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Abstract

A multiple neural network system for handprinted character recognition is presented. It consists

of a set of input networks which discriminate between all two class pairs, for example “1” from
“7”, and an output network which takes the signals from the input networks and yields a digit

recognition decision. For a ten digit classification problem this requires forty five binary decision

machines in the input network. The output stage is typically a single trained network. The neural

network paradigms adopted in these input and output networks are the multi-layer perceptron, the

radial basis function network, and the probabilistic neural network. A simple majority vote rule

was also tested in place of the output network. The various resulting digit classifiers were trained

on 7480 isolated images and tested on disjoint set of size 23140. The Karhunen-Loeve transforms

of the images of each pair of two classes formed the training set for each BDM. Several different

combinations of neural network input and output structures gave similar classification performance.

The minimum error rate achieved was 2.5% with no rejection obtained by combining a PNN input

array with an RBF output stage. This combined network had an error rate of 0.7% with 10%
rejection.

keywords: OCR, neural networks, data clustering, pattern recognition, K-L transform, dynamic

systyems.

1 Introduction

In a previous study, the accuracies of statistical and neural network OCR methods were compared [1].

In that study, techniques which used clustering to generate an initial state for learning or statistical

analysis such as radial basis functions (RBF) or Quadratic Minimum Distance (QMD) had consistently

better performance than multilayer perceptron (MLP) based methods. The best results were obtained

from the Probabalistic neural network (PNN) and the ubiquitous k nearest neighbor classifier (KNN).

Both operate locally in the feature space and use no learning. This paper outlines a clustering method

based on the construction of binary decision machines (BDM), allowing MLP based architectures to

become as accurate as the best methods of the previous study. Clustering has been presented as an

essential component in many biologically based methods: ART [2, 3, 4] aggregates data using a leader

clustering method [5] prior to learning; DYSTAL [6] clusters data into patches during the learning

process; cluster formation is a critical element of the learning discussed in [7, 8]; and FAUST [9] uses

clustering of data to selectively control the learning process. In MLP based character recognition, the

weight sharing methods [10, 11, 12, 13] provide a method that effectively clusters the input feature

space. In neighbor based methods, the local intrinisic dimensionality [14] has been recognized as a

critical factor in the pattern recognition capabilities of these methods.
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In this paper we present an alternate method for clustering the feature data for OCR. It is more readily

adapted to vector based feature sets than weight sharing and it can give high accuracy classification with

only a simple winner-take-all voting method as an output process. When a more complex combination

of input and output networks is used the error reject performance of BDM-based OCR is comparable to

the best systems presented at the First Census OCR Systems Conference [15] and the improved PNN
system in the NIST form-based OCR system [16]. In [1] and [15] many different OCR systems were

presented which achieved 5% error rates and several others gave 2%-3% error rates. By reducing the

problem to a series of BDMs we show that several different neural network methods can achieve 3%
error rates. These systems also can exhibit error reject behavior comparable to the best presented in the

original study. Analysis of the digit by digit performance with respect to feature set size and network

type shows that much of this improvement is associated with local rank reduction in the feature set.

The following section describes the network architectures and the functional forms of the various input

and output networks. Section 3 describes the training and testing data. Section 4 details recognition

accuracy, and error versus reject performance. Section 5 discusses the results and gives some conclusions.

2 Network Structures

2.1 K-L Feature Extraction

The Karhunen Loeve expansion of digit images is used as reduced dimensionality, optimally compact

representation for input to the BDMs. The use of such features in OCR has been described in, for

example, [17] [18] [1]. The handwritten binary characters are size and orientation normalized and

represented as the ±1 elements of a vector by some consistent ordering of the square image. The mean
vector of P such images is subtracted from each and an ensemble matrix, U is formed with these P
vectors as its columns. The symmetric covariance matrix, R, gives the mean of of all the interpixel

correlations.

R = iuur
(1)

The covariance matrix R has eigenvectors as the columns of 'F defined as:

Rtf = tfA (2)

where the only non zero elements of A are the eigenvalues on its diagonal. The eigenvectors are the

directions of maximum variance in the image space and form a complete orthonormal basis. They are

the principal axes of a hyperellipse in that space. The eigenvalues define the statistical “length” of

these axes; thus the first column of tf corresponding to the largest eigenvalue is the major axis. The
eigensolution of the covariance matrix provides an ordered variance expansion of the image ensemble.

