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Gaithersburg, MD 20899 USA

Abstract

In this paper we discuss two phase-held models for solidification of a eutectic alloy,

a situation in which a hquid may transform into two distinct sohd phases. The first is

based on a regular solution model for the sohd with a chemical miscibihty gap. This

model suffers from the deficiency that, in the sharp interface hmit, it approximates a

free-boundary problem in which the surface energy of the sohd/sohd interface is zero and

consequently mechanical equihbrium at a trijunction requires that the sohd/sohd interface

has zero dihedral angle (locally planar). We propose a second model which uses two

order parameters to distinguish the hquid phase and the two sohd phases. We provide a

thermodynamically consistent derivation of this phase-field model which ensures that the

local entropy production is positive. We conduct a sharp interface asymptotic analysis

of the hquid/sohd phase transition and show it is governed by a free-boundary problem

in which both surface energy and interface kinetics are present. Finahy, we consider a

sharp interface analysis of a stationary trijunction between the two sohd phases and the

hquid phase, from which we recover the condition that the interfacial surface tensions

are in mechanical equihbrium (Young’s equation). This sharp interface analysis compares

favourably with numerical solutions of the phase-field model appropriate to a trijunction.

* Current address: School Of Mathematics, University Walk, University of Bristol, Bristol BS8 ITW, UK.
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1. Introduction

Phase-field models provide an attractive framework in which to model phase transitions. Tra-

ditionally, phase transitions have been described mathematically by free-boundary problems in

which the interface is represented by an evolving surface on which boundary conditions are

imposed to describe the physical mechanisms occurring there. In a computational setting this

formulation leads to difficulties when the interface develops a complicated geometry or when

the connectedness of one of the phases changes. Such situations are commonly encountered in

reahstic situations where dendritic growth or coarsening occurs. As a result there are only a few

computations of dendritic growth using sharp-interface methods (see, e.g., [1, 2]).

In contrast, phase-field models allow the interface between the two adjoining phases to

have a non-zero width. An additional variable is introduced, the so-caUed phase field, whose

values characterise the phase of the material at any position and time. The interface is then

represented by the level sets of the phase field, which places much weaker restrictions upon

the topology of the interfaces that may be computed. The governing equations for the usual

thermodynamic variables, and for the phase-field, may then be derived from a Landau-Ginzburg

energy functional of the system within the framework of irreversible thermodynamics [3, 4].

The resulting set of nonlinear reaction-diffusion equations provide a coherent description of the

whole system, making no distinction between the regions occupied by the different phases and

the interface.

A phase-field model for a pure material was apparently first derived by Langer [5], using

ideas from the study of critical phenomena [6] and other treatments in which a diffuse interface

is considered [7, 8, 9]. It was subsequently studied by Caginalp [10, II], and Coffins and Levine

[12]. In particular Caginalp [13] demonstrated the relation between phase-field and sharp in-

terface models, showing that in different distinguished hmits, in which the interface thickness

is taken to zero, correspondingly different free-boundary problems are obtained. Subsequently

the development of computer technology has allowed computation of numerical solutions of the

phase-field equations. Kobayashi [14] and Wheeler et al. [15] have computed numerical solutions

representing dendritic growth into an undercooled pure hquid.
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More recently interest has focussed on the development of phase-field models for alloy sys-

tems. Wheeler et al. [16] derived a phase-field model for isothermal sohdification of a binary

alloy exhibiting ideal solution behavior. Subsequently these authors [17] showed how the in-

clusion of a solute gradient energy in the underlying energy functional allowed a description

of solute trapping in rapid sohdification. Warren and Boettinger [18] extended the model of

Wheeler et al. [16] to allow for different diffusivities in the sohd and fiquid phases and reported

numerical solutions representing dendrites. Recently Caginalp [19] has developed a phase-field

model for sohdification of a dilute binary ahoy, that includes temperature changes. Karma [20]

and Elder et al. [21] have presented phase-field models for sohdification of binary ahoys close

to the eutectic composition, where two sohd phases are formed from the hquid simultaneously.

Misbah and Temkin have also discussed a phase-field model of lameUar organization in the sohd

phase of a eutectic system [22].

In this paper we build on our previous work for isothermal sohdification of ahoys to derive

phase-field models of eutectic alloy systems. We present two phase-field models, named I and II

in sections 2 and 3, respectively. Model I employs a regular solution model with a miscibihty gap

that leads to the formation of two distinct sohd phases. The underlying free energy functional

includes both phase-field and solute gradient energies. A model of a eutectic must be able to

describe three distinct transitions: between hquid and each sohd and between the two sohds.

The sohd-sohd transitions are represented by a Cahn-Hilhard equation. However, as we discuss,

this approach gives, in the sharp interface hmit, a free boundary problem in which the sohd/sohd

surface energy is zero and consequently the Gibbs-Thomson effect is absent. This arises becauses

the height of the double-well in the free-energy density with respect to the concentration, is not

an adjustable quantity. Values for this height are routinely obtained from fitting measured phase

diagram ajid calorimetric data by the metaUurgical community; see, for example, [23]. On the

other hand, the height of the double-weh with respect to the phase-field can be considered to be

an adjustable parameter and can be taken to be infinite in the sharp interface hmit. This is done

in such a manner that the surface energy of the soHd/hquid interface, which is characterised by

the product of the height of the double-weU and the interface thickness, is finite in this hmit.
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To address this difficulty we then develop Model II, which employs two independent phase-

field variables to distinguish the three different phases; this approach is based upon a simpler

ideal solution model for each phase. It differs from Model I in that it treats the two sohd phases

as arising from distinct free energies rather than a single free energy with a double-well structure.

In addition to allowing a finite surface energy for the sohd-sohd interfaces in the sharp interface

limit, this approach also provides a more general treatment of the situation in which the two

sohd phases have different crystaUine structure and thus are not easily represented by a single

free energy function. Our model II is based on a free-energy density function which has a reahstic

dependence on the concentration in the different phases, although the dependence on the phase

field remains ad hoc. Moreover its apphcation is not hmited to dilute alloys or near-eutectic

alloy systems, and hence represents a generahzation of the work of Caginalp, Karma, Elder et

al., and Misbah and Temkin that can describe sohdification with a single model for all possible

compositions. The governing equations may also be derived in a thermod5mamicahy consistent

manner, based on a entropy functional following the ideas of [3] and [4].

In section 4 we examine the sharp interface hmit of our model II. For the sohd/hquid interface

we show that it gives a free-boundary problem in which surface energy (the Gibbs-Thomson

effect) and interface kinetics are included. In section 5 we analyse a stationary trijunction in

an isothermal system and show that in the sharp interface hmit the interfacial surface tensions

at the trijunction satisfy the usual mechanical equihbrium (Young’s equation). In section 6

we present results of computations of the time independent governing equations for phase-field

model II corresponding to a stationary trijunction in an imposed temperature gradient.

2. Eutectic Phase-Field Model I

To develop our first phase field model for a eutectic ahoy we build upon our previous work

[16, 17], in which we give a phase-field model for isothermal sohdification of ideal binary ahoys.

In order to motivate our treatment of the eutectic system, that work is briefly reviewed in the

fohowing section.
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2.1. The Case Of A Non-Eutectic Binary Alloy

For this situation a phase-field model can be based on a Helmholtz free energy of the form

[16, 17]

n^,c,T] = y^|/(^,c,r) + ||V0p + ||Vcp| (fy, (1)

where (j) is the phase field, c is the solute concentration, T is the temperature, and V the

volume of the system. The system is considered to be isothermal with solidification controlled

by supersaturation rather than heat flow. Here (j) = 0 represents the hquid and cj) = 1 represents

the solid. The bulk free energy density c, T) is assumed to have the form appropriate to an

ideal solution

RT
C, T) = c/s(^, r) + (1 - c)/^(0. T) + —/(c), (2)

I’m

where R is the gas constant, is the molar volume, and

/(c) = clnc + (1 — c) ln(l — c) (3)

and where Ja and /g are the free energies of the pure components A and B corresponding to

c = 0 and c = 1, respectively, and are given by

where

gW = ^^(1 - (l>Y and h{<j)) = (^^(3 - 2(j)). (5)

The flrst term W^^(^)/4 is a double-well potential, and Wa is the barrier height between the

local energy maximum at (j)
= 1/2 and the two minima at = 0 and (/) = 1; /3a{T) and

/3b(T) are taken to be hnear functions of temperature whose exphcit forms are given below.

