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January 18, 1995

Abstract

Solder drops spreading on metallic substrates are a reactive form of the wetting problem. A
metallic component may diffuse in the liquid toward a metal substrate where it is consumed by a

reaction that forms a solid intermetallic phase. The resulting spatial variation in the composition

of the drop may cause composition gradients along the free surface of the drop. Together with

any thermal gradients along the free surface, Marangoni effects may in turn modify the bulk

transport in the spreading drop. Motivated by this situation, we extend lubrication theory

for the spreading of thin drops in the presence of gravity and thermocapillarity to include

mass transport and solutocapillarity. We use an approximate solute profile in the drop to

derive coupled evolution equations for the free surface shape and concentration field. Numerical

solutions for the non-reactive (single component) drop agree well with previous theory. In the

reactive case, we are only able to compute results for parameters outside of the range for solder

materials. Including reactive effects in the model impacts the flow patterns and spreading rates

at relatively early times; but by the end of the spreading, solutal effects have died out in the

model.

’Corresponding author, Tel.: (301) 975-5913, Fax: (301) 990-4127

^Technology Administration, U.S. Department of Commerce, Washington, D.C.

1



1. Introduction

The spreading of a droplet on a horizontal surface has been the subject of much research; it is a

relatively simple configuration to evaluate the wetting of a surface by a liquid. Such a configuration

is also used in the evaluation of wetting in solder (or braze) systems, where a disc of solid solder

is melted on a hot substrate, and the subsequent rate and extent of the spreading is measured. 1-5

While there is not a direct correlation between the wettability of the solder and the quality of the

joint, good wetting is requisite in the formation of a solder joint of the required geometry. In solder

systems (e.g. Pb-Sn or Bi-Sn on Cu or Au), the wetting problem is complicated by a number of

effects, including heat and mass transport in the spreading drop, the use of flux to remove non-

wetting oxide patches on the substrate, as well as reactions in which intermet allies form at the

substrate (e.g., Cu+Sn—>Cu6Sns). The liquid surface tension on the free surface (as well as other

properties) depend strongly on the temperature and composition of the molten solder,
6-8 and these

variations may in turn affect the fluid dynamics of the spreading through the generation of shear

stresses along the free surface, i.e.
,
the Marangoni effect.

In some recent experiments, it was observed that the contact angle in the final shape of the

solder drop was in the range of 2 to 16 degrees (see e.g., Ref. 1, 9). At these small angles, the

drop’s height is much smaller than its radius, and so there is a separation of scales; the lubrication

approximation may be applied to the equations of fluid motion to describe the spreading of the thin

drop. The presence of the contact line for spreading drops complicates the problem. The physics

of the contact line, even without reactions and other processes to complicate matters, is an area of

current research. In mathematical models of fluid motion that use the no slip boundary condition,

there is a singularity in the shear stress in the fluid at the contact line;
10,11

this singularity may be

relieved by allowing some slip of the fluid along the substrate. 12,13 Fortunately for the macroscopic

modeling of the fluid flow, only the flow very near the contact line is strongly affected by the

form of the slip applied at the substrate 12, 14 while the flow far from the contact line is practically

indistinguishable for different slip models.

Though the contact angles for the spreading drops in solder experiments 1,

2

are small, it appears

that the drops only partially wet the substrate. When equilibrium contact angles are zero (per-

fect wetting), a precursor foot is predicted 15 and found experimentally16,17 for organics on inert

substrates. A precursor foot of this type, with a thickness of hundreds of Angstroms or less, is

not observed or predicted for nonzero values of the equilibrium contact angle (partial wetting). In

the perfect wetting case, the contact line position is given by a temporal power law; the long time

behavior does not obey power law spreading in the partial wetting case.

We believe that the Marangoni effect may play a role in the spreading of solder drops because

the transport of heat through the drop sets up tangential temperature gradients along the surface of

the drop, which in turn cause surface tension gradients there. These gradients cause shear stresses

that either promote or retard spreading. Often the solder drop melts and spreads on a heated

substrate, tending to retard spreading for most solder materials. In other situations, however, the

solder spreads on a relatively cool substrate while heat is supplied from the surroundings, tending

to promote spreading.

Tangential gradients in the alloying element concentration may also cause surface tension gra-

dients. Near the eutectic point for Pb-Sn solder drops, the change in surface tension for a 20K

temperature change is roughly equal to a lwt% concentration change;6,7 this suggests that the con-

centration variation may be just as significant as temperature change with regard to the Marangoni
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effect in the reactive spreading of solder drops. Implicit in this argument is the neglect of the solder

flux which is often used in soldering; as a first model, we are ignoring the role of the solder flux in

the fluid dynamics of the spreading. Our thought here is to consider Marangoni effects and to eval-

uate their relative importance during the spreading process. It turns out that the real parameters

for solder systems are beyond the reach of the theory and computational method developed here,

but we use the solder spreading process as motivation for considering a model of reactive spreading.

As much as possible, we base the parameters we use on the Pb-Sn solder system.

The use of lubrication theory for thin drops was first carried out by Greenspan, 18 and has

been employed by many workers since. In Greenspan’s work, 18,19 an evolution equation for the

shape of the free surface of the drop is derived; the speed of the contact line is proportional to

the difference between the dynamic contact angle and the advancing equilibrium contact angle.

In the limit of small capillary number, that evolution equation is subsequently solved to yield an

ordinary differential equation for the contact line position. In a series of papers by Hocking and

coworkers,20-22 the contact angle is assumed constant and matched asymptotic expansions in the

limit of small slip coefficient are used to derive an ordinary differential equation for the contact

line position. In this approach, the spreading of the drop is limited by viscous dissipation and the

slip at the substrate. One discussion of the relationship between these approaches may be found

in Ref. 23. Other applications of lubrication theory in spreading include Tanner, 24 de Gennes and

coworkers, 15
’
25 and Brochard-Wyart et al.

