
AlllDM ^a^515

»' hAH
fl

74i'

im

‘Mi

Neighbor Tables for Molecular
Dynamics Simulations

NISTIR 5545

P

'

R. D. Mountain

V
. .

.- ¥.-

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.U56

1994

NO. 5545
V /

Nisr

.

)

^'4m

NISTIR 5545

Neighbor Tables for Molecular
Dynamics Simulations

R. D. Mountain

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

December 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Neighbor Tables for Molecular Dynamics Simulations

Raymond D. Mountain*

Thermophysics Division

Chemical Science and Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract

Two methods for constructing a neighbor table for use in Molecular Dynamics simulations

are discussed. A linked-list based method is shown to require time for generation of the

table that is roughly proportional to the number of particles, A, in the system when the

range of forces is small compared to the volume of the system. An alternative method that

requires operations is also discussed and problems where it may be preferable to

the linked-list method are mentioned. Source code listing for both methods is included in

appendices.

Key words: linked list, molecular dynamics, neighbor table, particle simulation, sorting,

source listing.

I. Introduction

In this note, we describe an important component, namely a neighbor table, of molecular

dynamics and Monte Carlo codes used to simulate condensed matter at the atomic level.

These simulations make it possible to calculate the thermodynamic and transport prop-

erties of liquids and solids in terms of the interactions between the atoms and molecules

of the liquid or solid. These methods are, by now, fairly standard techniques in statistical

physics and in condensed matter theory. A good introduction to the subject is found in

the book by Allen and Tildesley.^

As computational capability increases, so does the complexity of the model systems studied

using simulations. A goal of any simulation code development is that the computer time

required per iteration scale with the size of the system. For this discussion, system size is

measured by the number of particles, A", being simulated. Scalability with N is essential

for the efficient use of the simulation method.

The use of a neighbor table is an important feature for improving the efficiency of molecular

dynamics and Monte Carlo simulations of condensed matter at the atomic level. Typically,

* E-mail address: RMountain@nist.gov.

1

the system being simulated is subject to periodic boundary conditions and is confined to a

cube with an edge length L. Forces are based on the minimum image convention and, since

the interactions are usually assumed to be spherically symmetric, the particles outside a

sphere of radius R < L/2 centered on a particle will not be considered. If the range of the

interaction is less than X/2, even fewer pairs of interactions will be counted. The basic

idea is that only particles that are within the range of the interaction should be included

in the calculation of the forces between the particles. Particles with larger separations

contribute nothing and calculating zero is a waste of time.

Verlet^ introduced the use of a neighbor table in his early papers on the Lennard-Jones

fluid. For the relatively small number of particles involved, say 500 or fewer, a “brute-force”

approach to constructing the neighbor table was adequate. That is all pairs of particles

were examined and those with separations less than some distance, d, were included in

the table. Typically, d was taken to be a bit larger than the range of the interaction, R,

so that it was necessary to update the neighbor table only occasionally, say every 10 time

steps. This approach requires 0{N^) operations and becomes the dominant computational

bottleneck for systems larger than a few hundred particles.

Since then, many alternative schemes have been proposed for constructing neighbor tables.

The essential feature of these schemes is to partition the particles into adjacent groups

cuid then to construct the table using these groups. There are several ways to do the

partitioning. Two methods are discussed here.

We will discuss first a linked-list of cells scheme^ that requires approximately 0{N) op-

erations to build the table and that can be readily adapted to a coarse-grained parallel

computing environment. The basic idea used is a variation of an early suggestion by Quen-

trec and Brot.^ It consists of partitioning the volume into cells with dimensions of at least

twice the range of the table. The table is constructed by associating with each particle

those particles located in the given particle’s cell and in the near neighbor cells. A “spher-

ical” neighbor table can be constructed by restricting the initial set of particles in the 27

cells to those within a spherical shell with a radius equal to the range of the neighbor table.

