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Abstract

Traditional optical flow algorithms assume local image translational

motion and apply simple image Altering. Recent studies have taken two

separate approaches toward improving the accuracy ofcomputedflow: the

application ofspatio-temporal filtering schemes and the use ofgeneralized

motion models such as the affine model. Each has achieved some

improvement over traditional algorithms in specialized situations. In this

paper, we analyze the interdependency between them and propose a unified

approach. The general motion model we adopt characterizes arbitrary 3-D

steady motion. Under perspective projection, we derive an image motion

equation that describes the spatio-temporal relation ofgrayscale intensity

in an image sequence, thus making the utilization of3-D filtering possible.

However, to accommodate this complex motion, we need to extend the filter

design to derive additional motion constraint equations. Using Hermite

polynomials, we design differentiation filters, whose orthogonality and

Gaussian derivative properties insure numerical stability. The resulting

algorithm produces accurate optical flow and other useful motion

parameters. It is evaluated quantitatively using the scheme established by

Barron, et al.[4] and qualitatively with real images.
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1. Introduction

This paper describes an algorithm and supporting experimental results for accurate optical flow

and motion estimation.

Research in the field of optical flow, starting from Gibson[12] , has spawned many algorithms in

the past two decades, and at the same time has led to numerous applications. To name a few, opti-

cal flow can be used to compute three-dimensional motion and structure[2] [43] ; to locate the

focus of expansion [15] or a moving observer’s direction of heading; to segment independently

moving objects[2] [28] ; to detect motion[9] ; to stabilize images [6] ; to perform obstacle detec-

tion and avoidance [3 3] [45] [46] [47] ; and to analyze medical video (2D echocardiographic

images) to assist in diagnosis[8] . All of these applications use optical flow data in a quantitative

way. Although it is true that the optical flow field is not necessarily equal to the motion field[38]

,

relative accuracy in optical flow is very important in obtaining qualitative properties of motion.

For example, discontinuities in optical flow are useful qualitative properties that can be used to

locate motion boundaries more precisely if the flow is more accurate.

Evidently, the importance of accurate optical flow can not be overemphasized. In view of this,

Barron, Fleet, and Beaucheniin[4] developed a scheme for evaluating optical flow algorithms,

highlighting the current endeavor to achieve greater accuracy.

However, attempts to obtain accurate motion estimates are impeded by three sources of error: sen-

sor noise, brightness change over time, and quantization error. Sensor noise is caused by optical

or electronic irregularities. Brightness change can occur in many situations, including changing

light sources, shadowing, camera aperture adjustment, or shading of a Lambertian or specular sur-

face. Quantization error is inherent in digital images. These factors represent physical challenges

that cannot be overcome by image processing alone but can be mitigated by filtering techniques.
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In addition to dealing with these physical errors, are there other ways of improving the current

best optical flow algorithm? To answer this, we need to review other systematic difficulties that

have been facing us.

The first difficulty is the aperture problem or the ill-posed nature of the flow computation prob-

lem. Traditional optical flow algorithms have worked on finding reasonable constraints to solve

this problem [3,20,27,32,34,37]. Although many ideas were proposed, the desired accuracy was

not achieved due to two factors: lack of attention to better filtering schemes and the use of simple

assumption of uniform translational motion. A good filtering scheme is essential in deahng with

the aforementioned sources of error, and uniform translation is insufficient for describing general

3-D motion.

Recent studies have taken two separate approaches to improving accuracy. The first is the applica-

tion of spatio-temporal filtering schemes [11,19,25,35,41]. The second is the use of generalized

motion models [5,7,8,17,31,35,39,42] such as the affine model. The fact that these two

approaches are actually complementary to each other will become clear as we analyze their indi-

vidual advantages and disadvantages.

An intuitive idea for achieving better accuracy when applying a filter is to increase its support. A

large support alleviates the aperture problem, smooths out more noise, avoids aliasing, and

reduces quantization error and truncation error of the filter. For example, to estimate temporal

derivatives, recent research has used multiple frames instead of simple successive temporal differ-

ences. In fact, more sophisticated spatio-temporal filters, i.e., 3-D filters (Fig 1.2), have been

developed to estimate image properties.

However, careless increase in filter support is not adequate due to the second difficulty commonly

experienced: lack of a good motion model. Since traditional algorithms use simple filtering
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Temporal difference or correlation 3-D convolution (filtering)

Fig 1. 1 Traditional filtering approach Fig 1.2 Spatio-temporal filtering approach

schemes and small filter supports, they can safely assume uniform translational motion as

described in the image motion equation

I{x,y,t) = F(x-ut,y-vt) . (1)

Once the spatio-temporal filters are applied and the support increases, the motion within becomes

more complicated. Moreover, if we consider perspective projection of the 3-D motion onto the 2-

D image plane, the problem gets worse. For example, a forward moving observer sees a diverging

scene in which a patch can undergo both translation and expansion (Fig 2). Generally, diver-

gence, curl, and deformation as well as translation exist in 2-D image motion. Unless the motion

model accommodates all these motion parameters, there is a limit to the useful filter support.

Recent research has proposed the affine motion model to cope with this difficulty. However, once

the general motion model is derived, one realizes that it may not necessarily improve accuracy

* A patch centered at the focus of expansion has expansion only.
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because of the new demand of obtaining additional parameters. Even more sophisticated filtering

techniques are required to compute additional image properties, for example, one may use higher

order derivatives to compute divergence, curl, and deformation [24]

.

The above two approaches (spatio-temporal filtering and generalized motion model) have

achieved a certain degree of improvement over traditional algorithms. Interested readers may

refer to Section 5 for more details about these approaches and for comparisons. Nonetheless, the

interdependencies between them still set a limit to their accuracy. To answer the question posed

earlier: Yes, we can improve on the current optical flow algorithms by unifying a general motion

model and a spatio-temporal filtering scheme.

A general image motion model based on 3-D relative motion has been studied [26] . However, we

need to extend the instantaneous motion model so as to describe continuous motion because of

the intrinsic requirement of spatio-temporal filtering. The continuous motion model is actually a

4-D model that involves Z, 7, Z, r . An image motion equation based on this model is not tracta-

ble, especially considering the non-linearity imposed by perspective projection, unless we make a

small motion approximation. It is then clear that we need a potent spatio-temporal filter design to

solve the problem.

The spatio-temporal filtering scheme we use is based on 3-D Hermite polynomial differentiation

filters [18] [25] ,
which possess several advantages: the orthogonality and Gaussian derivative

properties of the filters insure numerical stability; the approach is generalizable to the higher order

derivatives we desire; these two properties make possible the coherent application of multiple fil-

ters. Numerous physiological models[ 14,48] also support the theory that the visual receptive field

can be modeled by Gaussian derivatives of various widths.

The pursuit of higher accuracy is not complete until we overcome the third difficulty: occlusion or
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motion boundary effects. That is where accretion or deletion occurs[29] , and the information

available to solve the problem is reduced. This difficulty is also common to other vision problems

such as stereo matching. However, this issue is beyond the scope of this paper and will be investi-

gated in a future study.

The ultimate goal of this research is to develop a flexible set of algorithms that deals with arbi-

trary 3-D relative motion and computes accurate optical flow for such applications as obstacle

detection or motion segmentation. Our method is not only capable of unifying the two approaches

attempted by recent research but also results in algorithms whose output is adequate for many

motion applications. Its competitive performance is demonstrated using the evaluation framework

established by Barron, et al.[4]

.