(Other functions for h^cj)) and g{cl>) could have been employed. However, in the hmit of thin

interfaces the result will not depend on this choice.) We note that /i(0) = 0, /i(l) = 1, and,

since A'(0) = 60(1 — 0), /j'(0) is increasing for 0 < 0 < 1 with h\0) = h'[l) = 0. An analogous

expression holds for Considered as a function of 0, the function Ja has extrema at

0 = 0, 0 = 1, and 0 = 1/2 + ^Aj and, provided |/3a| < 1/2, has the form of a double-well

potential with minima at 0 = 0 and 0=1 and a local maximum at 0 = 1/2 -f- ^a-
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The free energy in Eq. (2) is written as a combination of the free energies for the pure

components, weighted by the solute concentrations, together with the contribution arising from

the entropy of mixing term proportional to I{c). This expression for the free energy can be

rewritten in the equivalent form

fi<t>,c,T) = h{^)fsic,T) + [1 - h{<p)]fLic,T) + ^[cWb + (1 - c)Wa],

where fs and /x, are the bulk free energies of the soHd and liquid phases,

. , ^ , f WbMT) , ,, ,WA0AiT)\
fs{c,T)= —/(c) + |c ^ + (l-c)

^

(
6

)

TiT
Mc,T)=—lic).

'^m

(
7
)

(
8
)

The free energy therefore can also be written as a hnear combination of the bulk free energies

of the liquid and sohd phases, weighted by the function together with a contribution from

a double-well potential in 0 with a barrier height that varies hnearly with concentration.

The time-dependent governing equations are

where

and

dt 8<j>
’

I = V . M. (c(l - c)vf

'

H d<j>
*

Sc dc "

(
9)

(
10

)

(
11

)

(
12

)

The quantities Mi and M2 are positive, and may be related to the material properties of the

alloy [16]. In particular

Ml = Mo = Vrr,D
(13)

6LaSa’ RT ’

where D is the solute diffusivity (which for simphcity is here assumed to be the same in the

sohd and Hquid phases), 6a measures the structural thickness of the interface, and fiA is the
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linear kinetic coefficient for the motion of an interface for pure A. Further, the constants Wa and

Wb, and the functions Pa{T) and I3b{T) may be determined from a knowledge of the surface

energies, aa and aB, the latent heats. La and Lb and the melting temperatures Ta and Tb of

the two pure components, A and B, through the following relations

and

Sa ’

WaM^) La{T - Ta)

Wb =
12a,

Sb ’

Wb/5b(T) Lb(T - Tb)

(14)

(15)
6 Ta 6 Tb

The parameter is related to the structural thickness of the interface e,^ = \/6cr^6^A. By

taking the sharp interface Hmit, the phase-field model based upon the above energy functional

reduces to a free boundary problem in which the properties of the interface, such as surface

energy, are independent of the interface thickness. The remaining parameter, ec, is related to

the dependence of the alloy surface energy on composition as well as the interface adsorption

[17).

2.2. Eutectic Phase-Field Model I

We now extend our previous phase-field model for an ideal binary alloy to a non-ideal alloy, and

at the same time append a heat equation that treats non-isothermal systems. This non-ideal

model will permit the treatment of a eutectic alloy whose sohd phases can be represented by

a single free energy function that only depends on c and T. To this end we characterise the

two sohd phases, denoted by a and /3, by their concentration and so we modify the free energy

density function Eq. (2) to allow the hquid and sohd phases to be regular solutions. We set

RT
f{4>,c,T) = cfB{<l>,T) + {l-c)fA{<P,T)+—I{c)

{h{cl>)ns + [1 - h{ct>)]nL} c(l - c), (16)

where /(c) is given by Eq. (3), which adds to the bulk energies the terms CIlc{1 — c) and f25c(l — c)

in the hquid and sohd phases, respectively, and preserves the property that

= 0. (17)
4=1d)=0
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The free energy can also be written in the form

/(0,c,r) = hi<l>)fs{c,T) + [1 - hi<t>)]h{c,T) + ?^[cWb + (1 - c)Wa], (18)

where the bulk free energies in the hquid and sohd are now given by

RT
I{c) + fli,c(l - c), (19)

and

RT (

fs{c,T) = 1(c) + nsc(l - c) + c

I

Ls{T-Tb)^^^_^^L4T-T^)
(20)

Tb
'

' Ta }

The bulk free energies can be used to generate a eutectic phase diagram by the appropriate

choice of T^, Tb, La, Lb, and Qs-

The governing equations are assumed to have the form

dt
= Ml

dc

dt
V-M2 c(l — c)V

dT ,d4>X^ = kV^T-L'^,
dt dt

(
21

)

(
22

)

(23)

where we have simply adjoined an appropriate temperature equation to the other equations

in the manner of previous work [12, 13, 24, 25] to treat the non-isothermal situation. The

quantity L' is the aUoy latent heat which we may assume to be taken as a weighted average

of the latent heats of the pure components. Later we develop a more precise expression for L’.

For simphcity the temperature equation is written for the case of constant heat capacity % and

thermal conductivity k] the modifications of the model that are necessary to treat more general

thermal properties are straightforward.

In order to obtain a eutectic phase diagram we require the free energy density in the sohd

to have a double weU structure with respect to concentration, thereby providing a chemical

miscibihty gap. For purposes of discussion we assume a symmetric case with Ta — Tb, Wa = Wb

and La = Lb, in which case a double-well structure is obtained by requiring that Q.sVmlRT > 2.

We assume for simplicity that Ql = 0, so the hquid is represented by an ideal solution. In Fig. 1
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we show a schematic diagram for the shape of the bulk free energy functions /l(c, T) and fs{cj T)

of the liquid and sohd phases at a given temperature.

One-dimensional steady isothermal solutions with (j) = I represent stationary planar solid/soHd

interfaces between the a and /? phases. For a single, isolated interface, the concentration satisfies

6J~

fj.

= = /c(l,c, r) — 6^Czz = constant
, (24)

be

for —oo < 2: < oo, where z is a coordinate which measures distance from the centre of the

interface, defined by the location of c = 1/2; the equihbrium solute field is therefore characterised

by a constant diffusion potential /z [26, 27]. The concentration varies with z monotonically

between Ca(T) and c^{T\ which therefore represent the bulk concentrations in the two phases

on either side of the interface. The loci (cci(T), T) and (c/3(T), T) form part of the phase diagram

known as the solvus curves; they represent the solubihty limit of B in the a-phase and A in

the /5-phase, respectively. The variation of c occurs on a length scale proportional to 5, which

therefore characterises the thickness of the soHd/sohd interfacial layer. The expression given by

Eq. (24) has a first integral given by

p
/(l,c,T) ——cl = fic+ constant

. (25)

Evaluating Eqns. (24) and (25) in the bulk regions far from the interface where the gradients

vanish provide the relations

Ml,c^{T),T) = M1,C0{T),T) =
/(i,c„(r),r)-/(i,cg(r),r)

c„(r) - c^(r)
(26)

which constitute the common tangent construction for the double-well free energy function

/(l,c,T). For the symmetric case under consideration, the tangent is horizontal and its slope,

/2, is zero. Thus, the bulk concentrations, Ca{T) and c^(T), are given by the minima of the free

energy in the sohd as a function of concentration. The excess Helmholtz free energy, i.e. the

surface energy of the sohd/solid interface, denoted by <75, is given by

as = //j|yc^ + /(l,c,T)-/(l,c„(r),T)|dz, (27)
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which can be manipulated by using Eq. (25) with = 0 to give

<75 = 5V2 ! J}{l,c,T)-f{lMT),T)dc. (28)
•/ca(T)

The above integral is determined entirely by the shape of the sohd free energy curve as a function

of concentration, and in particular depends on the value of O5 ,
which fixes the barrier height of

the double-well. The quantity O 5 accounts for the regular solution nature of the free energy and

is in principle available from the thermodynamic data bases for alloy systems. Thus, because

$75 is finite, we see that as is proportional to 8^ and hence the interfacial width. For this model,

as would therefore vanish in the sharp interface Hmit in which the interface thickness goes to

zero; to maintain a finite surface energy, the interface must have finite thickness.

