 3.370 3.38 3.370 3.383 3.25			
VOC9 300 300	VOC9 (µµ/m ¹) 430 3598 361 360 366 366 307 307 411 411	VOC9 287 287 287 287 281 231 231 231 238 238 238 238	VOC9 148/m ³ 343 316 233 2392 2335 2336 218 218 218 218 218 218 218 218 218 218			
V ОС8 (µg/m²) 204	VOC8 (µg/m ¹) 286 281 286 264 264 265 265 273 273 273 273	VOC8 VOC8 207 207 174 178 178 177 213 213 213 213 223 200 200	VOC8 VOC8 240 240 187 187 187 187 187 187 187 187 221 221 223 239			
VОС7 (µg/m²) 278	VOC7 (µg/m²) 320 349 349 340 340 342 330 331 331 331 331	VOC7 VOC7 2335 275 218 228 227 227 210 210 210 210 210 254	VOC7 VOC7 7259 302 231 231 231 231 231 210 211 231 231 231			
VОС6 µg/m ³) 325	VOC6 (Hg/m ¹) 510 510 407 405 405 405 409 409 505 385 385	VOC6 (lug/m ²) 337 337 259 268 314 288 216 216 216 215 216 215 216 216 228	VOC6 367 367 393 393 393 393 317 279 317 317 317 317 317 317 317 317 317 317			
VOC5 VOC5 322 322		Trations VOC5 287 219 219 219 224 303 303 566 566 566 566 566 566 566 566 566 56	ations VOC5 346 304 304 339 339 221 222 221 222 223 339 223 339 223 339 223 239 339 223 239 339	ations		
Avg conc VOC4 337 337	mcentrations VOC4 VOC3 VOC4 VOC5 VOC4 VOC5 V10 V01 420 401 431 358 339 282 371 358 371 319 3198 646 633 1031 633 1031 633 1033 410 366 373 374	<i>g</i> concentrations <i>P</i> (0.000 <i>V</i> (0.000) <i>V</i> (0.000) <i>V</i> (0.000) <i>N</i>	Concent VOC4 329 329 328 329 328 234 1455 555 555 351 351 314 314 314	1-hr avg concentrations		
11 24-hr VOC3 (μg/m ³) 214	Deak Con Pocak Pocak (lug/m ²) - 224 230 196 196 197 351 181 175 201 197 175 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201	a	4-hr avg VOC3 174 177 147 147 148 148 148 148 148 141 141 141 141 141	l-hr avg		
TC over: VOC2 109m ³) 30356		TC zone VOC2 (1(#2 ^{mb}) (20131 15821 15821 15388 16538 17474 17475 17475 176555 176555 176555 176555 176555 176555 176555 176555 176555 176555 176555 176555 176555 1765555 1765555 1765555 1765555 1765555 1765555 176555555 1765555555555	TC Zone VOC2 NA NA NA NA NA NA NA NA NA NA NA NA NA	TC zone CO.2 (PPM) 1.54 1.54 1.54 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56		
1 - SIM2F VOCI (µg/m ³) (2600	b - SIM2FTC 2011 VOCI VOC2 (µg/m ³) (µg/m ³) (µg/m ³) 288 26390 119 19706 119 19706 121 19400 121 19400 123 20469 123 20469 123 20469 137 20469 147 23040 147 23040	- SIM2F - SIM2F 194 194 112 112 112 112 112 112 112 112 112 11	- <u>SIM2F</u> - <u>SIM2F</u> VOCI 232 232 122 110 110 1110 1118 118 118 118 118 118 1	- SIM2F - SIM2F 2.0.1 3.67 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.1		
Table 16a - SIM2FTC overall 24-hr avg concentrations voci voc3 voc3 voc4 voc5 voc6 voc6 voc6 voc6 voc6 voc6 voc6 voc6 voc6 voc6 <th <="" colspan="2" td="" voc6<=""><td>Table 16b BA2 (BA2 (BA3 (BR3 (BR3 (BR3 (DR4 (DR4 (C)R (RA1 (RA</td><td>Table 16c - SIM2FTC zone 24-hr VOCI <t< td=""><td>Table 16d - SIM2FTC zone 4-hr avg concentrations VOCI VOC3 VOC3 VOC4 VOC5 RAP (µgm1) (µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) <</td><td>Table Ice - SIM2FTC zone I-1 Role Ice - SIM2FTC zone I-1 BA2 3.46 BA3 3.45 BA3 3.46 BR3 3.13 BR3 3.13 BR4 3.13 DR 3.13 BR4 3.13 DR 3.14 DR 3.13 DR 3.14 DR 3.34 DR 2.91 DR 2.91 DR 2.91</td></t<></td></th>	<td>Table 16b BA2 (BA2 (BA3 (BR3 (BR3 (BR3 (DR4 (DR4 (C)R (RA1 (RA</td> <td>Table 16c - SIM2FTC zone 24-hr VOCI <t< td=""><td>Table 16d - SIM2FTC zone 4-hr avg concentrations VOCI VOC3 VOC3 VOC4 VOC5 RAP (µgm1) (µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) <</td><td>Table Ice - SIM2FTC zone I-1 Role Ice - SIM2FTC zone I-1 BA2 3.46 BA3 3.45 BA3 3.46 BR3 3.13 BR3 3.13 BR4 3.13 DR 3.13 BR4 3.13 DR 3.14 DR 3.13 DR 3.14 DR 3.34 DR 2.91 DR 2.91 DR 2.91</td></t<></td>		Table 16b BA2 (BA2 (BA3 (BR3 (BR3 (BR3 (DR4 (DR4 (C)R (RA1 (RA	Table 16c - SIM2FTC zone 24-hr VOCI VOCI <t< td=""><td>Table 16d - SIM2FTC zone 4-hr avg concentrations VOCI VOC3 VOC3 VOC4 VOC5 RAP (µgm1) (µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) <</td><td>Table Ice - SIM2FTC zone I-1 Role Ice - SIM2FTC zone I-1 BA2 3.46 BA3 3.45 BA3 3.46 BR3 3.13 BR3 3.13 BR4 3.13 DR 3.13 BR4 3.13 DR 3.14 DR 3.13 DR 3.14 DR 3.34 DR 2.91 DR 2.91 DR 2.91</td></t<>	Table 16d - SIM2FTC zone 4-hr avg concentrations VOCI VOC3 VOC3 VOC4 VOC5 RAP (µgm1) (µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) µgm2) <	Table Ice - SIM2FTC zone I-1 Role Ice - SIM2FTC zone I-1 BA2 3.46 BA3 3.45 BA3 3.46 BR3 3.13 BR3 3.13 BR4 3.13 DR 3.13 BR4 3.13 DR 3.14 DR 3.13 DR 3.14 DR 3.34 DR 2.91 DR 2.91 DR 2.91

(µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) 24 hr avg 1828 23498 213 222 228 211	Table 17b - SIM2FTM zone peak concentrations VOC: VOC: VOC: VOC: VOC: VOC: VOC: VOC:	Table 17c - SIM2FTM zone 2 VOCI VOC2 VOC2 VV BA2 (120mb)	Table 17d - SIM2FTM zone 4-1 Table 17d - SIM2FTM zone 4-1 MA2 VOC1 VOC2 VO MA2 VOC1 VOC2 VO MA2 100 VO VO VO MA2 120 VOC1 VOC2 VO MA2 120 VA 11 VA 11 MA2 113 NA 13 13 13 13 MR3 117 NA 13 14 13 14 14 14 16 NA 23 14 23 14 23 14 23 14 24 20 NA 10	Table 17e - SIM2 C0.1 Xone 1 hr avg concentrations RA2 2.29 BA2 2.29 BA3 2.13 BA3 2.13 BR3 2.11 BR3 2.13 BR3 2.11 BR3 2.11 BR3 2.11 BR4 2.43 BR4 2.43
(µg/m ²)	0000 pcak (0000 v003 (173 173 173 173 173 173 173 173 173 175 216 155 155 155 155 155 155 155 155 155 1	40,00000000-400	2016 4-hr a 2016 4-hr a 2013 114 1142 1142 1142 1142 1144 1142 1145 1142 1144	one 1 hr a
(ug/m ²) 222	2000 2004 2004 2005 218 218 217 217 217 217 217 217 217 217	T avg concentrations 5 VOC4 VOC5 7 VOC4 VOC5 9 (upm) (upm) 154 193 134 150 132 136 133 136 141 133 136 143 136 143 136 137 154 137 136 136 136 136 136 137 137 139 136 136 137 139 137 139 137 139 137 139 130 137 137 130 137 137	>	vg concen
νου (μg/m ³) 228	(ions VOC5 VOC5 (µg/m ³) 208 191 196 195 205 205 205 205 205 195 195 195	Intrations VOC5 (µgm ³) 150 141 141 141 143 133 305 305 133 133 133 133 133 133 133 133 133 13	g concentrations VOC4 VOC3 VOC4 VOC3 (4g/m ³) (4g/m ³) 120 119 120 118 120 118 123 182 123 182 123 182 123 182 123 183 173 447 114 825 103 104 101 101 101 101	trations
νυνν (μg/m ³) 211	VOC6 (µg/m ⁾) 235 235 235 235 235 202 266 186 186 189 189 189 189 189	VOC6 (µg/m ³) 152 152 133 149 149 131 133 133 133 133 133 133 138 138	V0C6 (µg/m ³) (µg/m ³) (120 119 119 118 118 118 118 118 118 118 118	
v0C/ (μg/m ³) 282	VOC7 (ug/m) 12903 232 232 233 233 233 533 533 533 533 53	VOC7 (ugun) 3166 3166 191 171 171 171 171 171 171 171 171 171	V0C7 (µg/m ³) 1479 196 196 196 196 196 196 110 232 232 335 335 335	
(μg/m ²) 106	VOC8 (µg/m ³) 124 124 118 118 118 118 118 118 118 120 122 122	VOC8 (ugam) 106 111 106 111 106 112 103 104 104 104	VOC8 (µg/m ¹) 101 101 101 101 101 101 101 101 101 10	
γ003 (μg/m²) 272	VOC9 (µg/m ¹) (µg/m ²) 246 246 2314 443 211 211 211 246 235 235 282 282	V0C9 (µg/m ³) (175 227 1655 1655 1655 185 192 192 193 188 159 159	V0C9 (J28m2) (128m2) (128m2) (128m2) (132 (133 (133) (133) (131) (131) (131) (131) (131) (131) (131) (132) (LEGEND voc1 voc3 voc3 voc3 voc3 voc3 voc3 voc3 voc3
CUI (PPM) 2.59	CO.1 (PW) 3.87 3.87 3.87 3.87 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.4	COL (PPM) 2.55 2.11 2.13 2.13 2.13 2.13 2.14 2.13 2.24 2.14 2.07 2.23 2.14 2.10 1.98	COL (PPM) 2.07 2.01 2.03 2.07 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	Burst - CLO Burst - MBr Burst - MBr Burst - LR Burst - LR Burst - BA2 Burst - BA3 Burst - BR3
(PPM) (0.015	N02.1 (PPM) 0.0078 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.061 0.042 0.042 0.042 0.078	N02.1 (PPM) (PPM) 0.007 0.007 0.007 0.005 0.005 0.005 0.005 0.005	N02.1 (PPM) 0.007 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004	CO.I PART.I PART.I CO.2 PART.2 CO.3 NO2.3 PART.3 PART.3
глкі (µg/m³) 9.13	PART.1 (µg/m ²) (µg/m ²) (µg/m ²) (µg/m ²) 9.67 (µg/m ²) (µg/m ²) (µg/	PART.1 (a2m2) 9.26 9.26 9.26 9.26 9.27 10.27 9.24 9.24 9.24 9.24 9.24 9.24	PART.1 (ug/m ^b) (ug/m ^b) (0.52 0.42 9.18 9.18 9.18 9.13 9.13 9.12 9.12 9.12 9.12 9.13 11.54	Oven Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
(PPM) (PPM) 6.78	CO.3 (PPM) 9 (PPM) 9 (PPM) 9 (PPM) 8 (PPM) 8 (PPM) 8 (PPM) 8 (PPM) 8 (PPM) 8 (PPM) 9 (CO.3 (PPM) (SPM) (
0.044 NU2.3	N023 (PPM) 0.097 0.033 0.033 0.087 0.133 0.113 0.133 0.133 0.135 0.135	NO2.3 (PPM) 0.043 0.043 0.043 0.045 0.054 0.054 0.054 0.054 0.057 0.057		
PAK1.3 (μg/m ³) 8.64	PART.3 PART.3 (µg/m ⁴) 15.49 1.93 14.95 14.95 14.37 19.59 11.83 8.94 22.69 11.83 8.94 22.45 22.45 22.45 22.45 22.45	PART.3 (μg/m ³) 7.99 7.99 8.05 5.29 10.45 3.70 5.02 5.02 11.47 11.47		