The remainder of the paper is organized as follows: In Section 2, we present a general motion

model for arbitrary 3-D motion and derive an image motion equation. Section 3 introduces a spa-

tio-temporal filtering scheme using 3-D Hermite polynomial differentiation filters, and applies

them to the motion estimation problem based on the image motion equation derived previously.

Section 4 provides implementation details with attention to numerical stability and algorithm flex-

ibility. Comparisons to previous work and specific contributions of this paper are summarized in

Section 5. Section 6 details the results of quantitative evaluation of our algorithm in comparison

with existing algorithms cited in Barron, et al. [4] . It also includes noise sensitivity analysis,

which was not addressed by Barron, et al. In Section 7 we present a qualitative evaluation of the

results of our algorithm using real images in a real motion application. Section 8 concludes the

paper.
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2. The General Motion Model

In this section, we describe how the local optical flow pattern reflects arbitrary 3-D motion and

use this knowledge to derive a general motion model and an image motion equation. Rather than

considering instantaneous velocity [26] ,
we consider velocity over time for the sake of spatio-

v 7' ^
temporal filtering. Let a 3-D point P = {X,Y,Z) undergo steady small rotation

(Qp Qp translation (T^, Ty, T^) per unit time. Previous research that deals with gen-

eralizing the motion model has used a two-frame strategy as in [10] , which may be formulated as

X X 1 Qz Qy

Y = R Y + T, where R =
Q.Z

1 and T =

Z Z -Qy 1

A.

Equivalently, we write

X X 1 Q.Z Qy T̂x

Y = M Y
,
where M = Q.Z 1 -Q.X T̂

Y

Z Z -Q.y 1 T

_1_ _1_
_ 0 0 0 1_

is the 3-D motion transformation matrix. (3 )

The locus of a 3-D point P (t) = {X (t)
,
Y (t)

,
Z{t))'^ can then be described by

Pit) = MM...M Pm = m"

1

o

1 1 1

is a polynomial of matrices. If M were diagonalizable, would be easily computed as

SA^S ^ [21] ,
where A is the diagonal matrix composed of the eigenvalues of M and S is the

matrix of column eigenvectors. However, M has two identical eigenvalues and is not diagonaliz-

* In an observer-centered coordinate frame; Z is the axis along the line of sight.
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able. Fortunately, M has a Jordan Canonical Form SJS
^

[36] from which can be computed

as sfs ^
,
where / has the analytical form [21]

J =

110 0

0 10 0

0 0 1-Q.i 0

0 0 0 1 + a/

where Q j + Qy + and i = (5)

Hence, f =

oo1
1 t 0 0

0 10 0 0 1 0 0

0 0 ( 1 - no ' 0 0 0 1 - tCli 0

0 0 0 ( 1 + no

'

_0 0 0 1 + tO.i

when ^2 « 1

.

(6)

The assumption of small rotation, « 1 , is also used in [10] and most other later studies. Then,

m' = sfs

1 tQz tQy tax + bx 1 tQz tQy tax

1 _ tQz 1 -tQx tay + by tQz 1 -tQx tay

-tQ.y tQ.x 1 taz + bz -tQ.y tQx 1 taz

0 0 0 1 0 0 0 1

(7)

where each of ay, a^ is a function of all of (Q^, Qy, equality

comes from the intuition that = /, therefore by, b^^ must be the residual error from the

approximation in (6) and should be eliminated here. We may regard a^, ay, a^ as translations in

the presence of rotation per unit time.

T
The locus P (t) = {X(t),Y{t),Z{t)) projects to a point in the 2-D image plane,

(x(^t),y{t)) .where

;c(f) =fX(t)/Zit)

y{t) =fY(t)/Z(t)
, where / is the focal length. Let

= fX/Z

vJo = /y/Z
. Then (8)
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(9)

f(ta^ + X- ^0 ~ ' ^^y/)
X (t) = =

“ tO-yX + tQ.^Y + Z ta^/Z - t^lyX^ +

f(taY+ tO.^^ +Y- tQ.^Z) fitUyf/Z + ^^2^0
y (t) = =

ta^ - rQyZ + tQ.^Y + Z ta^/Z - t^lyX^ + tQ.-^yQ +f

Note that an instantaneous velocity derived in [26] is a special case of our formulation, namely,

the velocity (m, v) atr = 0:

Note that the flow is generally quadratic. Computing optical flow based on the uniform translation

model is far from adequate, and the affine motion model is only valid when there is no rotation in

the X and Y directions.

To derive an image motion equation in the form of (1), we start with the brightness constancy

equation:

I{xit),y{t),t) =/(^Q,yQ,0). (11)

Without loss of generality, let F (jCq, y^) = I {Xq, Jq, 0) . It suffices to find jcq, Jq in terms of

» which will be denoted by x,y for simplicity. The resulting solution is extremely

complicated, but assuming small rotation and small 3-D translation relative to distance, namely,

a^, ay, a^«Z, we have

a.

x + —X + Q.^y - — + Q.
Z ^

a,

1 + j^iClyX - Q^y)
yo^

y + f[ -n2X + —y-fi^— -n

1

( 12)

Equation (12) can be further simplified by using the approximation jQ.y x,

y
« 1 , as fol-
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lows:

^0 = + ^zy“Xy ^ ~
)

>0 = (y + Y>' Y “ ^x)))( ^ )

XQ<=x + t{^-^x + il^y -/(-#+ j
“
'i )

(13)

(14)

yo = y + {-n^x + ^y -/(y - ^x)) -
^X>’^)

The above approximation is justified by the following facts. First, the value of / in pixel units is

usually large. For example, for a 256x256 image with a field of view of 45 degrees, / is 309 pix-

els. Second, since we are concerned with motion in a relatively small image local neighborhood,

so-called pointwise analysis, x, y, t are small. Third, a small rotation in the X and Y direction in

3-D space can be approximated in the 2-D image plane as a simple translation. Since we are inter-

ested in finding optical flow rather than 3-D motion and structure, we do not lose much accuracy

here. The error from this approximation will be absorbed by the translation parameters

thus offsetting the optical flow error. Inherent 3-D motion ambiguities related to this were

described in [1] [44] . We will also use the above arguments for further simplification in our algo-

rithm development (Section 4.2).

Now the image motion equation is, from (11) and (14),

I{x,y,t) = + yx + py -H + exyj, y + - px + yy + 6xy + ey^JJ, (15)

wherea = + = Y’ ^ ^ ~

We need to develop a filtering scheme to relate all the above motion parameters to the 3-D filter

output and then solve them in order to estimate the optical flow, which is (-a, -p) at
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;c = j = r = 0 from (10) and (16). Note that these motion parameters are closely related to 3-D

motion.

To demonstrate the behavior of the image motion equation, consider the following basic motion

patterns:

1. When there is no rotation, and no translation in the Z direction, then

y=p = 6 = e = 0 (16), and there is uniform image translational motion, as

assumed by traditional algorithms. (Fig 2.1)

2. When there is no rotation, p = 5 = 8 = 0 , hence the image motion is affine without

rotation, i.e. with only expansion and translation. (Fig 2.2)

3. When there is no translation in the Z direction, 7=0 and no rotation in the X and Y

direction, 6 = 8 = 0 , the image undergoes translation and rotation. (Fig 3.1)

Note that the images shown are merely enlarged local neighborhoods to reveal their particular

behaviors under motion.