In contrast, we have set the problem up so that the surface energy of the sohd/liquid interface

does not go to zero in the corresponding sharp interface limit. The quantities W

a

and Wb which

determine the height of the double-weU in the free energy with respect to (j) are not available

from a thermodynamic data base, and the dependence of the free energy density on (j), unhke its

dependence on c alone, may be considered ad hoc. For this reason, in taking the sharp interface

hmit for the sohd/hquid interface we may aUow the quantities Wa and Wb to be inversely

proportional to the interface width, so ensuring that the surface energy, which is proportional

to the product of the double-well height and interface width, remains non-zero in this Hmit. As

a consequence, the surface energy of the sohd/hquid interface may be set to the appropriate

physical value independent of the interface thickness.

K we take the hmit in which both the thicknesses of the solid/sohd and sohd/hquid interfaces

go to zero simultaneously, then at leading order the surface energy of the sohd/sohd interface

vanishes, while the sohd/hquid surface energies are finite. As a consequence the condition for

thermodynamic equihbrium at a sohd/sohd interface that is recovered in this hmit is independent

of the local curvature at leading order, and therefore does not include the Gibbs-Thomson effect.

Another unfortunate consequence of Model I is that for equihbrium at a trijunction between

the a, /3 and hquid phases, the dihedral angle is 180° in the sharp interface hmit; that is, the

sohd/hquid interface is macroscopicaUy planar. This solution in the sharp hmit cannot describe

physically reahstic geometries with dihedral angles other than 180°.

-10-
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The asymptotic analyses for the solid/solid and solid/liquid interfaces discussed above are

different distinguished sharp interface hmits, representing different interpretations of models of

phase-field type. The approach for the sohd with a chemical miscibility gap in which the height of

the double-well is fixed attributes a small but finite thickness to the interface, which represents

the actual physical thickness on the length scale of several interatomic distances. Such an

approach is appropriate to sohd/solid interfaces such as occur during spinodal decomposition,

modeled by the Cahn-Hilliard equation, in which the two phases may be characterised by a

quantity that is measurable in principle, namely the concentration that varies across the thin

interfacial layers, see [28, 29, 30].

The approach we have adopted for solid/hquid interfaces, in which the height of the double-

well is allowed to depend in a manner inversely proportional to the interface width, presumes that

on the length scale associated with microstructure of an interface, the thickness of the interface

is neghgibly small. Despite its zero thickness the interface still retains a finite surface energy.

This approach is appropriate to sohd/liquid interfaces when the interface is characterised by a

phase-field, which is not a directly observable quantity, but a construct of the model. Because of

the ad hoc nature of the double-well structure of the free-energy functionals employed between

liquid and sohd, the vahdity of this approach lies in its abihty to recover classical free boundary

problems in the sharp interface Hmit. This ensures that the correct physical mechanisms are

accounted for as the interface thickness is successively reduced. Thus, employing a small, finite

interface thickness in a computational setting provides only a correspondingly smaU perturbation

of the computed solution from that of the underlying classical free-boundary problem. This

property, as discussed above, does not hold for the phase-field model given in this section.

The derivation of this model based on a Helmholtz free energy is another potential issue.

As pointed out by Penrose and Fife ([3], see also [4]), for a non-isothermal system the entropy

provides a more appropriate thermodynamic potential as a basis for deriving the phase-field

equations.

The above eutectic model is quite simple. Indeed, if the free energy function is expanded

about the eutectic composition to remove the logarithmic terms, it reduces to the models pro-
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posed by Karma [20] and Elder et al. [21]. It can be used to treat a solid composed of two

phases that are structurally identical (the same crystal structure) and distinguishable only by

their compositions. However, many eutectic systems involve a hquid in equihbrium with two

sohd phases that are structurally dissimilar, with distinguished crystal structures. For example,

in Pb-Sn eutectic systems, the Pb-rich a-phase is cubic, and the Sn-rich /5-phase has tetrag-

onal structure. The description of such systems by a simple double-weU free energy function

in the sohd is unreahstic, since the concentration alone is not enough to uniquely characterise

the phase. This leads us to consider the use of a second phase field that represents transitions

between the two sohd phases. Indeed this is just as reasonable as using a phase field to represent

the change between hquid and sohd. We thus propose a second eutectic model using a pair of

phase field variables that wiU treat the more general eutectic system with separate free energy

functions for the a and /5 phases, as indicated schematicahy in Fig. 2. This second model will

also permit passage to the sharp interface hmit in a manner that yields non-zero surface energies

for hquid-sohd and solid-sohd interfaces.

3. Eutectic Phase-Field Model II

In this section we introduce an alternative phase-field model of a eutectic that remedies the

difficulties found in the previous phase-field model. We distinguish the two different sohd phases

by employing an additional phase field, denoted by t/;, so that -0 = 1 corresponds to the a phase

and 0 = 0 corresponds to the (3 phase. The free energy density of each phase is assumed to be

that of an ideal solution. We first show how the Hehnholtz free energies of the a-sohd/liquid and

/S-sohd/hquid pairs (henceforth denoted a-L and /5-L) may be used to construct a Helmholtz

free energy for a eutectic alloy. We then extend this idea to construct an entropy functional

and the associated thermodynamic potentials to derive the governing phase-field equations in a

thermodynamicahy-consistent manner for a nonisothermal system.

The governing equations for the two phase fields and for the concentration and temperature

of a non-isothermal alloy are derived from an entropy functional in an analogous way to that

discussed by Wang et al. [4] for the case of a pure material. The thermodynamic potentials

-12-



Phase Field Model of a Eutectic Alloy September 7, 1994

used in this procedure are the internal energy, the entropy, and the Helmholtz free energy. The

appropriate potentials for the eutectic model are assembled by combining basic potentials for

single-component, single-phase systems. The potentials for two-phase single-component systems

are obtained as above by assuming hnear combinations of each phase that are weighted by the

phase-field variables, augmented by a term representing a double-weU potential in the phase

field.

More specifically, the bulk Helmholtz free energy density for the eutectic system is written

in the form

/(T, c. = hWf^iT, c, + [1 - hWU^^iT, c, 4,) + (29)

where f°^ and are ideal-solution free energy densities as constructed above corresponding

to the a-L and /3-L phase transitions. The double-weU potential in the -0 field is cut off in

the bulk hquid phase by the function h[<j)) which for ^ = 0 gives h((j}) = 0. The a-L and ^-L

equihbria are then governed by separate lens-shaped phase diagrams that depend on the melting

points T^, and on the latent heats and
,
and on the barrier

heights A schematic diagram illustrating the notation is given in

Fig. 3. The eutectic hquid composition that can be in equihbrium with both the a and /3 sohd

phases is given by the intersection of the two Hquidus curves.

