
Reference Architecture for

Machine Controi Systems integration

interim Report

QC

100

.056

00.5517

1994

NISTIR 5517

M.K. Senetii
Thomas R. Kramer
John MichaloskI
Richard Quintero
Steven R. Ray
Wiiiiam G. Rippey
Sarah Whiiace

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Nisr

Reference Architecture for

Machine Control Systems Integration:

Interim Report

M.K. Senehi
Ttiomas R. Kramer
John Michaloski
Richard Quintero
Steven R. Ray
William G. Rippey
Sarah Wallace

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

October 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Reference Architecture Interim Report

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied.

Acknowledgements

Partial funding for the work described in this paper was provided to Catholic University

by the National Institute of Standards and Technology under cooperative agreement

Number 70NANB2H1213.

11

Vi iwtflMal it.-t heK *di r ,ti- t‘'niiiu;''V!jt in lunttMiJiisss :* kvoispji* oM

lTaan.iu|^^i^.<)v.t fW/lfindjaT fcn» «t965)^

,„^,, , HU.r rr«a Vablft*ife'W t'.!* dnsSJuKl?. ^0- UlialKO' «f!l r<»

AlS.iHf8V«AtlW’i&mi!H

Reference Architecture Interim Report

CONTENTS

1.0 Background 1

1.1 Project 1

1.2 Feasibility Report 2

1.3 This Report 2

2.0 Introduction to the Proposed Joint Architecture 3

2.1 Preliminary Definitions and Architectural Framework Overview 3

2.1.1 First Concepts 3

2.1.2 Elements of Architectural Definition 3

2.1.3 Tiers of Architectural Definition 4

2.2 Developing the Architecture 5

3.0 Proposed Joint Architecture 6

- .1 Fundamental Principles of the Joint Architecture 6

3.2 The Joint Architecture 7

3.2.1 Scope and Purpose 7

3.2.2 Methodology For Architectural Development 7

3.2.3 Domain Analyses 8

3.2.3. 1 Description of a Manufacturing Shop

3.2.3.2 Operation of a Manufacturing Shop

3.2.3.3 Controllers in a Manufacturing Shop

3.2.4 Architectural Specification 11

3.2.4. 1 Shop Information

3.2.4.2 Levels of Control

3.2.4.3 Communications

3.3 Framework for the Joint Architecture and Description via the Framework ...24

3.3.1 Textual Description Methods 24

3.3.2 Framework Overview 25

3.3.3 Model Overview 25

3.3.3. 1 Information_Specifications

3.3.3.2 Communication_Specifications

3. 3.3.3 Functional_Specifications

3.3.4 Generic_Control_Architecture 30

3 .3 .4. 1 Control_Architecture

3 .3 .4.2 Tier_of_Architectural_Definition

3.3.4.3 Element_of_Architectural_Definition

3.3.4.4 ArchitecturaLUnit

3.3.5 Tier One: Hierarchical Control 44

3.3.5. 1 J_Scope_One

3. 3.5.2 J_Purpose_One

ill

Reference Architecture Interim Report

3. 3. 5.

3

Architectural_Specifications

3.3.6 Tier Two: Discrete Parts 46

3.3.6. 1 J_Scope_Two

3. 3. 6.2 Architectural_Specifications

4.0 Completing the Architecture 49

4.1 Technical Approach to Completing the Architecture 49

4.1.1 Resolve Issues 49

4.1.2 Define Scenarios 50

4.1.3 Define Schedule Negotiation Protocol 50

4.1.4 Complete Information Models 51

4.1.5 Complete Formal Model 51

4. 1 .6 Check RCS and MSI 5

1

4.1.7 Implement 51

4.2 Programmatic Approach to Completing the Architecture 51

References 53

Appendix A - Glossary 56

Appendix B - EXPRESS Definition of Joint Architecture 62

IV

Reference Architecture Interim Report

FIGURES

Figure 1. Sample Permitted Configurations for the Joint Architecture 16

Figure 2. EXPRESS Model of Joint Architecture - Overall Form 26

Figure 3. Planning and Control in EXPRESS Model of Joint Architecture 29

Figure 4. Elements of Architectural Definition in EXPRESS Model of Joint Architecture 32

Figure 5. Tree of Tiers (hypothetical example) 50

Reference Architecture Interim Report

Reference Architecture Interim Report

1 Background

This is a report on an emerging reference architecture for machine control systems

integration. The architecture is not yet complete, and work on the architecture is

continuing. This first section gives a brief description of the project which is developing

the architecture, a summary of the report which was prepared as the first step in

developing the architecture, and an overview of the current report.