4.

When there is no rotation in the X and Y direction, 5 = 8 = 0, the image undergoes

affine motion without deformation, i.e. only with translation, expansion and rotation.

(Fig 3.2)

Fig 3.1 Translation and rotation

5. An arbitrary 3-D motion generates an

Fig 3.2 Affine motion without deformation

image motion like Fig. 4.
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In summary, the image motion equation is based on expedient and reasonable approximations. It

is applicable not only to the algorithm developed here, but also to other motion algorithms,

although the extent of improvement depends on the particular algorithm. For the gradient-based

method, the filtering process is the decisive factor as far as performance is concerned. We formu-

late the theory of Hermite polynomial differentiation filters in the next section.

3. Hermite Polynomial Filters

3.1 Hermite polynomials

The 71th Hermite polynomial (x) is a solution of

”_2x— ” + 27iH = 0

dx^

The (x) are derived by Rodrigues’ formula [18]

(17)

H„{x) =
dx

(18)

The computation of (jc) is especially easy using the following recursive relations:
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^f„ + i W = -2nH„_j(A:) (19)

HqW = 1

Hj (x) = 2x

2 -X
By substituting G {x) (with variance o ) for e in (18), we generalize to Hermite polynomials

with respect to the Gaussian function. Let these Hermite polynomials be denoted by (jc)

H„(x) = {-l)"G~\x)-^iG{x)) (20)

dx

Note that (jc) differs from (x) by a scaling product:

=
1/2 J

“nl 1/2
2 ^2 G

(21 )

The scalar product of two functions and the L2-norm of a function with G (x) as a weight function

are defined as follows:

{a, b) = j
G{x) a (x) b (;c) dx and ||(3||

=

—oo

The orthogonality of (;c) } can be expressed in the following way[18] :

(H„,H„) = (22)

The 3D case of Hermite polynomials is especially simple because they are separable. Thus the

polynomial with order n = i -¥ j + kis

Hijkix,y,t) = Hiix) 'Hj(y) 'Hk(t) (23)

3.2 Derivation of gradient constraint equations

One of the most important properties of Hermite polynomials is the property of Gaussian deriva-

tives. It is with the aid of this property that we are able to establish gradient constraint equations.

This property is manifested in the following theorem.
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Theorem 1: A one dimensional signal I{x) can be expanded in terms of Hermite polynomials as

/w = I/;
Hkix)

k = 0
Hi

Then 4 = {I,Hk) = where Ho(^) = 1 and/f*^) =

k

dl

dx^
(24)

The proof is given in Appendix A. This theorem states that the ^th order Gaussian derivative of

the image is the inner product of the image and the kth order Hermite polynomial (x) . Note

that the theorem is true only for unnormalized Hermite polynomials. This fact is used when we

assign weights to motion constraint equations of different orders in equation (35).

Recall our image motion equation (15),

/ {x, y,t) = a + yx + py + bx^ + 8xy J, y + ?(^ P - pjc + yy + 6xy + sy'

Expand both sides with Hermite polynomials,

oo oo oo

i = 0j = 0k = 0

oo oo oo

ijk
— = I I I ‘iJk

= ^ijk> = Pijk = Hijk) (25 )

Hijk
i = Oj = Ok = 0 fiijk\

Equating I to
j
and using Theorem 1, we derive

hn =
^in =

\x.
2 ^3F f 2^3F

= <[a + 7A: + py + 6j: +SJr>'J— + 1 P-px + Yy + 5xy H-ey
“o °yo

= ((^a + YA: + Xp + 5j:^ + ej:>>]|^,//yo) + ((p - + "O' + Wyo)

We make the above approximation because equations (9) and (16) allow us to derive

(26)

dF didx didy bl , ^ x x

(27)
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Since
dF
dXr X = 0,y = 0, t = 0

K
dx X = 0,y = 0, t = 0

and the inner product is Gaussian weighted, the

error is not significant. Besides, without the approximation, the eventual constraint equation

dF
would be non-linear and very difficult to solve. The analysis is similar for — . Therefore, we

arrive at

1
= < [

« + yj: + py + j|^. Hijo) + ([ P - p j; + yv + j|^^yo) • (28)

/••I
= a Hyo) + Y(|^, xH^jo) + P yHijo) + 5 x%jo) + e xyH^jo) (29)

+ p (^, Hijo) - p xHijo) + ySyo) + 5 xyHijo) + e {^, y%jo)

To simplify (29), we derive from (19) and (21) the following equation

xH^ (x) = + 1
(x) + nH^ _ i

(x) . Hence (30)

= a{^,%) + 7<|^, + iH,-. yo> + p{|^, (j^Hy^i.o +yHy- i,o) (31)

+ 5(|^ , a%^2jo + (2/ + 1) o^Hyo + i(i + 1) ^,-2;0>

Hi ^ \j + \^Q i(5 F[i_ij j(5 + ly - 1, 0 ly - 1, o)

+ p , ffyo) - P (^ . + UO + iHi -ijQ}+ y{^ , o%j ^ 1,

0

+jHij. 1 , o>

+ t{^,O%j^ 2 . 0 + i2j+ l)0%jo+jU+ l)Hy. 2, 0>

Using Theorem 1, we simplify (31) to
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(32)

As stated in the introduction, this is a fundamental element resulting in a coherent spatio-temporal

filtering scheme to compute optical flow. This capability stems from two nice properties of (32).

The first is the linearity of the equation in terms of the motion parameters as defined in (16); the

second is its extensibility to higher orders, i.e., the values of i,j can be as large as required by the

number of parameters. Thus to solve for the motion parameters and then for optical flow, we

derive a system of linear equations with coefficients computed from spatio-temporal Alters .

These result in excellent numerical stability due to the orthogonality of the Hermite polynomial

differentiation Alters and their inherent Gaussian smoothing. Although (32) appears to be compli-

cated, it in fact suggests a simple, local, and parallel algorithm, which involves only convolutions

and solving a linear system, as presented in the next section.

4. Algorithms for Computing Optical Flow

Equation (32) gives rise to not a specific algorithm but a set of algorithms, due to its extensibility.

We can derive the same number of equations as unknowns and solve a linear system, or we may

incorporate more equations of higher order and solve a linear least square problem. On the other

hand, if we possess knowledge about the input image sequence, for example, that there are no

rotations around certain directions, the number of motion unknowns can be reduced. We also

16



make other expedient choices based on numerical considerations and experimental findings. All

these options are explored in the following subsections.