The definition of the Helmholtz free energy density is

f = e-Ts, (30)

where e and s are the internal energy density and entropy density, respectively. The differential

of the internal energy, extended to ahow for dependence of the internal energy density on the

phase fields, has the form

it fohows that

T rT^ 1 T

dc = 1 ds -|- fide -f-
——
oep

a,c,r/>

JJL
di)\

de
df = —sdT -f fide -t-

—
o<p

s,c,rf>

dtp,

3,C,<i>

(31)

(32)
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where

^ =
dc

T,4>,ip

de

dc
(33)

is the appropriate expression for diffusion potential in this setting. An expression for the entropy

is given by

(34)s = —
dT

Examination of the differentials shows that the natural choice of the arguments for the ther-

modynamic potentials is given by e = e(5, c, s = s(e, c, (l),Tp), and / = /(T, c, Before

discussing the exphcit forms that we consider for the thermodynamic potentials f[T,c,(l),'ip),

e[s,c,(l),'tp), and 5(e,c, we proceed with a derivation of the governing equations. In the

derivation we generahze the treatment of Wang et al. by including a gradient energy coefficient

and a double-weU structure for the internal energy as weU as for the entropy. Following the

formal derivation, however, we simplify the resulting equations to a more conventional form

by assuming values for the free energy barrier height and gradient energy coefficient that are

independent of temperature, and by neglecting the analogous contributions from the internal

energy.

The total entropy <S, the total internal energy £*, and the total Helmholtz free energy !F of

a subvolume V of the system are assumed to be of the form

5 = L 5(e,c,,^,^)-%|V0|^-%|V^|'

T = y^f/(r,c,^,v-)+^|v^|^ +

2

dV,

dV,

dV,

(35)

(36)

(37)

where the square gradient contributions from the (j) and ip phase fields incorporate the effect

of spatial gradients on the system as in the Cahn-Allen equation. A more general formulation

could include contributions due to solute gradients as well, as in the Cahn-HiUiard equations;

such terms have been employed in phase-field models of solute trapping at rapid sohdification

rates [17]. Here we limit our attention to slow growth conditions, a situation in which they do
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not make a significant contribution. Consistent with the thermodynamic relation f = e — Ts,

we assume that the square gradient coefficients are related by

'E4> + Te2

Sr/i' (38)

where we have taken into account the sign convention used in the entropy functional. In a more

general treatment, surface tension anisotropy can be modeled by replacing the gradient energy

coefficients by appropriate functions of the gradients of the phase fields that indicate the local

orientation of the interface [31].

We next postulate governing equations which are consistent with positive local entropy pro-

duction as well as the conservation of heat and solute. The fundamental balances are written

-—-1- / Js-nd^= / SpdV>(}, (39)
at Jsv Jv

— + / Je • n dA = 0, (40)
at Jsv

^ f cdV+ f Jc-ndA = 0, (41)
at Jv Jsv

where Jg, Je, and Jc are fluxes of entropy, internal energy, and solute, respectively, and Sp is

the entropy production per unit volume. The energy and entropy fluxes are written in the form

Je = q - e\^4’t^4> - (42)

Js = ^q- ^Jc + 4^^(V^ + 4,;.V’iVV’, (43)

where q is the heat flux appropriate to a single-phase system. The terms proportional to the

time derivatives of the phase fields in these expressions represent fluxes related to changes to

the the phase fields at the boundary of V as discussed in [4]. Conservation of energy then has

the form

e, + V • q = (44)

and conservation of solute gives

Q + V • Jc — 0. (45)
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From the expressions (31) and (32), the time derivative of the entropy density can be written

—s{e,c,<ji,ijj) =
^5 ds ds ds

Ct 4-

C,0,V> CM
^ ^ 'I’t

- L _ 1 df
- yCi

^ T,c,/ Td^ i’t- (46)

T,c,(i>

By using the equations for conservation of energy and solute, together with the expression (43)

for the entropy flux, the local entropy production 5p in Eq. (39) is then found to have the form

= q . V
(
—

)
- Jc • V

+ ^ I
Tel^^^ct>

d(l)

+
T.c.t/., T,c,ip^

Positive local entropy production is therefore guaranteed if we take

q = MtV (

—

J, = -MV I ^

(47)

(48)

(49)

as well as the equations

(l)t
= - U , (50)

'ipt = - U] 5
(51)

where Me, Mp, M^, and M^ are positive and are generally functions of (^, -0, c and T. As

we show below, Mp and are related to the diffusion of internal energy and solute. Cross-

couphng between the heat and mass transfer could be incorporated at this stage (Soret and

Dufour effects), but for simplicity we assume these effects are negligible.

In order to recover hnear diffusion of heat and solute in the bulk phases we now assume that

Mt = AT^ and Me = VmDc^l — c)/Rj where A is the thermal conductivity and D is the solute

diffusivity. For simpheity, both A and D are assumed to be constant; it is straightforward to

allow the diffusivities to vary from phase to phase (see, e.g., [31], [18]). The equations for the

internal energy and solute then become

Qq
(52)
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and

dc DVr

R
-V- (53)

The governing equations can therefore be formulated in terms of the Helmholtz free-energy

density /(T, c, (^, V?). For discussion purposes, we proceed by deriving a simple model for the

free energy density that is based on ideal solutions and constant heat capacities. For example,

the internal energy density for the a-L transition for component A is taken to be of the form

ef{T, <P)
= Ea + XaT - h{^)Lf +

clL
(54)

where Ea, Xa, ^
and are constants; here L°^ is the latent heat per unit volume and

is an internal energy density barrier height for the a-L transition for component A. The

heat capacity, xa^ is assumed to be the same for the T, a, and (3 phases of component A. The

internal energy density for the /3-L transition for component A is obtained by substituting

for a in the above expression. Note that both and represent the same internal energy

density for the bulk Hquid phase, since the hquid phase is common to both the a-L and /3-L

phase transitions in this three-phase system. Analogous expressions are assumed for and

'B •

A corresponding entropy density for component A can be written in the form

sf{T,4’) = SA + XA\nT-h{<t,)^
^
gW: (55)

where Sa is constant, and a corresponding Helmoltz free energy density for component A is then

ff'iT, 4>) = Ea- SaT - xaT In T + xaT

+ K4’) Yt "
^ (56)

where Wp^ = The free energy density (56) agrees to within a constant with the

free energy density (4) that is used in the isothermal case if the temperature is assumed to be

constant. Similar expressions hold for the potentials of the /5-L transition for component A, if

/5 is substituted for a in the above expressions. Analogous relations apply to the case of pure

component B as well.
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The single-component potentials can be combined using a rule-of-mixtures law, which, when

we allow for the entropy of mixing gives the thermodynamic potentials for the a-L and fi-L

transitions; for example, we may take

s-\T,c,<j>) = csf{T,^) + (1 - c)sf{T,4,) + (57)
'Um

e^{T, c, = cef^iT, <l>) + {1 - c)e'X^{T, <l>), (58)

and
RT

f^{T, c, 4,) = citiT, 4>) + {l- c)/^(T, 4) + —/(c); (59)
Vm

we assume that the molar volume is constant for the system. We make similar definitions

for the ^-L phase transitions in the obvious manner. Finally, potential functions that are

appropriate for the eutectic system are obtained by writing

Wc,
s{T,c,4>,i,) = hWs^^iT,c,<l>) + [1 - hW]s^^{T,c,4>) - (60)

e{T,c,4>,rP) = A(V-)e‘^(r, c, 0) + [1 - /i(^)]e''^(r,c,0) + A(^)11^5(^), (61)

and

/(T, c, V-) = hWf^iT, c, <i) + [1 - hW]f^{T,c, 4>) + hi4>)^9W. (62)

where = WexP + TWsip- To arrive at a tractable model we further assume that the single-

component internal energy densities in the liquid phase are aU the same, i.e. E

a

= Eb = ^Oj

say, and xa = Xb = X, say. We also assume = W^a = '^eb = and

Sa = Sb = Sq. We then find

de dT WE<i) u ^Exp ^ I

dt ^ a< 4
'g'((b)— -f^ dt 4:

+ 4 dt

- h'{4,) [c{h{^)Lt + [1 - fe(l^)]if} + (1 - c){h[^)Lf + [1 - h{^)]Lf}

- h{4>)h\n<Lf - Lf) + (1 - c){Lf - Lf)]^

dcj)

dt

- h{4,) \h{-4>){L^ - Lf) + [1 - h{i>)]{Lf - Lf)

dt

dc

dt
(63)
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Of the seven terms on the right hand side, the first term is standard and arises from the

heat capacity of the material. The second and third terms represent energy changes due to

motion of the sohd/Hquid and sohd-sohd interfaces, respectively; these interfaces carry stored

internal energy for non-vanishing values of and W^;^. The fourth term contributes only

near a trijunction region. The fifth and sixth terms represent the latent heat production at the

sohd/hquid and sohd-sohd interfaces, respectively. In our model the latent heat of the sohd-sohd

transition is determined by the latent heats of the a-L and /5-L sohd/hquid latent heats, and

vanishes if the two latent heats for each pure component are identical. The last term accounts

for the dependence of the internal energy on concentration. We note that the last term is zero

in the liquid (<^ = 0). This is direct consequence of our making the internal energies of the

pure hquid phases identical. Without this assumption the above expression would be more

comphcated and would ahow the internal energy to vary with composition in both the the sohd

and hquid phases. This term vanishes if the latent heats of component A and B are equal for

each sohd/hquid transition.