26

We base our model most closely on that developed by Ehrhard and Davis;
27 they suppose that

the contact line mobility limits the motion of the drop and they use a modified “Tanner law” 24

as a constitutive relation to determine the motion of the contact line. They extend previous work

to include a Marangoni effect due to temperature gradients in the drop. Their theory has been

convincingly verified for silicone oil on glass in recent experiments carried out by Ehrhard. 28 The

theory has been recently extended by Smith 29 to study drop migration in a horizontal temperature

gradient and by Anderson and Davis30 for volatile droplets on a heated plate. Thermocapillary

migration has also been studied by Ford and Nadim. 31

In this paper, we attempt to study reactive spreading of a drop by modeling the heat and mass

transport during the spreading process, and include a simple model for the reaction at the substrate.

We generalize the work of Ehrhard and Davis 27
to include gradients in the concentration (of Sn, say,

in Pb-Sn drops) caused by the reaction with the substrate (Cu and Cu-Sn alloys in Ref. 1,2). We
include this variation by deriving a second evolution equation for the alloying element distribution.

In order to derive the second equation, the spatial distribution of the alloying element is assumed

to be a polynomial in the vertical coordinate; that is, a Karman-Polhausen type approach is used

(see e.g., Ref. 32). This approach was motivated by the study of spin coating with an evaporating

solvent carried out by Reisfeld et al .

33>34 The resulting coupled evolution equations for the drop

shape and alloy distribution are solved numerically using an implementation of the method of

lines; our numerical solution method is similar to that used by Haley and Miksis35 for a series of

drop spreading problems. From these results, and from work in progress,36 we wish to assess the

importance of the solutal Marangoni effect in reactive spreading of drops.

In the next section we formulate the problem; in Section 3, we derive a lubrication theory for

the reactive spreading of a planar (two-dimensional) drop on a flat substrate. In Section 4, the

numerical methods used to integrate the evolution equations are discussed. Section 5 gives results

for reactive and non-reactive spreading drops; discussion and conclusions are given in the final

section.
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2. Formulation

We consider a two-dimensional drop in a Cartesian coordinate system
(
x',z

')
on a smooth, hor-

izontal plate in the plane z' — 0. The primes denote dimensional variables. The free surface of

the drop is given by z' — h'(x',t') and the contact line at = 0 is located at x' — a'[t').

The drop is assumed to be symmetric about the line x' — 0. The equations governing the velocity,

temperature, and concentration fields in the drop are

V' V = 0, (2.1)

— —Vp' + /iV
,2
v' - pgk, (2.2)

= AV 2
T', (2.3)

vv = dvY, (2.4)

pcP

where k = (0, 1), v' = w
')

is the velocity vector, p' is the pressure, T' is the temperature, and c'

is the concentration of Sn in the liquid. Here g is the magnitude of the gravitational acceleration,

p is the density, p is the dynamic viscosity, A is the thermal conductivity of the drop, cp is the

specific heat, and D is the solute diffusivity; all but g are properties of the liquid.

On z' — 0 (the substrate), we have

w - 0, (5\h')u'
z i = v! ,

and T' — Tw . (2.5)

The slip coefficient /3'(h') may depend on b! and will be specified later. Our Dirichlet condition on

the temperature field implies that the substrate is a perfect conductor.

For the concentration boundary condition, we may employ two models for the extraction of Sn

from the solder drop as it reacts with the Cu substrate. 2
In the first approach, we could suppose that

the boundary behaves like a diffusion couple. In such a model, the concentration at the substrate

is fixed for all times greater than the initial time,

'l
•

(
2 . 6

)

For example, cL may be taken as the liquidus concentration from the equilibrium phase diagram at

the temperature of the substrate. 2 A more general approach would be to impose a mixed transport

condition at the substrate,

Dcz i + Hc (cl
— c

)
= 0, (2-7)

where the coefficient Hc is used to model the reaction rate at the substrate. We have constructed a

model using boundary condition (2.7). Equation (2.6) can then be viewed as a limiting case of (2.

7) for large Hc . The boundary condition (2.7) is a simple model for the dissolution of the substrate;

more complicated models for the reaction there are a subject of current research. We assume that

the substrate remains flat and immobile.

On the free surface z' = h'(x',t'), we have that

dti
w —

dt*

n • Vc #

dh’
,u ,

dx<
’

0
,

4
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n • r' n

t • T • n

An • V'T' + y^(T‘ - Too)
Oair

K'a,

t • w,
0.

(
2 . 10

)

(
2 . 11

)

(
2 . 12

)

Here T1

is the stress tensor, n and t are the unit normal and tangent vectors respectively, with n

pointing out of the liquid. The heat transfer to passive gas above the drop is modeled by the ratio

of the thermal conductivity of the gas Aair and the thermal boundary layer thickness 6air . We also

have that the curvature

K' (2.13)

The surface tension cr is given by

ct(T',c') = aw - 7t{T' - Tw ) - 7C{c'
- cj; (2.14)

for solder with the given form for <7, 7^ > 0 and 7C < 0 when considering Sn as the impurity in a

Pb-Sn drop.

The initial conditions are

h\x\ 0) = h'0 (x'), c\x', h0 , 0) = Cq(x'), h'0 [a0 )
- 0, a'(0) = a0 .