This second step is necessary to remove the relatively large number of noninteracting pairs

that are identified initially. A detailed description of how this can be realized is provided

in Section II and FORTRAN?? code is listed in Appendix A.

The second scheme is based on work of Sullivan, et al.^ Here, the partition is performed

on the particles directly rather than on the volume containing the particles. It can be

considered to be a variant of the “method of shadows” . The scheme described in Section III

is particularly useful for isolated systems, such as large clusters, where periodic boundary

conditions are not appropriate and the density of particles is heterogeneous.® It is, however,

2

an inherently 0{N'^) procedure. Under the test conditions described in Section III, it is

more efficient than the linked-list method for systems of less than about N = 3000 particles.

FORTRAN?? code is listed in Appendix B.

Source code for both methods is available from the author via an e-mail request.

II. The cell index method.

The system being simulated is located in a cube with edge length L. The minimum image

convention and periodic boundary conditions are used so that surface effects are eliminated

at the cost of introducing periodic images of the system. For the purposes of calculating

the forces acting on a particle, that particle is assumed to be located at the center of a

spherical region containing the particles that interact with it. The size of the spherical

region is determined by the specific interaction rule and should not excede X/2. The

neighbor table contains the labels of the particles in this spherical region, the neighbors,

and only those particles are used to construct the forces. The task is thus to efficiently

maintain this neighbor table as the simulation progresses. Particles will diffuse into and

out of this region so it is necessary to update/rebuild this table. The cell index method is

one way to do this.

The first step in the cell index method is to locate each particle in a cell embedded in the

cube with side L. These cells are a set of n\ cubes with side I = L/ric- The dimension of

these cells is at least twice the range desired for the neighbor table. That is / > 2d. In

that way, all of the neighbors of particle j are to be found in the cell containing particle

j or in one of the 26 cells (in three-dimensions) surrounding that cell, with due attention

to the periodic boundary conditions. Of course, these 2? cells contain many particles that

do not interact with particle j and must be removed from the final neighbor list.

The implementation of this scheme is illustrated in Appendix A. The subroutine setup

produces a linked-list^ of the 2? neighbor cells for each of the ric^ cells. First each cell

is assigned a unique label stored in the array nlabel. Then the linked-list, listcell,

is constructed. The periodic boundary conditions for the cells are taken into account

in the do 35 , do 40 , and do 45 loops. This subroutine is called only once during the

simulation and the linked-list is passed in a common block.

The neighbor table itself is constructed in the subroutine table. Particles are assigned

to a cell by dividing the x, y, and z coordinates by a length xscale and converting the

results to integers. These integers identify the cell in which the particle is located. Once

the particles have been placed in cells, as contained in the array incell, the neighbors

of each particle are placed in a list, Inbrs, by copying the contents of incell according

to listcell. This list is then reduced to the actual neighbor table, nlist, in the do 60

loop. Note that it is necessary to impose periodic boundary conditions at this point.

3

This method requires that nc > 4 in order to not be an process. In fact, the

scalability with the number of particles of the time required to implement the process

becomes evident only for ric on the order of 6 or 7, at least for the example we now discuss.

The actual efficiency also depends on how closely the side of the cell I matches twice the

range of the neighbor table, d.

N/1 000

Fig. 1. The time, in seconds, required to generate a neighbor table for a range of system

sizes. The circles are for particles on fee sites and the squares are for particles on bcc sites.

The straight line is intended only to guide the eye.

Timing tests have been performed for a collection of particles located on fee or bcc lattice

sites with a number density of 0.85 and a range for the neighbor table of 2.05. In the

subroutine table, this would be identified as raiige=2 . 05*2 . 05. This density implies a

unit cell dimension of 1.67 for the fee lattice and of 1.33 for the bcc lattice. The tests

were performed on a workstation and the approximate time required to construct the

neighbor table as a function of the number of particles is shown in Fig. 1. The outliers

are for N = 2^^ = 2048 and N = 2^^ = 8192 and are probably a consequence of specific

hardware conditions as indicated in Fig. 2 where results for timings on a workstation and

on a mainframe computer are compared. The actual times of course will depend on the

computer system used, but the relative times indicate that the time needed to construct

the neighbor table using this scheme approximately scales with system size for N up to

10,000 particles.