The governing equations (50)-(53) provide a model of a eutectic, whose properties we in-

vestigate further below. It is worth noting that it can also be used with other thermodynamic

properties of A and B to represent a peritectic ahoy as weh, although we do not pursue this

here.

3.1. Symmetric Model

To obtain a more tractable model II for discussion purposes, we next reduce the number of

parameters that appear in the governing equations by restricting our attention to the case of

a eutectic ahoy with a phase diagram that is symmetric about c = 1/2. We also assume that

w^, W^, W|i, and W|^ are ah equal, and denote their common value by WF<i>]
we assume

that Wf4>j and Wfi/. are constants that are independent of temperature. We further

set We4„ and We^ to zero.

For a symmetric phase diagram we require that /(t, c, <^,'0) = /(T, 1 — c, (/», 1 — ip). From

Eq. (29) we thus deduce that f°^{(j),c,T) = 1 - c,r). The melting temperatures for the
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pure A a-L and pure B j3-L phase transitions are equal, i.e. = Th, say, and the

melting temperatures for the pure B a-L and pure A /3-L transitions are equal, i.e. =

Tc, say, where we assume the labehng of the a and (3 phases is consistent with Th > Tq. It also

follows that the latent heats at the hotter temperature are related by L°^ = = Lh, and

similarly at the colder temperature, we have = Lc- We assume the barrier heights

for the Helmholtz free energy densities are equal, with = = ^fb —

The free energy densities in the soHd phases then have the form

UT, c) = ^7(c) + + (1 - + /„(r). (64)
J-C J-H

and

MT, c) = —I{c) + (1 - + /o(r), (65)
Vm J-C Jh

where

fo{T) = Eo-SoT -xThiT + xT. (66)

The hquid free energy density is

RT
h{T,c)=—I{c) + fo{T). (67)

In Fig. 2 we plot the dependence of the free energy curves on concentration for a fixed temper-

ature T in the range Tc < T < Th-

The fuU Helmholtz free energy density is then given by

f{T,c,<i>,Tp) = fo{T) + +—/(c)+
4 4

K^) - ^(V’)](i - ^)}

+ iH^^i^^W)(l-c) + [l-A(^)]c}}. (68)

In Fig. 4 we show schematically the dependence of / on -0 and c for the soHd-sohd phase

transition.

Note that the the solute equation (53) and the phase-field equations (50)-(51) only involve

the derivatives of / with respect to the variables c, 0, and 0, and so the term fo{T) in the free

energy density has no effect on these governing equations.
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To further simplify the equations, it is convenient to assume that the latent heats are equal,

with Lh = Lc = L] this simphfication ehminates cross-couphng terms that would otherwise

occur in the energy and solute diffusion equations, which we prefer to disregard. By varying the

temperatures Th and Tc and the latent heat L it is possible to generate phase diagrams with a

substantial variation in the degree of segregation between the liquid and solid phases. A rough

estimate for the latent heats of close-packed metals is given by Richard’s law, L = I.IRTm,

where Tm is the melting point of the transition; thus we expect that equating the latent heats

is a reasonable approximation if [Th — Tc)lTc is small.

3.2. Planar Solid/Liquid Interfaces for the Pure Materials

The gradient energy coefficients and double well barrier heights can be interpreted in terms of

interface width and surface energy [13, 16]. Consider the case of pure component A (c = 0).

The steady-state one-dimensional phase-field ^[x) for the a-L transition (-0 = 1) at the uniform

temperature Th satisfies

(69)— f(i>

with the solution

= \

—T-9

1 — tanh
2y/2eF4, j

(70)

the interface width is proportional to eF,pl yJWFtp- The surface energy is equal to the excess

Helmholtz free energy, and is given by (see, e.g., [32])

dx
^F(f>

6\/2
(71)

The corresponding expressions for the /9—L transition ('0 = 0) with c = 0 at the uniform

temperature Tc have the same form, with For this model, both the surface energies

and the widths of the diffuse sohd/hquid interfaces for the ct—L and /3-L transitions for both

pure materials are therefore the same.
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3.3. Dimensionless Equations

To proceed we non-dimensionalise the governing equations. We put:

T = ThT,

and set

RTh-
e = e,

Vrn.

R .
S = 5

,

Vrr,.

f =
Vr

(72)

£2.
t=-t.(x,T/) = £(x,y), i=—i- (73)

Here tilde denotes a dimensionless quantity, £ is a characteristic length scale associated with the

interfacial morphology (e.g. a lamellar spacing), and time has been scaled with the corresponding

solute diffusion time. The dimensionless governing equations are

| = v.c(l-c)v(i|f),

dip^ e^VV
where

-'m 2eF0)
^TTI 2

ef^

~ RThC^M^=

ORTh
~ i?TH

Vr D
X

and where the Lewis number.

Le =

[RjVm] ’

V'lx]

D ’

is the ratio of the thermal and solute diffusivities.

The dimensionless Helmholtz free energy density has the form

f{T, c, 4,, 4>) = + -fh{4>)gW + TI{c) + fo{T)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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+ h{^)L{Tf - l){A(V’)c+ [1 - yi(V’)](l - c)}

+ h{4>)L{f - 1) {h{i,){l - c) + [1 - h{i,)]c}

,

(82)

where r = Th/Tc and

^ IRThM [RThM’ [RThM ^ ^

The dimensionless function /o = '^m/o/l-R^if] again plays no role in the subsequent analysis. An

expression for the diffusion potential is then given by

li = fc = fr{c) + h{(l>)L{T - l)f[2h{i;) - 1], (84)

so that the expression jl/T is independent of temperature in this model.

The dimensionless internal energy density has the form

e(T, c, (j), Tp)= Eq^xT - Lh{(l)). (85)

where Eq = VjnEo/[RTH]- The dimensionless soHd/liquid surface energy is defined by ai, =

a/{C[RTH/vm])^

4. A Trijunction in the Sharp Interface Limit, > 0,e^ —> 0.

We next consider a trijunction consisting of the confluence of two soHd/hquid interfaces (between

the hquid and the a sohd and the liquid and the /3 solid) and a sofld/solid interface (between

the a and /3 solid phases). We analyse this situation in the sharp interface limit where the

diffuse interfaces may be approximated by curves in the plane. In this Hmit, the gradient energy

coefficients are assumed small, and the barrier heights large, with the scales chosen in such a

way that the surface energies remain finite as the interface thickness tends to zero (see, e.g.,

[17]). The barrier heights of the free energy density are then written

w^ = - 4>

'
4>

w;
w^ = - v*

(
86

)

we note that = 72
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The dimensionless Helmholtz free energy density may then be expressed as

(87)

where

(
88

)

and

+ h{(t))L{Tf - 1) {h{Tp)c + [1 - ^('0)1(1 - c)}

+ h{^)L{f - 1) {/i('0)(l - c) H- [1 - h{'tp)]c} . (89)

Further, we consider the distinguished hmit in which the mobihties of both the solid/sohd and

sohd/hquid interfaces are very large, which is typical of metallic systems where local equihbrium

is a good approximation. We set

We will also assume that

=

e0 — A 6^,

(90)

where A is an order one quantity. In this distinguished limit the interfacial layers are of thickness

O(e^) and so we expect the dimensions of the trijunction region where they meet to be also

characterized by the same length scale. In the next subsection we consider the outer problem

representing the solution outside the interfacial layers and away from the trijunction region. We

then go on to consider, in subsequent subsections, the solution in the sohd/hquid and sohd/sohd

interfacial layers and finaUy the trijunction region.

