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ABSTRACT

We describe work aimed at improving procedures for the estimation of non-tomadic

extreme wind speeds, regardless of their direction, in regions not subjected to hurricanes. Using

the Generalized Pareto Distribution (GPD) approach and the Conditional Mean Exceedance

(CME) estimation method, we analyze 115 17-year to 52-year sets of largest annual speeds and

sets drawn from 48 15-year to 26-year records of maximum daily wind speeds. Based on this

analysis we attempt an assessment of the widely held belief that the Gumbel distribution with

site-dependent location and scale parameters is a universal model of extreme wind speeds. Some
of our results suggest that the reverse Weibull distribution is a more appropriate model. This

would result in more reasonable estimates of wind-induced failure probabilities and wind load

factors than the corresponding estimates based on the Gumbel distribution. However, our

assessment is so far only tentative owing to uncertainties inherent in our results. Future work

based on lower thresholds (larger data samples) and alternative estimation methods is planned.
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1. INTRODUCTION

Until recently methods for the estimation of extreme wind speeds were based solely on

classical extreme value theory (Gumbel, 1958). Although such methods can be used to obtain

credible estimates of wind speeds with relatively short mean return periods (50 years, say),

questions remain as to their capability to estimate distribution tails reliably.

In the last two decades a novel theory known as the "peaks over threshold" approach was

developed that offers the potential for more realistic estimates of the tails. This would allow the

estimation by statistical methods of wind load factors, which have to date been specified in

building standards on the basis of engineering guesses passed from one generation of standards

to the next. This paper is part of a long-term project aimed at improving estimates of wind speed

distribution tails and wind load factors. The "peaks over threshold" approach rests on the

application of the Generalized Pareto Distribution (GPD) to the excess of the extreme variates

over a fixed threshold. For terminology and notations, see Gross et al. (1994).

Unlike classical methods, the "peaks over threshold" approach is applicable to the

analysis of the set consisting of all data exceeding a sufficiently high threshold. In addition, it

is applicable to data taken from sets of epochal extremes (i.e., maxima over samples of fixed

size, such as largest annual wind speeds). According to classical theory, in the asymptotic limit

a set of epochal extremes must fit the tail of one of the three extreme value distributions. The

epochal extremes that exceed a sufficiently high threshold must therefore fit the GPD with c > 0,

c-^0, or c < 0.

We review briefly in Section 2 the expression for the GPD, the GPD-based estimator

used in this work, and the estimation within the framework of the "peaks over threshold"

approach of variates with specified mean return periods. In Section 3 we analyze 115 sets of

observed largest annual wind speeds taken from 17- to 52-year records. Section 4 is devoted to

analyses of sets taken from 48 15- to 26-year records of largest daily speeds. Section 5 presents

our conclusions and outlines future work.

2. GENERALIZED PARETO DISTRIBUTION, AND DESCRIPTION OF ESTIMATORS

We review here the expression for the Generalized Pareto Distribution and the

Conditional Mean Exceedance (CME) method for estimating distribution parameters.

Generalized Pareto Distribution (GPD)

The expression for the GPD is

G(y) = Prob[Y < y] = l-{[l4-(cy/a)]-*'‘=} a>0, (l+(cy/a))>0 (1)

Equation 1 can be used to represent the conditional cumulative distribution of the excess

Y=V-u of the variate V over the threshold u, given V>u for u sufficiently large; c and a are

distribution parameters. The cases c>0, c=0 and c<0 correspond, respectively, to Frechet,

Gumbel, and reverse Weibull (right tail-limited) domains of attraction. For c=0 the expression

between braces is understood in a limiting sense as the exponential exp(-y/a) (Castillo, 1988, p.

215). For c<0 the shape parameter of the corresponding distribution is 7 =-l/c (Smith, 1989).
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Cumulative Mean Exceedance (CM£) Method

The CME is the expectation of the amount by which a value exceeds a threshold u,

conditional on that threshold being attained. If the exceedance data are fitted by the GPD model

and c< 1, u>0, and a+uc>0, then the CME vs. u plot should follow a line with intercept a/(l-

c) and slope c/(l-c) (Davison et al., 1990). The linearity of the plot is an indicator of the

appropriateness of the GPD model. Estimates of c and a can be obtained from the slope and

intercept of a straight line fit to the CME vs. u plot.

Estimation of variates with specified mean return periods

The mean return period R, in years, of a given wind speed is defined as the inverse of

the probability that that wind speed will be exceeded in any one year. In this section we give

expressions that allow the estimation from the GPD of the value of the variate corresponding to

probability 1 - 1/(XR), where X is the mean crossing rate of the threshold u per year (i.e., the

average number of data points above the threshold u per year), and R is the mean recurrence

interval in years. We have

Prob(Y < yO = 1 - 1/(XR) (2)

1 - [1 + cyR/a]
’'' = 1 - 1/(XR) (3)

y* = -a[l - (XR)']/c (4)

Vr = yR + U (5)

where Vr is the R-year wind speed (e.g., V5o=50-year speed) and u is the threshold used to

estimate c and a. For epochal sets consisting of the largest annual wind speeds, X= 1. Note that,

given u, X, c, R and Vr, Eqs. 4 and 5 yield the parameter a inherent in the estimation of Vr.