1.1 Project

For over sixteen years, the Manufacturing Engineering Laboratory (MEL) at the

National Institute of Standards and Technology (NIST) has been conducting research

on control of mechanical systems for use in such diverse fields as discrete part

manufacturing, coal mining, under-ice submarining, and space exploration. The

Automated Manufacturing Research Facility (AMRF) control architecture was

developed in MEL [Simpson], [McLean]. Within MEL, the Robot Systems Division

(RSD) and the Factory Automation Systems Division (FASD) have been engaged in

researching architectures for control systems. RSD has developed the Real-Time

Control System (RCS) architecture [Albusl]. FASD has developed the Manufacturing

Systems Integration (MSI) architecture [Wallace].

Presendy, RSD and FASD are engaged in a joint project to formulate a reference

architecture for the integration of machine control systems by combining the RCS and

MSI architectures. Prior to attempting to construct the architecture, a feasibility study

was carried out by a team comprised of one staff member from each division. A report.

Feasibility Study: Reference Architecture for Machine Control Systems Integration,

was written which contains not only the rationale for the conclusion that a joint

architecture combining features of RCS and MSI is feasible, but also fundamental

background to be used in the formulation of the architecture. The report is described

briefly in Section 1.2.

In the first phase of the formulation of the architecture, a larger team, comprised of the

authors of this report, was assembled using the original two staff members as team

leaders and adding two more team members from each division. The proposed

architecture was more fully developed by the team. Since the project is an inter-

divisional project, the architecture under development will be called the “joint

architecture” in this report.

Future development of the architecture is planned. When the architecture is technically

complete, it will be documented and implementations will be made. If other divisions

of NIST participate in completing the architecture, the scope and purpose of the

architecture may be broadened as a result.

1

Reference Architecture Interim Report

1.2 Feasibility Report

The report from the first phase this project, Feasibility Study: Reference Architecture

for Machine Control Systems Integration [Kramer], presents and analyzes previous

work, both within and external to NIST, and proposes, in general terms, the basic

features of a single reference architecture applicable in both RSD and FASD. We will

abbreviate the title here to Feasibility Study.

The Feasibility Study first sets out a vocabulary and a framework for examining

architectures. A number of elements which are normally present in a fully defined

architecture are given in Section 3 of the Feasibility Study. In this report, we will

summarize these elements and use them to discuss the joint architecture.

Sections 4 and 5 of the Feasibility Study identify a number of issues, both for general

architectures and for control architectures which a complete architecture must address.

Section 7 describes the RCS architecture from RSD, the MSI architecture from FASD,

and assesses the compatibility of RCS and MSI using the previously developed

framework for architectures. A detailed comparison of the two architectures on each of

the architectural and control issues is given in Appendix C of the Feasibility Study.

Based on the comparison. Section 8 outlines a proposed single reference architecture.

To put the current work in perspective. Section 6 discusses classifications of

architectures and describes several architectures other than RCS and MSI to illustrate

each type. The Feasibility Study contains an extensive annotated bibliography.

Section 9 gives conclusions regarding the comparison of architectures and the

formulation of reference architectures.

1.3 This Report

This report extends the proposed single reference architecture presented in the

Feasibility Study. The report is intended to provide an initial version of the architecture

for further comment and development by a team of developers from the various MEL
divisions; it is not technically complete. Furthermore, because of the lack of maturity

of the architecture, it is discussed primarily in terms of the architectures from which it

is built, namely RCS and MSI. In the future, the architecture will be written up

independently from its predecessors.

Section 2 of this report presents preliminary definitions, an overview of the

architectural framework for the proposed joint architecture, and a description of our

approach to developing the joint architecture.

Section 3 presents the joint architecture, as currently defined. A discussion of key

aspects of the functioning of the architecture and a tier-by-tier presentation of the

architecture are both given.

Section 4 discusses what is required to complete the joint architecture.

Appendix B contains a formal model of the architecture written in EXPRESS [Spiby].

2

Reference Architecture Interim Report

2 Introduction to the Proposed Joint Architecture

This section presents preliminary definitions, an overview of the architectural

framework for the proposed joint architecture, and a description of our approach to

developing the joint architecture.

2.1 Preliminary Definitions and Architectural Framework Overview

This report uses the terminology and framework for an architecture that were developed

in the Feasibility Study. While a brief description of the terms and framework is

presented in this section, the reader is referred to the Feasibility Study for a detailed

discussion (Section 2, “Preliminary Definitions”, and Section 3, “Definition of an

Architecture” are particularly relevant). With a few exceptions, the glossary of this

report is the same as that of the Feasibility Study.