At the contact line, initially we have

dh[

dx
y(a0 )

= - tan0o

(2.15)

(2.16)

where 60 is the initial contact angle between the free surface of the drop and the substrate. At

x' = 0, we have the symmetry conditions

a
1(0) = £1(0) = g(0) = 0.
dx dx'

The initial volume is given by
ro.0

Vo = 2 /
tiQ (x')dx',

Jo

and will be conserved for all subsequent times. At subsequent times,

a
£,(-VV) tan 9(t '),

ra ^

)

Vo = 2 /
ti(x',t')dx\

Jo

dh!
/N^7 (°. 0

d3
h' . dc' . .

(0,t') = —(0,h’,t') = 0.
dx' dx ,3

^~’~
‘ dx 1

The contact line is assumed to move according to the modified “Tanner Law”

a[, = K[0(t>) - eA ]

m -

(2.17)

(2.18)

(2.19)

(
2 .20

)

(
2 .21

)

(
2 .22

)
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here k > 0 is a constant and 6a is the advancing equilibrium contact angle for a static contact line.

Because we are considering only drops that spread, we need not consider contact angle hysteresis.

As pointed out in Ref. 2, the constant ac in the modified Tanner’s Law has been estimated to be

a
ac = k0 — (2.23)

where ac0 = (7r/4)
3
/10 « 0.05 by de Gennes 15

for m = 3; see also Ambrose et al.
A
for an estimate of

k0 w 0.02, based also on the work of de Gennes. The magnitude of ac stems from the assumption

that the dissipation at the contact line results from the competition of surface tension and viscous

forces. A value of ac0 « 0.05 has been used in the present work based on the estimate given in

Ref. 2; hence we have ac = 1.35 X 10
3cm/s. In general, however, this constant should be determined

for each material system; 28
for the case of silicone oil on glass the mobility ac is on the order of

10~ 3cm/s. We note that the estimate for ac0 is based on a perfectly wetting system; we have made

the assumption that we can use this estimate as an upper bound in the case of partial wetting. We
have also made the assumption that 6a is a constant throughout the spreading process; as pointed

out in Ref 2, it need not be true that 6a be independent of all other variables in the problem. For

example, 6a may decrease during spreading because the action of the solder flux may modify the

substrate’s surface tension during spreading. Determining such variation and incorporating it into

a model of spreading is beyond the scope of this paper. Because of these issues, we choose to deal

with only the planar geometry and will seek qualitative comparison with the limited spreading data

available to us.

The exponent m for the modified Tanner law is also a subject of ongoing research; a fit of

contact angle hysteresis data suggests27 m — 3, while recent research by de Gennes and coworkers

suggests a value of m — l.
25 Experimental determinations have found m = 2.8 for silicone oil on

glass
28 and m = 2.6 for silicone oil on a silicon wafer.

37 We shall use m — 3 in this work.

3. Lubrication Theory for Reactive Spreading

We next derive appropriate governing equations for the drop taking into account the transport of

both solute and heat. The purpose here is to examine the effect of the reaction boundary condition

(2.7) on the distribution of solute and the subsequent effect on the spreading of the drop. This

model is an extension of the one considered by Ehrhard and Davis.
27 The boundary conditions for

the solute are different from the temperature field; the free surface allows no flux of solute, while

there is a mixed boundary condition for the concentration on the substrate. For the thermal field,

we retain the (mixed) heat transfer condition on the free surface and a fixed temperature on the

substrate as in Ref. 27.

We use the following scales:
27

x =

u =

z —
CLq

u

GO 00
5

AC0J
1

,

t = —
a0

w
w =

ao 0o /V=^V

T' - Trp CXI

AT

j

c = ^,e = fi, v
Ac 0o

W
Vo

(3.1)

6



Here AT = Tw — T^, Ac = cm — cL and cm is the maximum initial concentration in the drop.

When these scalings are introduced into the governing equations, we obtain at leading order in the

limit $o —* 0,

ux + wz = 0 (3.2)

~Px + Uzz = 0, (3.3)

-?*-§ = 0> (3-4)

Tzz = 0 (3.5)

9qSR (c t + ucx + wcz )
= czz (3.6)

where the subscripts denote partial differentiation, and the dimensionless parameters G, C,R and

S will be discussed shortly. For liquid metals, the Schmidt number S = /x/pD is typically large;

for example, 5 = 81 for Pb-Sn. We are thus motivated to retain the convective terms in the solute

equation in anticipation of the large S balancing 0q and the Reynolds number R = pht9™ao/ fi. On
2 — 0, the boundary conditions become

(3.7)

(3.8)

(3.9)

u
Pc

u.

- Hc c = 0,

w = 0.

Here we have taken the nondimensional slip coefficient (3(h) = (3a/h
a

]
we shall consider only a = 1

in this work. To our knowledge, this form for the slip was first used by Greenspan. 18 On 2 = h(x,t),

we have

w — h t — uhx , (3.10)

Cp — hXX ) (3.11)

uz — (
cx T hx cz )

— ^(Tx + hxTz ), (3.12)

c2 = 0, (3.13)

Tz + BT = 0. (3.14)

Initially, we have to leading order that

h(x, 0) = h0 (x), h0 (l) = 0, a(0) = 1, (3.15)

&»--§• (3.16)

5>= 5>) = o, (3.17)

1 = 2 ho(x)dx,
Jo

(3.18)

c = c(x, 0); (3.19)

for t > 0,

h(a, t) = 0, (3.20)

7



dh

dx
(M) = -0(t),

dh . \ d3h. . dh
= = = 0>

,Q(0raV)
1 = 2 h(x,t)dx.

Jo

The contact line radius is given by

at {t ) = [0(2) - 0^]
m

.