3. ANALYSIS OF LARGEST ANNUAL WIND SPEEDS

Table Al given in Appendix A shows estimated values of the tail length parameter, c.

The estimates were obtained by applying the CME method to data samples taken from 1 15 N-

year records of observed largest annual wind speeds adjusted to a 10 m elevation above ground

(17<N<52). Stations where strong winds are predominantly due to hurricanes were not

included in Table Al. All wind speeds are given by the Weather Service in terms of fastest

miles. For this report, wind speeds have been converted to SI units (1 mph =0.44704 m/s). In

order to include only the strongest winds in each set ~ the winds most likely to approach the

asymptotic condition inherent in the GPD approach — we used the CME estimator based for each

record on a relatively high threshold. We chose this threshold to be equal to the record’s median

wind speed, V^. All the CME-based results of Table Al are based on this threshold. In our

calculations for observed data a wind speed, V, was defined as exceeding the threshold if

V > Vjoedt lhat is, the actual threshold is actually smaller (by an infinitesimal amount) than the

nominal threshold.
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For the threshold V^, the sample average number of exceedances was E(ncJ=21, and

E(V^=50, SD(Vn^=6.5 (E and SD denote sample mean and standard deviation). The mean

and standard deviation of the estimated values of c listed in Table A1 are:

E(c)=-0.26, SD(c)=0.38.

We denote by and the speed preceding and the speed following V^,
respectively, in the set of ordered speeds of which is the median. Using a threshold

E(ncJ=24 and a threshold V^+, E(ncJ = 17, results not listed in Table A1 yielded

E(c)=-0.24, SD(c)=0.34

E(c)=-0.27, SD(c)=0.48,

respectively. For lower thresholds E(c) was found to increase.

The following results were obtained from Monte Carlo simulations. For 500 25-year

samples with mean exceedance rate X=1 and c estimated by the CME method,

E(c)=-0.09, SD(c)=0.27 (population with Gumbel distribution)

E(c)=-0.33, SD(c)=0.24 (population with reverse WeibuU distr., 7=-l/c= 1/0.275).

A comparison between the results based on the observed data on the one hand and on the

simulated data on the other would suggest that a reverse Weibull distribution with shape

parameter 7*5 (c=-0.2) is a more appropriate model than the Gumbel distribution. (The

Gumbel distribution can be interpreted as the limit of a family of three-parameter extreme value

distributions as the shape parameter approaches infinity — see proof in Simiu et al., 1986)

Let us now hypothesize, nevertheless, that the Gumbel distribution is an appropriate

universal model of extreme wind speeds, that is, that for every station the true tail length

parameter is c=0. The results of the Monte Carlo simulations just shown indicate a bias of about

-0.1 in the estimation of c, so let us allow for a bias as large as -0.1 in estimating c. Using a

binomial distribution model (with mean n/2=57.5 and standard deviation (n)*%=5.36), one

would expect that about half of the 115 estimated values of c would be below -0.1. Actually,

77 estimated values (significantly more than half) are below -0.1; this number is almost four

standard deviations higher than the mean, and would lead to a rejection of the hypothesis that

the Gumbel distribution is a universal model for the extreme speeds. However, this tentative

conclusion may not be warranted. Indeed, each station may have a different true c, and the

sample sizes for the various stations differ. Instead of the average E(c) for the observed data,

it would therefore be appropriate to consider a weighted average of c, where each weight is

equal to the inverse of the variance of the estimate of c. Standard deviations of these estimates

are listed in Table Al and were obtained by the expression

[2(n-i)]*^[E(n-i)(yi-intercept -Xj • (slope))^]^^

SD(c) =
(6)

(n-3)^'2(H-slope)2 • {[E(n-i)][i:(n-i)Xi2]-[2:(n-i)xj2}i/2

where n is the number of data in the set, x^ are the speeds (i=l,2,..,n-l), and are CME values

(see Appendix B). The weighted mean of the c estimates, based on these standard deviations,

is close to -0.1, and its standard deviation is about 0;32. Note that the simplifying assumption

implicit in Eq. 6 that the errors in the estimation of yj for various i’s are independent is not

correct, and the standard deviations of the c estimates are actually larger than those given by Eq.

6 by factors that pilot Monte Carlo simulations suggested can be as high as two or even more.

We conclude that owing to the small sample sizes we used, we do not get a sufficiently good

estimate of the weighted average of c, and the inference made earlier on the basis of the

binomial distribution cannot be relied upon with confidence.
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A comparison between the tabulated values of CME-based estimated V^’s and values of

the maximum speeds on record, shows that the performance of the CME estimator of

is very good. We note, however, that a worse set of estimates was obtained, where the CME
method was applied to data samples in which identical speeds were made distinct by addition of

multiples of 0.001. Though the estimates of c were not much affected by this change, this

sensitivity of the CME method appears to cast some shadow upon its dependability.

The CME estimates of Viooooo appear to be worse than those of VnI in some cases they

differ minimally from the estimates of V^; in others they can be ridiculously large. We also

show in Table A1 wind speed estimates based on the Gumbel model. These were obtained by

the probability plot correlation coefficient method (PPCC). It is seen that estimates of based

on ^e Gumbel model are comparable to those based on the CME method.