4.1 The general algorithm

According to (32), we derive six equations up to the third order. Within a 3-D local window, we

estimate } with the discrete approximation { (x, y,t) }, that is, the 3-D convolution of the

sampled Hermite polynomial filters with the image sequence, and write the equations in matrix

vector form:

M^s = c
,
where = (M^ 0 where 0 means concatenation, and (33)

Y ^ 2 - -

_ —
^001

^100 AlO ^ (A00 + A20) 0

a A ^ 2 ^ ^ ^ ^

p
Aoi hoo Aio ^ (A00 + A20) +^100 ~Aio

Y
,
c = ^011 ^110 A2O ^ (A1O + A30) +A10 ^100

P ^201
^ 2 ^ ^ ^ ^

Aoo AlO ^ (/400 + A20) + 2/200 “2/iio
6

8
All Alo A20 ^ (Alo + A30) + 2/110 Aoo“A2o

/021_
^120 A30 ^ (/220 + A40) + 2/020 2/110

(34)

4 ^ ^ 2 ^

^ (-^300 + -^120) IlOO
4 ^ /V 2 ^

^ (^210 ^030) ^010

^ (1400 + 1220)+^ (3/200 "^^020) + 2^000 ^ (/3IO ^130 ) + ^ 2/110

^ (^310'*'A3o) 2/110
4 ^ ^ 2 ^ ^ ^

^ (/220 '''^040) ( 3/020 -^200) + 2/000

^ (^500 + ^320) (5/300 + 2/120) +6/100 C7 (/410 + /230) +^ 3/210

^ (/4IO +/230) + ^ (4/210 + ^30) + 3/010 ^ (/320 + A4o)+^ (4/i 20 + ^30o) + 5/100

^ (/32O + l050) + ^ 3/120
4 ^ ^ 2 ^ ^

^ (^230 + l050) + ^ (5/o30 + 2/210) + 6/010

Note that filter outputs of up to fifth order are used, s can be solved exactly by (33) for the center

pixel of the 3-D window and optical flow at the center of the local window is (-a, -(3) .
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4.2 Specialized algorithms

The algorithm presented in the previous subsection, i.e., solving a full-rank linear system, is often

an overkill for many image sequences. There are several disadvantages in using it for simple mo-

tion: First, it requires the use of higher order filters, whose orthogonality is always distorted in a

limited local support; and the use of a large local support is undermined by its susceptibility to

motion boundary effects. Second, the linear system is often highly ill-conditioned, since the col-

umns of the matrix are of different orders of magnitude. Third is the higher demand in computa-

tion.

Let the focal length be large enough and/or the rotation in the X, Y direction small enough for 6

and £ to be negligible. Then M
2 = 0 and we have a linear least square problem:

E = Z?|| where = WM^,b = Wc, and

W = Diag [wp W
2 ,
W

3 ,
W
4 ,
W

5 , Wg] . (35)

W is the diagonal weight matrix for the motion constraint equations. According to (25), we use

1 -2 -2 _ -2 1
1 to _ t-2 1

Fool
1

to

II
^^101

II
1

Hon II
1

^201
1

II
^^111

1

ON

II ^02 1|

Note that this formulation reduces the highest order filter to fourth order. In addition, a least

square solution is more stable than a full-rank linear system. The applicability of the weight ma-

trix is another nice feature. We suggest solving (35) by QR decomposition:

^4 = QR ^ E = min\\QRs + b\\ = min |r5 + bl ,
where Q is unitary. (36)

R can be denoted by

0

H,
, where R is an upper triangular matrix; and Q b is , correspond-

ingly. Equation (36) then becomes

18



E = minqR^s +
bJI^ + lbJl)

=
1
^7^

= r if is not singular. (37)

The solution s is computed from R^s + = 0 (38)

For all practical purposes, the above algorithm is adequate for computing optical flow. Nonethe-

less, for many synthetic images or synthesized real images [4] , there is still room to simplify the

algorithms and improve the stability of the linear system. For example, in image sequences where

= 0 ,
we get p = 0 and (35) reduces to

E = m/72||A353 - ^1 , (39)

where A
3
and are the first three columns and elements of A^ and , respectively.

Furthermore, the third column in A
3
involves higher order terms plus a lower order term. Experi-

ments suggest that the lower order term is always dominant and more accurate. Neglecting the

higher order terms does not necessarily degrade the accuracy but does save a great deal of com-

puting time. This finding is very crucial especially for real-time implementations.

In terms of computing efficiency, our algorithm is excellent due to the separability of the 3-D Her-

mite polynomial filter design. Let the 3-D filter size be W xW x W and image size be 5 . The

complexity of the computation is O {{W^+W^ + W^+ C) S) , instead of O ( {W^W^Wj + C) S) ,

where C is the constant factor associated with solving the hnear system. In addition, the above

process can run on all image pixels in a parallel fashion. It can achieve maximum speedup run-

ning on a CREW (Concurrent Read Exclusive Write) parallel machine [22]

.

One of the advantages of using the QR decomposition is the availability of the matrix R^ and the

residual. The behavior of R^ and the residual value reveal plenty of information about the under-

19



lying images and motions. There are certain situations where the optical flow cannot be reliably

computed from local information due to, for example, the aperture problem. Therefore, and

the residual should be investigated for their possible link to the reliability of the computed optical

flow. We devote the next subsection to the discussion of the optic flow errors and confidence mea-

sures.

4.3 Confidence measures

Our algorithm provides ample information about the behavior of the system equations. It includes

the residual r , the condition number and the determinant of . They can be shown [25] to signi-

fy certain image phenomena, e.g., occlusion, the aperture problem, etc., which present difficulties

for optical flow computation. Therefore, they can be utilized to locate high error areas and suggest

subsequent improvement methods. For the sake of the evaluation in Section 6, we simply use

them as confidence measures or threshold values to extract more accurate data, notwithstanding

the fact that they can be used for qualitative image analysis.

4.3.1 Residual

The residual of our algorithm is +
^||

or r (=E) (37). The residual of an overdetermined lin-

ear system indicates the degree to which the equations disagree with one another. The reason for

the existence of the residual lies in the approximation error of { {x, y,t) }. A high approxima-

tion error may indicate one of three problems:

1. The assumption of the motion model is violated in the 3-D window It is possible

that the window covers more than one moving object. Occlusion or multiple indepen-

dently moving objects in a window can cause this problem.

2. The assumption of constant image brightness is violated. It is not unusual for the
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brightness of an object to change when the viewing angle changes due to relative

motion. In addition, the observing camera may adjust the brighmess gain for different

scenes, resulting in a change of object brightness. Similar effects can be caused by

the shadow of another object.

3. Quantization and truncation errors. Quantization errors result from sampling Hermite

polynomial filters. Truncation errors are introduced when we use limited spatial sup-

port to compute { (;c, y,t) }. Within a small window, the Hermite polynomials are

no longer orthogonal and the derivatives computed are not accurate. This situation is

—2/2

worse for higher order differentiation filters. For example, H^)/c n\ (22) is

0.93 when n = 5 and 0.999945 when n = 1 for a window size of 21.

We can model the above errors as perturbations to the linear system [25]

:

E - m/n|| + AO 5 + {b-¥ AZ?)
||

,
where N and AZ? denote errors and n<6

We prove in Appendix B the following analytical results:

A5 = 5-5~-l A^(A5 + AZ7)

r =

(40)

(41)

(42)

Note that the expressions for both optical flow error A5 (41) and residual r (42) are proportional

to the size of the noise vector {Ns + /^b) . It is evident that locations with high residual reflect

large errors and inaccurate optical flow values.

Note that the three problems mentioned above suggest contradictory choices for the window size.

With larger windows, problems 1 and 2 may be aggravated; with smaller windows, problem 3

* It may be deceptive to claim that the residual is proportional to the optical flow error because the error vec-

f j A-l j f T T
tor IS mapped by different matrices (I I A^ , I-A\A^ A^j A^ ), so the error also depends on the

orientation of the noise with respect to the matrices.
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becomes worse.