2.1.1 First Concepts

An architecture gives the design and structure of a system. The class of situations in

which an architecture is intended to be used is termed its domain . For example, an

architecture might apply to the manufacture of discrete parts. An application is subset

of one or more situations in the domain of an architecture having similar characteristics.

A particular shop, with a specific set of equipment and configuration is an example of

an application consisting of a single situation. The class of 3-axis milling machines is

an example of an application encompassing several situations. The realization of an

architecture in hardware and software for an application will be called an

implementation of the architecture.

A reference architecture is defined to be a generic architecture for a domain which is

broader than a single situation.

2. 1 .2 Elements of Architectural Definition

A complete definition of an architecture requires a number of elements ofarchitectural

definition . Elements of architectural definition are conceptual entities, which may or

may not have any physical realization. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development

(5) conformance criteria

An architecture which is completely defined addresses all elements of architectural

definition in a balanced fashion.

The statement of scope of an architecture describes the range of areas (domain) to

which the architecture is intended to be applied. A statement ofpurpose identifies what

the objectives of an architecture are within the given scope.

3

Reference Architecture Interim Report

Analyses of the target domain that reveal its essential characteristics are domain

analyses .

An architectural specification is a prescription of what the pieces (software, languages,

execution models, controller models, communications models, computer hardware,

machinery, etc.) of an architecture are, how they are connected (logically and

physically), and how they interact. The pieces of an architecture described above have

specific meaning within the architecture and will be referred to as architectural units .

Architectural units are frequently defined by giving each one distinct functional

characteristics, although this is not the only mode of definition. We shall refer to the

realization of an architectural unit in an implementation as a component of the

implementation.

A set of procedures for refining and implementing an architecture is called a

methodology for architectural development for the architecture.

Copformance criteria are standards which specify how an architectural unit at one tier

(see next section) of an architecture conforms to the architectural specifications of a

higher tier, or how a process for building part of an architecture conforms to the

development methodology given by the architecture for building that part.

2. 1 .3 Tiers of Architectural Definition

An architecture consists of architectural units, each of which is more or less concrete in

nature. Often, two architectural units are related by having the second be a

specialization of the first - conversely, the first is a generalization of the second. Two
architectural units connected in this way are said to have an abstraction relation.

Abstraction relationships may connect an entire chain of architectural units. For

example: at an abstract level, one might define templates for information models, at a

somewhat more concrete level, a set of information models conforming to the templates

might be defined for a particular application, and at an even more concrete level,

database software might be designed implementing the information models.

It is useful to be able to define an architecture at different levels of abstraction. To do

this, we divide the architectural units of an architecture into groups. Each group is

called a tier of architectural definition , or simply tier. Every architectural unit of an

architecture is assigned to one tier or another. Whenever two architectural units are

related by an abstraction relation, the more abstract one should be in a higher tier or the

same tier as the more concrete one. Thus, the tiers of an architecture form cross-sections

of the architecture, with higher tiers being, generally, more abstract than lower ones.

Note that any two arbitrary architectural units need not be related by an abstraction

relation.

It would be appealing to require that all architectural units in a tier be of similar

concreteness (and the Feasibility Study defined tiers that way). There are several

shortcomings to making this requirement, however. First, while the abstraction

relationship provides a partial ordering, there is no absolute scale for measuring

abstraction and no commonly agreed upon method for assigning an absolute measure

4

Reference Architecture Interim Rep)ort

of abstraction to an architectural unit. Secondly, any two chains of architectural units

formed by abstraction relations may be different lengths, so tiers cannot be constructed

by putting all the first links in the first tier, all the second links in the second tier, and

so on. Third, it may be more convenient for defining an architecture to define some

items concretely even at a high tier, while keeping others more abstract at lower tiers.

On figures showing architectures, the lower tiers appear lower on the chart. In the

numbering system for tiers used here, however, the tier at the top is tier 1 , the next lower

tier is tier 2, and so on.

2.2 Developing the Architecture

Following the recommendation of the Feasibility Study, which concluded that the

strengths of the MSI and RCS architectures were complementary, it was decided that

the joint architecture should combine the features of the MSI and RCS architectures.

The RCS and MSI architectures have, therefore, been the primary sources of concepts

and methodologies for constructing the joint architecture.

The architecture was developed by consciously using an explicit methodology. First,

the architectural framework which had been developed in the Feasibility Study was

formalized, extended, and filled in. Second, a description ofhow the architecture would

perform in various scenarios was developed. These two tasks were developed in

parallel, and then the results were harmonized.