Table A1 also lists CME-based estimated speeds with mean return period 100000 years,

Vjooooo* where the parameter a is based on the CME-based estimated value of V^, as indicated

in the remark following Eqs. 4 and 5, and on a specified c=-0.2.

Load Factors

Let Ru denote the mean return period of the ultimate load. If the wind load predominates

(i.e., no load combination need be considered), the wind load factor is

0 = (yjy50? (7)

Table A1 lists estimated values of <f) based on Eq. 7, where V50 was based on the CME estimates

of Vn, and Vr^, corresponding to asymptotically large R^, was based on a parameter a estimated

from Wff by using Eqs. 4 and 5, and the specified parameter c=-0.2 Depending upon the site,

the estimates of 0 vary between 1.24 and 1.68. Their average is <^= 1.42, as compared to 0= 1.3

specified in the ASCE Standard 7-93 and earlier versions thereof.

Structural Reliability Implications

Consider, for example, the Fresno, CA data set. Under the assumption that the Gumbel

distribution best fits the extremes, for Ru=ltf years, Itf and 10^ years, the estimated wind

speeds are 26, 34 and 38 m/s (59, 77 and 86 mph), respectively (Simiu et al., 1979). Under the

assumption that the reverse Weibull with 7=-l/c= 1/0.20 holds, they are 24, 26 and 27 m/s (54,

59, and 60 mph), respectively. It is seen that the tail is considerably shorter for the reverse

Weibull than for the Gumbel.

Failure probabilities for wind-sensitive structures designed in accordance with U.S.

building code requirements (or safety indices reflecting those probabilities) have been estimated

on the basis of the Gumbel model. Ellingwood et al. (1980) found such estimates to be

substantially higher than for other types of structures. Experience shows that the number of

structural failures caused by non-tomadic and non-hurricane winds is vastly smaller than those

estimates would indicate. One possible flaw of those probability estimates is in our opinion the

fact that they are based on the Gumbel distribution which, as suggested by our results,

overestimates extreme winds corresponding to long mean return periods.

The result that the upper tail of the extreme wind speed distribution is finite would

invalidate the notion that probabilities of failure of a structure subjected only to wind loading,

conditional on the structural strength being sufficiently large, are always larger than zero: if the
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structural strength corresponded to a wind speed larger than the length of the fmite distribution

tail, then the conditional failure probability would be zero.

4. ANALYSES OF DATA BASED ON SETS OF LARGEST DAILY WIND SPEEDS

In this section we first analyze data sets that reflect not only extreme winds occurring at

various sites, but also ordinary winds. The analyses are intended to verify whether such sets can

provide information on the parent population of the extremes. Next, we use a GPD-based

approach to analyze sets of data that exceed relatively high thresholds.

Data Selection

From sets of largest daily wind speeds we obtained data samples that: (1) are relatively

large so that sampling errors are acceptably small, and (2) have reduced mutual dependence

among the data. The procedure for obtaining the data is as follows: Partition the set of daily

maxima into small periods of size equal to or larger than the duration of typical storms in days.

(A reasonable choice of the length of the period is eight days, but we also use sets based on

four-day periods, and compare results of analyses based on the two choices.) Pick the largest

value in each period. If the maxima of two adjacent periods are less than half a period apart,

replace the smaller of the two maxima by the next smaller value in the respective period which

is at least half a period apart from the larger maximum. A data set is thus obtained in which

adjacent data are one period apart on the average and never less than half a period apart. We
show below the daily maxima at Boise, Idaho in the first six eight-day periods of the year 1965.

The periods are separated by vertical bars. The data selected by the procedure just described are

in bold type. In the sixth period we underlined the period maximum (26), discarded and replaced

by the next largest value (18) because of the proximity to the larger maximum (31) of the

adjacent period.

23,32,35,20,26,24,24,14
|

15,12,12, 7,15,12,29,10
|

13,16, 5,11, 5,12,12, 7
I

6, 6, 9, 9,11,12,25,26
|

7,10,15,20,20,17,24,31
|
26,9,16,14,18,16,14,12|

Our investigation attempts to ascertain whether sets of data selected by this procedure from a

set of daily maxima could possibly constitute samples from the parent populations of the

extremes. Even though small correlations among data might subsist, we refer to a set obtained

by the selection procedure just described as an uncorrelated data set based on eight-day (four-

day) intervals or, for short, an eight-day (four-day) interval set.

Analysis of Uncorrelated Data Sets

We considered 48 uncorrelated data sets based on eight-day intervals, with length N
ranging from 15 to 26 years. First we analyzed separately the sets of spring, summer, fall and

winter data (seasonal data analyses). Next, we andyzed the data sets unsegregated by seasons.