(3.21)

(3.22)

(3.23)

(3.24)

The nondimensional numbers making an appearance are

C = ——Jr- (Capillary no.),

G = (Bond no.),
0~W

AC =

ACc

Pi =

find™

7t(AT)0o

fihz6™

7c(Ac)6>0

(Thermocapillary no.),

(Solutocapillary no.),

Q'

2

l

2
(Shp Coefficient).

a090

R = —

-

1

- (Reynolds no.),

NP

S = (Schmidt no.),

B =

nc =

Q’O^O ^air /

d

an

A

Hcao 0o

D

(Biot no.),

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

We expect that the product RS is large and we assume that the Peclet number V = OqRS is 0(1).

The nonlinear convective term is then retained in the solute transport equation.

The approximate solution will follow a mix of the approaches of Ehrhard and Davis 27 and

Reisfeld et a/.;
34

in Ref. 34, a Karman-Polhausen-like approach is used for the concentration field

in a large Peclet number limit that is analogous with our case. The idea in our work is that

the profile strongly resembles the alloying element profiles for moderate Peclet number transport in

drops. This assertion is based on finite element modeling of a drop with a fixed contact fine position

where we have examined the development of the flow and concentration profiles for various Schmidt

numbers.36 The linear temperature field is determined independent of the flow, but modifies the

flow via the tangential stress condition.

We may integrate the solute equation in the bulk in the vertical direction, and using continuity,

the kinematic condition on the drop surface, and the flux condition on the substrate, we obtain

d_

dt

, d
c dz HI r\

OX

[
h

/ uc dz =
Jo

Qz (x , 0, t)

V~ (3.34)
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(3.35)

We may integrate the continuity equation in a similar manner to obtain

ht +
dx Jo

udz = 0.

Ehrhard and Davis were able to solve the necessary equations in the non-reactive case and derive

a single evolution equation for the free surface shape via equation (3.35). In our work, the mass

transport equation (3.34) is not easily solved and so we are motivated to find an approximate

solution for the solute field in order to reduce the problem to evolution equations for the free

surface shape and the appropriate concentration variable. To this point the evolution equations (3.

34) and (3.35) are independent of the model used for the reaction at the substrate.

In a manner similar to Ref. 34, we pose the following behavior.for the solute field:

c = c 2 (x, t) + Hc c2 (x,t)z + ca£ (x, t)z
ac

, (3.36)

where ac > 1 is a constant; this form is consistent with the flux condition (3.8) on the substrate.

In order to satisfy c2 (x,/i,t) = 0, we eliminate cac to obtain

c — c 2 + 7tc c 2
etc

(3.37)

Here c 2 (x,t) is the deviation of the concentration from the liquidus on the substrate, and the

flux on the substrate is proportional to c 2 . This profile resembles those seen in full Navier- Stokes

computations for a drop with a stationary contact line, a moderate contact angle, and a moderate

Peclet number; 36
this profile may be a poor approximation for the the extremely large Peclet

numbers which occur in an actual solder drop. It corresponds more closely to a material with larger

diffusivity than those of typical liquid metals. Allowing more complicated spatial dependence in

the Karman-Polhausen profile is possible at the expense of adding more free parameters; we choose

not to do this.

The z-component of the momentum equation (3.4) can again be used to find the pressure; after

using the normal stress boundary condition (3.11), one finds that

p(z,z,t) = y(/i - z) - i/ixx . (3.38)

The x-component of the momentum equation (3.3) can then be used, along with the boundary

conditions to find that

u{x,z,t)= -i(D3x/l)y + A2 (^2+ ,

where

and

A2 — —
\ hD2xh + M

(1 + Bh) 2
- Mr C2x + 1

) He (
c 2 h )

OLr

D2xh — (hxx Gh)x .

We have defined the thermal and solutal Marangoni numbers

BC CM = —
,
and Mc =—AC ’ ACc

(3.39)

(3.40)

(3.41)

(3.42)

9



We may integrate u once more in the vertical direction; we find that

r

h

]_
f \

U =
Jv

u dz = ~-{D3xh)
— + A 2 \

— + Pij
•

(3.43)

Substitution into Eq. (3.35), ht + ux = 0, gives an evolution equation for the shape of the free

surface of the drop:

ht + — s (
— + (3\h

j

D3x h-\-

MK
(i + Bhy

- Mr c2x + (1 — “=
)
hic (c2 h) t

= 0. (3.44)

We may then evaluate the integrals required in Eq. (3.34); the result is a second evolution equation,

viz.

where

C2/1 + 7icbiC2h
2

-f [C 2U -f 'HcC2A^] x (3.45)

A4 — /1 + ^.2/25

and

h
1

2c
b3h

4D3xh , f2 = b2 h
3 + b 1 /3 1 h,

bk
ac {ac + k) — (k -f 1)

ct c{ac + k)(k 4- 1)

k = 1,2,3.

(3.46)

(3.47)

(3.48)

The evolution equations (3.44) and (3.45) with attendant boundary conditions constitute our model

for reactive spreading; the equations in the limit of infinitely large 7ic may be considered a second

model in which the Dirichlet condition on the solute field is c = 0. Such a model would consider

the reaction at the substrate to be classical interdiffusion with infinitely fast kinetics. We have also

carried out computations on this type of model; those results are not reported here.

3.1 Boundary and initial conditions

The evolution equations are also coupled to the contact line motion via

a t = [~hx (a,t) - Oa]™. (3.49)

Both h and c2 are subject to the symmetry conditions at the origin, namely

hx — hxxx — e 2x — 0* (3.50)

The fluid volume is also conserved,

1 /*a (
<
)-= h(x,t)dx. (3.51)

2 Jo

10



This is an approximation in our model, since there is some solute leaving the drop, but we assume

that the volume of the drop is not affected by this. For the initial condition, we have used

c 2 (x,0) = ehl(x), (3.52)

where the amplitude e is chosen such that c(0, h, 0) = 1. The above expression for the initial solute

profile must satisfy C 2X {x = a) = 0] this boundary condition, in addition to C 2 = 0 are seen to be

natural for this kind of problem after consideration of the appropriate wedge flow problems; 40,41
in

essence we have matched the outer solution we are finding onto the inner wedge flow problem. We
thus require the outer solution we find in our evolution equation to have the correct behavior near

the contact line.