The paradigm for future architectural development is discussed in Section 4.

5

Reference Architecture Interim Report

3 Proposed Joint Architecture

This section describes the joint architecture in its current, incomplete form. The

description of the architecture reflects the two core tasks mentioned in Section 2.2 by

which the architecture was developed: building on the framework given in the

Feasibility Study (Section 3.1 and Section 3.2) and describing how the architecture

would perform in various scenarios (Section 3.3). The two presentations of the

architecture overlap, but it is useful to take both views to understand the architecture.

Section 3.1 presents some fundamental principles of the joint architecture at a high

level of abstraction.

Section 3.2 presents a high-level description of the joint architecture as it would apply

to a manufacturing environment during nominal operation. The discussion centers

around the integrated operation of a factory and focuses on the aspects of the

architecture required to achieve it.

Section 3.3 describes the architectural framework as enhanced from the Feasibility

Study, locates the parts of the architectural description presented in Section 3.2 with

respect to the framework and identifies missing pieces of the architecture. An
EXPRESS modeling language version of the filled-in framework is presented in

Appendix B.

As stated earlier, the architecture is still being developed. This section is a snapshot of

a work in progress, not a brief description of a finished work. Much of the architecture

is still malleable and may be changed as the architecture is completed.

3.1 Fundamental Principles of the Joint Architecture

The joint architecture has explicit tiers of architectural definition and includes all five

elements of architectural definition at each tier.

The joint architecture uses hierarchical control. The controllers interact via a command
and status protocol. At any time, each controller must have one superior (except the

controller at the top of the hierarchy, which has none) and may have zero to many
subordinates. The decision to use hierarchical control was made for both technical

reasons (it works) and programmatic reasons (both RCS and MSI use hierarchical

control).

Separate architectural units have been defined for separate functions or concepts where

possible (as opposed to letting single architectural units have several functions or

embody several concepts). This allows modular construction of lower tiers of the

architecture. In particular:

• information, control, and communications are separated,

• within communications, the logical definition of messages is separated

from the encoding of the messages (i.e. defining the mapping of the

definition into a string of bits) and separated from the communication

method by which bits are moved from one place to another.

6

Reference Architecture Interim Report

3.2 The Joint Architecture

As previously remarked, we will discuss the joint architecture in two different ways,

reflecting the process by which the architecture was constructed. The description of the

architecture in this section is intended to give a cohesive understanding of what the

architecture includes, and how an implementation of the architecture would operate. In

order to make the description understandable, it is less precise in identifying the

generality of specific aspects of the architecture, deferring this task to the tier-by-tier

description in the second part of this report. As mentioned earlier, the present

discussion of the architecture is primarily in terms of the architectures from which it is

built, namely RCS and MSI. Future discussions of the architecture will be written up

independently from its predecessors.

3.2. 1 Scope and Purpose

We plan to apply the joint architecture to a control system which controls a

manufacturing shop that produces machined metal parts. We are working toward

defining an architecture which can be implemented for this domain with existing

communications and computer hardware. We expect that certain aspects of the

architecture will apply to broader domains, but this is not discussed in depth in this

report.

The joint architecture focuses upon the operation of a shop which receives orders and

raw materials for the production of parts. The architecture integrates shop planning,

scheduling, and control functions in both nominal and error situations and must be able

to control a shop with any combination of physical and emulated equipment. In the

architecture, individual pieces of equipment in a shop are arranged in small clusters

called workcells. For equipment and workcells, the architecture provides for real-time

control with sensory input. The architecture is not required to integrate legacy systems,

although this is facilitated wherever possible. It is anticipated that aspects of the

architecture will be candidate standards for a new generation of manufacturing systems.

3.2.2 Methodology For Architectural Development

The joint architecture employs a cyclic development approach. The idea of cyclic

development is that one develops an architecture, assesses the finished product (the

assessment would include implementing the architecture), and uses the results of the

assessment as feedback to a cycle of refining the architecture. This may be done several

times. This document reports on the first (incomplete) cycle of definition of the

architecture.

The MSI and RCS architectures are used extensively in the formulation of the

architecture. The MSI architecture integrates shop planning, scheduling, and control

functions. The joint architecture will use adaptations of the mechanisms proposed by

the MSI architecture to obtain the high level integration of the shop. The RCS
architecture provides for real-time control with sensory feedback. The joint architecture

will use (an adaptation of) the RCS architecture to provide this function for equipment

and workcells which need this type of control. The joint architecture defines

7

Reference Architecture Interim Report

mechanisms for integrating RCS-like controllers with the functions of the shop. We
have not used the MSI and RCS architectures in their full generality: choices have been

made to help reduce the complexity of the joint architecture. Thus, the joint architecture

does not subsume either architecture.