4.1. The Outer Solution

The outer solution comprises three different regions; the hquid region, here denoted by L, and

the two regions where the a and (3 sohd phases exist, denoted by a and /5. This situation is

iUustrated in Fig. 6.
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In both solid regions (j)
= 1 and, in the a and /3 sohd regions, -0 = 1 and 0 respectively. The

temperature and solute concentration satisfy the conventional diffusion equations.

In the hquid region again the temperature and solute concentration satisfy the diffusion

equation and <^ = 0. However, the situation for -0 is more comphcated. Whereas in a and fS

sohd regions the leading-order bulk values for (p and -0 are determined by the minima in the free

energy function, in the hquid region the free energy is constructed so that there is no dependence

on 'tp to leading order. Consequently, a regular perturbation expansion for -0 in terms of shows

that 0 satisfies Laplace’s equation to leading order. As we show below, at leading order 0 is

continuous across the sohd/hquid interfaces, and hence 0 varies smoothly throughout the hquid

region with values lying between zero and one. This behavior is observed clearly in numerical

calculations which are described below, see Fig. 7. We emphasize, however, that the specific

form assumed by 0 in the bulk hquid region have no effect on the state of the system since the

free energy in the bulk hquid is independent of 0.

4.2. The Solid/Liquid Interfaces

We next consider an inner solution which describes the a-L interface at a distance far from the

trijunction region; the results for the /3—L interface for 0 = 0 are analogous.

FoUowing [31], we introduce a local orthogonal coordinate system (7’,s) moving with the

interfacial layer, where r measures distance across the interfacial layer and r^x^y) = 0 represents

the level set 0^°^ = 1/2, with positive values of r corresponding to the hquid phase (0 = 0). We

scale r to the thickness of the interfacial layer by writing r = e'^p and expand the field variables

in the layer as a perturbation series in e|.

1 + 0(ej), (91)

^ = fo) + ^«4 + 0(4), (92)

(93)

f = + f + O(e^), (94)
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where the hats denote the dependent variables in the interfacial layer. It is convenient to write

a formal expansion for the chemical potential as well, with

JL
= H- (95)

We find that the leading order temperature in the layer satisfies

fi? = 0, (96)

and matching with the outer solution for large p shows that the inner solution is constant and

the outer solution is continuous across the interface.

The leading order phase field satisfies

= 0. (97)

The solutions to this equation that are of interest for the sohd/Hquid interface are the constant

solutions with = 0 or 1. Matching with the outer solution in the a-region requires that

<

0 (
0
) = 1 .

The leading order phase field is given by

= -W — tanh(35-x,/})]
.

(98)

The leading order diffusion potential, is constant across the interfacial layer,

?(°)(f'°),c<o),^(o),l) = ;io; (99)

the value of Jiq is undetermined at this stage. It is convenient to define

F{T,c,4>) = P\T,c,4>,l)--ii^c, (100)

SO that Eq. (99) can be written as = 0.

At next order in the interfacial layer, O(e^), we find that

= -P^(fW, c<°), ^W) - ^(0), (101)
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f(0)
^

J p

xiefW =

(102)

(103)

where Vn and K are the dimensionless normal velocity and local curvature of the interface,

respectively. The normal velocity is positive for motion of the interface into the hquid (freezing)

and the curvature positive for sohd projections into the hquid. Eq. (101) gives a solvabihty

condition, which after matching with the solution in the bulk phases yields

= ai (E + k]IS \m^ J
(104)

where L and 5 denote evaluation of the quantity at the hquid and sohd side of the sharp

interface. Further, Eq. (102) and Eq. (103) may be integrated once, which on apphcation of the

matching conditions gives that

ac(°)

and

dn

xLe

+ K = 0
,

dfiP)

dn
= -iv;,

(105)

(106)

which simply represent conservation of solute and internal energy across the interface. Eq. (99)

evaluated at p = ±oo gives

(io = /i°)(fW,Cs,l,l) = /W(r‘°’,CL,o,i). (107)

Eq. (104) and Eq. (107) together provide the relationship between the leading order interfacial

concentrations in the sohd and hquid, here denoted by by cs and cl respectively, in the sharp

interface hmit. In fact they show that the interfacial concentrations are related by a paraUel

tangent construction. This is a consequence of the leading order diffusion potential being con-

tinuous across the interface. For the particular case of a stationary flat interface, 14 = = 0, it

reduces to a common tangent construction, which determines the leading order equihbrium in-

terfacial concentrations, cs and ci,, in the sohd and hquid respectively in terms of the interfacial

temperature, Tj. From this we are able to determine the hquidus and sohdus curves for the a-L

and /5-L phase transitions, as shown schematicahy in Fig. 5. We see that the hquidus curves and
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solidus curves of the ct-L and /3-L systems are both given by simple lens shapes. The Hquidus

curves intersect at the eutectic temperature and eutectic composition. This is the special liquid

composition that can be at equihbrium with both a and /3. Below this temperature, the hquidus

and soHdus curves become metastable.

In Appendix A we use this paraUel tangent construction to obtain expressions for the slope

of the sohdus curves and hquidus curves on the phase diagram (at V = K = 0), a.s well as show

that for dilute ahoys it results in the foUowing interfacial temperature condition, expressed in

dimensional form, as

Ti = Th +
- l)RTj^

Cl 7 K
olL

(108)

This second term on the right is the classical form for the hquidus slope for an ideal solution

model of a dilute ahoy. The second and third terms represent the classical forms of the Gibbs-

Thomson effect and interfacial kinetics.

We therefore recover, at leading order independent of e^, the classical form of the interface

boundary conditions in the sharp interface hmit, in which both internal energy and solute are

conserved across the interface and the Gibbs-Thomson effect and interface kinetics are included

correctly.

4.3. The Solid/Solid Interface

We next consider the sohd/sohd interface for which 0=1. For a planar stationary interface,

the equihbrium concentrations c“ and cP in each phase are related by a common tangent con-

struction. Because the free energy is invariant under c —
> (1 — c) and ^0 —

>
(1 — 0), it follows

that c“ is given by the minima of the free energy with respect to c with 0 = 1, with a similar

result for cP

.

This gives that the a sohd concentration at the interface is

c“ = =
, (109)

1 + exp[T(T - 1)]

and cP = 1 — c“. We note that in this model the equihbrium concentrations are independent

of the temperature, and so the solvus curves on the phase diagram are vertical hnes; this is a

result of the high degree of symmetry assumed in the model.
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The sharp interface analysis for the soHd/sohd phase transition between the a and j3 phases,

in the hirdt 6,/, 0, is, by design, similar to that given above for the sohd/Hquid interface and

yields both conservation of solute and internal energy, as weU a parallel tangent construction

relating the interfacial concentrations to the normal velocity and local curvature of the interface.

To leading order, the variation of the phase field -0 through the interface is given by a hyperbohc

tangent profile as in Eq. (98); the dimensionless sohd/sohd surface tension as satisfies =

72 al

4.4. The Trijunction Region

We next analyse a stationary trijunction between the two soHd phases and the hquid. Our

analysis is based on related work of Bronsard and Reitich [33], who included a heuristic deriva-

tion, in the sharp-interface limit, of the appropriate form of Young’s law at a trijunction for

a model with three order parameters. Our work generahzes their treatment in that our model

contains two order parameters, cj) and -0, together with the temperature and solute field. In

their work, the outer solutions consisted of uniform states, whereas in our work the 0 order

parameter varies throughout the bulk hquid phase. We provide a similar formal analysis for the

equihbrium angles formed at the triple junction, with the appropriate modifications necessary

to account for the variation of the outer solution in the bulk phases.