The initial drop shape for all results presented in this work is given by

h0 (x) = 5(1 - x
2
). (3.53)

We have adopted this initial condition for the purposes of comparison; however, because we have

retained the time derivative in the evolution equations, we could have used any reasonable drop

shape. In the limit of small capillary number, the initial distortions from a circular cap will be

eliminated relatively quickly compared to the time scale of the spreading.

At this point we would like to emphasize that these initial conditions are in a sense the starting

point for a long-time solution to the spreading problem. We are applying this kind of theory for

reactive spreading with the thought that the initial transients involving melting are completed and

fluid dynamic spreading of a roughly circular cap is beginning.

4. Numerical Integration of the Evolution Equations

The above equations

then have

and

were mapped onto a fixed domain — 1 < f < 1 by defining ( = x/a{t ); we

dh(x,t) 1 dh(£,t)

dx

dh(x,t)

dt

d_

dt

2

Off _d_

a d(.

(4.1)

(4.2)

The resulting equations are then discretized pseudospectrally using Chebyshev polynomials and

collocated at the Gauss-Lobatto points.
38 An advantage of this approach is that we are able to work

in the physical domain and use a differentiation matrix to evaluate the derivatives at the collocation

points while obtaining high order accuracy in the discretization. This results in a system of ODEs
in time for the elevations of the drop surface at the collocation points and the radius of the drop,

as well as the algebraic condition which conserves volume. Due to the symmetry of the drop, we

need only solve the equations on 0<f <i. This system of differential- algebraic equations (DAEs)

is then solved by the package DASSL,39 which uses an adaptive, implicit time stepping scheme

that is up to 5th-order accurate. Our solution to the DAE’s is a more accurate approach than the

first order scheme (in time) used by Haley and Miksis;
35 otherwise the approaches are practically

identical.
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5. Results

The parameters for Pb-Sn solder near the eutectic point as well as initial data used in the calcu-

lations are given in Table 1. We point out that these parameters are what we would like to use

for computation for solder drops. We are able to achieve the desired parameters for a non-reactive

drop in Section 5.1; for the reactive case we discuss what we can achieve in Section 5.2.

5.1 Non-reactive Spreading

For this case, the drop is at uniform concentration. The evolution equations reduce to a single

evolution equation for the free surface shape; that equation is a modified version of Ehrhard and

Davis’ result, viz.,

= 0. (5.1)

The modification to their model is that we solve the evolution equation while retaining the time

derivative and a nonzero Biot number in the denominator of the Marangoni term. This equation is

subject to the symmetry conditions at the origin, the contact line constitutive law, and conservation

of volume.

In Figure 1, we show results for the pure capillary case G = M = 0; numerical results using

the technique described above are shown for two different advancing equilibrium contact angles,

0,4 = 0.1 and 0,4 = 0; Figure 2 shows the (approximate) slope S of the In a vs. In 2 plot. Since for

8 =constant the growth of the radius is proportional to t
6

,
we refer to 6 as the spreading exponent.

The chain-dashed curve shown in these figures is the solution to the C — 0 problem. 15, 18,27 In the

planar geometry, for C — 0 we must solve an ODE for the contact line radius

at =
(2?

- ®-4
)

’
a(0) = L (5 - 2)

The steady-state contact line radius is given by a^ — ^3/ (20^). Good agreement at long times is

obtained with the numerical method; it is expected that the two should agree at long times since

the freedom to specify an arbitrary initial shape for the drop shape is given up when C = 0 in the

problem. The final radius is attained very accurately. We also note that the radius of the drop

increases in proportion to t
6

,
8 = 1/7 for 0^ = 0 in Figure 2, as is expected for the planar geometry

and capillary spreading. 24,27 We view this case as a verification of the numerical method, especially

for the long times required in the computation. It is clear that t
1//7 spreading is not obtained for

nonzero advancing equilibrium contact angles.

We also note that in some work,4,5 the C = 0,4 = 0 (perfect wetting) solution has been applied

to the spreading of solder droplets where 0^ ^ 0 (partial wetting). It is clear why the discrepancy

in time scale between the experiments and the theory exists in light of the difference exhibited in

Figures 1 and 2.

The effect of gravity is included in results shown in Figures 3 and 4. In these figures, cases for

0,4 = 0 and 0^ = 0.1 are shown as well as a quasistatic case C — 0, 0,4 = 0.1. The simplified

problem that is solved for C = 0 is given by (after Ref. 27)

G
a‘
~

["2(1 - aG 1 / 2cothaG 1 / 2
)

"
,
a(0) = 1. (5.3)

.
1

ht +
c

h3
a

Y + Plh
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Long time agreement is again observed between the numerics and the quasistatic solutions of Ref. 27.

The C — 0 solution spreads faster at early times, and then the two become indistinguishable at

late times; see also Table 2. At long times, we recover t
1 / 4 spreading in the 0^ = 0 case; this

gravity-dominated regime occurs after an early transient which resembles pure capillary spreading

(t
1 / 7

). This behavior is what is expected based on previous experimental and theoretical work. 24,27

Once again, power-law spreading is not achieved for 0^ ^ 0.