43.2 Condition Number and Determinant

The condition number of denoted by K ,
is defined as

||
||^J^||

and can be shown to be

1^1 max
,
where the ^ ’s are eigenvalues or diagonal elements of .

A condition number measures the extent to which a linear system maps an input error into an out-

put error, or in brief, the numerical instability of the system. If s contains errors magnified by an

ill-conditioned from errors in b, ii is not reliable. Since matrix is concerned with the
n n

image texture only and not with motion, we find correspondences between a high condition num-

ber and the following two image neighborhood situations:

1. when there is a steep edge in the x(y) direction (Fig 5.1), so that the derivatives are

very large for jc(y) and small for y(x);

2. when there is a lack of texture in a direction (the x + y direction in Fig 5.2), so that the

derivatives in the x direction are approximately proportional to the derivatives in the

y direction, i.e. I (x,y) - 1 (kx + y) .

Fig 5.1 Smoothed steep edge. Fig 5.2 Lack of texture in x+y direction.

The above two situations can easily be confirmed by inspecting the QR decomposition process.

The determinant of R^ is the product of all its eigenvalues. In solving (38) or 5 = -Rj^ • b^ , the
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determinant plays an important role in the matrix inverse. Since we use the QR decomposition

method, Q is unitary (orthonormal projection) so the behavior of is similar to the original .

A small determinant of indicates one of the following two situations:

1. The three columns of are close to being linearly dependent. This is the same as the

second situation in the above discussion of condition number. In fact, a small deter-

minant due to linear dependency also causes a high condition number.

2. All the elements of are very small. This corresponds to a uniform brightness area,

e.g. a cloudless sky.

If there is motion in the area where one of these two situations dominates, then it corresponds to

what is known as the aperture problem. As noted before, the above situation corresponds to the

general case of the aperture problem. It is interesting to note that Barron, Reet, and Beauchemin

[4] recognize empirically that the determinant is a better confidence measure in the application of

the liras, et al. [37] optical flow algorithm than the condition number used in the original paper.

Our analysis agrees with their empirical finding.

4.3.3 Integration of confidence measures

Based on the above analysis, we choose a combination of confidence measures according to the

nature of a given image sequence.

If the image sequence contains numerous moving objects or the brightness changes significantly,

residuals should be used as the confidence measure, as they capture the three problems listed in

Section 4.3.1. No other confidence measure is effective for these cases.

The condition number and determinant have something in common although they may capture

different situations. Together they signify the relationship between numerical instability and the
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aperture problem. Empirical findings suggest that they be used as a multiplicative combination, or

similarly, in the form of P5]

.

This has been proposed by Girosi et al.[13] in a similar con-

text and was used in Barron’s implementation [4] of Lucas and Kanade’s optical flow algorithm.

In our algorithm, simply indicates the existence of the necessary texture. We shall use it to

capture the aperture problem and to avoid numerical instability.

All the above mentioned problems are not unique to our algorithm; they are common to other op-

tical flow algorithms as well.

5. Previous Work and Our Contributions

Recent research in the field of optical flow seems to converge on two ideas to be discussed in this

section. They are spatio-temporal filtering and generalized motion models.

An earlier method based on these two ideas has appeared in [35] by Srinivasan. In this approach

to a generalized gradient method for optical flow, the author concentrated on generalizing spatio-

temporal filtering. He demonstrated his algorithms on various types of motion. However, the

algorithms did not deal with motion that simultaneously contained translation, expansion, and

rotation. In fact, it is stated that “erroneous results can occur if a translatory motion is superim-

posed upon the rotation or expansion”. Nonetheless, [35] is one of the first efforts in generalizing

the optical flow algorithms.

Later, Workhoven and Koenderink [42] introduced the idea of the affine flow field (43) to esti-

mate optical flow:

“o u
V (x) = T + Ax where T = and A = X y

V V
L ^ 3d

24



A series of algorithms [5,7,8,31,39] using this more comprehensive flow field followed.

Based on an infinitesimal affine flow field, both Workhoven and Koenderink [42] and Nagel [31]

used Taylor series expansion and 2-D Gaussian derivative filters to derive motion constraint equa-

tions. These equations are organized in a linear system in a similar way in both studies. Their

work can be regarded as an extension of Horn and Schunck’s work [20] . Our work is inspired by

Workhoven and Koenderink’ s algorithm because an extensible motion constraint equation similar

to (32) was developed in [42] , though only in 2-D. However, the affine model is not based on the

pointwise 3-D motion analysis so their motion equation fails to recognize the dependencies of the

first order motion parameters, i.e., y = u = v and p = m = v . This causes numerical insta-
X y y X

bility. Hence their approach does not offer an algorithm with competitive experimental results. In

fact, our implementation of their algorithm shows that it is not reliable.

Campani and Verri [7] , Bergen et al. [5] , and Wang and Adelson [39] used local flow field

coherence rather than the Taylor expansion to compute flow. Their work can be regarded as an

extension of Lucas and Kanade’s work [27] . They do not demand high-order gradients but need

to perform patchwise computation. Patchwise computation is accurate when the motion has been

segmented but inaccurate otherwise due to its strong susceptibility to the aperture problem.

Chou [8] modeled the error in the affine flow field as independent Gaussian noise and used Max-

imum a Priori (MAP) estimation to minimize the error and compute optical flow. We have shown

in (10) that the error modeled in [8] consists of exactly the quadratic terms. It is actually system-

atic and dependent on motion. Therefore, this noise model is not adequate.

Prior to the affine flow model. Hartley [17] had proposed a quadratic flow field model and used

pyramid linking to estimate and segment flow simultaneously. This is the first use of the “correct”
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motion model in an algorithm. The integration of estimation and segmentation is a valuable les-

son for future research, but the lack of temporal or even spatial filtering to deal with noise is its

weakness.

We realize that modeling a fiow field is essentially a 2-D process, whereas modeling motion is a

3-D process, which is relatively difficult. However we can impose temporal smoothing in an inte-

grated theoretical framework based on Hermite polynomials.

Heeger [19] , Fleet and Jepson [11] , and Weber and Malik [41] also achieved success using spa-

tio-temporal filters. However, they all used a uniform translational motion model and their

improvements are limited by this assumption. Among them. Fleet and Jepson attempted to cope

with non-translational motion in [11] . They showed that the phase response, instead of the ampli-

tude response, of the velocity-tuned filters is robust to image affine transformations and photomet-

ric deformation. Their algorithm is based on constant phase contours and tends to produce more

accurate but sparse flow fields.

If the above methods could take advantage of the image motion equation (15), which deals with

arbitrary 3-D motion, greater improvements might be achieved. However, these methods might

have difficulties with the spatial nonlinearity (specifically, quadratic) and the number of parame-

ters involved. Hermite polynomial filters, on the other hand, have proved to be capable of over-

coming these difficulties.

From a theoretical point of view, the image motion corresponding to arbitrary 3-D motion has

been studied by Longuet-Higgins and Prazdny[26] and Fang and Huang [10] . We have pushed

the effort forward not only by integrating temporally continuous analysis but also by exploring

numerical implementations. The figure below summarizes the thread of work leading to our algo-

rithm. An arrow in the figure represents an idea extracted, extended or used similarly.
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At the application level, our algorithm generates a set of confidence measures that we prove

reflect physical phenomena about the image and motion. These measures can then be used for

subsequent qualitative processing. In experiments, our algorithm generates accurate and dense

results, which are very useful for such tasks as motion segmentation and obstacle detection.