Specifically we discuss a eutectic trijunction with a symmetrical geometry that also forms

a basis for the numerical computations in the foUowing section. To avoid further technical

comphcations associated with the behavior of the outer solution, in this section we assume that

the trijunction is isothermal and stationary. We therefore consider a trijunction at the eutectic

temperature with straight sohd/hquid interfaces that cire arranged symmetrically on either side

of the sohd/sohd interface, which is taken to he in the plane of symmetry. The compositions in

each phase are consequently uniform, and because of the assumed symmetry of the free energy

they are related by c“ = 1 — and = 1/2 through the common tangent construction.

We introduce a control triangle, denoted by T, about the trijunction, such that the interfaces

of the trijunction form the perpendicular bisectors of each side of the triangle, see Fig. 6. We
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position each face of the triangle to be equidistant from the centre of the trijunction (where

^ = -0 = 1/2) at a distance, d. We shall consider the sharp interface hmit, by considering the

double hmit, e^, e,/, ^ 0
,
with = Ae^, followed by d —> 0

,
i.e. we first shrink the interface

thickness within the bounding triangle T, and then shrink T about the trijunction.

Under these assumptions, the governing equation for the solute field can be integrated to

give

/c = 0
, (

110
)

where a constant of integration, which represents the slope of the common tangent, is zero for

this symmetric case.

For the phase-field variables, it is convenient to introduce the notation ii = The

equations for the phase field variables then can be written in the form

- fu(u) = 0, (
111

)

where fa(u) = {U, D is a diagonal matrix having the form

D =
(
112

)

We now integrate Eq. (Ill) over the triangle, T. To do so we first introduce some definitions

and notation, as illustrated in Fig. 6 . At each intersection point of an interface with a side of the

triangle, each interface is inchned at an angle 'yi to the horizontal and a local Cartesian coordinate

system (^j, Ct) is associated with each side of the triangle. The (i coordinate direction is tangent

to its associated interface and the corresponding coordinate is normal to the interface at

the intersection point. The (i aU increase towards the centre of T. The three local coordinate

systems are related by rotations, with

ii
- siii(7i)

V
-cos(7,)

cos(7i)

'

-sin(7i)
y

(113)

for i = 2, 3; i.e., rotations by 7r/2 -f7^. It is convenient to define an inner product u-^rv = (Au)* v,

i.e. an inner product under a non-Euchdean metric; here dot is the usual Euchdean inner
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product. Taking the Euclidean inner product of the governing equations (111) with and

integrating over the triangle T gives

Viuddi —
• f£i(u)ddi = 0, (114)

where ddi = i = 1,2,3 is the differential area element. We now note the following

identity, which is easily proved:

(115)

where l|u|p = u* u. Thus the above expression may be written as

/, l3Ci
"li

* “6 +
dh

1
I IIU,- ir - IIU; 0 -/ ddi = 0, (116)

where we have used the fact that /c = 0 in order to express the integrand in divergence form.

We now employ the divergence theorem to obtain that

§/»{ “6 *
“C:

n\ + llllu. 0 -/ n\ > = 0 (117)

where n = = (^05 (7^), sin(7i)) is the outward unit normal vector to the side i of the

triangle T, denoted by dTi.

There are two types of leading order contributions to the above integral: one is from the

behavior of the inner solution at the interfacial layers [33], and the other is from the variation

of the outer solution along the sides of the triangle. The former contribution is of order unity

independent of the length d of the triangle sides, and the latter is bounded by product of the

mcLximum of the integrand and the length of the triangle sides, and does not contribute to the

final result in the hmit that d —> 0. We therefore discuss the considerations appropriate to the

contribution from the interfacials layers, with error terms that are formally of order d.

In the interfacial layers away from the center of the triangle, to leading order the solutions

vary only in the direction parallel to the triangle sides, and we may write

^6
-sin7i^. (118)
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d d

aci du
(119)

If we denote the contribution from the outer solution as 0(d), we obtain the approximation

*^cos(7,) + /(")} = ^(‘^)- (120)

Noting that the surface tension of the V th interface, is the Helmholtz free energy excess

which is given by

{^llUfill^ + /}4i, (121)

then Eq. (120) may be rearranged to give

El = 0(d), (122)

where Sj- is the component (at leading order in e^), in the direction perpendicular to the z’th

interface, of the net force, S, acting on the trijunction due to the surface tensions of the three

interfaces. Thus E = EISi where are the three unit vectors parallel to the interfaces.

This procedure may be repeated by taking the inner product with giving the analogous

result E 2 = 0(d), from which we deduce that the net force due to the surface tensions, acting

on the trijunction at leading order, is of order d, i.e. E = 0(d). Having taken the hmit of

vanishing e^, we may then consider the additional hmit that d 0, in which case we obtain

Young’s law in the form

E = 0. (123)

We note that if we instead consider interfaces with a smaU but finite thickness, it is inappropriate

to let the triangle area tend to zero, and the above force balance is modified by the additional

0(d) contributions, which are suggestive of the effects of a hne energy of the trijunction.

5. Computations

We next discuss numerical solutions of the steady governing equations for phase-field model II

with the aim of describing a stationary trijunction located in a hnear temperature gradient. In

particular we consider the special case of the symmetric model discussed in section 3.1 in which
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all the latents heats are equal. We prescribe the temperature to be T = T^; -f Gy^ where G is

the dimensionless temperature gradient, and is the dimensionless eutectic temperature. As

noted in section 4.3 the solvus curves are vertical and hence the eutectic concentrations in the

solid a and soHd P phases are given in Eq. (109).

5.1. Sharp Interface Solution

We first consider the solution to be expected in the sharp interface limit 0,e^ 0.

In the case of a eutectic phase diagram that is symmetric with respect to the composition

(c —
^ (1 “ ^)) with both the a-L and P-L surface energies equal, a trijunction exists that

consists of a planar a-P interface which has reflection symmetry about the vertical axis. The

two sohd/hquid interfaces subtend the same angle to the horizontal 0, given by 2al sin(^) = as-

For this reason, we henceforth only consider the right-hand side of the trijunction, with the

sohd/solid interface located about 1 = 0. The steady-state solute equation Eq. (75) with the

appropriate no-flux boundary conditions gives that the diffusion potential fc is constant in each

phase, and by continuity of the diffusion potential across the three interfaces it must have the

same value everyvrhere. Moreover, as noted in section 4.4 the diffusion potential at the sohd/sohd

interface is zero and it is therefore zero throughout the entire domain. As a consequence the

concentration in each phase is constant; in the hquid it is 1/2 and in the two sohd phases it

has the appropriate eutectic compositions, and given by Eq. (109). It foUows from the

parallel tangent construction, given by Eq. (104) and Eq. (107), which emerges from the sharp

interface hmit, that the position of the /5-L interface, denoted hy y = h[x), satisfies

h =
Bh"

•, 0 < 2 < 1
,

[1 +

with the boundary conditions h\0) = tan(^) and h\l) = 0, where

(124)

^ G{L[4\r - 1
) + 1

] + /(4^) -

This ordinary differential equation is easily solved numerically, and the solutions can be used to

compare with numerical solutions of the phase-field equations, as discussed in the next subsec-

tion.
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5.2. Numerical Method and Results

In the light of the symmetry of the trijunction discussed above and the fact that the diffusion

potential is everywhere zero, we solved

T),

(126)

(127)

with

U4,,i,,c,f) = 0
, (128)

on the domain 0 < s < 1 and —1/2 < y < 1/2. We imposed the boundary conditions

(129)
d(j) dtp dc

dn dn dn ’

on the boundaries along x = \^y = ±1/2 (the latter representing no solute flux across the

boundary of the domain), and

C = = 1 and ± = 0, (130)

representing the symmetry boundary conditions along cc = 0. Eq. (128) can be rearranged to

give c = O(<^,'0), where

1
n(<^,T/;) = (131)

1 ± exp[L{T - l)h{(j)){2h{'ip) - 1)]

With c so determined we solved Eq. (126) and Eq. (127) for (p and xp with their associated

boundary conditions.