4

N/1 000

Fig. 2. A comparison of the time, in seconds, to generate a neighbor table using a work-

station, squares, and using a mainframe computer, circles. Different hardware conditions

on the mainframe suppress the outlier at N = 2^^ obtained using a workstation.

III. The method of shadows.

This approach is based on sorting.^ First, one of the coordinates, say the x-coordinate,

is sorted into increasing order. This makes it possible to identify all particles with x-

displacements less than d from each particle. Then the y- and z- coordinates of this subset

are examined to obtain the neighbors of a particle. Imagine a particle located at the

center of a cube of side 2d. All particles in that cube are neighbors. As with the linked-cell

method, this set can be reduced to a spherical shell set of neighbors.

FORTRAN?? code to implement this scheme is listed in Appendix B. First, the x array

is copied into the sx array and the particle labels are copied into the locx array. The

subroutine ssorti, which is not listed, sorts sx into an increasing set and locx into the

corresponding set of particle labels. The array sx is used to determine the positions of the

left- and right-hand limits to the neighbors of each particle. These limits are recorded in

the arrays klower and kupper. Next, this information is mapped back onto the original

ordering in the do 120 loop where the neighbors of particle j j are recorded in array nbr.

Then the y- and z-distances are examined in the do 150 loop where the neighbors of

5

particle j j are recorded in the array nlist and the number of neighbors is put in array

nj. Finally, a spherical shell neighbor list is produced in the do 600 loop. Because the

number of entries in the array nbr is proportional to the number of particles in the system,

this method is inherently an 0{N^) method. In practice, it can be faster than the cell

index method under some circumstances.

This version does not utilize periodic boundary conditions as it was intended for the simu-

lation of isolated clusters. A method for incorporating periodic boundary conditions into

the procedure is discussed by Sullivan, et al.^

IV. Discussion.

A cell index method, that uses a linked-list of neighbor cells when constructing the neighbor

table, has been shown to have the property that the time required to construct the neighbor

table scales approximately linearly with the number of particles in the system. Since each

particle has its own list of neighbors determined in the do 50 loop, this method should

readily lend itself to a parallel, coarse-grained computing environment. The execution time

to build the table for a given number of particles, np, would be reduced by the number of

processors, nproc available provided the communication overheads are not too large.

^

These conclusions are based on the condition that the range of the neighbor table is small

compared with the size of the system so that a large number of cells can be utilized. This

is the case for short-ranged interactions such as the Stillinger-Weber potential for silicon.®.

It does not apply to ionic or dipolar systems where the interactions are long ranged.^ In

such situations, the Ewald summation approach is used and the configuration part of the

interaction extends to one-half the size of the simulation box. Clearly, some other strategy

is needed for the efficient simulation of these system.

6

References

1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (Carenndon Press,

Oxford, 1987).

2. L. Verlet, Phys. Rev. 159, 98 (1967).

3. G. S. Grest, B. Diinweg, and K. Kremer, Comput. Phys. Comm. 55, 269 (1989).

4. B. Quentrec and C. Brot, J. Comput. Phys. 13, 430 (1975).

5. F. Sullivan, R. D. Mountain, and J. O’Connell, J. Comput. Phys. 61, 138 (1985).

6. E. Blaisten-Barojas and M. R. Zachariah, Phys. Rev. B 45, 4403 (1992).

7. W. J. Camp and S. J. Plimpton, Proceedings of the 1993 Simulation Multiconference

on High Performance Computing Symposium, A. M Tentner, ed. (The Society for

Computer Simulation, San Diego, CA, 1993) pp. 127-141.