PART.3 (μg/m³) 2.89	PART3 (ug/m ¹) 3.17 3.18 3.17 3.17 3.17 5.26 5.26 5.75 5.75 5.75 5.89 5.89 5.89 5.80 5.80 5.80 5.80 5.80	PART3 (µg/m ³) (124 0.14 1.26 0.89 0.89 1.65 2.12 2.88 2.88 2.88 3.78 3.78		
NO2.3 (PPM) 0.024	NO2.3 NO2.3 0.044 0.036 0.036 0.046 0.035 0.035 0.035 0.055	NO2.3 (PPM) (PPM) 0.020 0.017 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028		
CO.3 (PPM) 7.00	CO.3 CO.3 8.16 8.14 8.14 8.14 8.14 8.14 8.15 8.37 8.37 8.37 8.37 8.37 8.37	CO.3 (PPM) 7.17 7.18 7.18 7.18 7.18 7.18 7.18 7.18		
РАКТ.1 (µg/m³) 4.94	PART.1 (ugum) 5.57 5.34 5.34 5.34 5.36 5.35 6.33 6.03 6.10 6.11 6.12 6.13	PART.1 (µg/m ³) 4.55 4.55 4.47 4.47 4.55 5.03 4.55 5.03 4.55 5.34 4.72 5.34	PART.1 (49/m) 5.15 5.13 5.25 5.04 5.25 5.04 5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.3	Oven Oven Oven Oven Heater Heater Heater Heater Outdoor air Outdoor air
NO2.1 (PPM) 0.015	NO2.1 NO2.1 0.136 0.147 0.124 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123	N021 (PPM) 0.015 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013	NO2.1 NO2.1 (PPM) 0.053 0.054 0.051 0.050 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	CO.I NO2.1 PART.1 CO.2 PART.2 CO.3 CO.3 PART.3 PART.3
CO.I (PPM) 3.92	CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2	CO.1 CO.1 (PPM) 4.18 4.15 4.15 4.14 4.14 4.14 4.14 4.13 4.10 4.10 4.10 4.10 4.11 3.86	CO.1 CO.1 S 55 S 55 S 55 S 55 S 55 S 55 S 55 S 5	Durst - CLO Floor Burst - MBR Durst - DR Durst - DR Durst - LR Burst - BA2 Burst - BA2 Burst - BA2 Burst - BA3
V0С9 (µg/m ³) 367	VOC9 (µg/m ¹) 613 628 589 589 587 583 587 587 583 587 583 583 587 583 583 587 583 583 583 583 583 583 583 583 583 583	VOC9 (µg/m²) 384 384 384 384 338 338 338 375 375 375 379 379	VOC9 (Jug/M ²) (Jug/M ²) (Jug/M ²) 481 483 483 483 483 483 483 487 477	EGEND V0C1 V0C2 V0C3 V0C3 V0C3 V0C3 V0C3
VOC8 (µg/m³) 122	VOC8 VOC8 168 168 168 165 165 165 165 163 163 163 168 170 170	VOC8 VOC8 125 125 124 125 125 126 126 126 126 126 126 126	VOC8 (Jug/m ²) (Jug/m ²) (Jug/m ²) 126 126 125 127 127 127 127	
VOC7 (µg/m ³) 369	VOC7 (µg/m ¹) 8491 663 630 630 630 632 632 605 605 605 605 605 850	VOC7 (μμ/m ²) 337 338 338 337 337 337 337 338 333 333	VOC7 (Jug/n ²) 1448 508 486 494 494 493 494 489 481 431	
15 VOC6 (µg/m ³) 359	VOC6 (µg/m ¹) 663 690 619 613 537 613 613 613 538 613 535 535 545	VOC6 (µg/m ^b) 384 386 386 386 372 372 377 377 350	VOC6 (µg/m ²) (µg/m ²) 495 495 495 495 486 486 488 482 482 482	
VOC5 VOC5 (µg/m³) 360	005 VOC5 (408/m ¹) 583 563 563 563 579 929 929 929 547 547 547 547 547 547 547 567 567 567 567 567 567 567 567 567 56	rtrations VOC5 374 371 375 371 375 405 375 405 375 366 362 366 366 340 340	Tations VOC5 (µg/m ²) 470 449 441 441 441 441 441 441 441 441 441	rations
avg conc VOC4 (μg/m ³) 359	ncentrati VOC4 (µ2000) (µ2010) (15 538 539 510 510 510 510 513 510 513 513 513	rr avg concentrations 3 VOC5 3 VP (agm) 30 (agm) 310 (agm) 311 311 312 313 313 316 312 313 313 316 313 316 314 316 316 316 316 316 316 316 316	S concentrations VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 VA3 458 433 470 436 441 456 441 456 441 457 555 456 441 457 456 451 433 457 434 451 441 453 455 451 441 453 455 451 445 453 456 451 445 453 453 453 450 453 450	concent
all 24-hr VOC3 (µg/m ³) 370	L peak co VOC3 VOC3 VOC3 599 519 519 519 519 519 519 519 519 519	24-hr av VOC3 386 384 383 383 383 385 375 375 375 379 379 379	001 001 001 001 001 001 001 001	I-hr avg
TH over VOC2 (µg/m ³) 39385	-TH zone VOC2 VVC2 WMP 34050 3415 3415 3415 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3419 3141	TH zone VOC2 (µg/m ¹) 29482 29483 29483 29485 29385 29545 29555 29545 295555 29555 29555 295555 295555 295555 295555 295555 295555 2955555 2955555 295555 295555555 2955555 2955555555	TTH zone VOC2 (µg/m²) NA NA NA NA NA NA NA NA NA NA NA NA NA	- SIM2FTH zone 1-hr avg concentrations CO.1 (PPM) 5.31 4.81 4.85 4.55 4.55 4.51 4.55 4
a - SIM2F VOC1 (µg/m ³) 3979	2 - SIM21 VOCI (µgm ²) 311 311 311 312 313 313 311 312 313 311 312 311 312 311 312 311 312 311 312 290	c - SIM2FTH zone 24-hr av VOCI VOC3 VOCI VPC3 Ugamb Uppmb Uppmb Uppmb 290 29483 299 29948 286 29446 286 29448 286 29448 286 29448 286 29448 286 29448 286 29448 389 29647 386 375 280 29948 304 28988 305 2808 306 28838 306 28838 307 28031 308 2805 309 20031 284 28031 264 27114	d - SIM2FTH zone 4 VOC1 VOC2 V (µg/m ³) (µg/m ³) (µ 294 NA 4 291 NA 4 291 NA 4 292 NA 4 319 NA 4 319 NA 4 318 NA 4 288 NA 2 288 NA 2 288 NA 4 288 NA 4 288 NA 4 287 NA 4 288 NA 4 287	e - SIM2F CO.I (PPM) (PP
Table 18a - SIM2FTH overall 24-hr avg concentrations voc1 voc2 voc3 voc4 voc5 (µg/m²) (µg/m²) (µg/m²) (µg/m²) (24 hr avg 3979 39385 370 359 360	Table 18b SIM2FTH zone peak concentrations VOCI VOC2 VOC3 VOC3<	Table 18c BA2 BA3 BA3 BR3 BR3 BR3 BR3 BR3 BR4 HAT KFA MBR MBR	Table 18d BA2 BA3 BA3 BR3 BR3 BR3 BR3 BR3 BR3 BR3 BR4 BR4 HAL LR MBA MBA	Table 186 BA2 BA3 BR3 BR3 BR3 BR3 BR3 BR3 BR4 HAL KFA KFA MBA MBA