The latter eigenvectors, describing very little variance in the images, are discarded thus affording reduced

dimensionality. The Karhunen Loeve transforms, V, are just the projection of the zero mean images

onto the principal axes:

V = tf
TU (3)

For each BDM the covariance matrix, its eigenvectors, and the KL expansions are found independently

for the appropriate class pair. The expense of doing this for 45 BDMs is considerable, although because

it and any necessary training is performed off-line the resulting classifer is not compromised with

regard to efficiency. The K-L transform forms the initial stage of classification. The 45 eigenvector sets

perform the feature extraction for an unknown image ahead of the BDM input layer, so that the matrix

multiplications conceptually define a linear first layer of the complete classifier.
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2.2 Input and Output Networks

The architecture is divided into the input and output networks. The input consists of 45 BDMs each

specializing on one digit pair. Each machine is trained only on the samples from its two classes such

that the final assembly of all machines uses each class in combination with the other nine classes with

no symmetric repetition. The training and testing of the input machines was done using up to 32 K-L

components. The decision machines are either type 1 or 2 MLP’s, type 1 or 2 RBF’s, or PNN’s. Type

1 MLP1 possesses two outputs, one for each class while MLP2 produces one output, a high or low value

indicating the class. The two RBF variants are described in the next section. The outputs of the MLP
and RBF classifiers are normalized by dividing by their sum, producing an input vector to the second

stage whose elements sum to unity. For a PNN input layer the logarithm of the signals is taken before

being handed to the output network.

The output network either implements the baseline voting rule or one of the neural network paradigms.

The RBF output stages are parameterized by the number of clusters per class, and results for several

values are reported.

The MLP1, MLP2, PNN, RBF1 and RBF2 classifiers were used as the 45 Input BDMs. Each type of

network was trained on upto 32 K-L coefficients. The output signals of each machine are the input

signals for the output stage. The individual training set for each digit is run on all 45 BDMs in order

to create the training feature set for the Output Network. The output signals are combined in a set

order to produce the feature set for the input to the Output Network.

The voting rule for the MLP1 BDMs is a winner-takes-all approach. A BDM votes for a class based on

whether its output is high or low based on a threshold value of 0.5. The 45 votes are totalled by class,

the maximum determining the hypothesis. In the case of a tie, the pattern is rejected. The maximum
vote is 9. The other types of binary machine, namely MLP2, PNN, and the two RBF variants, each

have two outputs. The voting rule accepts the class corresponding to the greater signal from each BDM.
Again the maximum vote determines the classification, and ties imply rejection.

For the neural network output stages the five classifiers are trained on the 45 or 90 outputs from

the binary decision machines. Training is achieved using the methods given in the following classifier

description.

2.3 Classifiers

The MLP, RBF and PNN classifier variants are described below. All are putatively neural networks

though PNN is closely analogous to the non-parametric Parzen type classifier.

2.3.1 Multi-Layer Perceptron

This classifier is also known as a feed forward neural net. We have used an MLP with three layers

(counting the inputs as a layer). It will be convenient to define the following notation:

N = number of nodes in 2
th layer (i = 0, 1, 2), N = n, = L

f{x )
= 1/(1 + e

~ x
)
= sigmoid function

b\
k ^ = bias of 2

th node of kth layer (k = 1, 2)

Wjp = weight connecting 2
th node of Ar

th layer to j
th node of

(.k — l)
th layer (k = 1, 2; 1 < i < 1 < j < jV( fc-1 ))

The discriminant functions are then of the form

jv (1) N (°)

A(x) = /
(

b\
2) + w\

2)
f

[

b + Y w
fk

x *

j=

i

*=i
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For the training of this network, we followed usual procedure of employing an optimization algorithm.

Although backpropagation [19] is ubiquitous and readily available we favored a scaled conjugate gra-

dient method [20, 21, 22, 23] affording order of magnitude training time gains. The standard 'mean

squared error function between the actual and desired discriminant values is modified by the addition

of a scalar “regularization” term [24], equal to a tunable constant, A, multiplied by the mean square

weight, wfj . This term prevents the large weights associated with the overfitting of the training data;

although a higher training error is obtained the resulting networks have been shown to have an increased

generalization ability [23].

2.3.2 Radial Basis Functions

Typically the RBF neural networks employ radially symmetric Gaussian kernels as their input layer.

Our implementation of RBF nets is more general: the kernels are defined by an ellipsoid whose axes

remain parallel to the coordinate axes and whose shape is parameterized by a vector of widths.

We have experimented with RBF networks of two types, which will be denoted RBF1 and RBF2. The

following notation will be convenient:

= number of nodes in 2
th layer (i = 0, 1, 2)

c(; ) = center vector of j
th hidden node (1 < j < N^) E Rn

) = (cj/\ . .
.
,c^)T

o-C?) — width vector of j
th hidden node (1 < j < NG)) (<r^^E Rn

) = (&i\ • • .,<7^ ^)
T

bj
k

^ = bias to the j
th node of the k th layer

f(x )
= 1/(1 4- e~ x

)
= sigmoid function

Wij = weight connecting z
th output node to j

th hidden node (1 < i < iV^ 2 ); l < j < N^)

Each hidden node computes a radial basis function. For RBF1, these functions are unbiased exponentials

= exp (-r2 (x,c(j ),<r^)))
,

and for RBF2, they are of the biased sigmoidal form

<^-(x) = / (-^
1} - r

2 (x,c (j ),o-^))) .