We used a standard five point finite difference approximation of the Laplacian on a uniform

grid to discretize the governing equations (126) and (127). The resulting system of nonhnear

algebraic equations was solved using Newton iteration. The sparse symmetric Hnear system

that arises was solved by a preconditioned iterative technique using the NSPCG [34] software

package. It was found that a first order Neumann polynomial preconditioner aided to the bicon-

jugate gradient squared accelerator provided the most computationally efficient combination.

Continuation was used, typically by varying ds. All the computations shown here were done on

a 128 X 128 mesh.
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Parameter Value

0.08

0.08

L 0.1

5-l 0.2
0-5 0.187

G 10.0
T 1.5

Table 1: The values of the dimensionless parameters used in the computations

The results shown in Fig. 7 and Fig. 8 have been reflected about cc = 0 to show both sides of

the trijunction. In Fig. 7 we show a well-developed trijunction; the values of the dimensionless

parameters used in the numerical computations are given in Table 1. This figure depicts the

-0 and c fields. In (a) we show the solute field. The contours are at 5%, 50% and 95% of

the range and show that the concentration variation is confined to the interfacial regions as

expected from the sharp interface solution. In (b) we show contours of the 0 phase-field. The

a-/3 interface is given is clearly apparent, across which 0 varies rapidly in the sohd. In the hquid

the 0 contours fan out. The variation of 0 in the hquid, where 0 is zero, does not affect the value

of the Helmholtz free-energy functional there. In (c) we show the 0 phase-field; three contours

are shown, corresponding to 0 = 0.05,0.5 and 0.95. We see that the the sohd/hquid interface

curves down to meet the trijunction as expected. The diffuse trijunction region where both cj) and

0 vary is very much confined to the intersection of the sohd/hquid and sohd/sohd interfacial

regions as expected. In (c) the sohd circles show the position of the interface given by the sharp

interface solution, found by solving Eq. (124). There is clearly excellent agreement between the

phase-field and sharp interface solutions. In Fig. 8 we show the 0 phase fields for three different

values of the sohd/sohd surface energy. The surface energy successively decreased from (a) to

(c). The parameter values were the same as those used previously, given in Table 1, except

that = e^ = 0.1, L = 1 and (5 = 1. This larger value of the latent heat results in a greater

degree of solute segregation across the interface, and the agreement with the sharp interface

solution, again represented by the sohd circles, is not as good in this case. The computed phase-
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field interfacial layer is uniformly displaced from the sharp interface solution. Despite this we

observe the correct quahtative behaviour, with the interface becoming more curved and being

displaced further behind the eutectic isotherm (t/ = 0) as gs is increased.

6. Conclusions

In this paper we have considered two phase-field models of a eutectic alloy. The first, based

on a regular solution model with a chemical miscibihty gap suffers from the deficiency that,

in the sharp interface hmit the sohd/sohd surface energy is zero. We went on to develop an

alternate phase-field model which uses two order parameters to represent the different phases

and have provided a thermodynamically consistent derivation of this phase-field model which

guarantees that the local entropy production is positive. A sharp interface asymptotic analysis of

the liquid/ solid phase transition result in a free-boundary problem in which both surface energy

and interface kinetics are present. Finally, we have considered a sharp interface asymptotic

analysis of a stationary, isothermal, trijunction from which we demonstrated that the interfacial

surface tensions are in mechanical equilibrium. This is compared favourably with numerical

solutions of our model appropriate to a trijunction.
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A. The Parallel Tangent Construction

From the common tangent construction Eq. (104) and Eq. (107) it is a straight forward matter

to show that the slope of the hquidus and sohdus in for a—L phase transitions are given as

ms{fj) = = fcc{cs)

= /cc(cl)
cLcl

frS^s)

Cs-Ci,

hMs) -
/r/cz,) -

(132)

(133)
Cs - Cl

where subscripts on / denote partial derivatives, and and ms are the dimensionless slopes

of the hquidus and sohdus for the interfacial temperature T/.

From the form / we find that the above expressions, when evaluated for the q-L phase

transition are

fi[ct - ct]

c|^(l - + ijl(l - c£^) + •f(cs) - I{cl) - {cs - Cl)I'{cs)] ’

mtiTi) =
Ti[cf - ct]

(134)

(135)
cg^(l - + La{1 - c^) + I{cs) - I{c[) - (cs - ci)I'{cl)]

’

and from the S3nnmetry of the phase diagram that rn^iTi) = and rnf^^{Tj) =

-mtifi).

For the situation in which the interface is curved and moving we may seek the approximation

to the relation between the interfacial concentrations and temperature when c{yjm -t- FC) is

smaU. To this end we expand these variables about the equihbrium state, representing the

planar stationary interface for the a-L phase transition, denoted by cf , cf ,
T^, i.e. put

C5 = cf + C5, Cl — cf + cf ,
Tj — fj,jl — + A

:E
,

r.i

(136)

We hnearise the Eq. (104) and Eq. (107), representing the parallel tangent construction in the

perturbed (primed) quantities. Eliminating fl’ these hnearised equations give

T>
hiCs) - /T(cf

)

fMci)

-

)c'

+^ i

^

(137)
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Using the expression for Eq. (134) and noting that the factor in square brackets on the

right hand side is the same as the denominator in Eq. (132), Eq. (134) gives that

^aL^E
T l J— TTLg ^ + K . (138)

[tLbc^^ + L^il - cj^)]

For the dilute q-L aUoy it is appropriate to consider the hmit cs^cl —> 0 and ^ 1, in which

case Eq. (138) can be written in dimensional form as

Ti = Th +
- 1)RT^ cj^Th ^ Vr

Cs 7 A -
oL (139)

k^^VmLA

where aU the variables are dimensional in this expression, k°"^ is the segregation coefficient,

defined here as

.ctL hm
ci,^0

(140)

and is the interface mobihty coefficient. The analysis can be repeated for the liquid con-

centration to yield the analogous dimensional expression

Ti = Th +
(fc“^ - 1)RT^

Vrr^L
Cl -

HK -
CtL

(141)

for a dilute a-L aUoy. Corresponding expressions can also be obtained for the /3-L alloy in a

straight forward manner.
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Figure 1: A schematic plot of the bulk free energy densities /x,(c, T) and fs{c,T) of the liquid

and sohd phases versus c for Model I at a temperature below the eutectic temperature; the

curves axe symmetric about c = 1/2.
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Figure 2: A schematic plot of the bulk free energy densities /^(c, T) and /^(c, T) of the two

sohd phases and /£,(c, T) of the liquid phase versus c for Model II at a temperature below the

eutectic temperature.
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0 Concentration of B, c 1

P^ire A Pure B

Figure 3: A schematic drawing of superimposed liquid/a and liquid//5 phase diagrams. The
eutectic temperature is T^; and the phase boundaries below this temperature are metastable

with respect to the formation of a -f ^ mixture.
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Figure 4: A plot of / as a function of ip and c in the solid (<^ = 1) for Model IL
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Figure 5: A schematic drawing of the phase diagram for the symmetric alloy. The vertical solvus

curves are indicated by the dashed Hnes.
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m

I

Figure 6: Schematic diagram of the trijunction.
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Figure 7: The results of our computations for the the dimensionless parameters given in Table

1. (a) shows the concentration field with contours at 5%, 50% and 95% of the range of concen-

trations, (b) show the tp phase-field with contours at -0 = 0.05, 0.1, 0.2, . . . 0.9, 0.95. and (c) the

0 phase field with contours at 0 = 0.05,0.5 and 0.95. The sohd circles represent the position of

the sohd/hquid interface given from the sharp interface solution.
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(a)

(b)

Liquid

a

Figure 8: The cj) phase-field from our computations for the the dimensionless parameters given

in Table 1, but with e,^ = e^ = 0.1,(5=l L = 1 and three different values of the sohd surface

energy; (a) gs = 0.1871, (b) gs = 0.1198, (c) gs = 0.06132. The sohd circles represent the

position of the sohd/hquid interface given from the sharp interface solution.
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