8. F. S. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

Appendix A.

This is a FORTRAN77 listing of the routines needed to implement a linked-list based

neighbor table. First the cell-lists are generated at the beginning of a run. Note that the

periodic boundary conditions for the cells are included in the lists. The subroutine setup

is called only at the beginning of the simulation.

subroutine setup
parcimeter (np=5 12 , nc=4 , np3=nc*nc*nc)
dimension nlabel (nc ,nc ,nc) , listcell (np3, 27)

common /cset/ nlabel , listcell
c

nl=0
do 30 nl=l,nc

do 25 n2=l,nc
do 20 n3=l,nc

nl=nl+l
nlabel(nl ,n2,n3)=nl

20 continue
25 continue
30 continue

nl=0
do 60 nl=l,nc

do 55 n2=l,nc
do 50 n3=l,nc

nl=nl+l
nll=0
do 45 nx=nl-l,nl+l

if(nx.lt.l) then
nxx=nc

else if(nx.gt.nc) then
nxx=l

else
nxx=nx

7

end if
do 40 ny=n2-l,n2+l

if(ny.lt.l) then
nyy=nc

else if(ny.gt.nc) then
nyy=l

else
nyy=ny

end if
do 35 nz=n3-l,n3+l

if(nz.lt.l) then
nzz=nc

else if(nz.gt.nc) then
nzz=l

else
nzz=nz

end if
npp=nlabel (nxx , nyy , nzz)
nll=nll+l
listcell (nl ,nll)=npp

35 continue
40 continue
45 continue
50 continue
55 continue
60 continue

return
end

The subroutine table is called every few, say 6-10, time steps.

subroutine table
paraimeter (np=512 ,nc=4,np3=nc*nc*nc)
dimension x(np) ,y(np) ,z(np) ,mj (np) ,nlist (40 ,np) , Inbrs (np ,400)
dimension nlabel (nc ,nc ,nc) ,listcell(np3,27) ,lmbn(np)
dimension incell (np3 ,40) ,lj (np3) ,nj (np)

common /cset/ nlabel ,listcell
common /cord/ x,y ,z ,npart ,xmax,

X xmax;2,ymax,ymax2,zmax,zmcLx2, range
common /cist/ mj ,nlist

c
do 10 j=l,np

mj (j)=0
10 continue

do 12 nn=l,np3
Ij (nn)=0

12 continue
xscale=xmax/ (1 . *nc) + . 05
do 20 j=l,np

ix=x(j) /xscale+1
iy=y(j)/xscale+l
iz=z(j) /xscale+1
nn=nlabel (ix , iy , iz)

nj (j)=nn
Ij (nn)=lj (nn)+l
incell (nn , 1 j (nn))

=

j

8

20 continue
c At this point, we have determined the contents of each cell

do 50 j=l,np
nn=nj (j)
jk=0
do 45 lk=l,27

ik=listcell (nn , Ik)
do 40 nk=l,lj(ik)

k=incell(ik,nk)
if(k.ne.j) then

jk=jk+l
InbrsCj

,
jk)=k

end if
40 continue
45 continue

lmbn(j)=jk
50 continue
c Next, convert this to lists of particles within a shell

do 60 j=l,np
1=1
do 55 kk=l,lmbn(j)
k=lnbrs(j ,1)

1=1+1
xx=abs (x(j)-x(k))
yy=abs(y(j)-y(k))
zz=abs (z (j

) -z (k)

)

if (xx
.
gt . xmax2) xx=xx-xmax

if (yy.gt .ymax2) yy=yy-ymax
if (zz .gt .zmcLx2) zz=zz-zmax

rr=xx*xx+yy*yy+zz*zz
if (rr.gt .range) go to 55

mj (j)=mj (j) + l

nlist(mj (j) ,
j)=k

55 continue
60 continue

return
end

Appendix B.