For either type of RBF, the i
th discriminant function is the following function of the radial basis

functions:
/ \

A (x) = / I b\
2) + Wii (

x
)
j

•

The centers c^\ widths cr^\ hidden-node bias weights (RBF2 only), output-node bias weights

b\
2

\ and output-node weights wij may be collectively thought of as the trainable “weights” of the RBF
network. They are trained initially using the cluster means (from a “K-means” algorithm applied to

the prototype set) as the center vectors The width vectors cr^\ are set to a single tunable positive

value. More sophisticated methods of determining RBF parameters may be found in [25] [26]. The

output layer weights are set such that each output node is connected with a positive weight to hidden

nodes of its class (that is, hidden nodes whose initial center vectors are means of clusters from its

class), and connected with a negative weight to hidden nodes of other classes. Training proceeds by

optimization identical to that described for the MLP.
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2.3.3 Probabilistic Neural Net

This classifier is proposed in a recent paper by Specht [27]. Each training prototype defines the center

of a kernel whose value is maximum at the center and decreases monotonically with distance from the

example in the feature space. An unknown x is classified by computing, for each class i, the sum of

the values of the class-z kernels at x, multiplying these numbers by compensatory factors involving the

estimated a priori probabilities, and picking the class whose resulting discriminant value is highest.

Many forms are possible for the kernel functions; we have obtained our best results using radially

symmetric Gaussian kernels. The resulting discriminant functions are of the form

A(x) =
p(i)

Mi

Mi

E
j=

i

exp

where <x is a scalar “smoothing parameter” that is empirically optimized. The value used throughout

this study was 3.

3 Test and Training Data

The classifiers described in this paper were trained and tested using feature vectors derived from the

digit images of NIST Special Database 3 [28]. This database consists of binary 128 by 128 pixel raster

images segmented from the sample forms of 2100 writers published on CD as [29]. Other results on

segmentation and recognition of this database have been reported [30]. The relative difficulties of the

NIST OCR databases have been discussed in [31]. For this study samples are drawn randomly from

the first 250 writers to yield a training set of 7480 digits with a priori class probabilities all equal to

0.1. Even for digits, depending on the application, certain classes may be more prevalent; in banking

tasks, for example, “0” is more common. The test set is similarly constructed from the second 250

writers yielding 23140 samples. The images are size normalized by pixel deletion, stroke width bounded

by binary erosion and dilation, and consistent orientation is effected by shearing rows by an amount
determined by the leftmost and rightmost pixels in the first and last rows defining a vertical line. The

resulting image is 32 pixels high and its width is less than or equal to its height. The training and

testing data are identical to the data used in [1].

4 Results

4.1 K-L Feature Extraction

One of the advantages of applying the K-L transform to the BDM data set is that insight into problem

difficulty can be obtained directly from the KNN classification accuracy for each BDM as shown in

table 1 and by plotting the first two K-L features of some typical problems. The problems chosen were

separation of “0” and “1”, of “6” and “8” and of “3” and “8”. The “0-1” problem is the canonical easy

task [32], the “6-8” problems is the one which involves the easy (“6”) and hard (“8”) digits and the

“3-8” problem is one that can be difficult on the test data set even for humans.

Examination of table 1 shows that when one K-L feature is used even the hard problem can be solved

with 10.6% error and the errors of the two easy problems are less than 5%. This demonstrates that very

simple low dimensional methods can produce results comparable to those found on the global problem

in [1, 15] by complex networks. There is also a substantial difference in error rates for the easy and

hard problems for any number of features. The easy problems, “0-1” and “6-8”, start with 4% error

and fall to 0.4% error. The hard “3-8” problem starts at 10.6% and never falls below 1.4%. All three

tasks have reached their peak performance using 32 features which is less than that required for the

global problem [1].

Examination of figure 1 shows that most of the “0” and “1” points are clearly separated but there are

some nearest neighbors of the opposite class. The data in table 1 shows that these points are usually
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Feature “0-1” “6-8” “3-8”

1 4.29 4.58 10.60

2 4.01 1.55 9.09

3 1.42 1.31 9.05

4 0.97 1.21 5.89

5 0.47 1.03 5.66

8 0.34 0.54 3.43

16 0.43 0.43 1.90

24 0.41 0.36 1.46

32 0.38 0.30 1.44

48 0.38 0.38 1.44

Table 1: Error in separating the test digits for selected BDM machines using KNN as a function of

feature dimensionality.

Figure 1: The separation of “0” and “1” testing data using the first two K-L features from “0” and “1”

training data. 2314 examples of each digit are shown. The class designations are in at top right.

separated, if they can be separated, using 5 features. Examination of figure 2 shows that most of the

“6” and “8” points are clearly separated and there are few near neighbor points of the opposite class.

The data in table 1 shows that these points are well separated using 2 features. The simplification of

this problem using two features shows why it is an easy problem at low dimension but table 1 also

shows that at 5 features it is intermediate in difficulty between “0-1” and “3-8”. Examination of figure

3 shows that most of the “3” and “8” points are not separated; their are many near neighbor points of

the opposite class. The data in table 1 shows that these points are never separated as well as they are

for easier problems.