VOC1 VOC2 VOC3 VOC3 VOC4 VOC3 (pg/m) (pg/m) (pg/m) (pg/m) (pg/m) (24 hr avg 248 3386 115 126 124	Table 19b - S VO VO BA2 BA2 BA2 BA2 BA2 BA2 BA2 DA2 PA2 BA2 BA2 BA2 BA2 BA2 DA2 DA2 PA2 BA2 DA3 DA3 DA3 DA3 DA3 DA3 DA3 DA3 DA3 DA4 DA4 </th <th>Table 19c - S WO BA2 040 BA3 332 BR2 300 BR3 332 BR3 28 BR3 38 BR3 38 BR</th> <th>Table 19d - SIM Table 19d - SIM BA2 (ugm) BA2 644 BR3 654 BR3 654 BR3 654 BR3 654 BR3 654 BR3 664 BR3 664 BR4 434 BR4 434 BRA 436 BRA 448<!--</th--><th>Table 19c - S BA2 4.0 BA3 4.10 BA3 4.10 BA3 4.10 BR3 3.3 BR4 3.3 BR2 3.1 BR4 3.3 BR4 3.6 BR5 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR7 <</th></th>	Table 19c - S WO BA2 040 BA3 332 BR2 300 BR3 332 BR3 28 BR3 38 BR3 38 BR	Table 19d - SIM Table 19d - SIM BA2 (ugm) BA2 644 BR3 654 BR3 654 BR3 654 BR3 654 BR3 654 BR3 664 BR3 664 BR4 434 BR4 434 BRA 436 BRA 448 </th <th>Table 19c - S BA2 4.0 BA3 4.10 BA3 4.10 BA3 4.10 BR3 3.3 BR4 3.3 BR2 3.1 BR4 3.3 BR4 3.6 BR5 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR7 <</th>	Table 19c - S BA2 4.0 BA3 4.10 BA3 4.10 BA3 4.10 BR3 3.3 BR4 3.3 BR2 3.1 BR4 3.3 BR4 3.6 BR5 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR6 3.6 BR7 <
CI VOC2 m³) (µg/m³ 8 3586		le 19c - SIM2MLC zonc 24-hr av (ug/m ³) (ug/m ²) (ug/m ³) (ug/m ³) (ug/m ³) (ug/m ³) 309 2700 114 200 2700 114 282 2517 112 282 2518 113 283 2517 112 283 2517 112 283 2517 112 284 140 A 310 2862 116 A 310	-SIM2MLC zone -VOCI VOCI VOC3 (1942/m) (192/m) (15 675 NA 675 NA 675 NA 675 NA 676 NA 480 NA 480 NA 480 NA 482 NA 483 NA	0c - SIM2MLC zone 1-hr avg concentrations 0c - SIM2MLC zone 1-hr avg concentrations 0c - SIM2MLC sone 1-hr avg concentrations 0c - SIM2 0 (PPM) 0 (PPM) 0 12 1.89 3.70 1.89 3.70 1.81 3.90 1.83 3.51 1.81 3.57 1.81 3.59 1.83 3.51 1.83 3.51 1.83 3.51 1.83 3.51 1.81
VOC3 (µg/m ³) 115	Dire peak cr VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 214 214 214 214 180 180 181 181 175 175 175 175 175	nic 24-hr / VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3	mc 4-hr av VOC3 VOC3 VOC3 142 143 135 135 135 135 135 136 137 138 139 131 135 136 137 138 138 138 128 128 128 128 128 128 128 129 128 129 128 129 128 128 128 129 208	Jic I-hr av
VOC4 (µg/m ³) 126	000C41 (µg/m ³) 308 307 317 272 302 861 401 401 401 401 401 350 247 285 285	r avg concentrations 3 vpc vpc3 1 vpc3 1 vpc4 1 vpc4 1 vpc3 1 vp	<i>If concentry</i> VOC4 (19/n ¹) (19/n ¹) (17/6 178 173 170 170 170 170 170 170 177 177 177 177	в соисси
VOC5 (µg/m³) 124	mcentrations VOC4 VOC5 VOC4 VOC5 (µg/m ³) (µg/m ³) 317 206 208 205 302 205 302 204 301 444 361 222 301 444 361 222 303 305 283 305	ntrations VOC5 (µg/m ¹) 125 126 119 123 133 133 133 124 124 124	g concentrations y OCG y VOC3 (µg/m ³) (µg/m ³) 176 173 178 174 173 174 173 173 174 172 174 172 174 172 176 175 176 175 177 175 178 179 178	Irations
VОС6 µg/m³) 128	VOC6 (µg/m ³) 320 330 301 407 285 322 322 322 322 322 271	VOC6 (µg/m ³) 128 128 129 121 121 121 121 122 123 123	VOC6 (μg/m ³) (μg/m ³) 176 179 176 178 178 163 163 163 163	
VOC7 (µg/m³) 116	VOC7 (µg/m ¹) 3491 206 185 286 185 185 167 167 167 173 173 214	VOC7 (µg/m ¹) 289 112 113 113 113 113 113 113 113 113	VOC7 (µg/m ³) (µg/m ³) 131 131 131 132 122 122 122 122 121 121	
VOC8 (µg/m ³) 141	VOC8 (µg/m ¹) 113 114 113 115 115 115 115 116 112 112 115	VOC8 (402/1) 142 142 133 133 144 144 146 146 141 141 141 141	VOC8 251 251 251 250 253 249 249 254 254 254 254 254 254 254 254 254 254	
v0.0 (µg/m³) 121	VOC9 (µg/m¹) 300 308 308 205 218 218 339 339 300 292 218 228 218 228 228 228 218 300	VOC9 123 124 124 114 114 113 113 113 113 113 113 113 11	VOC9 (µg/m ³) 163 168 153 168 168 1139 144 144 146 151	
CO.1 (PPM) 1.86	CO.1 CO.1 4.46 4.45 4.12 5.31 4.00 4.40 4.00 4.89 1.98 3.98 3.98	CO.I (PPM) (CO.I (19%) 2.84 3.05 3.05 2.84 3.05 2.99 2.99 2.99 2.99 2.71 3.85 2.77 2.77 2.77 2.77 2.84 2.99 2.99 2.99 2.99 2.99 2.77 2.77 2.77	
1 1.20N (MPM) 0.018	N02.1 1 (PW) 0.082 0.082 0.075 0.077 0.076 0.071 0.078 0.078 0.079 0.082 0.063	NO2.1 1 (17%) (17%	NO2.1 1 (PNM) ((PNM) ((PNM) (0.033 0.03	<u>i</u> l
РАКТ.1 (µg/m³) 10.67	PART.1 (ug/m ¹) 10.48 10.48 11.23 11.23 11.23 11.23 11.67 11.67 11.67 11.67 11.67 11.67 11.67 11.67 11.67	PART.1 (µg/m ^b) (µg/m ^b) 10.14 10.14 10.47 11.31 11.31 11.31 11.31 11.31 11.31 11.31 11.24 10.52	PART.1 (1971) 9.87 9.87 10.45 10.17 10.17 11.15 11.15 11.16 9.94 11.16 9.94	EGEND VOC1 VOC3
CO.2 (PPM) 1.76	CO.2 (PPM) 3.18 3.18 3.18 2.21 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75	CO.2 CO.2 (PPM) 1.81 1.83 1.83 1.79 1.77 1.77 1.77 1.77 1.77 1.77 1.77	CO.2 CO.2 (PPM) (P	Durst - BMT Burst - BMT Burst - MBR Burst - DR Burst - LR Burst - BA2 Burst - BR3 Burst - BR3
NO2.2 (PPM) 0.019	N02.2 (PPM) 0.110 0.112 0.093 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077	NO2.2 NO2.2 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	NO2.2 NO2.2 (PTM) 0.021 0.021 0.021 0.023 0.023 0.023 0.023 0.023	C0.1 N02.1 N02.1 C0.2 N02.2 N02.2 N02.3 N02.3 N02.3
PART.2 (µg/m³) 10.92	PART.2 (µg/m ³) (12.31 (12.38 (12.38 (12.38 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48 (12.48)(12.48	PART.2 (µg/m ³) (µg/m ³) (0.47 10.37 10.77 11.32 11.32 11.32 11.30 11.44 10.44 10.44	PART.2 (1050) (1050) 10.30 10.39 11.01 11.61 11.51 11.51 11.51 11.50 11.67 11.50 10.97	Oven Oven Oven Heater Heater Heater Heater Outdoor air Outdoor air
CO.3 (PPM) 6.73	CO.3 (PPM) 10.70 10.71 11.36 11.36 11.36 11.37 11.36 11.36 11.36 11.37 10.09	CO.3 (PPM) 6.75 6.75 6.75 6.75 6.73 6.73 6.73 6.73 6.73 6.73 6.73 6.73		
NO2.3 (PPM) 0.114	N02.3 (PPM) 0.161 0.188 0.183 0.183 0.183 0.183 0.183 0.179 0.223 0.223 0.223 0.223 0.173	N02.3 (PPM) 0.098 0.097 0.116 0.117 0.118 0.127 0.118 0.127 0.118 0.127		
PART.3 (µg/m³) 16.48	PART.3 (µg/m ³) 9.57 1.85 34.86 24.45 21.04 40.54 33.13 33.26 33.38 33.26 33.38 20.45 20.45	PART.3 (µg/m ¹) 3.22 13.8 14.77 9.97 9.64 9.64 9.64 12.104 12.00 12.00		

PART.3 (µg/m ³) 19.19	PART.3 (ug/m ³) 20.92 3.28 3.28 3.28 40.51 46.16 45.95 45.95 45.95 45.95 45.96 39.90 39.90	PART.3 (ug/m ³) (ug/m ³) (ug/m ³) 1.14 1.14 13.59 13.59 13.59 24.76 16.55 33.56 9.18 27.67 0.16		
NO2.3 (PPM) 0.095	NO2.3 NO2.3 0.120 0.131 0.156 0.156 0.128 0.128 0.128 0.128 0.128 0.128	NO2.3 NO2.3 (PPM) 0.066 0.065 0.065 0.116 0.131 0.131 0.131 0.131 0.131 0.131 0.130 0.105 0.106		
CO.3 (PPM) 6.60	CO.3 (PPM) 9.84 9.89 9.89 10.67 11.59 10.67 11.61 11.61 11.59 10.54 9.92 9.92	CO.3 (PPM) 6.57 6.64 6.69 6.69 6.61 6.61 6.61 6.61 6.61 6.64 6.64 6.64		
PART.2 (μg/m³) 11.12	PART.2 (Hg/m ³) 13.39 13.20 13.46 13.46 13.46 13.40 14.23 14.23 14.23 14.23 14.23 14.23 13.03	PART.2 (198/m ³) (10.61 10.18 11.39 11.45 11.67 11.21 11.67 11.42 11.42	PART.2 (1920) 10.20 9.82 9.82 9.82 9.82 9.82 11.11 10.75 11.12 12.26 12.26 12.26 12.26 12.26 12.26 11.17	Oven Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
NO2.2 (PPM) 0.017	NO2.2 NO2.2 0.09% 0.101 0.087 0.088 0.088 0.088 0.083 0.083 0.083 0.093 0.093	NO2.2 (PPM) 0.015 0.014 0.018 0.018 0.018 0.015 0.015 0.015	NO2.2 (PPM) 0.028 0.019 0.028 0.026 0.024 0.024 0.024 0.026 0.028 0.028 0.028 0.028 0.028 0.028	CO.I NO2.1 PART.1 CO.2 CO.2 CO.2 CO.3 CO.3 NO2.3 NO2.3 PART.3
CO.2 (PPM) 1.82	CO.2 CO.2 3.03 3.10 3.10 2.85 2.85 2.85 2.85 2.85 2.68 2.68 2.94 2.01 2.94 2.60	CO.2 (PPM) (_	Burst - BMT Filoor Burst - MBR Burst - DR Burst - LR Burst - KFA Burst - BA2 Burst - BR3 Burst - BR3
PART.1 (μg/m³) 10.76	PART.1 (µg/m ³) 11.51 11.51 11.94 11.94 11.94 12.56 12.56 12.56 12.54 12.555 12.555 12.555 12.5555 12.5555555555	PART.1 (µg/m ³) 9.61 9.61 10.70 11.35 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68	PART.1 (192/m ³) 10.82 10.06 11.58 11.58 11.58 11.57 11.57 11.57 12.17 11.55 12.17 11.55 11.96	EGEND V0C1 V0C2 V0C3 V0C3 V0C3 V0C3 V0C3
NO2.1 (PPM) 0.017	NO2.1 NO2.1 0.037 0.034 0.035 0.035 0.035 0.031 0.031 0.034 0.034 0.037	NO2.1 (PPM) 0.009 0.001 0.011 0.013 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013	NO2.1 (PPM) 0.014 0.015 0.015 0.017 0.017 0.017 0.017 0.017 0.017 0.017	
CO.I (PPM) 1.88	CO.I 3.17 3.13 3.13 3.28 2.28 2.28 2.28 2.23 2.23 2.23 2.2	CO.I CO.I 1.74 1.71 1.73 1.73 1.73 1.73 1.73 1.73 1.73	CO.I (PPM) 2.27 2.59 2.15 2.15 2.15 2.18 1.92 1.95 1.95 1.95 2.25 2.25 2.25	
VОС9 (µg/m ³) 126	VOC9 (µg/m ¹) 277 293 248 4128 14128 14128 148 187 189 187 187 195	VOC9 110 110 114 114 111 111 111 111 117 106 107 107	VOC9 (µg/m ³) 122 135 547 135 135 131 111 111 111 111 111 111 111	
VОС8 (µg/m³) 159	VOC8 (µg/m²) 334 334 271 287 285 515 515 287 1337 235 235 235 235	VOC8 140 136 135 138 138 138 138 138 138 138 137 118	VOC8 VOC8 148/m ³) 180 179 175 176 606 176 176 176 176	
VОС7 (µg/m³) 127	VOC7 (48/m ³) 3371 251 667 543 543 543 543 864 1610 1610 233 203 2316 2316 2316 248	VOC7 271 157 112 112 112 112 112 112 112 112 112 11	VOC7 (µg/m ³) 487 166 166 166 119 119 119 119 118 118 118	
	VOC6 (Hg/m ³) 280 296 533 633 1131 1131 216 233 233 233 233 233 233 233 233 233 23	VOC6 (µg/m ³) 113 113 113 113 114 111 113 108 108 108 111	VOC6 (µg/m ¹) 124 140 144 143 133 119 112 112 112	
VOC5 (µg/m ³) 116	008 (14g/m ³) 793 253 253 253 253 253 253 253 254 416 215 215 215 215 215 215 215 215 215 215	(A)	(ug/m ³) 175 175 169 169 110 110 110 110 110 110 110 117 110 110	rations
avg conc VOC4 125 125	x concentrations 3 VOC4 VOC5 9) (ug/m ³) (ug/m ³) 247 793 267 260 267 793 261 763 267 263 267 793 264 763 267 263 267 267 275 251 324 275 253 261 275 253 344 178 261 216 273 213 215 213 213 215 213 213 215 247 284 188 178 188 178	yg concen VOC4 112 1125 1125 1125 1125 113 113 113 115 117 117 117	(116) 116) 116) 119 119 119 116 119 116 116 116 116 116	ç concent
ан 24-лт VOC3 (µg/m ³) 129	2 peak co 2 voc3 2 voc3 2 voc3 2 voc3 2 voc4 2 voc4 2 voc4 2 voc4 2 voc4 2 voc4 2 voc3 2 voc4 2 voc4	24-hr av VOC3 112 112 119 119 119 119 111 111 111 111	e 4-hr avy VOC3 VOC3 117 117 117 113 113 126 128 128 128 128 128 128 128 128 128 128	e J-hr av _i
UOC2 VOC2 (μg/m ³) 6490	LLM zoni VOC2 142m ³ 1502 5515 5551 5555 5555 3792 3792 3792 3793 3795 3795 3396 6354 5354 3708 5354 5354 5354 5354 5354 5354 5354 535	LLM zone VOC2 2680 3635 3657 4050 1997 1997 2505 2505 2505 2505 2505 2505 2505 250	LLM zon. VOC2 NA NA NA NA NA NA NA NA NA NA NA NA NA	LLM zone CO.2 (PPM) 2.17 2.15 2.15 2.23 2.23 2.23 3.52 2.23 3.52 1.95 1.95 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.2
- 51M2N VOC1 (µg/m ³) 269	- SIM2N VOCI 1046 1046 1093 852 905 852 905 823 823 1005 630 630 630 631 631 631 631 631 631 631 632 633 633 641 641	 - SIM2M VOCI VOCI 289 289 314 286 314 286 314 286 286 286 286 287 287 283 285 286 287 286 286 287 287 288 	- SIM2N - SIM2N - VOCI - 430 - 430 - 433 - 433 - 443 - 443 - 334 - 443 - 334 - 443 - 334 - 443 - 334 - 443 - 336 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	- SIM2M CO.I 2.44 2.56 2.56 2.56 2.56 2.56 2.41 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5
Table 20a - SIM2MLM overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VOC5 VOC5 VOC5 VOC5 VOC6 VOC5 VOC6 VOC5 <t< td=""><td>Table 20b - SIM2MLM zone peak conversion Cord VOC1 VOC3 <thvoc3< th=""> VOC3 VOC3</thvoc3<></td></t<> <td>Table 20c - SIM2MLM zone 24-hr avg concentration: 1 <td< td=""><td>c 20d</td><td>Table 20e - SIM2MLM zone In avg concentrations COJ Fon BA2 244 214 217 BA3 2.30 BR3 2.30 BR4 2.66 D13 2.50 BR4 2.66 D14 2.47 BR4 2.66 D13 2.50 D14 2.64 D18 2.64 D19 3.57 D18 2.64 D19 3.57 D18 2.56 D19 3.57 D11 3.57 UR 2.53 D13 3.55 D13 3.55 LR 2.57 MBA 2.57 MBR 2.57</td></td<></td>	Table 20b - SIM2MLM zone peak conversion Cord VOC1 VOC3 VOC3 <thvoc3< th=""> VOC3 VOC3</thvoc3<>	Table 20c - SIM2MLM zone 24-hr avg concentration: 1 <td< td=""><td>c 20d</td><td>Table 20e - SIM2MLM zone In avg concentrations COJ Fon BA2 244 214 217 BA3 2.30 BR3 2.30 BR4 2.66 D13 2.50 BR4 2.66 D14 2.47 BR4 2.66 D13 2.50 D14 2.64 D18 2.64 D19 3.57 D18 2.64 D19 3.57 D18 2.56 D19 3.57 D11 3.57 UR 2.53 D13 3.55 D13 3.55 LR 2.57 MBA 2.57 MBR 2.57</td></td<>	c 20d	Table 20e - SIM2MLM zone In avg concentrations COJ Fon BA2 244 214 217 BA3 2.30 BR3 2.30 BR4 2.66 D13 2.50 BR4 2.66 D14 2.47 BR4 2.66 D13 2.50 D14 2.64 D18 2.64 D19 3.57 D18 2.64 D19 3.57 D18 2.56 D19 3.57 D11 3.57 UR 2.53 D13 3.55 D13 3.55 LR 2.57 MBA 2.57 MBR 2.57