In both cases we estimated the best-fitting distributions (i.e.
,
distributions with the largest PPCC)

from among a set of seven distributions or families of distributions (normal, double exponential,

lognormal, Gumbel, Frechet, Weibull, and reverse Weibull).
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Seasonal data sets

Our goal in performing the seasonal analyses was to attempt to fit to the spring, summer,

fall and winter data, respectively, cumulative distributions Psp(v), P^Cv), Pf{v) and Pw(v). Given

these distributions, the distribution for all the uncorrelated data is

P(v) = P^(v)P3
(v)P^v)P,,(v). (8)

We analyzed, for each season, 48 sets based on eight-day intervals. According to our results,

for the spring, fall and winter records the best fitting distribution was predominantly reverse

Weibull with shape 4<7<30. However, 29 summer records were better fitted by Gumbel

distributions than by the reverse Weibull; the reverse Weibull (for the stations where it fitted the

data better than the Gumbel distribution), and the Gumbel distribution (for the other stations),

yielded estimated speeds with mean return period N years, that in most cases underpredicted

the maximum speed recorded during N years, n. For summer records underpredictions were

15 percent or more for 16 sets, and 8 to 15 percent for 9 sets; there were only two

overpredictions, both less than 8 percent. For spring records there were 12 underpredictions by

8 to 18 percent, and only three overpredictions, all less than 5 percent; comparable results were

obtained for fall and winter. The results did not depend significantly on whether eight-day

interval sets or four-day interval sets were used. From these and additional analyses we
concluded that: (1) inferences from seasonal data sets (obtained as was described earlier from

samples of largest daily data) do not provide a dependable basis for estimating extremes, but are

likely to underestimate the extreme speeds. In other words, those sets are not drawn from

populations underlying the extreme winds, but from mixed populations; (2) a similar conclusion

applies to the sets consisting of all largest daily data for each season; (3) for these reasons the

approach embodied in Eq. 8 appears to be inapplicable if all the data of the 8-day interval sets

are considered.

Some researchers have indicated that the Weibull (as opposed to reverse Weibull)

distribution best fits the sets of largest daily data. However, our analysis showed that the

Weibull distribution fitted the seasonal data best only for less than ten percent of the sets.

Data sets unsegregated by seasons

The analysis of 48 sets based on eight-day intervals showed that the reverse Weibull (with

4 < 7< 22) was the best fitting distribution for 27 sets, and fitted the data better than the Gumbel

distribution for 41 sets. For 25 sets out of these 41 sets, including 12 sets for which it was

optimal, the reverse Weibull underpredicted by 8 to 25 percent. For the 48 sets there were

only 4 overpredictions, all smaller than 5 percent. In addition, the availability of largest annual

data for periods Nj ranging from 30 to 49 years allowed us to check the predictive capability

of models inferred from sets based on eight-day intervals by comparing the estimated speed with

mean return period Nj, Vnj, to the maximum speed recorded during an N,-year period, V^ n,,

where 30<Ni <49. The underpredictions of the Nj-year speeds were more frequent and drastic

than those of the N-year speeds. We concluded that estimated distributions of data sets

unsegregated by seasons are too affected by the bulk of the non-extreme data to yield satisfactory

estimates of extremes. Each of our conclusions for data segregated by seasons were found to be

valid for data unsegregated by seasons as well.
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Numerical Experiments

The analyses reported in the preceding paragraph showed that even where other

distributions best fitted the data, the reverse Weibull was in most cases very close to being the

best fitting distribution, i.e., its PPCC differed only in the fourth or even fifth significant figure

from the PPCC of the best fitting distribution. We therefore reanalyzed the data based on eight-

day intervals by assuming that the populations for all stations have a single reverse Weibull

distribution with site-dependent location and scale parameters. This was done by calculating, for

each station, the PPCC’s based on the assumption that the shape parameter 7 is 1,2, 3,...50. For

samples of data based on eight-day intervals and unsegregated by seasons the mean value of the

PPCC’s, taken over all the stations, was largest for 7= 11
,
and the median PPCC was largest

for 7= 13. This is an indication that a reverse Weibull population with 7= 12 would explain the

results of the analyses. To see whether this is in fact the case, 48 samples of 730 data points

each (corresponding to an 18-year record length based on 8-day intervals) were generated from

reverse Weibull populations with (1) 7= 8
, (2) 7= 12

,
and (3) 7= 16 . The number of simulated

sets for which the best fitting reverse Weibull distribution had shape parameters with 7 <12,
13

<

7 <20, and 7 >21 are shown in Table 1. Also shown in Table 1 are the numbers of

observed sets (average sample size 18 years) with 7 <12, 13

<

7 <20, and 7 >21. The results

of Table 1 suggest that a reverse Weibull distribution with 7 * 12 is an appropriate model for

the population of extreme winds representing data based on 8-day intervals unsegregated by

seasons, except for the larger number of samples with 7 >21 among the observed samples than

among the simulated samples. We interpret this larger number as reflecting the relatively

frequent presence of outliers among the observed samples. In our opinion this interpretation

reinforces the point made earlier that, because wind speed populations which include ordinary

speeds in addition to extremes are mixed, samples taken from such populations are not a sound

basis for inferences on extremes. It is therefore necessary to "let the tails speak for themselves.

"

This is done by applying to the data the GPD-based "peaks over threshold" approach.