3.2.3 Domain Analyses

The joint architecture draws heavily upon previous work of both FASD and RSD in

analyzing the discrete parts manufacturing domain and in providing for domain

analyses for real-time control with sensory feedback. While it is possible to categorize

the domain analyses which have been performed as information, function, and dynamic

analyses, this has not been done in this section of the document. Instead, a description

of a shop is presented (information and function analysis), and then the operation of the

shop (dynamic analysis) is discussed.

3 .2.3 . 1 Description of a Manufacturing Shop

A manufacturing shop’s function is to manufacture products to fill orders it has

received. The shop can be viewed as a set of physical equipment and human workers in

which a set of activities is coordinated by humans, hardware, and software to produce

parts indicated by the orders. A full description of a system which controls a shop must

include a description of the activities of the shop, the resources of a shop (including its

personnel, all physical equipment, related hardware, all software, the functionality of

hardware and software, and the relationship between the hardware and software), and

the relationship between the activities and the resources.

High-level activities which normally take place in a shop and are identified by the joint

architecture include:^

(1) Part Design—the creation of the designs for parts, associated fixtures and

(2) Planning—the planning required for the production of parts including

process planning, production management planning, production planning,

and real-time compensation of normal process variation.

(3) Control—the performance of manufacturing tasks.

(4) Order Entry—the entry of external instructions which direct the shop as to

what items to make, how many of each item to make, and when the items

must be ready for the customer.

(5) Configuration Management—the identification and control of shop resources

and capabilities.

(6) Material Handhng—the routing and delivery of material throughout the

shop.

1 . Additional systems (such as billing, personnel management, materials ordering, etc.) may of course, be

part of a manufacturing system, but these have not been considered in the formulation of the architecture.

2. Note that the architecture uses designs but does not at present address the process of producing designs.

8

Reference Architecture Interim Report

The joint architecture uses the following types of information:

(1) Part Designs.

The joint architecture will use models for the specification of product design

generated by the International Standards Organization Technical Committee

184, Subcommittee 4 (ISO TC184/SC4)[IS01].

(2) Plans.

The process plan model (ALPS) which provides a structure for the

representation of plans for part production (including schedules), will be used

by higher-level controllers [Catron], [Ray2]. State table representations for

plans will be used by other controllers [Barbera], [Quintero].

(3) Shop Orders.

The order model developed by the MSI project serves as a starting point

[Barkmeyer].

(4) Resource Descriptions.

The MSI architecture provides a high-level categorization of shop resources

both physical and logical. This includes material handling resources. A
framework for description of the status of resources is included [Barkmeyer],

[Rayl].

(5) Configuration Descriptions.

The MSI architecture provides a description of the relationships between

hardware, software, and communications entities in the shop and their status.

This model must be revised to include communications methods

[Barkmeyer], [Rayl]. Communications entities and methods in the joint

architecture may differ from those of MSI.

(6) Description of Relationships.

The Integrated Production Planning Information Model shows the

relationships among product design, shop resources, plans, shop

configuration, and shop status [Barkmeyer], [Rayl].

To determine the relationship between activities and resources, an analysis is

performed which involves decomposition of the tasks commonly performed by the

shop. Based on the task decompositions, determination of the appropriate number of

levels of control is made. The RCS and MSI architectures give (compatible) guidelines

for performing this analysis which will be used by the joint architecture [Albusl],

[Senehil]. Substantial analyses of information required at specific control levels for

specific classes of applications have been performed in RSD. The joint architecture will

formalize the results of these analyses and include them, modified as necessary.

Examples are found in [Fiala] and [Wavering].

9

Reference Architecture Interim Report

3.2. 3.2 Operation of a Manufacturing Shop

The goal of a shop is to manufacture products according to orders it has received. To

achieve this goal, individual pieces of equipment must perform activities which carry

out manufacturing tasks, and activities of individual pieces of equipment must be

coordinated. A control architecture for the shop must provide for both individual

activity and coordination.

The natural language functional model of the operation of a shop as developed in the

MSI architecture provides mechanisms for integrating the tasks of individual

controllers so that the collection of all the tasks achieves the shop’s goal [Senehi2]. The

mechanisms proposed are based upon a model of the shop operation. This model of

shop operations is appropriate for the high-level control of the shop and is adopted by

the joint architecture.