Table 21a - SIM2MLH overall 24-hr avg concentrations	
24-hr avg cor	
24-1	
crall	
MLH ov	
a - SIM2	
Table 21	

	VOCI	V0C2	V0C3	VOC4	VOCS	V0C6	VOCT	V0C8	V0C9	C0.1	N02.1	PART.1	CO.3	N02.3	PART.3
	(mg/m3)	(mg/m)	(µg/m³)	(fm/gh)	(fug/lub)	(fug/uh)	(fug/m²)	(hg/m³)	(m/gh))	(Mdd)	(Mdd)	(Jug/m3)	(Mdd)	(Mdd)	(hg/m3)
hr avg	284	7364	123	125	134	127	128	132	123	1.87	0.017	10.73	6.71	0.097	17.87

	VOCI	V0C2	VOC3	V0C4	VOCS	VOC6	VOCT	VOC8	V0C9	CO.1	N02.1	PART.1	CO.3	N02.3	PART.3
	(fm/m)	(µg/m³)	(mg/m)	(mg/m ³)	(fm/gul)	(fm/gn)	(fm/gn)	(mg/m3)	(fug/m)	(Mdd)	(Mdd)	(em/grl)	(Mdd)	(Mdd)	(fug/m3)
BA2	1022	9242	253	268	323	282	10646	272	289	4.19	0.069	10.58	10.45	0.134	16.10
DA3	1066	17117	261	276	334	291	234	266	297	4.33	0.074	10.44	10.44	0.138	2.13
BR2	926	6416	233	242	288	253	373	280	260	3.86	0.058	11.50	10.55	0.148	23.34
BR3	943	7141	238	244	292	257	366	276	3512	3.94	0.061	11.34	10.53	0.138	22.21
DR4	924	6545	236	239	285	251	413	276	257	3.89	0.060	11.59	10.58	0.146	25.75
DR	768	9781	209	1906	879	231	194	219	237	3.69	0.052	11.86	10.77	0.157	30.02
ENT	787	3931	177	184	212	161	164	474	194	3.14	0.048	12.34	11.57	0.268	49.47
HAL	66L	4500	251	200	231	206	1479	418	211	3.31	0.044	12.06	11.13	0.229	43.53
KI:A	885	9414	221	451	295	1576	210	800	252	14.55	0.481	11.64	10.56	0.130	12.44
LR	568	5276	172	6/1	1503	186	163	204	190	3.12	0.043	12.38	11.28	0.223	42.09
MBA	166	10210	568	268	323	282	227	253	289	4.19	0.069	10.93	10.48	0.134	16.37
MBR	618	\$028	1430	161	222	8	176	196	204	127	0.044	12.08	10.88	0 192	36.85

Table 21c - SIM2MLH zone 24-hr avg concentrations Voc1 Voc2 Voc3 <t

(mg/m))	5.46	1.22	13.15	9.73	12.90	15.05	36.22	27.07	6.03	29.59	5.38	23.77
(Mdd)	0.072	0.057	0.089	0.081	0.090	0.091	0.143	0.122	0.067	0.128	0.072	0.113
(Mdd)	6.81	7.27	6.78	6.77	6.73	6.80	6.73	6.68	6.85	6.65	6.75	6.67
(/m/gn)	10.17	9.06	10.76	10.55	10.78	10.01	11.72	11.43	10.34	11.71	10.27	11.39
(Mdd)	0.011	0.010	0.012	0.011	0.012	0.012	0.016	0.014	0.039	0.014	0.011	0.013
(Mdd)	1.84	2.08	1.77	1.78	1.76	1.75	1.67	1.67	2.65	1.65	1.81	1.68
, (μg/m ²)	122	133	117	264	117	114	101	110	119	107	121	110
(mg/m))	133	148	128	130	128	117	133	131	187	Ξ	125	113
(mg/m)	547	128	127	129	130	011	105	158	115	106	118	60
(fug/m²)	124	136	118	119	118	115	108	011	195	108	123	Ξ
(fug/m²)	130	145	123	125	123	155	Ξ	114	134	174	129	114
(mg/m))	121	131	116	117	116	204	107	109	137	107	120	109
(mg/m)	118	127	114	115	114	Ξ	106	110	115	106	136	176
(m/grl)	4987	7162	3694	4095	3784	4257	1517	2155	5084	2556	5313	2983
(fug/m3)	399	517	338	356	329	260	287	299	317	661	352	235
_	BA2	BA3	BR2	BR3	BR4	DR	ENT	HAL	KFA	1.R	MBA	MBR

Table 21d - SIM2MLH zone 4-hr avg concentrations voc1 voc2 voc3 voc3 voc4 voc5 voc7 voc8 voc9 c0.1 vo2.1 PAREJ

(fug/nl ³)	10.20	9.89	10.58	10.52	10.68	10.89	11.90	11.58	10.65	11.73	10.23	11.36
(Mdd)	0.025	0.027	0.022	0.023	0.023	0.021	0.020	0.020	0.117	0.020	0.024	0.020
(Mdd)	2.89	3.06	2.69	2.74	2.67	2.58	2.14	2.26	5.51	2.24	2.87	2.37
(^c m/gµ)	154	168	142	703	141	136	115	120	147	119	153	125
(mg/m))	207	209	206	206	202	158	239	229	427	140	181	146
(fug/m ²)	1783	155	189	181	182	128	112	246	137	115	145	127
(fug/m³)	159	174	146	149	146	139	117	121	429	121	157	127
(fug/m ²)	173	192	158	161	156	306	122	127	196	360	172	135
(µg/m³)	149	162	140	141	138	446	114	118	220	118	148	123
(µg/m ³)	141	152	132	134	132	127	Ξ	116	136	115	226	366
(µg/m ³)	VN	VN	٧N	VN	٧N	٧N	٧N	VN	٧N	VN	٧N	٧N
('un'a))	169	808	609	624	589	448	528	529	549	304	620	363
	BA2	BA3	BR2	BR3	BR4	DR	ENT	IIVE	KFA	LR	MBA	MBR

Table 21e - SIM2MLH zone 1-hr avg concentrations C0.1 PM3 3.37 BA2 3.37 BA3 3.37 BA3 3.37 BA2 3.37 BA3 3.37 BA2 3.37 BA3 3.39 BR3 3.19 BR3 3.13 BR4 3.13 BR3 3.13 BR4 3.13 BR4 3.13 BR4 3.21 BR4 3.13 BR4 3.13 BR4 3.13 BR4 3.28 HAL 2.88 MBR 2.92 MBR 2.94

VOCI	Burst - BMT	C0.1	Oven
V0C2	Floor	N02.1	Oven
VOC3		PART.1	Oven
VOC4		_	Heater
VOCS		_	Heater
VOC6			Heater
VOCT		_	Outdoor at
V0C8	Burst - GAR	-	Outdoor a
VOC9			Outdoor a