Table 1. Numbers of Sets Best Fitted by Distributions with Various Values of 7

7<12 13<7<20 7>21

Simulated sets, 7= 8 48 0 0

Simulated sets, 7=12 27 17 4

Simulated sets, 7=16 8 24 16

Observed sets 26 12 10

"Peaks over Threshold" Analyses

In carrying out "peaks over threshold" analyses it is tempting to use a relatively low

threshold in order to increase the number of data and thus reduce sampling errors. However,

this introduces in the samples data that are not representative of the extremes and tend to bias

the results. So that this does not happen the threshold being selected should be as high as

possible, without reducing the size of the sample being analyzed to the point where the sampling

errors become too large.
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We selected the largest possible threshold subject to the restriction that the resulting

sample size of the exceedances not be smaller than 15. Based on this selection, the average

number of exceedances for our 48 sets based on 8-day intervals was E(neJ = 16, and the average

threshold was E(Vt)=45, that is, less than the average median, E(M)=50, for the largest yearly

speed samples analyzed in Section 3. For these thresholds we obtained E(6)=-0.22 and

SD(c) =0.44. The results were virtually the same for the 48 sets based on 4-day intervals. These

results would appear to lend support to the tentative conclusion of Section 3 that the extreme

winds are described by a reverse Weibull distribution with shape parameter 7«5, or perhaps

somewhat larger, rather than by a Gumbel distribution. However, the weighted mean of the

estimated c’s, obtained as was shown for the results of Table Al, was close to zero. In addition,

there were about as many estimated c’s larger than -0.1 as there were smaller than -0.1. These

results would suggest that the Gumbel distribution is appropriate. However, given the very wide

confidence bands for our results, we conclude that no statement on whether the Gumbel or the

reverse Weibull distribution is more appropriate can be made on the basis of this analysis.

In principle, the approach inherent in Eq. 8 may be based on "peaks over threshold"

analyses. However, given that the records at our disposal are relatively short and the number

of data exceeding a sufficiently high threshold for each of the seasons was judged to be too

small, no attempt to perform "peaks over threshold" seasonal analyses was made in this work.

5. CONCLUSIONS

It is currently assumed in engineering loading models that non-hurricane and non-tomadic

extreme wind speeds, regardless of their direction, are described by the Gumbel distribution

(which corresponds to a shape parameter 7 =-l/c approaching infinity). The Gumbel distribution

has infinite upper tail. The objective of this paper was to gain insights into the question of

whether extreme wind speeds can be described by an extreme value distribution with limited

upper tail, that is, by the reverse Weibull distribution.

We used in our analyses observed data, consisting of (a) sets of largest annual wind

speeds, and (b) sets of largest daily wind speeds from which we extracted subsets suitable for

extreme value analysis; and simulated data. Our results appear to suggest that extreme winds are

better described by the reverse Weibull distribution than by the Gumbel distribution. However,

given the small sample sizes used in our analyses, the superiority of one of the distributions over

the other cannot be affirmed with confidence.

The tentative assumption that the extreme wind distributions are reverse Weibull, with

shape parameter 7*5 (GPD tail length parameter c=-0.2) and site-dependent location and scale

parameters, yields wind load factors with an average value 0«1.4. This assumption, if

confirmed, would invalidate earlier approaches to the estimation of the reliability of wind-

sensitive structures, which depend on an infinite-tailed model of extreme wind speeds and

therefore yield unrealistically high failure probabilities.

The "peaks over threshold" analyses were based in this paper on the Cumulative Mean
Exceedance (CME) approach, which appears to be extremely sensitive to whether identical

values of the variate in a set are left identical or modified by the addition to each of a different

number much smaller than unity. Future work aimed at verifying the tentative conclusions of

this paper will therefore include analyses based on different estimation procedures, including the

de Haan procedure (Dekkers et al., 1989). In addition, we plan to perform analyses based on

larger data sets, and more elaborate Monte Carlo simulations, in which the sets of samples
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generated by simulation will have the same sizes as the observed data sets being analyzed, rather

than having a constant size. Finally, investigations are envisaged into the possibility that the

shape parameter of the extreme wind speed distributions is site-dependent. This would be a

departure from current practice, in which it is assumed that extreme winds are described by an

extreme value distribution with universal shape parameter (that is, by the Gumbel distribution,

which corresponds to a GPD tail length parameter c»0), and site-dependent location and scale

parameters.
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APPENDIX A

Table Al. Results of Analyses of Sets of Largest Annual Data

I I
V50

I
V:

Station

(1)

N V_
(2) (3) (4) (5)

e

(6)

SD(e) Gum.CME CME

(7) (8) (9) (10)

CME Gum.