This is FORTRAN?? source for the generation of a neighbor table using the scheme de-

scribed in Section III. First one of the coordinates, the x-coordinate, is sorted into increas-

ing order as are the particle labels. That is sx(j) and locx(j) are the x-coordinates in in-

creasing order and the corresponding particle labels. The routine ssorti(sx,locx,np,2)

orders the arrays sx and locx for np particles. This subroutine is a modified version of

the cmlib routine ssort.

do 2 j=l,np
sx(j)=x(j)
locx(j)=j

2 continue
call ssorti(sx,locx,np,2)
call table

9

Here is the source code for table.

subroutine table
parameter (np=6912)
dimension x(np) ,klower(np) ,kupper(np)
dimension y(np) ,z(np) ,sx(np) ,locx(np)
dimension nlist (np , 500) ,nbr (np) ,nj (np)

dimension mlist (np ,80) ,
jmax(np)

common /cord/ x,y ,z, sx,locx, range
do 50 j=l,np
if(j.eq.l) then
do 10 k=l,np

d=sx(k)*-sx(j)

if (d.gt .-range) then
klower (j)=k
go to 15

end if
10 continue
15 continue

do 20 kl=k,np
d=sx(kl)-sx(j

)

if (d
.
gt . range) then

kupper (j)=kl
go to 25

end if
kupper (j)=np

20 continue
25 continue

else
do 30 k=klower (

j -1) ,np

d=sx(k)-sx(j

)

if (d.gt .-range) then
klower (j)=k
go to 35

end if
30 continue
35 continue

do 40 kl=k,np
d=sx(kl)-sx(j

)

if (d.gt .range) then
kupper (j)=kl
go to 45

end if
kupper(j)=np

40 continue
45 continue

end if
50 continue
c
c Map back to unsorted labeling and determine the neighbors,
c

do 200 j=l,np
jj=locx(j)

c jj is the label in the original arrangement
1=0
do 120 k=klower(j) ,kupper(j

)

10

1=1+1
nbr(l)=locx(k)

120 continue
c nbr is the list of neighbors in the "slab"

nj(jj)=l
c Examine the y- and z- distances

11=0
do 150 k=l,nj(jj)
dy=abs (y (j j

)

-y (nbr (k))

)

if (dy.le .range) then
dz=abs (z

(

j j
) -z (nbr (k))

)

if (dz.le.rELnge) then
11=11+1
nlist(j j ,ll)=nbr(k)

end if
end if

150 continue
nj(jj)=ll

200 continue
c
c nlist(j,l) contains the neighbors of j in the "cube"
c lij(j) is the number of neighbors of j.
c

r2=range*range
do 600 j=l,np
1=0
do 550 jj=l,nj(j)

k=nlist(j
, j j)

dx=x(j) -x(k)
dy=y(j)-y(k)
dz=z(j)-z(k)
rr=dx*dx+dy*dy+dz*dz
if(rr.le.r2) then

1=1+1
mlist (j ,l)=k

end if
550 continue

jmax(j)=l
if (jmax(j) .gt . 60) then
write(6,55) j,jmax(j)

55 format (
’ trouble !

^ , 2i8)
stop

end if
600 continue

return
end

11

•'.'•'»
tki. 4k

-v

®£iS||mii''*Nt^' '.

ai»«ifiicf?>
.

WJfe
1 .

a;^ '

(,

'

a'3S^irgi,‘;fVT i,'j4^;, a-o.^- (l;^|) ^5?^’
silt/ i^Xa, vi;;t'*^

V'.'r .

''q:fl,i’‘l 004 ofc

' ' "'• ‘

'-'"Mm-':

s h*s*»> vi+'*ii>*ii>*^' '“^
J..-fT>-'-

1

"-•i/- 'm ’^rns.
,

v;,,:;.:; «' "^WS
.1 . {A^.>r<;v