These results show that the K-L transform reduces the difficult OCR problem to a relatively simple

BDM problem so long as the BDMs are only asked to classify characters of the optimal class. We will

show that the global problems is still difficult when each machine is required to classifly digits from

other classes.
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Figure 2: The separation of “6” and “8” testing data using the first two K-L features from “6” and w8”

training data. 2314 examples of each digit are shown.

Figure 3: The separation of “3” and “8” testing data using the first two K-L features from “3” and “8”

training data. 2314 examples of each digit are shown.
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Classifier

Number of features

8 12 16 20 24 28 32

MLP1-ERR 3.9 3.2 3.0 2.9 3.0 2.8 3.2

MLP1-REJ 1.6 1.1 3.0 0.9 1.0 0.9 1.0

MLP2-ERR 3.9 3.2 3.2 2.6 2.9 2.9 2.9

MLP2-REJ 1.6 1.0 0.9 0.9 0.9 0.9 0.9

PNN-ERR 3.7 3.0 2.8 2.7 2.7 2.6 2.6

PNN-REJ 0.4 0.3 0.2 0.1 0.1 0.1 0.1

RBF1-ERR 6.8 6.3 6.1 5.9 5.8 5.8 6.4

RBF1-REJ 1.5 1.5 1.5 1.6 1.6 1.6 1.5

RBF2-ERR 6.4 5.2 5.0 5.1 4.7 4.6 3.4

RBF2-REJ 1.4 1.5 1.5 1.6 1.7 1.6 1.6

Table 2:

Voting Rule Error and Reject Percentages for Classifiers and Number
of Features. Reject Percentages based on the number of tied votes.

4.2 Classification

The results are grouped by output classification paradigm. The performance from the voting schemes

is given first and is followed by the larger tables from the trained classifiers.

Table 2 shows the results of using the direct voting scheme to classify the output of the neural networks.

The error rate and the percent rejected due to ties are given. Note that the PNN machines have both

the lowest error and reject rates. As is typical there is a decrease in error as more features are used.

The following tables give by class error rates for one particular input BDM type. The bold face entries in

the tables indicate the combination of features and networks in the output network which had the lowest

error for that digit. Blank entries in the tables usually indicate that training failed for that network.

This is characterized by the optimization algorithm yielding a set of weights that pathologically give

very large error rates. It is generally true throughout the tables that class “8’ has the highest error rate

while class “6” has the lowest. It appears that MLP and RBF are usually superior to PNN as second

stages for any given input BDM layer. Often 20 features are sufficient to obtain best classification,

although the clustered RBF second stages are notably more parsimonious.

The second set of tables gives the dependence of error rate on feature dimensionality for each type of

BDM and output stages. The bold face indicates the second stage classifier and the dimensionality that

gave minimum classification error over all classes. The error rate of the best combination, MLP2 BDMs
and the voting classifier, is 2.6%. This rate is comparable with the best nonparametric classifiers in [1],

and is obtained with 20 instead of 40 K-L components. With the exception of RBF type BDM input

layers, the voting classifier outperforms the neural network second stages by about 0.5%. However as

discussed in the next section both the voting and PNN output networks provide poor reject accuracy

results.

Several of the neural BDM and classifier combinations gave a lower error rate than their counterparts

in the classifier study [1]. For MLP’s this superiority is 1% and for RBF about 0.9% and obtained with

significantly fewer K-L components.

These results also show a strong effect associated with the saturation of the sigmoid function in the

MLP1, MLP2, RBF1, and, to a lesser extent, the RBF2 network. In tables 4-7 and tables 9-12,

commection of any of these input networks to a PNN output network results in abnormally high errors.

This result is caused by the saturation of the outputs of MLP and RBF input networks providing only

near zero and near unity values to the PNN output networks. The PNN networks only function well

when continuous input values, such as the K-L features, are provided. This effect was previously noted

in the reject performance of other types of neural networks [33] and is discussed in the next section
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n DIGIT “0” “2” “3” “5” “6” 44yw “8” “9”

8 MLP:48 7.1 4.1 7.4 14.5 23.3 5.5 8.0 7.7 8.0 13.0

PNN 1.5 1.4 3.6 4.6 2.8 4.0 1.0 2.8 7.1 4.6

RBF1:30 0.9 1.7 7.5 4.2 4.4 4.4 2.1 2.2 9.4 4.3

16 MLP:48 2.0 1.0 4.0 2.2 4.2 2.9 2.5 2.8 9.4 4.4

PNN 1.5 1.5 3.4 4.3 3.3 3.7 1.1 4.8 7.0 3.9

RBF1:30 1.5 1.6 4.2 3.1 3.3 3.8 0.7 2.6 8.5 3.8

RBF2:30 1.8 2.1 4.0 2.7 2.8 4.4 0.5 2.2 6.9 4.1

20 MLP:48 2.5 1.3 5.1 5.0 4.0 2.9 2.6 1.0 9.5 11.0

PNN 1.4 1.3 4.0 4.2 3.2 3.8 1.1 2.4 7.4 3.8

RBF1:30 1.4 3.1 5.0 2.5 3.1 3.9 0.5 1.6 8.9 4.3

RBF2:30 1.5 1.8 4.2 2.8 2.9 3.9 0.5 2.2 10.4 4.3

32 MLP:48 2.8 1.2 4.3 7.3 2.5 2.2 1.0 1.8 11.5 7.5

PNN 0.1 1.6 7.5 5.2 3.8 5.4 1.7 2.5 10.1 4.1

RBF1:30 1.5 1.6 3.1 4.4 3.3 2.8 0.6 2.0 8.4 4.1

RBF2:30 1.3 2.2 3.0 2.5 2.0 3.1 0.6 1.5 12.5 5.0

Table 3:

By class error rates for PNN BDMs and various output stages. The left column gives the K-L
dimensionality. The integer suffix for the output stages gives the number of hidden units for MLPs

and the number of cluster centers for RBF networks.

n DIGIT “0” 44^55 “2” “3” “4” “5” “6” 44 “8” “9”

16 MLP:48 1.6 2.1 4.7 3.4 2.2 4.2 1.7 2.2 7.3 5.1

PNN 12.0 5.0 20.0 6.0 9.5 12.3 1.3 4.7 26.7 7.7

RBF1 1.4 2.0 4.7 3.5 2.4 4.3 1.6 2.5 7.3 4.7

RBF2 1.5 2.2 4.9 3.5 2.4 4.5 1.4 2.3 7.3 5.1

20 MLP:48 1.6 1.9 4.1 3.6 1.9 3.7 1.6 2.1 7.2 4.2

PNN 10.2 8.3 24.6 6.4 22.1 13.6 0.4 9.8 27.1 8.0

RBF1 1.2 2.0 4.3 3.5 2.4 3.8 1.4 2.0 7.3 4.5

RBF2 1.6 1.9 4.2 3.7 2.4 3.9 1.7 2.2 7.0 4.6

24 MLP:48 1.5 2.2 4.0 3.6 2.3 4.6 1.3 2.8 7.3 4.7

PNN 10.5 7.2 25.6 7.0 20.1 16.5 0.4 8.3 30.7 8.4

RBF1 1.6 2.3 4.0 3.8 2.2 4.8 1.0 2.5 7.2 4.4

RBF2 1.5 2.2 4.1 3.8 2.0 4.5 1.5 2.6 7.4 4.4

32 MLP:48 1.6 2.3 4.7 4.2 2.5 4.7 1.4 2.3 8.4 4.9

PNN 8.2 7.3 27.7 7.8 19.2 15.5 0.5 8.9 27.9 7.5

RBF1 1.6 2.4 5.0 4.0 2.5 4.4 1.2 2.4 8.5 4.6

RBF2 1.6 2.5 5.4 3.9 2.5 4.6 1.1 2.3 8.7 4.6

Table 4:

By class error rates for MLP1 BDMs and various output stages. The left column gives the K-L
dimensionality. The integer modifier to the MLP nets indicates number of hidden units.
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n DIGIT “0” “2” “3” «4” “5” “6” “8” “9”

16 MLP:48 1.5 2.0 4.7 3.9 2.6 4.3 1.5 2.3 8.1 4.8

PNN 2.5 2.2 8.3 5.0 1.9 5.0 0.9 2.3 16.5 6.1

RBF1 1.6 2.3 4.4 3.8 2.5 3.9 1.6 2.5 8.2 5.0

RBF2 1.4 2.2 4.6 3.9 2.3 4.0 1.5 2.5 8.2 4.9

20 MLP:48 0.3 1.9 3.5 3.5 2.2 3.7 1.1 1.9 8.1 4.1

PNN 1.2 2.3 7.9 4.7 2.4 4.7 0.8 1.8 16.5 6.6

RBF1 0.1 1.8 3.2 3.7 2.3 3.8 1.2 2.1 8.0 4.6

RBF2 0.1 1.9 3.1 3.6 2.5 3.7 1.2 2.1 8.2 4.5

24 MLP:48 1.5 2.4 4.2 3.6 2.3 4.1 1.4 2.1 7.3 4.6

PNN 2.5 2.0 8.2 4.4 1.7 5.2 1.0 2.6 16.9 6.0

RBF1 1.6 2.2 4.1 3.8 2.1 4.1 1.2 2.3 6.1 4.4

RBF2 1.6 2.8 4.2 3.5 2.3 3.9 1.2 2.2 7.6 4.3

32 MLP:48 1.2 2.3 4.0 3.9 2.4 4.1 0.9 2.0 7.7 4.3

PNN 2.5 2.0 7.9 5.1 2.0 4.6 0.9 2.2 15.6 6.0

RBF1 1.2 2.2 4.0 3.8 2.2 4.3 1.0 2.2 7.6 4.4

RBF2 1.5 2.2 4.2 3.7 2.2 4.3 1.0 2.2 7.7 4.4

Table 5:

By class error rates for MLP2 BDMs and various output stages. The left column gives the K-L
dimensionality.