(11) (12)

c=-.20

(13)

4

(14)

1. BIRMINGHAM, AL 34 62 44 22 -0.495 0.084 64 62 65 69 104 81 1.47

2. MONTGOMERY, AL 34 77 45 17 0.442 0.022 66 65 72 1071 117 95 1.56

3. TUCSON, AZ 39 78 50 21 0.187 0.086 76 71 79 273 121 103 1.54

4. YUMA, AZ 39 65 46 20 -0.701 0.056 65 66 66 68 116 83 1.44

5. FORT SMITH, AR 31 64 45 17 -0.798 0.158 63 64 64 65 113 80 1.43

6. LITTLE ROCK, AR 39 72 44 21 -0.395 0.070 72 71 73 83 136 97 1.59

7. FRESNO, CA 37 47 34 21 -0.204 0.036 47 46 48 59 77 59 1.42

8. RED BLUFF, CA 42 67 49 25 -0.751 0.115 67 69 67 68 114 81 1.38

9. SACRAMENTO, CA 39 63 43 20 -0.668 0.106 62 64 62 65 114 78 1.45

10. SAN DIEGO, CA 48 61 35 27 0.384 0.022 56 50 57 584 85 75 1.57

11. DENVER, CO 33 61 48 17 -0.265 0.112 60 61 61 69 93 72 1.30

12. GRAND JUNCTION, CO 33 70 52 17 0.104 0.065 67 66 70 146 103 86 1.37

13. PUEBLO, CO 43 79 61 25 -0.477 0.060 80 81 80 85 126 95 1.34

14. HARTFORD, CT 44 67 43 28 -0.238 0.028 67 64 68 84 109 87 1.54

15. WASHINGTON, DC 39 66 47 24 -0.325 0.055 67 65 68 77 106 84 1.44

16. ATLANTA, GA 42 76 46 22 -0.034 0.030 74 72 76 134 131 101 1.59

17. MACON, GA 33 64 45 17 -0.271 0.073 64 65 66 79 118 84 1.46

18. BOISE, ID 48 62 47 24 -0.099 0.068 62 61 62 84 92 75 1.35

19. POCATELLO, ID 48 72 53 25 0.019 0.157 75 71 75 132 113 94 1.43

20. CHICAGO MIDWAY, IL 37 63 46 22 -0.128 0.028 63 61 64 86 97 79 1.41

21. MOLINE, IL 44 72 52 25 -0.665 0.082 72 75 73 75 124 90 1.41

22. PEORIA, IL 42 72 50 22 -0.302 0.075 70 72 71 82 122 89 1.43

23. SPRINGFIELD, IL 32 71 54 16 -0.199 0.118 68 69 69 83 110 83 1.32

24. EVANSVILLE, IN 44 61 47 23 -0.130 0.106 63 63 63 82 103 77 1.36

25. FORT WAYNE, IN 46 69 52 23 -0.163 0.063 69 70 70 88 no 85 1.37

26. INDIANAPOLIS, IN 36 93 53 18 0.023 0.064 81 81 85 171 151 113 1.56

27. BURLINGTON, lA 23 72 55 13 -1.751 0.515 69 76 69 69 140 80 1.28

28. DES MOINES, lA 37 80 56 19 0.042 0.034 79 77 81 155 133 102 1.45

29. SIOUX CITY, lA 46 88 57 24 0.063 0.065 85 80 85 180 132 no 1.49

30. CONCORDIA, KS 20 74 56 11 -0.933 0.188 73 76 74 75 145 89 1.35

31. DODGE CITY, KS 41 72 59 22 -0.709 0.048 72 75 72 73 114 83 1.25

32. TOPEKA, KS 34 79 54 17 -0.180 0.160 71 74 73 91 128 90 1.38

33. WICHITA, KS 41 89 57 22 0.218 0.056 83 80 86 325 134 no 1.49

34. LOUISVILLE, KY 39 66 49 21 -0.085 0.055 63 65 64 87 107 77 1.34

35. PORTLAND, ME 45 73 46 23 -0.283 0.088 73 70 73 90 122 97 1.55

36. BALTIMORE, MD 39 71 54 20 -0.274 0.078 70 71 71 81 116 85 1.34

37. BOSTON, MA 50 85 54 26 -0.126 0.039 84 81 84 119 139 109 1.52

38. NANTUCKET, MA 23 71 55 14 -1.402 0.217 71 73 72 72 128 85 1.33

39. DETROIT, MI 46 68 49 25 -0.207 0.091 67 68 67 81 111 82 1.38

40. GRAND RAPIDS, MI 29 67 47 15 -0.930 0.128 69 71 70 71 136 89 1.47

41. LANSING, MI 38 67 51 21 -0.646 0.063 68 69 68 71 no 83 1.36

42. SAULT STE MARIE, MI 47 67 46 24 -0.351 0.059 65 67 65 74 113 82 1.43

43. DULUTH, MN 36 70 49 19 -0.310 0.033 69 70 70 81 122 88 1.44

44. MINNEAPOLIS, MN 42 82 46 27 -0.023 0.048 79 72 81 149 127 108 1.65

45. JACKSON, MS 29 64 44 16 -0.353 0.073 64 62 66 75 109 84 1.48

46. COLUMBIA, MO 35 65 51 20 -0.103 0.075 66 66 67 89 109 81 1.35

47. KANSAS CITY, MO 51 75 49 31 -0.116 0.038 74 72 74 104 120 94 1.49

48. ST.LOUIS, MO 21 66 46 14 0.035 0.075 64 62 70 135 111 89 1.51
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Station N t SD(fi) Gum.CME CME CME Gum. c=-.20 ^