Briefly, the high-level operational model may be stated as follows. A shop receives an

order for a specific number of a given product specified by a design. For each design, a

process plan gives detailed instructions on how to manufacture the product, using

classes of resources. When an order is received for making a number of a product, an

appropriate process plan is retrieved or generated, and the order is broken into batches

for manufacturing. For each batch, the specific resources for product production are

selected and material handling steps are inserted. This planning is termed production

management planning, and the result is a production managed plan. Finally, the

production managed plan is scheduled, resources allocated, and material handling plans

finalized. The end result of performing these operations is a production plan which

contains all necessary information for making the product. When the scheduled time to

start manufacturing the batch arrives, the controllers in the shop interpret the production

plan and perform the work to manufacture the product.

3. 2. 3.3 Controllers in a Manufacturing Shop

The MSI architecture provides a specification for a controller which is integrated into

the manufacturing environment, the generic controller [Wallace]. The joint architecture

includes controllers of a similar sort in the upper hierarchical levels of control, where

resource allocation is required and operation in hard real time is not.

The high-level model of control is not appropriate for situations in which control of

some equipment and workcells in the shop is subject to stringent real-time response or

speed requirements and in which sensory processing is required. For controllers which

have these requirements, the RCS model of controller operation is appropriate and is

adopted by the joint architecture. Briefly, this model may be stated as follows. Control

systems are expected to have mechanisms for sensory input so that changes in the

environment can be detected. The control system is constantly monitoring its sensory

input to determine when events have occurred in the environment that it must react to.

Once raw sensor data has been processed into abstract information about the condition

of the environment, the control system makes decisions about what actions should be

10

Reference Architecture Interim Report

taken and plans react!vely for the events it perceives. The execution of plans produces

the external actions needed to cope with the environmental changes. An RCS controller

continuously performs a sense-decide-act cycle [Albus2].

A new operational model is needed for the level of control bridging the high and low

levels of control. Section 3.2.4.2.4 describes such a model.

The joint architecture does not specify at what hierarchical level the transition between

controller types should occur. In a discrete parts shop with a regularly changing mix of

parts to produce, with choices to make about which part is made on which machine, and

with non-trivial scheduling — our view of a typical discrete parts shop — it is

anticipated that at least one or two hierarchical levels of control will require MSI-like

controllers. In less complex discrete part shops and in other domains to which the Joint

architecture may apply, it may be feasible to use only RCS-like controllers. For this to

work, the RCS-like controllers must be able to accept orders and update and accept

other information required for high-level shop management.

3.2.4 Architectural Specification

Key aspects of the shop model are shop information, control, and communications.

How the joint architecture handles each of these is discussed in the following sections.

The discussion assumes a knowledge of the MSI and RCS architectures.

3.2.4. 1 Shop Information

Implementations of the architecture are expected to provide for the storage and access

of the data specified in the information models adopted by the joint architecture. As

discussed in Section 3.2.3.3, these include part descriptions, shop orders, resource

descriptions with resource status, configuration descriptions, and plans. Plans will be

discussed in depth in Section 3.2.4.2.I.

Shared information is stored in a known location (e.g., a memory location, database,

file, variable), and components (of an implementation) may be given access (e.g., read,

write, no access) to the information as required. Components which have access to the

same information need not be known to each other and need not acknowledge any

access or change of the information by any other component, except to maintain the

integrity of the information.

At this point in the definition of the joint architecture, the decision as to which

information gets stored in which type of storage (e.g., memory location, database, file,

variable) is implementation-dependent. Factors affecting this decision are physical

distribution of the components of the implementation, available communications

mechanisms, response requirements on components, and available hardware and

software.

11

Reference Architecture Interim Report

3.2.4.2 Levels of Control

As previously indicated, the joint architecture is a hierarchical control architecture. There

must be a single shop (top) level of control characterized by the ability to input shop orders

for parts. Beneath this top level, appropriate levels of control for an implementation can be

determined by using guidelines from either MSI or RCS.

At the highest level of control, the joint architecture provides for the coordination of

manufacturing tasks by executing the tasks according to a schedule. The schedule is

conveyed to controllers at each level of control through the parsing of a planning language

with constructs for specifying tasks and the coordination of these tasks. In this scheme, the

type and method of coordination allowed is determined by the planning language.

The joint architecture will adapt the ALPS language [Catron], [Ray2] for use at high levels

of control. This represents a specialization of the MSI architecture, which requires a language

with the capabilities of the ALPS language, but not necessarily ALPS. The capabilities of

ALPS are discussed in Section 3.2.4.2.1, and the controller functionality required to support

them is discussed in Section 3.2.4.2.4. To support the capabilities of ALPS, there are

functional requirements upon controllers not only at the high control levels, but also at the

lower ones.