In summary, the contributions of this work are a general motion model that lends itself to use with

any good spatio-temporal filtering methods for estimating accurate optical flow, and a potent Her-

mite polynomial theory for motion analysis.

6. Experiments

Based on the work of Barron, Fleet, and Beauchemin[4] , we conducted extensive comparisons

between our algorithm and traditional optical flow algorithms, including those by Horn and
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Schunck[20] , Lucas and Kanade[27] ,
liras et al. [37] ,

Nagel[32] , Anandan[3]
, Singh[34]

,

Heeger[19] , Waxman et al. [40] , and Fleet and Jepson[ll] . The synthetic image sequences we

used for comparison are Sinusoid, Translating tree, Diverging tree, Yosemite fly-by (provided by

Barron), and Moon landing.

If the image sequences used contain only translational (Sinusoid) and diverging motion (Translat-

ing tree. Diverging tree, and Yosemite fly-by), we use the algorithm in (39); if the image motion

also contains rotation (Moon landing), we use the algorithm in (35).

The error statistic utilized is the angle error between the computed optical flow time-space direc-

tion v^, 1) and the ground truth flow time-space direction {u^, v^, 1) averaged over the

whole image. Refer to [4] for more details. In order to make extensive comparisons, we imple-

mented our algorithm in such a way that a certain density of output flow can be extracted by

thresholding on a chosen confidence measure. Error statistics in the following subsections are dis-

played in tables. For a single technique with multiple entities in these tables, different threshold

values are used in the algorithm to produce multiple densities of output. For the actual threshold

values of the comparison algorithms, refer to Barron et al.[4] . The error statistics and associated

density for the comparison algorithms were obtained directly from [4]

.

6.1 Sinusoid

This is a synthetic image sequence (Fig 6) of a spatial sinusoidal wave traversing toward the up-

per right side. For our method we chose a window size large enough (17x17x7 for x,y,t) to prevent

aliasing. |l/r| was used as the confidence measure. Fig 7.1 shows the true optical flow, while

Fig 7.2 shows the flow computed with our method. Our algorithm performs better than all of the

other algorithms except Fleet and Jepson’s (Table 2).
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Fig 6. Traversing sinusoid

Fig 7.1 True optical flow for sinusoid Fig 7.2 Computed optical flow (100%)

Table 2: Summary of Sinusoid error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 0.63° 0.06° 4.19° 0.50° Horn & Schunck (original unthresholded)

2.55° 0.59° Horn & Schunck (modified unthresholded)

2.47° 0.16° Lucas and Kanade (unthresholded)

2.59° 0.71° Uras et al. (unthresholded)

2.55° 0.93° Nagel

30.80° 5.45° Anandan

2.24° 0.02° Singh (step 1 unthresholded)

0.03° 0.01° Beet and Jepson

12.8% 0.63° 0.06° 64.26° 26.14° Waxman et al.

6.2 Translating tree and Diverging tree

The translating and diverging tree sequences are two realistic synthetic sequences simulating the

motion of simple translation (Fig 8.1) and expansion (Fig 8.2), respectively, of a poster. The win-

dow size used in our method is 19x19x11 for the translating tree and 17x17x9 for the diverging
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tree. Due to the lack of texture in some background areas, we used as the confidence mea-

sure. Fig 9 and Fig 10 show the results. Only liras’ and Fleet and Jepson’s algorithms perform

better than ours for the translating tree sequence (Table 3). For the diverging tree sequence, our

results are second only to Reet and Jepson’s (Table 4).

Fig 8.1 Translating tree Fig 8.2 Diverging tree

Fig 9.1 True flow for Translating tree Fig 9.2 True flow for Diverging tree

Fig 1 0.1 Computed flow for Translating tree
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Table 3: Summary of Translating tree error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 0.92“ 0.94° 38.72° 27.67° Horn & Schunck (original unthresholded)

2.02° 2.27° Horn & Schunck (modified unthresholded)

0.62° 0.52° liras et al. (unthresholded)

2.44° 3.06° Nagel

4.54° 3.10° Anandan

1.64° 2.44° Singh (step 1 unthresholded)

1.25° 3.29° Singh (step 2 unthresholded)

99.6% 0.91° 0.92° 1.11° 0.89° Singh (step 2)

74.5% 0.69° 0.51° 0.32° 0.38° Fleet and Jepson

53-57% 0.59° 0.39° 32.66° 24.50° Horn & Schunck (original)

5.63° 2.78° Heeger (level 1)

1.89° 2.40° Horn & Schunck (modified)

49.7% 0.57° 0.37° 0.23° 0.19° Fleet and Jepson

44.2% 0.55° 0.34° 8.50° 13.50° Heeger (level 0)

40-42% 0.53° 0.33° 0.46° 0.35° liras et al.

0.72° 0.75° Singh (step 1)

0.66° 0.67° Lucas and Kanade

26.8% 0.48° 0.28° 0.25° 0.21° Fleet and Jepson

13.1% 0.42° 0.24° 0.56° 0.58° Lucas and Kanade

1.9% 0.35° 0.19° 6.66° 10.72° Waxman et al.

Table 4: Summary of Diverging tree error statistics

Density

Our Algorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 1.84° 1.33° 12.02° 11.72° Horn & Schunck (original unthresholded)

2.55° 3.67° Horn & Schunck (modified unthresholded)

4.64° 3.48° liras et al. (unthresholded)

2.94° 3.23° Nagel

7.64° 4.96° Anandan

17.66° 14.25° Singh (step 1 unthresholded)

8.60° 4.78° Singh (step 2 unthresholded)

99% 1.82° 1.28° 8.40° 4.78° Singh (step 2)

73.8% 1.59° 1.12° 4.95° 3.09° Heeger (combined)

60-61% 1.49° 1.02° 0.99° 0.78° Fleet and Jepson

8.93° 7.79° Horn & Schunck (original)

3.83° 2.19° Uras et al.

46-48% 1.40° 0.92° 2.50° 3.89° Horn & Schunck (modified)

0.80° 0.73° Reet and Jepson

1.94° 2.06° Lucas and Kanade

28.2% 1.28° 0.79° 0.73° 0.46° Fleet and Jepson

31



Table 4: Summary of Diverging tree error statistics

Density

Our Algorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

24.3% 1.24“ 0.77“ 1.65“ 1.48“ Lucas and Kanade

3.9-4.9% 1.09“ 0.66“ 13.69“ 11.83“ Waxman et al.

5.62“ 6.16“ Singh (step 1)

6.3 Yosemite fly-by

The Yosemite Fly-by sequence is a realistic synthetic image sequence (Fig 11). The flight scene is

simulated using actual aerial photos and digital terrain maps, with artificial sky and clouds. Since

the clouds in the sky change brightness over time, it poses difficulties for all algorithms. Based on

our previous analysis, we used |l/r| as the confidence measure to eliminate points that lie in a

large blank area in the sky and on motion boundaries in. Fig 12.2. shows the results. Since the mo-

tion is rather fast in some areas, we used a larger window (21x21x7). Error statistics are shown in

Table 5. Again, the clouds account for the large magnitude error. Our algorithm performs better

than all others.