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

49 . SPRINGFIELD, MO 44 71 49 22 -0.127 0.068 68 67 69 93 111 86 1.42

50. BILLINGS, MT 49 84 58 26 -0.051 0.031 84 81 84 130 132 106 1.45

51. GREAT FALLS, MT 44 75 59 24 -0.400 0.078 74 78 74 80 125 87 1.29

52. HAVRE, MT 27 78 57 14 -0.229 0.227 77 76 80 97 135 99 1.41

53. HELENA, MT 48 71 55 25 -0.241 0.114 70 71 70 81 111 83 1.31

54. MISSOULA, MT 43 71 47 22 -0.157 0.050 71 65 72 97 105 92 1.50

55. NORTH PLATTE, NE 31 74 61 16 -0.709 0.044 74 77 75 76 123 87 1.26

56. OMAHA, NE 51 104 50 29 0.294 0.054 92 81 91 640 145 125 1.68

57. VALENTINE, NE 27 74 61 15 -0.574 0.120 74 78 76 78 130 88 1.27

58. ELY, NV 49 70 51 28 -0.191 0.023 70 68 70 87 107 86 1.39

59. LAS VEGAS, NV 20 70 55 12 -0.938 0.362 68 70 69 69 121 80 1.28

60. RENO, NV 45 77 55 24 -0.463 0.053 77 78 77 83 129 96 1.41

61. WINNEMUCCA, NV 38 63 47 21 -1.102 0.071 63 67 64 64 114 77 1.37

62. CONCORD, NH 46 68 41 23 -0.040 0.038 66 63 66 116 111 89 1.58

63. ALBUQUERQUE, NM 52 85 56 26 0.139 0.023 79 78 78 195 124 98 1.41

64. ROSWELL, NM 36 82 57 18 0.088 0.119 81 81 84 190 145 108 1.48

65. ALBANY, NY 46 68 46 29 -0.086 0.081 66 64 67 95 103 83 1.45

66. BINGHAMPTON, NY 35 65 48 18 -0.370 0.081 64 66 65 72 115 80 1.38

67. BUFFALO, NY 44 79 52 22 0.463 0.050 73 69 74 1049 109 94 1.45

68. LA GUARDIA, NY 33 73 57 17 0.314 0.032 71 71 74 344 113 89 1.33

69. ROCHESTER, NY 45 66 52 23 -0.717 0.094 66 69 66 67 106 78 1.30

70. SYRACUSE, NY 45 67 51 23 0.014 0.089 66 65 66 105 100 79 1.33

71. CHARLOTTE, NC 29 65 42 17 -0.481 0.244 65 62 67 73 112 87 1.55

72. GREENSBORO, NC 50 67 41 25 -0.089 0.073 62 62 62 94 109 81 1.51

73. BISMARCK, ND 40 69 58 20 -0.582 0.145 69 72 69 71 107 79 1.23

74. FARGO, ND 45 100 57 25 0.252 0.032 93 86 95 484 151 127 1.60

75. WILLISTON, ND 18 69 56 9 -0.469 0.127 68 68 71 75 116 84 1.31

76. CLEVELAND, OH 35 69 53 19 -0.224 0.080 68 69 69 81 111 82 1.33

77. COLUMBUS, OH 30 61 49 15 -1.236 0.106 60 64 60 60 106 70 1.26

78. DAYTON, OH 41 72 52 24 -0.170 0.072 74 72 75 97 121 94 1.45

79. TOLEDO, OH 45 82 48 24 0.207 0.050 76 72 78 308 125 103 1.57

80. OKLAHOMA CITY, OK 30 69 53 15 -0.135 0.081 67 67 69 89 105 84 1.35

81. TULSA, OK 35 68 49 18 0.019 0.107 63 65 65 106 109 79 1.35

82. PORTLAND, OR 38 88 49 19 0.268 0.077 80 75 85 503 138 116 1.64

83. HARRISBURG, PA 38 64 45 19 -0.599 0.087 63 65 64 67 114 80 1.42

84. PHILADELPHIA, PA 33 62 47 21 -0.507 0.094 63 64 64 67 105 77 1.38

85. PITTSBURGH, PA 18 60 47 11 -0.591 0.132 61 60 63 65 102 75 1.36

86. SCRANTON, PA 33 57 44 17 -0.387 0.092 56 57 57 62 89 68 1.32

87. BLOCK ISLAND, RI 31 86 60 16 -0.182 0.120 82 82 84 107 138 105 1.42

88. GREENVILLE, SC 43 72 46 22 -0.483 0.069 69 75 70 76 143 90 1.50

89. HURON, SD 49 79 59 26 -0.447 0.059 80 82 80 86 132 98 1.38

90. RAPID CITY, SD 43 70 62 22 -0.341 0.096 71 73 72 76 102 80 1.18

91. CHATTANOOGA, TN 35 76 46 18 -0.336 0.066 76 73 78 93 141 105 1.61

92. KNOXVILLE, TN 33 66 50 18 0.007 0.042 66 65 68 111 109 83 1.38

93. MEMPHIS, TN 21 61 45 11 -0.370 0.369 57 58 59 65 103 71 1.34

94. NASHVILLE, TN 34 70 45 17 -0.178 0.092 67 66 70 94 119 91 1.53

95. ABILENE, TX 36 100 54 19 0.550 0.047 79 78 85 2491 141 111 1.54

96. AMARILLO, TX 34 81 62 17 0.201 0.082 77 78 79 214 124 95 1.32

97. AUSTIN, TX 37 58 45 19 -0.189 0.057 57 58 58 69 91 68 1.31

98. DALLAS, TX 32 67 48 17 -0.233 0.043 65 64 67 81 107 83 1.41

99. EL PASO, TX 32 67 55 17 -0.187 0.103 68 67 69 82 99 81 1.28
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Station N V n^ t SD(£) Gum.CME CME CME Gum. c=-.20 ^