For each level of control, there is a plan. The hierarchical trees of plans required for the

operation of the shop may be either generated in real time, or retrieved from a database.

While a real-time planning system is not currently available, there is nothing in the

architecture which requires plans to exist prior to their execution.

Additional flexibility to deal with scheduling variations and errors in the shop is provided by

a suite of messages between planners and controllers in the control hierarchy [Wallace]. In

this document, we will refer to this set of messages as the Schedule Negotiation Message

Suite, and the associated protocol as the Schedule Negotiation Protocol. The joint

architecture will adopt this specification for high levels of control; not all controllers are

required to be able to participate in this message exchange. The protocol needs to be tested

extensively. In particular, the specification must be enhanced to eliminate the possibility of

deadlocks.

The degree of automated error recovery of the shop will be determined by the level at which

controllers are capable of supporting this message exchange. The issue of requirements to

participate in this message exchange is discussed in Section 3.2.4.2.4.

3.2.4.2.1 ALPS Language

The ALPS process plan language uses a directed graph structure to represent plans for part

manufacture. It relies upon information about factory resources and capabilities, a shop-wide

clock, and externally-defined task defmitions being available. All of these items are to be

specified in the information models of the joint architecture.

Each node in an ALPS plan represents an activity which must be performed. The activity to

be performed may be a manufacturing task or a related task, such as retrieving information,

making judgements using information, performing timing functions, or handling material.

12

Reference Architecture Interim Report

An ALPS plan may contain branches which represent alternative sequences of activities

to be performed. The plan specifies how many branches (of those which follow the

node at which a decision is to be made) may be selected and whether these paths may
be executed sequentially or concurrently. The decision as to which branch(es) should

be chosen is based upon external information of the types mentioned in the previous

paragraphs. A controller parsing an ALPS plan must therefore be able to traverse this

complex graph and must be able to retrieve information from the external source

specified.

In an ALPS plan, a node which represents a manufacturing task may either refer to a

single primitive task, or may refer to another plan (which may or may not be an ALPS
plan). Typically, this plan would be a plan of a subordinate controller. It is not required

for the superior to know the form or location of the subordinate’s plan.

The ALPS language supports exclusive and non-exclusive resource allocation. To take

advantage of this feature, there must be a place in which to store the status of resources

referred to in the plan which is accessible to other controllers that may use this resource,

and the controller must be able to update these data location(s).

The ALPS language supports several synchronization mechanisms. These are:

(1) Signal and Wait for an Event.

Supporting this feature requires that a controller be able to set and to detect a

signal that an event has taken place. The controller must be able to idle,

waiting for the event to occur. The associated integrated planning model

describes the information structure of these events.

(2) Wait for a Lock.

The controller must be able to wait for a lock to be set. It must also be able to

access a lock object in the implementation of ALPS.

(3) Delay for a Specified Time Interval.

The controller must be able to idle and to detect when the specified duration

of time has elapsed.

(4) Delay Until a Specified Date and Time.

The controller must be able to idle and to detect when the specified time has

arrived.

ALPS nodes and plans have states. A plan node may be changed any time until the node

is uploaded from where it is stored and converted by a controller into a task to be

executed. The use of states prevents corruption of the plan by the different programs

which may be updating it. The state transition diagrams may be found in [W^ace].

In addition, ALPS plans can have input and output parameters. In some
implementations of ALPS, this feature has been used to provide a mechanism for

transferring the names of semaphores and locks. An implementation must address the

issue of how to pass parameters.

13

Reference Architecture Interim Report

3.2A.2.2 State Table Plans

At hierarchical levels using Real-Time Control Units, plans may be state tables — as

described in Section 4 of [Quintero], for example. A plan being executed (or the

controller executing the plan) is always in one of a set of known possible states. The

plan is executed cyclically. In each cycle, a set of conditions and the state are tested.

For each set of possible conditions and states, the plan specifies a state to enter for the

next cycle (which may be the same as the current state) and a set of jobs to carry out

during the current cycle.

3.2.4.2.3 Schedule Negotiation Protocol

The Schedule Negotiation Protocol is a series of message exchanges between the

planner and controller architectural units in the MSI architecture. It provides for

recovery from scheduling problems and detection of anomalies in the operation of the

shop. The current specification of the messages presupposes that control units have the

following five (logical) interfaces:

(1) Planning to Planner Interface—which governs interactions of superior and

subordinate planners concerning the selection, generation, and scheduling of

process, production managed, and production plans.

(2) Controller Interface—which governs interactions of superior and subordinate

controllers concerning task execution.