Fig 11 . Yosemite fly-by image
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Fig 12.1 True optical flow field for Yosemite fly-by Fig 12.2 Computed optical flow for Yosemite fly-by

Table 5: Summary of Yosemite fly-by error statistics

Density

Our Algorithm Other Algorithms

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 7.13° 13.19° 31.69° 31.18° Horn & Schunck (original unthresholded)

9.78° 16.19° Horn & Schunck (modified unthresholded)

8.94° 15.61° Uras et al. (unthresholded)

10.22° 16.51° Nagel

13.36° 15.64° Anandan

15.28° 19.61° Singh (step 1 unthresholded)

10.44° 13.94° Singh (step 2 unthresholded)

97.7% 6.39' 6.39° 10.03° 13.13° Singh (step 2)

64.2% 2.99° 4.54° 22.82° 35.28° Heeger (level 0)

59.6% 2.85° 4.15° 25.33° 28.51° Horn & Schunck (original)

44.8% 2.57° 3.50° 15.93° 23.16° Heeger (combined)

33-35% 2.41° 3.32° 4.28° 11.41° Lucas and Kanade

4.63° 13.42° Fleet and Jepson

5.59° 11.52° Horn & Schunck (modified)

6.06° 12.02° Nagel

30.6% 2.38° 3.24° 5.28° 14.34° Fleet and Jepson

15% 2.21° 3.06° 9.87° 14.74° Heeger (level 1)

7.55° 19.64° Uras et al.

8.7% 2.16° 3.05° 3.22° 8.92° Lucas and Kanade

7.4% 2.14° 3.03° 20.05° 23.23° Waxman et al.

2.4% 1.91° 2.12° 12.93° 15.36° Heeger (level 2)

6.4 Moon landing

The Moon landing sequence (Fig 13) is generated by gradually rotating and expanding a picture
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Fig 13. Moon landing sequence

of the surface of the moon. Visually, it is a bird’s-eye view of the moon from a spiral landing

spaceship. The purpose of this sequence is to demonstrate our algorithm’s capability to handle

complex motion, specifically, expansion plus rotation. Our algorithm used a 21x21x7 window and

confidence measure since there is no motion boundary. Table 6 shows that our

results are better than Fleet and Jepson’s and Lucas & Kanade’s. It also reveals the amount of

improvement (10%-16%) of a generalized motion model over a uniform translation motion model

in our algorithm.

Table 6: Summary of Moon landing error statistics

Density

Algorithms

Average

Error

Standard

Deviation
Technique by

100% 1.73° 0.87° Our algorithm (Translation + Rotation +Expansion model)

1.91° 0.89° Our algorithm (Translation model)

33.3% 3.91° 3.80° Lucas and Kanade

1.37° 0.71° Our algorithm (Translation + Rotation +Expansion model)

1.69° 0.83° Our algorithm (Translation model)

31.1% 2.47° 1.71° Fleet and Jepson

1.36° 0.70° Our algorithm (Translation + Rotation +Expansion model)

1.68° 0.82° Our algorithm (Translation model)

* Rotation and expansion are done using Khoros 1.5 vrotate and vresize functions, respectively.
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Fig 1 4.3 Lucas & Kanade’s flow field (33.3%) Fig 1 4.4 Fleet & Jepson’s flow field (31 . 1 %)

6.5 Noise sensitivity

We created noisy images from the synthetic sequences used above and tested the sensitivity of the

algorithms to such noise.

The sensitivity analysis is motivated by simple experiments such as the following: On a real-time

image processing machine, run a temporal differencing algorithm at video rate on successive

frames while keeping the camera and the scene stationary. Instead of getting a uniform output of

zero, the actual output always contains random spots of non-zero values. This kind of sensor noise
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violates brightness constancy and degrades the accuracy of any optical flow algorithm.

In the following tables, we used additive Gaussian noise of zero mean and increasing variance. In

order to conduct a fair comparison, the threshold on the confidence measure is fine-tuned in every

single run so that the output density is always 50%. We chose two of the best algorithms in [4]

,

Lucas & Kanade and Fleet & Jepson, for comparison. For the noisy Diverging tree sequence, the

noise sensitivity is summarized in Table 5.

Table 7: Summary of Diverging tree noise sensitivity statistics

Noise

Standard

Deviation

Our Algorithm Fleet & Jepson Lucas & Kanade

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation

0 1.41° 0.94° 1.09° 0.52° 3.04° 2.53°

3 1.64° 1.08° 1.18° 0.61° 3.28° 2.77°

6 2.03° 1.37° 1.51° 0.93° 3.62° 3.06°

9 2.53° 2.17° 2.15° 1.78° 4.32° 3.79°

12 3.28° 2.78° 3.83° 5.48° 5.17° 4.69°

15 3.87° 3.15° 9.23° 12.04° 5.93° 5.41°

Our algorithm, as well as Lucas & Kanade ’s has an approximately linear error increase with noise

while Fleet & Jepson’s has quadratic or even exponential error increase (Fig 15). Despite its

Noise Sensitivity

excellent accuracy for noise-free data. Fleet & Jepson’s algorithm is outperformed by the other

two when the image sequence becomes noisy. We also conducted a similar experiment with the

Yosemite fly-by sequence. Unfortunately, Fleet & Jepson’s algorithm does not generate high
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enough density data when the sequence becomes noisy. However, we can once again confirm the

linear error with respect to noise for Lucas & Kanade’s and our algorithm (Fig 16).

+ :Our algorithm

0 : Lucas andKanade

0 5 10

Gaussian Noise Level

Fig 16. Noisy Yosemite fly-by

Robustness to noise is a very crucial quality for a good optical flow algorithm. We hope this

experiment prompts more research in this area. Our algorithm achieved robustness by integrating

spatio-temporal smoothing in the 3-D Hermite polynomial differentiation filter theory.

7. Real Images Demonstration

Current optical flow algorithms often have difficulty with real image sequences. Our algorithm

performs best on the Yosemite and Moon landing sequences because these sequences model real

3-D motion and are complicated enough to reveal the virtues of our algorithm. We therefore ex-

pect it to perform well on real images. Here we demonstrate our algorithm with two real image se-

quences, HMMWV and NASA. The HMMWV sequence was taken in an outdoor environment

with a camera mounted on a forward moving HMMWV (High Mobility Multipurpose Wheeled

Vehicle). It was later stabilized to eliminate unsteady motion. The NASA sequence is an indoor

diverging scene obtained from Barron [4] . The flow outputs for our algorithm as well as Lucas &

Kanade’s and Fleet & Jepson’s are displayed in Fig 17 and Fig 18. For our algorithm, the output

has undergone thresholding based on two confidence measures,
|
l/r| and .

Noise Sensitivity
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In the HMMWV sequence ,
visual inspection shows that Lucas & Kanade’s flow output (Fig

17.3) is very noisy because of random velocity change in a small neighborhood. Fleet & Jepson’s

flow output (Fig 17.4) shows no indication of the flow field divergence. It is probable that the par-

ticular implementations (provided by Barron) of these two algorithms are not tuned to the rela-

tively large flow existing in this sequence. Our algorithm, on the other hand, produces coherently

diverging flow field (Fig 17.2) except in the area of the sky.