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

100. SAN ANTONIO, TX 36 80 46 19 0.236 0.041 70 68 73 328 123 96 1.55

101. SALT LAKE CITY, UT 46 69 49 28 -0.333 0.038 70 69 70 80 113 88 1.44

102. BURLINGTON, VT 40 66 44 23 -0.232 0.093 66 63 67 84 107 86 1.51

103. LYNCHBURG, VA 44 53 39 22 -0.750 0.154 52 56 52 53 94 63 1.37

104. RICHMOND, VA 33 61 42 20 0.192 0.058 59 56 63 204 95 79 1.48

105. NORTH HEAD, WA 41 104 67 28 -0.250 0.055 105 96 106 130 158 136 1.55

106. QUILLAYUTE, WA 21 45 35 12 -0.184 0.018 45 44 47 58 72 57 1.37

107. SEATTLE, WA 20 59 43 11 0.027 0.069 56 56 62 112 97 77 1.44

108. SPOKANE, WA 47 65 48 24 0.028 0.040 64 64 65 111 101 79 1.37

109. TATOOSH ISLAND, WA 54 86 66 27 -0.290 0.045 86 85 86 98 128 104 1.34

no. GREEN BAY, WI 36 103 54 18 0.431 0.089 85 82 92 1408 153 126 1.63

111. MADISON, WI 41 75 48 21 -0.516 0.058 75 75 76 82 134 100 1.54

112. MILWAUKEE, WI 42 68 54 21 -0.423 0.059 67 70 67 72 109 79 1.29

113. CHEYENNE, WY 46 73 61 24 -0.476 0.051 74 76 74 77 113 85 1.24

114. LANDER, WY 42 80 58 21 -0.621 0.067 77 83 77 80 142 94 1.35

115. SHERIDAN, WY 44 82 61 24 0.125 0.073 82 80 83 184 128 101 1.38

MEAN 38.1 71.9 50.4 20.5 -0.257 (unweighted) 1.42

SD 8.2 10.5 6.3 4.5 0.384 (unweighted) 0.10

Key:

Col.

( 1 )

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

( 11 )

(12)

(13)

(14)

Notation

Station

N

Hex

t

SD(e)

Vn Gum
Vn CME
V50 CME
^100000 CME
^100000 Gum
^100000 c=-.2

4>

Description

Name of NWS Station

Sample size

Maximum observed wind speed (mph)

Median observed wind speed (mph)

Number of exceedances

Estimated c

Standard deviation of c

Estimated N-yr wind based on Gumbel model (c from Col. 6)

Estimated N-yr wind based on CME method (c from Col. 6)

Estimated 50-yr wind based on CME method (c from Col. 6)

Estimated l(X),(XX)-yr wind based on CME method (c from Col. 6)

Estimated 100,(XX)-yr wind based on Gumbel model (c from CoL 6)

Estimated l(X),(XX)-yr wind based on CME method (c=-0 .20)

Load factor based on c=-0.20

Note: 1 mph = 0.44704 m/s
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APPENDIX B

Estimation of SD of c

We consider the problem of fitting CMEj = intercept + slope • Xj + ej where the variance of

€; is proportional to l/(n-i) for i=l,2,...,n-l.

GIVEN:

1) Speeds Xj, i=l,2,...,n

2) CME values yi, i=l,2,...,(n-l)

Define "relative variances" Vj=(n-i)’\ i=l,2,...,(n-l) and Y = diag(v).

Let = [intercept slope] = [Xp X
2 ,...,

x^_j] and X = [izG (T denotes transpose).

Also, let M = [X^V^X]'*

Z(n-i)

i:(n-i) Xj

E (n-i) Xj

E (n-i)

= (SSX)-^
j:(n-i)Xi^ -E(n-i)Xi

-E(n-i)Xj E(n-i)

(All summations are for i= 1,2,..., (n-i).)

Here and below, SSX = [E(n-i)] [ j; (n-i)Xi^] - [Kn-^xJ^

Then the parameter estimates b are given by:

E(n-i)yi
^

j;(n-i) Xj yj

with covariance matrix a^M;

b =M

and is (l/(n-i)) (y-x^b)^ V"*(y-x’^y

= (l/(n-l)) E(n-i) (yj- intercept- slope. Xj)^.

Our estimate of c is slope/(l+ slope); and the estimated standard deviation of the c-estimate is

(1+slope)'^ times the standard deviation of the slope, or to within a constant (see Draper and

Smith, 1966)

_
[E(n-i)]''^[ j;(n-i)(y|-intercept-slope.Xj)2]''2

(n-3)''2(l+slope)2(SSX)''2
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