PART.3 (µg/m ³) 5.62	PART.3 (µg/m ³) 1.49 0.56 9.17 7.72 11.47 11.47 11.02 11.02 11.02 11.02 11.02 11.02 11.02 11.02 11.02 11.02 12.63 11.26 12.63	PART.3 (Hg/m ¹) 0.60 0.42 3.57 3.55 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.63 10.58		
NO2.3 P (PPM) (0.053	NO2.3 P (PPM) (0.073 (0.073 (0.083 (0.083 (0.115 (0.083 (0.115 (0.097 (0.098 (0.098 (0.098 (0.073 (0.073 (0.073 (0.069 (0.073	NO2.3 P (PM) (0.045 0.045 0.045 0.045 0.045 0.046 0.046 0.051 0.051 0.063 0.065 0.065 0.065 0.063 0.064 0.049 0.064 0.044 0.064 0.0		
CO.3 (PPM) 6.72	CO.3 8.93 8.93 8.93 9.35 9.35 9.35 9.36 8.92 8.93 8.93 8.93 8.93	CO.3 (PPM) 6.81 6.81 6.81 6.79 6.79 6.79 6.79 6.79 6.79 6.80		
PART.2 (μg/m³) 8.22	PART.2 (µg/m ³) 10.42 10.48 10.35 10.36 10.36 10.49 10.47 10.47 10.40 10.40	PART.2 (μg/m ³) 7.95 7.95 8.39 8.15 8.15 8.38 8.38 8.38 8.38 8.38 8.75 8.15 8.15	PART.2 (μg/m ³) 7.88 7.87 8.34 8.34 8.34 8.34 8.34 9.08 8.44 9.01 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70	Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
NO2.2 (PPM) 0.017	NO2.2 (PPM) 0.129 0.134 0.116 0.122 0.108 0.108 0.108 0.108 0.108 0.108	NO2.2 (PPM) (PPM) 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	NO22 (PPM) 0017 0.017 0.017 0.017 0.023 0.023 0.023 0.017 0.017	C0.1 PART.1 PART.1 PART.2 PART.2 C0.3 PART.3 PART.3 PART.3
CO.2 (PPM) 2.15	CO2 CO2 A00 3397 3397 3397 3364 3364 3364 3374 3364 3364 3364 336	CO.2 (PPM) 2.24 2.19 2.19 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	CO.2 (PPM) 1.91 1.87 1.88 1.88 1.88 1.91 1.91 1.91 1.91 1.91	Burst - BMT Floor Burst - DR Burst - DR Burst - DR Burst - DR Burst - CR Burst - GAR Burst - BR3 Burst - BR3
РАКТ.1 (µg/m³) 7.60	PART.1 (PPART.1 7.59 8.83 8.01 8.23 8.01 9.30 8.51 8.51 8.51 8.70 8.76 7.60 7.60	PART.1 (µg/m ³) 7.24 7.24 7.52 7.52 7.52 7.52 7.52 8.31 8.11 8.12 8.12 8.13 8.13 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.7	PART.1 (µg/m ³) 7.01 7.01 7.05 7.41 8.02 8.02 8.02 8.02 7.78 8.01 7.78 8.01 7.78	EGEND V0C1 V0C2 V0C3 V0C3 V0C5 V0C5 V0C5 V0C5 V0C5
NO2.1 (PPM) 0.015	NO2.1 (PPM) 0.087 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.073 0.073 0.073 0.073 0.073	NO2.1 (PPM) (PPM) 0.012 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.012	NO2.1 NO2.1 (PPM) 0.035 0.034 0.035 0.035 0.033 0.033 0.033 0.033	
CO.1 (PPM) 2.29	CO.1 (PPM) 4.76 4.81 4.51 4.51 4.67 5.63 5.63 5.63 4.26 4.74 4.74 4.74 4.74	CO.1 2.31 2.31 2.33 2.28 2.28 2.28 2.23 2.23 2.23 2.23	CO.I (PPM) 3.82 3.84 3.78 3.78 3.59 3.59 3.59 3.59 3.59 5.03 3.59 5.03 3.59	
V0С9 (µg/m³) 175	VOC9 (µg/m ³) 376 387 387 386 316 325 327 327 327 376 376	VOC9 (µg/m ³) 179 171 171 162 163 167 164 179	VOC9 259 250 256 256 256 256 255 255 255 255 255 255	
VOC8 (µg/m³) 302	VOC8 (µg/m ³) 520 521 517 517 517 517 552 520 511	VOC8 (μg/m ³) 303 295 295 293 312 312 312 312 312 302	VOC8 (µg/m ³) 423 422 416 416 416 418 371 418 418	
VОС7 (µg/m³) 166	VOC7 VOC7 3383 300 309 309 309 309 266 270 1670 1670 1670 483	VOC7 VOC7 (µg/m ³) 349 162 155 156 150 152 152 153 153	VOC7 632 632 532 532 632 532 437 201 198 198 199 199 199	
s VOC6 (µg/m³) 183	VOC6 (µg/m ³) 373 385 385 385 385 334 373 373 373	VOC6 VOC6 (μg/m ³) 185 176 181 181 171 177 177 177 177 177 177 177	VOC6 (µg/m ³) 271 272 268 268 268 268 271 251 251 251	
Contration VOC5 (µg/m ³) 182	K concentrations (1) VOC4 VOC5 (1) (1) (1)	titrations VOC5 VOC5 V0C5 184 175 181 177 181 177 181 177 181 177 181 177 181 181 181 177 181 177 178 181 177 177	rations VOC5 VOC5 270 271 271 271 271 267 267 267 267 267 267 267 267 270 270 270	rations
avg conc VOC4 (µg/m ³) 183	ncentrati; VOC4 (9/m ³) 372 385 365 365 365 365 355 355 357 372 337 337 338	<i>lg</i> concer VOC4 VOC4 (μg/m ³) 185 176 181 174 178 178 178 178 178 180 185	2 concent VOC4 (µg/m ³) 271 271 271 267 267 267 267 267 267 267 267 267 267	g concent
rali 24-hr VOC3 (µg/m³) 160	c peak co VOC3 (μ(μ)m ³) 301 301 283 283 283 283 283 283 283 283 283 283	22c - SIM2MTC zone 24-hr avg concentrations VOC1 VOC3 VOC4 VOC5 VOC5 VOC5 VOC5 VOC5 VOC4 VOC5 VOC5 VOC4 VOC5 VOC5 VOC4 VOC5 VOC5 VOC4 VOC5 VOC5 VOC5 VOC5 VOC5 VOC4 VOC5 VOC5 VOC5 VOC5 VOC5 VOC6 VOC5 VOC6 VOC5 VOC5 VOC5 VOC5 VOC5 VOC5 VOC5 VOC5 VOC6 VOC5 VOC6 VOC5 VOC5 VOC5 VOC6 VOC5 VOC5 VOC6 VOC6 <th< td=""><td><u>с 4-hr av</u>, <u>VOC3</u> 220 220 211 220 218 218 218 2195 204 203 203 224 223</td><td>e I-hr avi</td></th<>	<u>с 4-hr av</u> , <u>VOC3</u> 220 220 211 220 218 218 218 2195 204 203 203 224 223	e I-hr avi
ATC ove: VOC2 (µg/m ³) 11745	ATC zont VOC2 (VOC2 (8640) 8580 8633 8633 8633 8639 7312 7312 7312 8873 7325 8823 8823 8823 8823 8823 8823 8823 8	ATC zom VOC2 VOC2 7609 7505 7185 7355 7355 6411 6411 6413 6413 6413 6413 6413 6413	MTC zon VOC2 (µg/m ³) NA NA NA NA NA NA NA NA NA NA NA NA NA	ATC zon (PPM) (PPM
1 - SIM2) VOC1 (µg/m ³) 640	5 - SIM2N VOCI (µ@лч) 1533 1547 1510 1510 1510 1511 1331 1331 1331 1335 1237 1237 1531 1337 1531 1337 1531 1337 1531	2 SIM2h VOCI (µg/m ³) 715 719 685 685 686 685 681 651 651 715 530 673	1- SIM2P VOCI VOCI VOCI VOCI 1211 1211 1211 1211 1212 1193 999 981 1193 981 1061 1052 933 1105	2 - SIM2) CO.1 (PM) 3.81 3.81 3.81 3.70 3
Table 22a - SIM2MTC overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC3 VOC5 Vpcl1 Vjdp1 (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) 24 hr avg 640 11745 160 183 182 183 182	Table 22b - SIM2MTC zone peak (VCC1 VOC3 VOC3 VOC1 VOC1 VOC3 VOC3 BA2 1533 8640 301 BA2 1547 8540 301 BA2 1547 8540 301 BR2 1441 8033 283 BR3 1510 8599 302 BR4 1510 8599 292 DR 1311 7220 263 HAL 1331 7312 263 HAL 1331 7312 263 HAL 1335 8719 263 HAL 1335 7518 271 MBR 1531 7518 271 MBR 1531 7518 271 MBR 1531 7535 257	Table 22c BA2 BA3 BA3 BA3 BA3 BA3 BA3 BA3 BA3 BA3 MA1 KFA MBA MBR	Table 22d - SIM2MTC zone 4-hr avg concentrations Table 22d - SIM2MTC zone 4-hr avg concentrations (ug/m²) (ug	Table 22e - SIM2MTC zone I-hr avg concentrations C0.1 C0.2 (PbM) (PDM) BA2 3.81 3.92 2.08 BR3 3.92 3.70 2.01 BR4 3.70 DR 4.59 DR 3.61 MAL 3.38 A.59 2.03 BR4 3.70 2.03 2.04 BR4 3.70 A.59 2.04 MAL 3.38 A.59 2.03 MBA 3.35 A.50 2.03