Fig 17.1 HMMWV sequence

J \ t ^ I \ \ Vi

/// I vvvvv •. ss
// /// l\\\\ SS

/ / / / ‘ 1

/ Mi \ \
/ / • \

Fig 17.2 Our algorithm’s flow field (64% density)

Fig 1 7.3 Lucas & Kanade’s flow field (48%) Fig 17.4 Fleet & Jepson’s flow field (34%)

* G = 0.8 is used for both algorithms because only 10 image frames are available. The filter size of our

algorithm is 21x21x7.
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In the NASA sequence , both our flow (Fig 18.2) and Reet & Jepson’s flow outputs (Fig 18.4) are

very good, while Lucas & Kanade’s algorithm produces a noisy flow field (Fig 18.3). Note that

our output density is twice that of Reet & Jepson’s but it achieves approximately the same accura-

cy visually. If Fleet & Jepson were to generate the same density, it might not look as accurate.

Fig 18.1 NASA sequence Fig 18.2 Our algorithm’s flow field (75% density)

Fig 18.3 Lucas & Kanade’s flow field (48% density) Fig 18.4 Fleet & Jepson’s flow field (37% density)

* (7 = 2.0 is used for both algorithms. The filter size of our algorithm is 21x21x7.
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Finally we apply the NASA flow field outputs from these three algorithms to an obstacle detection

algorithm developed by Young, et al.[45] [46] [47] . This algorithm discriminates between obsta-

cle and non-obstacle regions in the image using only the perpendicular component of flow to arbi-

trarily chosen image lines. In the following figures, a protrusion or a depression represents an

obstacle detected by the algorithm.

For the first set of data, we select the horizontal lines from 220 to 260 (Fig 19.2). Over these lines.

Line 45

Line 90

Fig 19.1 NASA image lines 45 to 90

Line 220

Line 260

Fig 19.2 NASA image lines 220 to 260

there is a vertical long metal plate with a hole in the left end of the image strip. We should expect

two depressions at the locations of the plate. The detection results from all lines are averaged and

then displayed in Fig 20. In Fig 20.1, Lucas & Kanade’s flow does not detect the metal plate

laage position x leaps position x Irage position x
Rou.l:20 to Roe_L260 RCU.L220 to Roy.L2SD Rc«.L22n to Rca_L260

Fig 20.1 Lucas & Kanade’s results Fig 20.2 Fleet & Jepson’s results Fig 20.3 Our algorithm’s results

clearly; in Fig 20.2, Fleet & Jepson’s flow detects the metal plate but its shape is hardly recogniz-

able; in Fig 20.3, our algorithm not only detects the plate but also shows its shape as should be ex-

pected.
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For the second set of data, we select horizontal lines 45 to 90 (Fig 19.1). Over these lines, there is

a pole on each end of the image strip and a coke can at the center. In Fig 21.1, Lucas & Kanade’s

0.3 n.3 0.3

C'evlstlon Deviation Deviation

pol® coke can pole

^ A

-0.3 -0.3 -0.3

16.0; 293.0 16.0 283.0 0.0 2S3.0

la^ge position x Iraaga position x leage position x

Rcu.LPS to Rou..t90 Rok_14S to Rot_L90 R0J_L4S to Rok.LSO

Fig 21 .1 Lucas & Kanade’s results Fig 21 .2 Fleet & Jepson’s results Fig 21 .3 Our algorithm’s results

flow does not make out meaningful objects. In Fig 21.2, Fleet & Jepson’s flow barely detects the

coke can and the right pole, and does not detect the left pole. In Fig 21.3, our flow clearly detects

all three objects. Note that for this particular image strip we used dense (100%) flow for our algo-

rithm.

8. Conclusion

Motion estimation is difficult and ill-posed. The past two decades of research have led to spatio-

temporal filtering techniques to overcome sensor noise, brightness change over time, and quanti-

zation error. The aperture problem is mitigated by increased filter support or other global tech-

niques, while other approaches attempt to use an affine motion model to pursue better accuracy in

the optical flow. We have learned from these results and have developed an integrated approach

that combines a general motion model and 3-D Hermite polynomial differentiation filters. The

general model for arbitrary 3-D motion is useful for all motion algorithms, but better numerical

techniques are required to make good use of the model. We have found that Hermite polynomial

theory provides necessary advantages for this purpose. It possesses many elegant properties,

including orthogonality, extensibility, Gaussian smoothing, etc. Contrary to general belief, the

41



behaviors of these high order differentiation filters are quite insensitive to noise. This observation

is supported by the good results in our noise sensitivity analysis. Simplicity adds yet another

dimension to the strength of this algorithm, making real-time implementation feasible. Although

we are focusing on presenting accurate optical flow results, our algorithm also computes all the

motion parameters, including 3-D translation and rotation, along with the flow. These motion

parameters can be directly utilized for other motion applications, for example, computing time-to-

contact with y, or performing derotation (stabilization) with p (16). These applications, however,

are limited by inherent ambiguities due to image noisefl] ,[44] ; on the other hand, a scheme of

integrating or propagating motion information globally is restricted by occlusion and motion

boundary effects. Our future studies will investigate this problem; hopefully, the results can be

integrated into the current work. In summary, this work has generalized and unified several previ-

ous successful theoretical approaches and has resulted in a versatile and flexible algorithm.
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Appendix. A

We prove Theorem 1 as follows:
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Proof: The first equality comes from the orthogonality of { (jc) } . We now prove the second

equality, which claims that the scalar product of a function and the ^h Hermite polynomial is equal

to the scalar product of the Mi derivative of the function and 1

.

{I, Hi) = J
G{x)I(x)H^{x)dx

—oo

oo

= ^G(x)I(x)(-\)i^G-Hx)'^^^^dx

~~oo

= (-\)>^
\
I (x)'^!^^^dx

—oo

= t dI{x)d’^-'^G(x) dx

,^, d'‘-^G(x)

dx^~ ^

dx

Appendix. B

Let and b, defined in (34), contain no noise and let the noise be modelled as in (40). Then

-1
E = As + b = 0 and 5 = -{A^A ) A^b.

n ^ n n' n (44)

Let the new optical flow be s and the new residual be E , and assume that N « A^ and Ab « b ele-

mentwise. Then

S = -[ (A„ + Ar)^(A^ + A0]-’ (A„ + A0^(fc + Afc) ,and

[ (A„ + AO ^ (A„ + AO ]
-' = (AJA„ [/ + (AJA„) (AJiV + Af^A„) ] )

->

= [/- (AjA„)-> (AlN + NTa^)] (AJAJ-I

(45)

, SO (46)
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- (AX)-'^>+ {AIN + NTA^) (AX)-UJfc+ {AlA^^Alb- (AlA^)-^Aj;Ab

Using (44), this can be simplified as follows:

5-5 - and (AJAJ-1AJA^5-(AX)-1AJAZ7.

For the residual, substituting s into (40), and using (44), we have

iA+N)s-A„ (AjAJ -^AlNs-A„ (AjAJ -'AjAi + b + Ab
^ n ^ n ^ n n n ^ n n' n

(/-A„(AjAJ-iAj) {Ns + ^b) as in (42).

To understand E better, we analyze the matrix /- A^ (A^A^) “^Aj, denoted by T.

It is easy to verify that the only nontrivial eigenvalues of matrix T is/are 1, which means that it

maps any vector (A^5 + AZ?) to only the directions specified by the eigenvectors corresponding to

the nontrivial eigenvalues.
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