n DIGIT “0” “2” “3” “
4
” “5” “6” “8” “9”

12 MLP:48 2.0 2.1 4.6 4.5 3.4 4.1 1.4 2.5 7.9 5.3

PNN 3.0 3.8 13.1 5.7 10.0 9.9 2.2 5.5 27.5 9.8

RBF1 2.5 2.4 4.8 4.8 3.4 4.4 2.8 2.8 10.1 5.8

RBF2 2.5 2.5 4.2 3.9 3.3 4.2 2.4 2.4 8.9 5.9

20 MLP:48 2.0 2.2 4.2 4.4 2.6 3.8 1.4 3.2 8.4 5.0

PNN 2.7 3.4 13.4 5.8 9.5 8.5 2.4 5.4 27.6 8.9

RBF1 2.7 2.5 5.3 4.6 3.4 4.1 2.1 2.6 9.7 5.6

RBF2 2.3 2.4 5.2 4.5 3.0 4.4 2.1 2.9 8.8 5.0

24 MLP:48 2.1 2.2 4.4 5.0 3.0 3.4 1.5 3.0 8.7 5.7

PNN 2.8 3.3 13.3 5.6 7.9 9.1 2.2 5.4 28.3 8.2

RBF1 2.6 2.2 5.1 4.9 2.9 4.5 1.9 3.2 10.1 5.9

RBF2 2.1 2.2 4.7 4.7 2.5 4.3 2.1 2.9 9.2 5.3

Table 6:

By class error rates for RBF1 BDMs and various output stages. The left column gives the K-L

dimensionality.
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n DIGIT “0” “2” “3” «
4
” “5” “6” “8” “9”

8 MLP:48 2.1 3.1 5.1 3.9 4.8 4.4 2.0 3.9 9.9 5.6

PNN 3.0 2.7 12.7 6.3 9.5 8.2 2.0 5.0 26.4 9.6

12 MLP:48 1.9 2.4 5.2 4.6 2.9 4.1 2.0 2.8 15.3 5.2

PNN 3.1 2.3 2.0 5.4 6.6 8.8 1.8 3.7 20.8 8.7

16 MLP:48 1.8 2.1 5.0 4.3 2.6 4.3 2.0 3.2 7.8 5.1

PNN 2.7 2.2 10.9 5.3 6.1 7.8 1.9 3.1 23.0 7.2

20 MLP:48 1.9 2.5 5.0 4.0 3.0 4.7 1.9 3.3 8.7 5.3

PNN 2.8 1.9 12.3 4.9 6.1 7.8 1.9 3.5 22.0 7.7

24 MLP:48 1.9 2.8 4.6 4.2 2.2 4.1 2.2 3.0 8.1 5.0

PNN 2.6 2.0 12.4 4.5 6.8 6.6 1.8 4.3 23.8 6.8

28 MLP:48 2.0 2.3 5.7 4.4 2.3 4.4 1.9 2.7 8.3 5.2

PNN 2.6 2.0 12.4 4.9 6.5 7.9 1.9 3.7 22.8 6.1

32 MLP:48 1.7 2.3 5.6 3.8 2.7 3.6 3.2 4.1 12.4 4.6

PNN 2.5 2.0 11.6 4.8 5.4 7.6 1.9 3.7 16.6 6.2

Table 7:

By class error rates for the RBF2 BDMs and various output stages. The left column gives the K-L

dimensionality. The integer modifier to the MLP nets indicates number of hidden units.

PNN Binary Decision Machines

Output

Stage

Number of features

8 12 16 20 24 28 32

VOTE 3.7 3.4 2.8 2.7 2.7 2.6 2.6

MLP:48 8.5 3.2 3.6 4.5 4.9 3.9 4.2

PNN 3.4 3.2 3.2 3.3 3.4 3.8 4.3

RBF1:60 4.1 3.4 3.3 3.3 3.3 3.1 3.2

RBF2:60 3.6 3.3 3.4 3.4 3.5 3.4

Table 8:

Error rates for PNN BDMs. The integer attached to

the MLP and RBF labels is the number of hidden units.

in that context. When layers of networks are combined, the saturation of networks in upper layers

can seriously degrade the performance of networks in the following layers if these networks depend on

continuous input signals for their proper operation. The MLP and RBF network concentrate all their

output near the corners of an n-dimensional cube. PNN networks are not well suited to determining

relationships between the n-dimensional vertices. Both MLP and RBF nets, on the other hand, operate

well in a mode where pattern in sequences of saturated inputs are learned.

4.3 Error-Rejection Rates

In addition to forced decision accuracy, The error reject characteristics of the various combination of

Input Network and Output networks were examined. The two most successful of these were PNN Input

Networks and MLP input networks. The RBF Input Networks produced only marginal improvements

in forced decision accuracy and has less effective reject accuracy performance.