PART.3 (μg/m ³) 6.77	PART.3 (µg/m ³) 7.39 7.39 0.91 14.61 7.38 20.59 15.10 34.97 5.87 5.22.24	10.49 10.49 1.68 1.68 1.68 1.68 1.68 1.68 1.935 1.935 1.935 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76		
NO2.3 (PPM) 0.040	NO2.3 (PPM) 0.050 0.059 0.050 0.107 0.107 0.104 0.104 0.104	0.000 0.076 0.021 0.023 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.032 0.032 0.025		
CO.3 (PPM) 6.58	CO.3 (PPM) 8.26 8.24 8.55 8.55 10.23 10.16 8.30 9.28	8.71 8.75 8.75 6.72 6.77 6.77 6.77 6.77 6.77 6.77 6.77		
PART.2 (μg/m³) 8.85	PART.2 (µg/m ³) (µg/m ³)	11.41 11.85 11.85 11.85 11.85 8.41 8.61 8.61 8.61 8.61 8.61 8.61 8.61 8.6	PART.2 (18/m ³) 7.23 7.12 7.12 7.35 8.00 7.38 10.38 10.38 10.38 8.20 7.38 8.27 7.17 7.17	Oven Oven Oven Meater Heater Heater Heater Outdoor air Outdoor air
NO2.2 (PPM) 0.012	NO2.2 (PPM) 0.102 0.093 0.093 0.093 0.075 0.075 0.075	0.101 0.068 0.012 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010	NO2.2 (PPM) 0.010 0.011 0.011 0.011 0.011 0.012 0.053 0.053 0.053 0.013 0.013	C0.1 N02.1 PART.1 PART.1 C0.2 PART.2 C0.3 PART.3 PART.3
CO.2 (PPM) 2.44	CO2 CO2 3.57 3.68 3.40 3.44 3.44 3.44 3.44 3.58 3.308 3.308 3.308 3.308 3.308 3.308	2,55 2,66 2,66 2,66 2,56 2,56 2,56 2,56	CO.2 CO.2 CO.2 CAM CAM CAM CO.2 CA CAM CAM CO.2 CAM CAM CAM CAM CAM CAM CAM CAM CAM CAM	Burst - BMT Floor Burst - MBR Burst - DR Burst - LR Burst - Kl'A Burst - BA2 Burst - BR3 Burst - BR3
PART.1 (μg/m ³) 7.96	PART.I (µg/m ³) 8.49 9.88 9.20 9.20 10.21 10.21 10.12 10.33	911 10.69 17.32 7.57 7.57 7.59 9.28 9.28 9.28 8.31 8.31 8.31 8.32 8.32	PART.1 (49/m ³) 8.16 7.72 8.30 9.07 9.07 9.04 9.05 9.04 9.05 9.05	EGEND voci voc3 voc3 voc3 voc3 voc3 voc3 voc3 voc3
NO2.1 (PPM) 0.016	N02.1 (PPM) 0.051 0.045 0.047 0.047 0.041 0.054 0.054 0.054	0.001 0.031 0.00700000000	NO2.1 NO2.1 (PPM) 0.015 0.016 0.016 0.016 0.015 0.016 0.016 0.016	
CO.1 (PPM) 2.55	CO.I (PPM) 4.38 4.18 4.11 4.11 5.04 3.56 3.56 3.57 3.57 3.57	94.38 348 348 348 348 348 253 253 253 253 253 253 253 253 253 253	CO.I (179M) 3.24 3.13 3.13 3.13 3.13 3.14 2.69 2.43 2.69 2.69 2.69 2.61	
VOC9 (µg/m³) 195	VOC9 376 395 395 341 4796 343 343 343 346 324 274 274	276 276 205 195 195 175 175 184 184 184 184 184 186 187 187 189 189	VOC9 (48/m ³) 278 278 278 278 278 278 278 216 170 236 182 182 182	
VOC8 (µg/m³) 261	v0C8 424 416 425 416 418 418 418 418 417 717 717 317 317	408 379 256 258 258 258 258 255 255 247 255 247 255 247 255 211 211	VOC8 (48/m ³) 328 313 314 314 314 315 315 315 312 212 212 212 212 228	
VOC7 (µg/m³) 207	VOC7 VOC7 13124 302 501 419 327 327 2397 2818 281	540 466 466 194 194 176 176 176 176 176 176 176 176 176 176	VOC7 (48/m ³) 1931 238 238 238 205 205 204 426 204 204 252 255 255	
VOC6 ug/m ³) 216	VOC6 370 337 337 337 337 337 337 346 312 302 2074 2074	2009 292 2009 218 2019 2019 2018 195 2018 195 195 117 173 173 173	VOC6 (1980) 263 293 293 293 313 111 171 171 171 171 171 171 171 17	
VOC5 (µg/m ³) 220			Zialions VOCCS 283 306 276 276 276 276 276 276 276 276 276 27	alions
VOC4 (μg/m ³) 202	k concentrations 3 VOC5 9) (µg/m) (µg/m) 364 418 314 360 315 361 315 361 315 361 317 323 317 323 317 323 317 312 318 2412	265 299 265 299 265 299 <u>7 avg concentrations</u> 9 (ug/m ³) (ug/m ³) (ug/m ³) (196 214 196 214 170 191 171 191 171 191 189 207 171 191 180 231 180 231 180 231 171 191 180 231 191 181 180 231 180 2	2000 2000 247 247 247 247 258 854 854 854 162 162 162 162 162 162 162 162 162 162	concon
VOC3 (μg/m³) 184	2 peak co VOC3 302 302 316 316 316 215 283 283 283 283 283 283 283 283 283 283	2003 2003 224-hr av V 003 173 173 173 173 164 168 168 168 168 168 168 168 163 163 163 163 163 163 163 163 163 163	442 445 445 445 442 442 192 192 192 193 193 197 197 197 197 197 197 197 197 197	36 - SIM2MTM zone 1-hr avg concentrations (1704) 600 (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1704) (1705) 2.51 (1705) 2.53 (1705) 2.53 (1705) 2.53 (16.53) 2.54 (16.53) 2.54 (16.53) 2.54
VOC2 (µg/m³) 23366	1TM zon VOC2 (µ2/m ³) 15689 15689 16091 14994 12333 15668 15668 15668 1537 1537 1537 1537	1702 10.25 4.89 1309 14306 2.003 voc1 voc2 voc3 vor1 voc3 1.398 (µg/m) (µg/m) (µg/m) (µg/m) (µg/m) (µg/m) 1116 13257 179 952 12638 1577 961 10554 157 932 12638 164 933 13567 179 934 1001 12559 168 1001 10554 157 932 12638 163 163 931 13667 164 137 748 8661 10556 143 981 13056 143 137 981 13056 148 137 1357 10206 148 137 1301 13083 133 137 981 13086 148 137 13581 303 <	TTM ZONK VOC2 NA NA NA NA NA NA NA NA NA NA NA NA NA	ITM zond CO.2 (CO.2 (CPM) 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5
VOCI (µg/m ³) 862	- <u>SIM2N</u> VOCI (µg/m ³) (1707 1707 1703 1603 1613 1613 1512 1511 1357 1561 1357 1561	1702 1702 - SIM2M VVOC1 1058 1016 952 952 952 953 953 953 953 953 953 953 953	- SIM2N - SIM2N (ug/m ³) (1164 1274 1274 1274 1037 1037 982 982 983 983 993 993 993 993	- <u>SIM2M</u> CO.1 (111M) 2.24 2.25 2.26 2.26 2.27 2.29 2.23 2.29 2.23 2.23 2.23 2.23 2.23
VOC1 VOC2 VOC3 VOC3 VOC5 VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC5 VOC4 VOC3 VOC4 VOC3 VOC4 VOC3 VOC4 VOC4 VOC4 VOC4 VOC4 VOC4 VOC4 VOC4	Table 23b - SIM2MTM zonc peak cover VOCI VOCI VOC2 VOC3 IDA2 IT07 IS889 302 IDA2 IT07 IS689 316 IBA3 IT43 IG091 316 IBR2 I608 1454 275 IBR3 I643 14994 283 IBR4 I512 12830 276 IDR I513 12830 276 IDR I514 1533 276 IDR I514 1557 259 IDR I556 253 270 IRV I556 15547 256 ILK I556 13642 256 LS I3642 I3642 256	MILA MDR DA7 DA7 DBA3 DBA3 DBA3 DBA3 DBA3 DBA3 DBA3 DBA3	53	Table 23c BA2 BA3 BR2 BR2 BR3 DR4 DR DR4 DR TA1 LA1 K17 LA1 LA1 LA1 LA1 LA1 LA1 LA1 LA1 LA1 LA1

PART.3 (μg/m³) 6.13	PART.3 (Hg/m ³) 3.56 0.67 7.29 7.56 7.56 7.56 7.56 7.56 7.56 7.56 7.56	PART.3 (µg/m ³) 1.14 1.14 1.14 1.14 1.18 1.80 1.01 1.01 1.01 1.01 1.01 1.1.4 1.26 8.31 8.31 8.31		
NO2.3 (PPM) 0.041	NO2.3 NO2.3 0.055 0.055 0.055 0.055 0.055 0.055 0.171 0.171 0.171 0.171 0.057 0.067	NO2.3 (PPM) 0.028 0.023 0.033 0.033 0.033 0.033 0.033 0.033 0.038 0.060 0.025 0.025 0.025 0.025		
CO.3 (PPM) 6.83	CO.3 (PPM) 8.61 8.61 8.61 9.93 9.15 8.66 8.65 8.66 8.66 8.66 8.66 8.65 8.68 8.68	CO.3 (PPM) 7.42 7.42 7.06 7.06 6.77 6.73 6.73 6.73 6.73 6.73 6.73 6.7		
PART.1 (μg/m³) 7.78	PART.1 (µg/m ³) 7.48 7.42 8.46 8.45 8.45 7.98 11.09 11.09 11.09 10.87 8.81 10.87 8.21 10.14 8.21 10.47 8.21	PART.1 (µg/m ³) 7.13 6.41 7.58 7.58 7.58 7.58 7.58 7.58 7.20 9.59 9.59 7.20 9.59 7.20 9.59 7.20 8.84 7.20 8.84 7.20 8.84 7.83 8.84 7.83 8.84 7.83 8.84 7.83 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85	PART.1 PART.1 7.14 7.14 7.23 7.23 7.23 7.23 7.25 9.71 8.67 8.67 8.67 8.67 7.19 8.67 7.19 8.67 7.19	Oven Oven Oven Oven Heater Heater Heater Outdoor air Outdoor air
NO2.1 (PPM) 0.015	NO2.1 NO2.1 0.082 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.051	NO2.1 (PPM) 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.009	N02.1 (PPM) 0.033 0.028 0.028 0.028 0.024 0.022 0.151 0.022 0.151	CO.I PART.I PART.I PART.I CO.2 CO.2 CO.2 CO.3 CO.3 PART.3 PART.3
CO.1 (PPM) 2.60	CO.1 CO.1 4.62 4.86 4.86 4.86 4.86 3.89 3.89 3.89 3.89 3.89 3.89 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84	COLI COLI 2.57 2.53 2.55 2.55 2.55 2.55 2.55 2.55 2.55	CO.1 (PDM) 3.97 3.74 3.74 3.74 3.74 3.74 3.74 3.74 3.7	Burst - BMT Floor Burst - MBR Burst - DR Burst - LR Burst - EA2 Burst - BR3 Burst - BR3
VOC9 (µg/m³) 197	VOC9 (µg/m ³) 393 393 364 370 359 362 359 307 321 321	VOC9 (µg/m ³) 204 220 192 193 169 199 199 198 198	VOC9 VOC9 211 2116 260 2116 2116 2116 2112 212 212 220	EGEND V0C1 V0C3 V0C3 V0C3 V0C3 V0C3 V0C3 V0C3 V0C3
VOC8 (µg/m³) 232	VOC8 (Jugm ¹) 328 320 319 320 321 490 750 229 284 284	VOC8 VOC8 215 219 219 211 213 213 212 213 213 213 213 213 213	VOC8 (µg/m ³) 271 267 267 265 265 265 264 347 265 264 611 611 231	
VOC7 (µg/m ³) 200	VOC7 (µg/m ³) 12685 389 407 314 407 314 2583 320 2583 320 273 369	VOC7 VOC7 745 208 208 208 196 187 152 187 187 187 180 180	VOC7 VOC7 226(1,492/m ³) 226 277 226 184 546 546 5346 5346 193 193 193	
	VOC6 (µg/m ³) 383 396 364 313 370 411 312 312 312 312 321 321	VOC6 (µ(m ^m)) 210 228 197 197 158 158 158 171 171 171	VOC6 (III) 277 290 290 265 303 303 303 178 178 178 178 216 577 216	
VOC5 (µg/m³) 218	ons VOC5 416 416 339 337 372 337 343 343 343	Itrations VOC5 221 221 239 215 215 215 215 216 216 214 182 214 182 214	LTations VOC5 309 309 359 285 285 285 236 236 236 239 239 239	rations
VOC4 (µg/m ³) 205	k concentrations b) (µg/m ^b) (µg/m ^b) 372 416 372 416 373 430 356 389 365 389 365 389 365 389 367 381 375 2259 375 2259 371 416	<u>g</u> concert VOC4 205 205 205 193 193 167 167 184 184 199 199	g concen VOC4 VOC4 256 255 255 255 255 255 255 255 262 262	g concent
VOC3 (µg/m³) 184	2 peak co 2 v VOC3 (µ(m ^m)) 326 313 313 316 316 316 310 310 310 267 1857	24-hr av VOC3 (µg/m ³) 181 177 177 177 177 178 178 178 178 178	24 hr av VOC3 235 235 235 235 235 217 217 217 216 155 117 111 180 301 301	s I-hr ave
VOC2 (µg/m³) 21581	ATTH zont. VOC2 VOC2 (µµ)m ³) (µµ)m ³) (µµ)m ³ 25067 16995 18378 18378 18378 18378 18378 18378 18378 18378 1989 13989	fTH zont VOC2 (µg/m ³) (µg/m ³) (1423 (1423 (1423 (1423) (1423) (1423) (1423) (1423) (1423) (1583) (1378) (1378) (1378) (1378) (1283)	(11H zon VOC2 NA NA NA NA NA NA NA NA NA NA NA NA NA	ATH zon
VOC1 (µg/m³) 802	- SIM2A V00C1 1787 1787 1787 1787 1786 1786 1662 1662 1662 1663 1663 1663 167 167 167 167 167 167 167 167 167 167	- SIM2A VOCI (µg/m ³) 992 993 910 910 910 910 910 910 910 929 929	L SIM2A VOCI (ug/m ³) 1252 1332 1164 1116 1116 1116 888 880 8812 888 8812 1205	- SIM2A CO.I (PPM) 3.25 3.37 3.10 3.40 3.40 3.40 2.295 2.89 3.40 2.295 2.89 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40
VOCI VOC2 VOC3 VOC4 VOC5 VOC6 (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³) (µg/m ³)	Table 24b - SIM2MTH zone peak conversion VOC1 VOC2 VOC3 VOC1 VOC3 VOC3 A (µg/m ³) (µg/m ³) BA2 1787 19708 326 BA3 1802 25067 336 BR3 1802 25067 313 BR3 1756 18378 320 BR4 1742 16877 305 DR 1756 18378 320 BR4 1742 16877 308 DR 1742 16877 308 DR 1742 16877 308 MA 1657 13536 300 KFA 1748 19698 310 MBR 1997 13832 267 MBR 1997 1383 1451	Table 24c - SIM2MTH zone 24-hr avg concentrations UOCI UOC3 UOC3 UOC3 UOC3 UOC5 U2 UDC5 U2 U2 UDC5 U2 U2 UDC5 U2 U2 <thu2< th=""> U2 <thu2< th=""></thu2<></thu2<>	Table 24d - SIM2MTH zone 4- hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 RA (tigm2) (tigm2) (tigm2) (tigm2) (tigm3) tigm3)	Table 24e - SIM2MTH zone I-hr avg concentrations CO.I (PDI BA2 3.25 BA3 3.37 BR2 3.06 BR3 3.06 BR4 3.10 DR 3.40 BR4 3.10 BR4 3.10