Thermal Marangoni effects are included in the results shown in Figures 5 and 6; here we have

neglected the effect of gravity. In these figures, the thermal Marangoni effect retards spreading,

as would be expected in solder drops that are heated from below. We find that the final radius

agrees well with the asymptotic result given in Ref. 27 for M C 1 as given in Table 3. The data

for Table 3 is for 0^ = 0.5. The magnitude of the Marangoni effect given by M — 0.01 is expected

to be the maximum which could be reasonably expected in a solder drop under the conditions of

the experiments in Refs. 1,2 and is based on the data in Refs. 6,7. For 0^ = 0.1, the computed

final radius is reduced by about 10% from the M — 0 case; this is a much bigger effect than for the

larger 0^ data in the table.

As is shown in Figure 6, there is no longer true power-law spreading for 0^ ^ 0, but there is a

period at early times, where a roughly constant 6 exists. A rapid decrease in the rate of spreading

occurs at later times, and our numerical solution suggests that spreading stops even for 0^ = 0

as predicted by Ref. 27. Our numerics break down before the final radius is reached however, due

to the development of singularities in the higher derivatives, as pointed out in Ref. 27. In order

to accurately represent the approach to the final radius without enforcing a quasistatic behavior

would require more sophisticated numerical methods than we have employed here.

Figure 7 shows radius vs. time results when gravity and thermocapillarity are included. When
the Marangoni number is positive (negative), the temperature field corresponds to a hotter (colder)

substrate than the surroundings; this situation retards (promotes) spreading compared to the M =
0 case when gravity is included. For the parameters used here, the case when Marangoni flow

retards spreading with G = 0.15 is very close to the case M = G = 0 shown in Figure 1.

In Figure 8, we display results that show the sensitivity of the model to the slip parameter (3\

when the Marangoni effect is included. Greenspan 18 showed that when the capillary number is

small, the solutions for the spreading drop are insensitive to the slip parameter; in the absence of

Marangoni effects, our numerics bear this out. When Marangoni effects are included however, we

must have a small slip parameter in order to achieve the correct final radius.

In Figure 9, we show the shape of the free surface of the drop including gravity and thermo-

capillarity for an advancing contact angle 0^ = 0. The drops are thin in physical coordinates, but

do not necessarily appear thin in the scaled coordinates. At late times, an inflection point appears

near the outside edge of the drop; in this case, the radius at the end of the computation is almost

7.5. The case shown for 0,4 = 0 displays this inflection most clearly. For nonzero 0^, the inflection

point is difficult to detect visually.

5.2 Reactive Spreading

Figures 10 and 11 show results from the numerical solution of the evolution equations (3.44) and

(3.45); here, V = 200, 7tc — 2000, C - .05, 0^ = 0.1, G — 0 and M — —Mc = 0.01 which we
designate case I. We may think of the spreading as taking place between the angles of 45° and 3°;

then t = 6600 is roughly one second. This choice of 0^ implies a 15 times reduction in the slope of
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the drop surface at the contact line during spreading. We have computed solutions in this section

for drops whose volume has initial radius a0 = 0.17cm at 90 = 45°. The Marangoni numbers were

hxed at there values based on the estimates in Table 1, with the expectation that the two effects

are of comparable magnitude.

We see in Figure 10 that at early times the solutal Marangoni effect retards spreading since

the radius at each instant of time lags that of the corresponding conditions for the non-reactive

drop with or without the thermal Marangoni effect. This slowing of the spreading relative to non-

reactive cases disappears relatively quickly; the excess solute in the drop has been extracted by the

substrate and the slowing of the contact line abates. The absence of solute (i.e., the arrival of c! at

cL )
then eliminates the solutal Marangoni effect.

In Figure 11, the concentration of solute at the top of the drop and the normalized total amount

of solute are shown as a function of time. It is clear that the drop has an increased concentration

at the top of the drop when compared to the initial state for some times. The total amount of

solute in half of the drop Ic {t )
decays monotonically, as shown by the lower curve, where

ra rh

Ic (t) = / /
c(x,z,t)dxdz (5-4)

Jo Jo

The increase in the concentration at the top of the drop is an artifact of the model, since diffu-

sion would not allow such an increase; however, since the increase is not large, we are willing to

accept such behavior under our stated philosophy of giving Marangoni effects the most favorable

circumstances to impact spreading. It is perhaps not surprising that such behavior is possible in

our model because we are not solving the mass transport equation pointwise, but we are really

satisfying it in an integrated sense by using a Karman-Polhausen profile for the solute field. The

increase in local concentration does not appear in problems where there is a fixed concentration on

the moving boundary as in Reisfeld et al.
33,34

For completeness we show the spreading exponent behavior in Figure 12. Initially, the spreading

is slowed and 6 is reduced, but it increases later in the spreading while the spreading catches up to

the thermal case. At early times, spreading is retarded by the presence of the solute field, and late

in the spreading the thermal field retards the spreading.

The behavior of the solute field and stream function are shown in detail in the sequence depicted

in Figures 13 through 17. The top (bottom) part of the figure shows the concentration field (stream

function). By a fairly early time, the solute concentration has become very small (below the error

tolerance of the time integration) and by that time the solutal Marangoni effect plays no further

role. In the time that it is operating however, it generates a vortex which retards the spreading in

comparison with the case with no Marangoni effects (cf. Figure 12). It is important to note that

the maximum of the stream function is near 10
_1

initially and is about 10~ 5
at the latest time of

the calculation. This wide variation in the strength of the flow and the fact that the third derivative

of the free surface shape is required to compute the stream function makes this computation an

extreme test for the collocation method we have used. Some error due to aliasing is visible in the

streamlines at the latest times; the numerical error is compounded by interpolation of the solution

from the Chebyshev points (32 or 48 on the half interval) to a fine uniform mesh for contour plotting

(200 points). The time scale for the exit of the solute from the drop is set by the Peclet number

V and to a lesser extent by 7ic \
the time scale of the spreading flow is set primarily by k, m

,
and

0^. We have used the largest V for which we could compute solutions. Based on the diffusivity in

Table 1, a Peclet number of V = 104
to 106 would occur in the actual drop. For values of V < 100,
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a vortex due to the solutal Marangoni effect did not form.