Figure 4 shows the percent error versus the percent reject for the 24-feature PNN BDM’s. The percent

error for the PNN BDM voting rule is based on the output signal size. A machine is rejected if its signal

is less then a given threshold value. The pattern is rejected if all 45 BDMs are rejected or if there is

a tie. Each of the graphs show that the voting rule starts with a lower error rate, but the RBF1 and

RBF2 have a much better rejection rate over the voting rule.

Figure 5 shows the log percent error versus the percent reject of the 24-feature MLP1 BDMs. The
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MLP1 Binary Decision Machines

Output

Stage

Number of features

8 12 16 20 24 28 32

VOTE 3.9 3.2 3.0 2.9 2.9 2.8 3.2

MLP:32 4.3 3.7 3.5 3.3 3.4 3.4 3.7

PNN 14.1 11.5 9.9 13.1 13.5 13.4 13.1

RBF1:30 4.6 3.8 3.5 3.3 3.4 3.3 3.7

RBF2:30 4.5 3.8 3.5 3.3 3.4 3.3 3.7

Table 9:

Error rates for MLP1 BDMs. The integer attached to

the MLP and RBF labels is the number of hidden units.

MLP2 Binary Decision Machines

Output

Stage

Number of features

8 12 16 20 24 28 32

VOTE 3.9 3.2 3.2 2.6 2.9 2.9 2.9

MLP:48 4.3 3.6 3.5 3.1 3.3 3.3 3.3

PNN 6.1 5.2 5.1 4.9 5.1 5.0 11.9

RBF1:30 4.5 3.8 3.6 3.1 3.3 4.3 3.3

RBF2:30 4.5 3.6 3.6 3.1 3.3 3.3 3.4

Table 10:

Error rates for MLP2 BDMs. The integer attached to

the MLP and RBF labels is the number of hidden units.

RBF Type 1 Binary Decision Machines

Output

Stage

Number of features

8 12 16 20 24 28 32

VOTE 6.8 6.3 6.1 5.9 5.8 5.8 6.4

MLP:48 13.4 3.7 3.8 3.7 3.9 3.9 3.9

PNN 28.7 9.0 8.7 8.8 8.6 8.7 9.6

RBF1:50 14.2 4.5 4.5 4.5 4.5 4.3

RBF2:50 13.8 4.0 4.1 4.2 4.0 4.0

Table 11:

Error rates for RBF1 BDMs. The integer attached to

the MLP and RBF labels is the number of hidden units.

RBF Type 2 Binary Decision Machines

Output

Stage

Number of features

8 12 16 20 24 28 32

VOTE 6.4 5.2 5.0 5.1 4.7 4.6 3.4

MLP 4.5 4.6 3.8 4.0 3.0 3.9 4.4

PNN 9.5 7.3 7.0 7.0 7.2 7.1 6.2

RBF 1:3 5.2 4.7 4.6 4.5 4.7 4.6 7.2

RBF2:3 4.7 4.5 4.2 4.3 4.2 4.3 7.8

Table 12:

Error rates for RBF2 BDMs. The integer attached to

the MLP and RBF labels is the number of hidden units.

12



LOG

PERCENT

ERROR

1

0 5 10 15 20 25 30

PERCENT REJECT
MLP * UNNORMALIZED PNN A RBF1 - RBF2 - VOTE +

Figure 4: 24 Feature PNN BDM Error vs Reject for different output networks.
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Figure 5: 24 Feature MLP1 BDMs Error vs Reject for different output networks.
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percent error for the MLP1 BDMs voting rule is based on the output signal’s magnitude. A machine

is rejected if its signal is less then a given threshold value. The pattern is rejected if all 45 BDMs have

been rejected based on the threshold or if the resulting vote is a tie. The curve for the MLP1 voting

network is the result of both the number of machines rejected per pattern and the number of tie votes

which result.

Although the PNN and voting rule based systems give good forced decision accuracy, they provide poor

reject accuracy performance. The best combination of input and output networks is one which uses

PNN BDMs and an RBF1 output. This provides 3.1% forced decision accuracy and 1% accuracy at

about 8% rejection. For rejection rates between 1% and 7% an all MLP based system will provide

better reject accuracy since at 7% rejection rate 1% accuracy is achieved.

5 Conclusions

The structure consists of three layers of processing, the K-L feature processing, the input network layer

and the output network layer. As we demonstrated in table 1 the K-L layer can provide accuracy

approaching [1] on the binary digit problem. We also demonstated in table 2 that a simple voting

mechanism can get good results using the outputs of the second layer. Unfortunately, neither of these

mechanisms provides satisfactory estimates of the confidence of its result so that the output layer is

required to provide good reject accuracy performance. This high accuracy on forced decision coupled

with poor reject performance, was also observed in [15].

It was also possible to improve the recognition performance, over that obtained with the same test and

training sets in [1], of both the MLP and RBF methods by the use of BDMs. The performance of the

local methods, PNN, is not improved by this process. The improvement in MLP performance is greater

than the improvement in RBF performance. This clearly indicated that the methods improved in a way

which is proportional to the amount that they are converted form global to local methods. RBF, as

used here, is preclustered and is therefore partly local and partly global. RBF is improved but not as

much as the MLP networks are. MLPs are usually global but by converting them to local methods, even

when it results in a smaller training set as it does in this case, has made them perform as well as local

methods. This is an issue of intrinsic dimensionality of the type discussed in [14]. Local dimensionality

has long been recognized as a critial factor in neighbor-based methods and we now conclude that it is

equally important for neural networks methods.