PART.3 (μg/m ³) 14.52		PART.3 (µg/m ³)	8.89	16 59	26.29	23.94	19.44	33.43 35.49			PART.3	(µg/m²) 3 48	13.07	5.13	16.09	15.70	13.63	24.41																		
NO2.3 P (PPM) (1 0.079			0.104					0.210	1		NO2.3 P							0.108																		
CO.3 (PPM) 6.77		CO.3 (PPM)	9.48 2.64	9.84 9.65	10.15	10.00	10.03	10.34			CO.3	(FFMI) 6.80	6.81	6.82	6.77	6.74	6.71	6.72																		
PART.2 (μg/m ³) 9.17		PART.2 (µg/m ³)	8.31	9.36	11.35	11.07	10.68	11.80			PARI'.2	60 L	8.95	7.69	9.70	9.28	9.18	10.52		PART.2	(mg/m ³)	0.02	7.27	9.66	8.84	1/.8	10.54									
NO2.2 ppm 0.008		NO2.2 (PPM)	0.010	0.011	0.017	0.014	0.013	0.021			NO2.2	0.005	0.007	0.005	0.009	0.008	0.010	0.011		N02.2	(Mdd)	0.010	0.007	0.012	0.011	0.010	0.015									
CO.2 ppm 1.60		CO.2 (PPM)	2.25	2.30	2.46	2.41	2.42	2.51			CO.2	(FEM)	1.61	1.62	1.60	1.60	1.01	1.59		CO.2	(MPM)	1 66	1.54	1.65	1.60	9C.1	1.69 1.69	(Oven	Oven	Heater	Heater	Heater Dutdoor oir	Outdoor air	Outdoor air	
PART.1 (μg/m ³) 9.26		PART.1 (µg/m ³)	8.31	9.36	11.36	14.46	10.64	08.11			PART.1	7.13	8.98	7.73	9.75	9.80	07.6	10.54		PART.1	(fug/m³)	8 78	7.98	9.89	0.11	9.00	10.50		N021	PART.1	CO.2	N02.2	CO 3			
NO2.1 ppm 0.026		NO2.1 (PPM)	0.056	0.046	0.083	1.434	0.089	0.045			NO2.1	(FTM) 0.009	0.010	0.009	0.016	0.124	0.013	0.012		N02.1	(M99)	0.012	0.015	0.036	0.515	0.040	0.012		Burst - UCL Floor	Burst - MBR	Burst - LDA	Burst - GAR	Burst - MBA	Burst - BA2	Burst - BR3	
CO.1 ppm 2.75		CO.1 (PPM)	4.93	4.10	5.50	44.43	6.14 2.02	3.33 3.33			CO.I	(FFW) 2.38	2.09	2.30	2.32	6.59	7077	1.85		CO.1	(MPM) 3 5 1	2.93	3.36	4.21	23.65 2 23	60.C	2.47	EGEND	V0C3	VOC3	VOC4	VOC5		NOC8	VOC9	
VOC9 (μg/m ³) 205		VOC9 (µg/m³)	281	4099	407	236	215	214		00000	VUC9	160	137	727	145	132	131	122		VOC9	(mg/m3)	191	1958	213	191	151	152									
VOC8 (μg/m ³) 217		VOC8 (µg/m ³)	13163	274	390	258 223	237	221			VUC8	1915	149	165	155	142	141	127		VOC8	(µg/m³)	511	190	200	170	160	150									
VOC7 (μg/m ³) 219		VOC7 (µg/m ³)	347	354	596	255	258	752			VUC/ 1,10(m3)	200	155	196	223	142	14/	256		VOC7	(fug/ma)	202	249	394	168	104	551									
VOC6 (μg/m ³) 225		VOC6 (μg/m ³)	393 314	347	462	4332	482	212			VOU06	190	157	178	177	647 207	700 136	129		VOC6	(fug/m3)	209	243	327	1808	C26	164									
voc5 voc5 (μg/m ³) 117	SU	VOC5 (µg/m ³)	131 136	126	177	160	416	120		trations	VUU5	601	106	107	108	601	141	103	ations	VOC5	(fm/gu)	113	114	126	126	74 7	108	ations								
avg conco VOC4 (μg/m ³) 183	ncentratic	VOC4 (µg/m ³)	232	197 206	303	274	1593 200	178		g concen	VUC4	138	124	132	128	133	312 116	113	concentr	VOC4	(fug/m³)	145	153	168	181	127	133	concentr								
all 24-hr VOC3 (µg/m ³) 218	: neak cor	VOC3 (µg/m ³)	645 204	504 672	1630	297	337	2430		24-hr av	VUC3	255	172	252	316	149	136	345	: 4-hr avg	VOC3	(fug/ma)	289	426	170	186	101	922	l-hr avg								
СF over VOC2 (µg/m ³) 6067	CF zone	VOC2 (µg/m ³)	11815	10907	7967	7974	7537	6516		CF zone	VUU2	8418	6422	8211	5249	5540	6040 4130	3982	LCF zone	VOC2	(rm/gu)	NA	NA	NA	NA NA	AN AN	VN	CF zone	(PPM)	1.67	1.68	1.65	00.1	1 65	1.63	1.64
5a - SIM IFLCF overall 24-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC5 VOC6 (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (2 265 6067 218 183 117 225	- SIMIF	VOCI (µg/m ³)	303	6 19 107	333	141	138	142		- SIMIF	VOCI	134	112	113	123	105	01	107	- SIMIF	VOCI	(rm/gu)	114	114	138	104	60 1	108	- SIMIFI	(PPM)	2.54	2.52	2.58	4C.C	3.87	2.55	2.52
Table 25a - SIM IFLCF overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) (μg/m³) 24 hr avg 265 6067 218 183 117	Tahle 25h -		BA2					MBR		Table 25c - SIM1FLCF zone 24-hr avg concentrations		BA2	BR2	BR3	HAL	KIT	MBA	MBR	Table 25d		BA7	BR2	BR3	HAL	KIT	LUA	MBR 108 NA 922 133 108	Table 25e - SIMIFLCF zone 1-hr avg concentrations		BA2	BR2	BR3	KIT	TDA	MBA	MBR