In carrying out the lubrication approximation, an approximate no-flux boundary condition was

applied at the free surface, namely cz (x,h,t) = 0. Mass flux through the free surface of the drop,

given by

/ j
h

,
t)dx, (5.5)

compared to that through the base,

f cz (x,0,t)dx , (5.6)
Jo

is at most about 0.3#o at t = 0, and rapidly decreases to less than 0.05#o- Clearly the approximation

of the no flux boundary condition improves as the initial contact angle do decreases.

An example of spreading with less extreme deformation of the drop which includes gravity and

Marangoni effects is shown in Figures 18 through 22, which we call Case II. In this case, V = 200,

7ic — 2000, C — 0.05, 0,4 = 0.5, G = 0.15 and M — —Mc — 0.01. Here we could think of the

spreading as taking place between the angles of 30 and 10 degrees; then t = 1900 is roughly one

second. The solutal Marangoni effect dies off during the time the thermal Marangoni effect becomes

important. If less spreading occurs, the time scales of the solutal and thermal Marangoni effects

overlap for a wider range of parameters, which results in (in this case) “addition” of the two effects.

While this particular run illustrates clearly the effects of fluid dynamics, it is relatively brief in

terms of the duration of spread for typical solder spreading.

6. Discussion and Conclusion

The computational approach to the spreading of a drop was verified against previously known

solutions in the presence of capillarity, gravity, and thermocapillarity (Marangoni effect) given by

Ehrhard and Davis. 27 The good agreement of our results for the non-reactive cases indicates that

the method works reasonably well for nonzero advancing equilibrium contact angles. When the

advancing equilibrium contact angle is zero (perfect wetting case), we find that our numerical

approach breaks down late in the spreading process when the Marangoni effect is present. Because

the rate of change of the radius is slow by this time, we expect that the computed answer is

a reasonable estimate of the final radius. As expected, the agreement between our computed

solutions and the C = 0 solutions improved with increasing time. The agreement improves for

decreasing C as well.

An interesting feature from our computational results is the dependence of the final radius

on the slip coefficient when the Marangoni effect is present. For the parameters we used, a slip

coefficient less than about (3\ = 10
-4 was required to get a final radius that was insensitive to the

value of the slip coefficient.

In contrast with the drops of uniform concentration, the results of the computations in the reac-

tive case have no limiting analytical solution for comparison. The solute field generates complicated

flow patterns early in the computation; it may generate a vortex within the flow field that would

otherwise be dominated by capillarity when the solute held is absent. Depending on the extent

of spreading, the model may allow for an intermediate period where capillarity dominates before

thermal Marangoni effects take over. Thus the results also indicate that the solute diffuses out to

the substrate relatively quickly compared to the spreading of the drop. The theory presented here

with reactive effects corresponds to a fluid that has higher diffusivity than Pb-Sn solder, and this
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is certainly a large part of the cause of the relatively fast behavior of the solute field. The higher

diffusivity used in the results of this paper is apparent upon solving for the diffusivity given the

Peclet number V = 200. It is then clear we are operating in the range from about 10
-3

to about

10
_1 cm 2

/s for the diffusivity, depending on the initial angle and radius given the estimate we use

for k. It may possible to build more complex behavior into the spatial shape of the solute field, and

presumably to access more extreme diffusivities, but this comes at the cost of adding additional free

parameters into the problem. The possibility remains that the our model may apply to situations

other than metal/metal systems, e.g., organics.

We have proposed a model for reactive partial wetting situation that attempts to characterize

spreading in many metal/metal systems. One of the central features in the model we propose is

to incorporate a constitutive law for the contact line motion in order to treat a macroscopic fluid

dynamics problem. 27 Use of the assumption of perfect wetting
( 9a = 0) with this constitutive law

leads to orders-of-magnitude discrepancy with experimental results as pointed out in Yost et a/.
5

and Ambrose et al.
4 While the geometry of the model is planar, rather than axisymmetric, we find

that the time scale to complete nearly all of the spreading is definitely of the correct order (about

1-10 seconds depending on the flux used for some unpublished spreading results for fluxed Pb-Sn

on several different Cu and Cu-Sn-intermetallic substrates42 ). The same can be said for the time

scales of previous theories of Boettinger et al .,

2 (although they did not point this out in their work)

and of Ehrhard and Davis. 27

Many issues remain to be addressed in this area. The contact angle may depend on many
variables and parameters in the problem. 2 We have also neglected the effects of flux, which are

important in terms of wettability, but may also be important in terms of the fluid dynamics during

wetting. A more complete treatment of the large Peclet number transport would be desirable.
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Density

Viscosity

Diffusion coefficient

Surface tension

Thermal Marangoni effect

Solutal Marangoni effect

Thermal conductivity

Heat capacity

Temperature difference

Concentration difference

Contact line mobility

p 8.3 gm/cm 3

p 1.8x 10
-2

g /(cm s)

D 2.7x 10~ 5 cm 2
/s

cfw 500 erg/cm 2

7t 0.05 erg/(cm 2 K)

7C -1.0 erg/(cm 2 wt %)
A 5.0xl0 6 erg/(cm K S)

cp 2.2 xlO6 erg/(gm k)

AT 100 K
Ac 1.0 wt %
k, 1.35 xlO3 cm/s

Table 1: The material parameters are for Pb-Sn. The parameters for the passive gas (air) above

are assumed to be such that the Biot number is fixed at B = 0.1. The contact line mobility and

the temperature and concentration differences are estimates.