This intrinsic variability of rank of the feature set is further seen in the distribution of character-by-

character errors seen with feature set size and output network type and in the large difference in errors

for the BDMs associated with different digits. In tables 3-7 typical errors for the “6” class are 0.5% and

typical errors for the w8” class are 7.0% so that in this sense the classification of “8” is 14 times harder

than the classification of “6”
. This variability of classification accuracy by character type has also been

seen using an image-based method [34, 9] where the number of memories needed to recognize digits is

highly class dependent. This is a clear indication that the features used to select a “6” are much more

efficient than the features used to select an “8”.

Another indication of the local rank effects in the problem structure for OCR is provided by the clear

division of Tables 3-7 into two groups distinguished by the amount of change in feature set size for

maximum accuracy for each digit. Tables 3, 6, and 7 for PNN, RBF1, and RBF2 networks show large

changes in optimum feature set size and output network type for different digits. Tables 4 and 5 for

MLP1 and MLP2 networks show a global optimum feature set size of 20 for most digit types. This is

less than half the optimum feature set size for the global solution to this same problem given in [1].

The change in optimum feature set size and the sharp decrease in feature set size for BDM networks

demonstrates that the global solution is rank deficient and that clustering of the global problem into

local problems reduces the rank of the optimum feature set and therefore makes global optimization,

used for the MLP networks, more effective.

The need for global rank reduction is further supported by Boltzmann pruning studied of large MLP
networks. In [35, 36] it was shown that in these networks up to 80% of the weights can be removed
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without affecting the network performance and that the remaining weights typically have 9-11 bits of

information content. As the weights are removed from the network the removal of low variance weights

connected to K-L features associated with smaller eigenvalues is strongly favored. Weight pruning

provides strong evidence of rank deficiency in the global problem and the relatively small number of

digits present in even the pruned weights demonstrates that calculations using these weight values may
experience significant problems.

The networks that are trained using optimization methods [23, 22] are, during training, dynamic systems

subject to the same convergence and stability problems which are present in other dynamic systems

[37, 38, 39]. All of these methods of training nonlinear networks are directly or indirectly dependent

on the stability of the Jacobian matrix of the local linearization of the system. The equivalent linear

problem is dependent on the rank of the covariance matrix as is the computation of the K-L transform.

If the number of bits used in the variables which form this matrix is lower than is practical for the

condition number of the matrix used in the training process the process will be both dynamically and

numerically unstable. This does not mean that all solutions found are useless but only that some of

these solutions are selected at random based on rounding error not on input data. In problems which

are seriously rank deficient the training process is a Boltzmann machine where numerical rounding

error and input signal noise serve as the random number generator. Clustering, using BDMs or other

methods, should be used to provide an effective method for rank reduction and improve system stability.

In [1] and [15] many different OCR systems were presented which achieved 5% error rates and several

were presented which have 2%-3% error rates. By reducing the problem to a series of BDMs we have

shown that several different neural network methods can achieve 3% error rates on the relatively small

training set used in [1]. These systems also can exhibit error reject behavior comparable to the best

presented in [15]. Analysis of the digit-by-digit performance with respect to feature set size and network

type shows that much of this improvement is associated with local rank reduction in the feature set.

This changes the way the problem of character recognition is stated. We now know that the binary

decision process for two characters using learning data that consists of other characters from the binary

set is relatively easy. The “3-8” data using K-Ls and KNN can in general get errors of 7.6%. So “3-8” is

three times harder than “0-1” and “8”s are 5 times harder than “l”s. The increasing difficulty is caused

not by the primary seraration of digits but by the ability of the BDMs to reject characters of other

classes. This is particulary important when an OCR system is constructed since the most sucessful

methods of segmentation depend on deliberate over segmentation and reconstruction [40]. The over

segmentation process generates numerious partial and merged sections of digits which must be rejected

for OCR to suceed.

Another way of considering the rejection problem is to consider the number of images that are near any

32 by 32 binary image in image space. If character images should be recognized after reversing m bits of

an n bit image then each character has n\ — (n — m)! neighbors which must be recognized and (n — m)\

derived images that should be rejected. Both these numbers are very large compared to any projected

OCR test or training set and indicate the redundancy of even simple character images. The more

redundant the image set, the more difficult the classification process is, since many small variations in

the image yield no useful classification data. Larger and larger training set are more rather than less

redundant since they will contain more examples of common character types.

From these arguments we would expect neither larger feature sets nor larger training sets to eliminate

the remaining sources of OCR error. Larger feature sets can only be effective if they increase the rank

of the feature set. Larger training sets can only be effective if they provide new protypes which are not

redundant.
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