PART.3 (µg/m ³) 14.74	PART.3 (μg/m ³) 8.90 16.59 16.59 16.53 19.54 19.44 33.44 35.56	PART3 (µg/m ³) (µg/m ³) 3.83 3.83 5.41 16.29 115.95 115.95 115.95 113.84 22.54 22.54 22.54		
NO2.3 (PPM) 0.084	NO2.3 (PPM) 0.134 0.179 0.171 0.124 0.171 0.154 0.191 0.191	NO2.3 (PPM) 0.056 0.080 0.057 0.057 0.057 0.057 0.089 0.110		
CO.3 (PPM) 6.79	CO.3 (PPM) 9.73 10.04 9.86 10.32 10.19 10.20 10.57	CO.3 (PPM) 6.84 6.83 6.79 6.79 6.73		
PART.2 (μg/m³) 10.92	PART.2 (μg/m ³) 10.73 11.58 11.51 11.62 11.62 11.25 12.16	PART.2 (µg/m ³) 10.05 10.19 11.18 11.18 11.66 11.62 11.62	PART.2 (μg/m ³) 10.44 11.30 10.46 11.47 11.18 11.03 11.55	
NO2.2 ppm 0.008	NO2.2 (PPM) 0.013 0.012 0.012 0.015 0.015 0.015 0.019	NO2.2 (PPM) 0.006 0.008 0.009 0.009 0.011	NO2.2 (PPM) 0.008 0.013 0.013 0.013 0.013 0.014 0.014	
CO.2 ppm 1.61	CO.2 (PPM) 2.32 2.40 2.40 2.46 2.44 2.57 2.57	CO.2 (PPM) 1.62 1.62 1.62 1.60 1.60 1.60 1.59	CO.2 (PPM) 1.59 1.68 1.68 1.61 1.61 1.61 1.61 1.61	CO.I Oven NO2.1 Oven PART.1 Oven CO.2 Heater NO2.2 Heater PART.2 Heater CO.3 Outdoor air NO2.3 Outdoor air NO2.3 Outdoor air
PART.1 (μg/m ³) 11.02	PART.1 (μg/m ³) 10.74 11.59 11.93 15.81 11.32 15.16 12.16	PART.1 (µg/m ³) 10.111 10.23 11.24 11.59 11.54 11.54	PART.1 (µg/m ³) 9.74 10.39 9.95 11.10 13.20 10.98 11.41 11.41	CO.I NO2.1 PART.1 CO.2 NO2.2 PART.2 CO.2 CO.2 CO.2 CO.2 PART.3 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2 CO.2
NO2.1 ppm 0.026	NO2.1 (PPM) 0.051 0.044 0.042 0.080 1.435 0.080 0.050 0.050	NO2.1 (PPM) 0.009 0.010 0.016 0.124 0.013 0.013	NO2.1 (PPM) 0.015 0.015 0.015 0.015 0.015 0.015 0.013 0.013	Burst - UCL Floor Burst - MBR Burst - LDA Burst - LDA Burst - MBA Burst - BR3 Burst - BR3
CO.1 ppm 2.68	CO.I (PPM) 4.49 3.78 5.21 44.46 6.16 6.16 3.54 3.06	CO.1 (PPM) 2.26 2.01 2.25 6.51 2.55 1.85 1.85	CO.1 (PPM) 3.41 3.29 4.14 5.03 5.03 2.41 2.41	EGEND VOC1 VOC2 VOC3 VOC3 VOC3 VOC3 VOC3 VOC3
VOC9 (μg/m³) 199	VOC9 (μg/m³) 249 390 390 212 195 221 221 200	VOC9 (µg/m ³) 148 130 117 117 126 126 126 120	VOC9 186 186 1945 1945 204 142 143	
VOC8 (μg/m ³) 208	VOC8 (µg/m³) 13153 225 245 365 212 212 212 212 212	VOC8 (µg/m ³) 1899 140 153 133 133 126	VOC8 (µg/m ³) 5458 162 174 189 189 149 148	
VOC7 (μg/m ³) 211	VOC7 VOC7 319 319 247 247 247 232 232 236 9358 9358	VOC7 (µg/m ³) 186 186 186 186 186 134 134 139 1044 251	VOC7 VOC7 256 190 256 190 235 384 157 157 3116 3116	
S VOC6 (μg/m ³) 216	VOC6 (µg/m³) 347 279 310 431 4328 478 478 275 228	VOC6 (µg/m ³) 173 173 165 165 169 169 197 128	VOC6 (μg/m ³) 251 193 313 313 1793 11793 153	
entrations VOC5 (μg/m ³) 116	DIS VOC5 VOC5 125 123 121 124 157 414 157 118	rtrations VOC5 (μg/m ³) 107 105 105 107 107 107 107 102	attions VOC5 VOC5 Ug/m³) 115 111 112 112 112 124 125 126 127 128 129 126 127 128 129 124 125 126 127 128 129	ations
avg conc VOC4 (μg/m ³) 178	ncentratic VOC4 (µg/m³) 209 180 189 189 164 164	<u>g concen</u> VOC4 (μg/m ³) 131 119 126 126 129 129 129 113	Concent VOC4 VOC4 (μg/m³) 138 138 144 162 173 173 173 130 130	concent
all 24-hr VOC3 (µg/m ³) 209	2 peak col VOC3 638 352 666 1627 1627 268 313 261 261 261 2428	24-hr av VOC3 (µg/m ³) 240 162 240 309 140 154 154 129 129 339	2 4-hr avg VOC3 VOC3 426 274 426 172 172 172 192 169 912	e l-hr avg
CH over VOC2 (µg/m ³) 5563	LCH zone VOC2 (µg/m ³) 10953 8998 10390 7338 7348 7348 7200 5807 6067	CH zont (µ2/m ³) 7558 5858 7485 7485 5832 5545 5545 5545 3712 3669	LCH ZOIIC VOC2 (µg/m ³) NA NA NA NA NA NA NA NA NA NA NA NA NA	CH zone CO.2 (PPM) 1.70 1.69 1.67 1.67 1.67 1.64
- SIMIFI VOCI (μg/m ³) 263	- SIMIFI VOCI (µg/m ³) 302 184 184 133 134 131 131 134	- SIMIFI - SIMIFI 132 111 111 111 121 104 104 103 106	- SIMIFI VOCI 145 113 113 113 113 113 112 113 103 104 103	- SIMIFI CO.1 (PPM) 2.55 3.56 3.75 3.75 3.75 3.90 2.58
Table 26a - SIM1FLCH overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 (µg/m³) (µg/m³)	Table 26b - SIMIFLCH zone peak concentrations VOCI VOC2 VOC3 VOC4 VC VOC1 VOC2 VOC3 VOC4 VC RA2 302 10953 638 209 13 BR2 184 8998 352 180 13 BR3 156 10390 666 189 13 HAL 332 7338 1627 287 13 KIT 134 7348 268 257 13 LDA 131 7200 313 1591 41 MBR 149 6067 2428 164 11	Table 26c - SIM IFLCH zone 24-hr avg concentrations voc1 v0c2 v0c4 v0c5 http://light.min.prove v0c1 v0c4 v0c5 http://light.min.prove v0c1 v0c5 v0c5 http://light.min.prove v0c4 v0c5 v0c5 http://light.min.prove v0c4 v0c5 v0c5 bs2 132 7558 240 131 07 bs3 111 7485 240 126 106 HAL 121 4824 309 124 107 KIT 104 5032 140 129 108 MBA 103 3712 129 113 102 MBA 103 3712 129 113 102 MBR 106 3669 339 110 102	Table 26d - SIMIFLCH zone 4-hr avg concentrations VOCI VOC2 VOC3 VOC4 VOC5 V NOCI VOC2 VOC3 VOC4 VOC5 V BA2 145 NA 426 158 115 BR2 113 NA 274 138 111 BR3 112 NA 774 138 111 BR3 112 NA 767 162 125 HAL 103 NA 172 173 124 LDA 104 NA 192 761 243 MBR 102 NA 192 761 243 MBR 102 NA 192 761 243	Table 26e - SIMIFLCH zone I-hr avg concentrations CO.1 CO.2 CO.1 CO.2 CO.1 CO.2 CO.1 CO.2 CO.1 CO.2 CO.1 CO.2 PMM (PPM) (PPM) BR2 2.58 1.69 BR3 2.62 1.68 HAL 3.56 1.67 KIT 33.75 1.66 HAL 3.56 1.67 MBA 2.54 1.67 MBA 2.54 1.64 MBA 2.54 1.64 MBA 2.54 1.64 MA MA

5.6]	6					<u>(</u> , , , , , , , , , , , , , , , , , , ,]							
PART.3 (µg/m ³) 14.38		PART.3 (μg/m ³) 8.89 32 80	16.57	23.92	33.42 35.45		PART (µg/m ³	3.64	5.08	15.92	15.64	22.14								
NO2.3 (PPM) 0.082		NO2.3 (PPM) 0.132	0.120	0.150	0.191 0.212		NO2.3 (PPM)	0.054	0.078	0.089	0.088	0.109								
CO.3 (PPM) 6.78		CO.3 (PPM) 9.61	9.76 10.21	10.09	10.46 10.40		CO.3 (PPM)	6.82	0.82 6.84	6.77	6.75 6.78	6.71 6.72								
PART.2 (μg/m ³) 10.87		PART.2 (μg/m ³) 10.70 11 56	10.62	11.61 11.24	12.16 12.18		PART.2 (µg/m ³)	66.6	10.73	11.13	11.02	11.58		PART.2	(µg/m ³)	11.26	10.41	11.44	CI.II	11.51
NO2.2 ppm 0.008		NO2.2 (PPM) 0.013	0.012	0.015 0.014	0.019 0.021		NO2.2 (PPM)	0.005	0.006	0.009	0.009	0.011		N02.2	(PPM)	0.013	0.008	0.013	0.012	0.014
CO.2 ppm 1.60		CO.2 (PPM) 2.28 2.31	2.33	2.43 2.44	2.54 2.52		CO.2 (PPM)	1.61	1.61 1.62	1.60	1.60	1.59		C0.2	(PPM) 150	1.68	1.57	1.67	1.63	1.66
PART.1 (μg/m ³) 10.97		PART.1 (μg/m³) 10.71	10.66	15.75 11.29	12.16 12.18		PART.1 (µg/m ³)	10.05	10.17	11.19	11.56	11.60		PART.1	(µg/m³) 0 65	10.31	9.86	11.05	13.10	11.37
NO2.1 ppm 0.026		NO2.1 (PPM) 0.051	0.042	1.437 0.090	0.050 0.042		NO2.1 (PPM)	0.00	010.0	0.016	0.125	0.013		N02.1	(PPM)	0.012	0.015	0.036	010.0	0.013
CO.1 ppm 2.71		CO.1 (PPM) 4.54 3.86	4.30 5.34	44.51 6.16	3.60 3.11		CO.1 (PPM)	2.28	2.22 2.22	2.27	6.61 2 58	1.81		CO.1	(PPM) 3.40	2.87	3.30	4.16	5 05	2.52
VOC9 (μg/m³) 200		VOC9 (μg/m³) 252 214	4097 396	216 198	224 203		VOC9 (µg/m ³)	150	131 722	141	127	121		VOC9	(μg/m ³) 180	158	1955	206	261	146
VOC8 (μg/m³) 211		VOC8 (µg/m³) 13162 237	252 380	238 218	246 208		VOC8 (µg/m ³)	1907	14.3	151	136 136	128		VOC8	(μg/m ³) 5468	168	181	195	163	152
VOC7 (µg/m ³) 214		VOC7 (µg/m³) 323 355	336 594	235 240	9359 751		VOC7 (µg/m ³)	190	149	219	136	1050		VOC7	(μg/m ³)	194	240	389	158	3125 548
DNS VOC6 (μg/m ³) 220		VOC6 (µg/m³) 354 280				8	-	111	168 168	172	651 201	130		VOC6	(μg/m³) 256	198	230	320	318	164
ncentratio VOC5 (μg/m ³) 112	tions	VOC5 (µg/m³) 116	116	135 364	112 111	entrations	VOC5 (µg/m ³)	10	105	105	105	101		VOC5	(μg/m ³)	107	107	116	114 214	103
hr avg col VOC4 (μg/m ³) 178	concentra	VOC4 (μg/m ³) 204 178	185 280	236 1591	186 162	ave conc	VOC4 (µg/m ³)	129	118	123	125 308	112		VOC4	(μg/m³) 156	137	143	160	103 764	129
/erall 24-1 VOC3 (μg/m ³) 212	one peak o	VOC3 (μg/m ³) 640 368	669 1629	272 320	272 2429	ne 24-hr	VOC3 (µg/m ³)	245	100 245	313	142	343	-	VOC3	(µg/m³) 133	281	417	765	101	173
LCHO 0/ VOC2 (μg/m ³) 5717	LCHO ze	VOC2 (µg/m ³) 11241 9171	10610 7561	7487 7323	5954 6221	LCHO zo	VOC2 (μg/m ³)	7754	c/ 00 4077	4968	5158 5720	3834 3784		VOC2	(fug/m³)	AN	ΝA	VN N	A N	AN AN
- SIM1F VOC1 (μg/m ³) 253	- SIMIF	VOCI (µg/m ³) 288 170	151 318	131 129	132 143	- SIMIF	VOCI (µg/m ³)	127	109	611	103	102		VOC1	(µg/m³)	E	110	134	103	101
Table 27a - SIMIFLCHO overall 24-hr avg concentrations VOC1 VOC2 VOC3 VOC4 VOC5 VI (μg/m³) (μg/m³)	Table 27b - SIM1FLCHO zone peak concentrations	BA2 BP2	BR3 HAL	KIT LDA	MBA MBR	Table 27c - SIM1FI.CHO zone 24-br avg concentrati		BA2	BR3 BR3	HAL		MBA			(µg/m ³) (µ	BR2	BR3	HAL	KII I DA	MBA

LEGEND	Burst - UCL	Floor	VOC3 Burst - MBR PART.1	Burst - LDA	Burst - GAR	VOC6 Burst - KIT PART.2	Burst - MBA		VOC9 Burst - BR3 PART.3 (
able 27e - SIM1FLCHO zone 1-hr avg concentrations	C0.2	(PPM)	1.70	1.69	1.68	1.67	1.66	1.66	1.64	1.64
- SIMIFLC			2.55							
Table 27e			BA2	BR2	BR3	HAL	KIT	LDA	MBA	MBR

.