G Asymptotic Numerical

0.001 1.732224 1.732224

0.01 1.733783 1.733784

0.1 1.749371 1.749481

1.0 1.905256 1.915288

Table 2: A comparison of our numerical results with the asymptotic results of Ehrhard and

Davis 27
for the final radius a

^

of an isothermal drop with gravity. Here 0^ = 1/2, and so

aP00 = VW07) = \/3. Their asymptotic results are given by a^ = u^ofl + (a^o )

26? /30].

20



5

4

4

3

3

2

2

1

1

t

Radius a(t
)
for pure capillary spreading. The C — 0 case is for the spreading of a circular
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Figure 2: Spreading exponent 8 for pure capillary spreading. The C — 0 case is for the spreading

of a circular cap.
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Figure 3: Radius a(t
)
for spreading with capillarity and gravity. The C — 0 case is for quasistatic

spreading of a cap with gravity.
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Figure 4: Spreading exponent 8 for M = 0. The C — 0 case is for quasistatic spreading of a cap

with gravity. The spreading exponent asymptotes to 6 = 0.25 for the perfectly wetting case.
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Figure 5: Radius a{t
)
for spreading with thermocapillarity.
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Figure 6: Spreading exponent 6 for capillary spreading with thermocapillarity.
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Figure 7: Radius a(t) for capillary spreading with gravity and thermocapillarity. For M — 0.01,

the Marangoni effect retards spreading; the case with the opposite sign promotes spreading.
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Figure 8: Radius a(t) for capillary spreading with gravity and thermocapillarity as a function of

(3\. The small capillary number solutions now depend on the slip coefficient.
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Figure 9: Droplet shapes for various times for capillary spreading with gravity and thermocapillar-

ity.
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Figure 10: Drop radius as a function of time. Only thermo- and soluto- capillary effects are included

here. At longer times, the two curves involving the Marangoni effects merge.
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Figure 11: Concentration at the top of the drop as a function of time, and the total amount of solute

Ic (t) normalized by its initial value Jc (0). Only thermo- and soluto- capillary effects are included

here.
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Figure 12: Exponent of drop radius as a function of time. Only thermo- and soluto-capillary effects

are included here. The slowing of the growth of the radius at early times can be seen by a lowered

6, but at later times the radius catches up to the case of the pure drop with M = 0.01.
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M Asymptotic B = 0 B = 0.1

0.001 1.73055 1.73067 1.72943

0.01 1.71705 1.71859 1.71907

0.1 1.58205 1.61122 1.61539

0.25 1.35705 1.47430 1.48254

Table 3: A comparison of our numerical results with the asymptotic results of Ehrhard and Davis 27

for the final radius of an nonisothermal drop without gravity. The columns B = 0 denotes the

case when M / 0, but B = 0 in the denominator of the Marangoni term in the evolution equation

(for direct comparison with Ref. 27). Here 0^ = 1/2, and = y/3. Their asymptotic results are

given by a = a^[l + Ma^/(40^)].
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Figure 13: Case I, t = 0. The top figure is the initial dimensionless concentration field c (in

steps of Ac = 0.1) and the bottom is the initial stream function ip (in steps of Aip = 0.01). The

concentration and stream function are both zero at the substrate for this and all subsequent figures.

The stream function indicates the dominance of capillary spreading initially.
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Figure 14: Case I, t = 3.0, Ac = 0.1, and Aip = 0.001. The stream function is already being

strongly affected by the solute gradient on the free surface, and the concentration at the top, center

of the drop has increased due to the flow sweeping the alloying element there.
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Figure 15: Case I, t = 22.0, Ac = 0.1, and At/? = 0.0002. A vortex has formed as a result of

the solute gradient. Note the rapid decrease of the maxima of the stream function and the solute

profile.
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Figure 16: Case I, t = 62.9 and Aip = 0.0001. The stream function is no longer affected by the

concentration since the maximum concentration is now well below 1% of the initial value; we no

longer show the concentration field because of this. Note the continued decrease in the maximum
of the stream function. The stream lines do not indicate strong effects from thermocapillarity yet.
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Figure 17: Case I, t = 7071., and Aip = 0.000005. The maximum concentration field has decreased

to far below 1% of its original maximum, and so we no longer display its contours. A single vortex

which is rather weak in magnitude occupies the drop. The spreading of the drop is about 86%
complete.
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Figure 18: Case II, t — 0. The top figure is the initial dimensionless concentration held c (in steps

of Ac = 0.1) and the bottom is the initial stream function t/’ (in steps of A ip = 0.01) for case II.

The stream function indicates the dominance of capillary spreading initially; the streamlines have

been turned somewhat by the presence of gravity.
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Figure 19: Case II, t = 3.0, Ac = 0.1, and A ip = 0.001. The stream function is already being

strongly affected by the solute gradient on the free surface, and the concentration at the top of the

drop has increased due to the flow sweeping the alloying element there.
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Figure 20: Case II,

the solute gradient,

profile.

t = 22.0, Ac = 0.1, and Aip = 0.0002. A vortex has formed as a result of

Note the rapid decrease of the maxima of the stream function and the solute
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Figure 21: Case II, t = 62.9, Ac = 0.01, and A jp = 0.0001. Note the smaller step size between

concentration contours and the continued decrease in the maximum of the stream function. The

stream lines do not indicate strong effects from thermocapillarity yet.
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Figure 22: Case II, t = 1465., and A ip = 0.00005. The maximum concentration field has decreased

to far below 1% of its original maximum, and so we no longer display its contours. A single weak

vortex occupies the drop. The spreading of the drop is about 98% complete.
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