(3) Guardian to Planner Interface—which governs how an intelligent agent may
interact with the planner.

(4) Guardian to Controller Interface—which governs how an intelligent agent

may interact with the controller.

(5) Planner to Controller Interface—which governs how the planner and the

controller may interact in both ordinary and error situations.

The current Schedule Negotiation Protocol needs further testing and development. In

addition to testing for potential deadlocks, some provision for continuing when a timely

response from a control unit fails to come should be made and timing information for

tasks may need to be made more explicit than is currently possible with either ALPS or

the Schedule Negotiation Protocol.

For a control unit to participate fully in the Schedule Negotiation Protocol, the control

unit must be able to:

(1) detect when a subordinate has failed,

(2) detect when a subordinate’s task is late,

(3) abort task execution,

(4) pause task execution and retain information to restart later,

(5) restart task execution from a point at which it was paused,

(6) halt task execution, discard all information related to the task, and become
ready to start another task.

14

Reference Architecture Interim Report

(7) halt task execution and regard the task as complete, and

(8) estimate task completion time and alter task execution based on new
parameters (e.g., new start, completion times).

The inability of either the production planner or the controller to perform any of the

indicated functions does not prevent a production planner or controller from being

integrated into a control system for a shop using the architecture, but it does weaken the

recovery ability of the system.

3.2.4.2

A

Types of Controllers

It would be desirable if all controllers in a control system could be of the same type.

This would make the architecture simpler to understand and implement. The

requirements on controllers at opposite ends of a control hierarchy, however, are very

different. In the upper levels of many systems, it is essential to be able to perform

schedule negotiation, plan parsing, resource allocation, and time-consuming remote

data access operations. At the lower levels of many systems, it is essential to be able to

react to events in a few milliseconds, while plan parsing, resource allocation,

scheduling, and remote data access are irrelevant. We feel intuitively that it will be

more effective to include different types of controllers in the architecture for the high

and low levels of a controller hierarchy. Our analysis of the consequences ofhaving two

types of controllers with these different capabilities indicates that it will probably be

necessary to have a third type to mediate between them.

Thus, the joint architecture has three basic types of controllers: Scheduled Control

Units (SCU), Real-Time Control Units (RTCU), and Transition Control Units (TCU).

Scheduled Control Units, patterned after the MSI generic controller, are to be used at

high levels of control where real-time response is not required, or where there is the

need to manage the allocation of resources among controllers which do not have the

same immediate superior. Real-Time Control Units are to be used when real-time

control is required or when sensory input must be processed. Transition Control Units

are to be used as superiors ofRTCUs and subordinates of SCUs. The job of TCUs is to

bridge between the two operational paradigms discussed in Section 3.2.3.3. A TCU is

not required if the RTCU can parse ALPS plans and participate in the Schedule

Negotiation Protocol^. Each of these types of controllers is discussed in the following

sections.

When resource allocation is not a problem and real-time operation is not forestalled by

potentially untimely database or communications operations, most or all of the control

hierarchy may be composed of RTCUs. And when real-time demands are modest but

scheduling is required throughout the control system, an entire hierarchy might be

composed of SCUs. Figure 1 shows some sample permitted configurations for

controllers in the joint architecture. If further analysis shows that an architecture can

perform well in most situations with only one type of controller, we will drop the

multiple types.

3. Or in the subset of the ALPS plans and Schedule Negotiation Protocol which the implementation requires.

15

Reference Architecture Interim Report

1

.

This diagram illustrates a hierarchy with an SCU-type controller at the top. The hierarchy

has an SCU which supervises both a TCU and an RTCU. On the other side of the hierarchy,

there is a hierarchy consisting solely of RTCUs.
2.

This diagram illustrates a hierarchy consisting of entirely RTCUs. This may be appropriate

in situations where the control system reacts primarily on sensory data.
3.

TCUs can occur at any level or not at all, depending on the needs of the application. In

cases where an SCU directly supervises an RTCU, the RTCU must perform the functions

expected of a TCU.

Figure 1. Sample Permitted Configurations

for the Joint Architecture

16

Reference Architecture Interim Report

Scheduled Control Units

Scheduled Control Units (SCU) are a specialization of the MSI control entity

[Wallace]. We will assume that the SCU contains both a controller (which executes

tasks) and a planner (which schedules the controller). Although MSI allows other

configurations of planners and controllers, it is not immediately clear whether the joint

architecture needs or can use this flexibility. In the configuration chosen for the SCU,

conformance to the planner-to-controller portion of MSI’s schedule negotiation

message suite is optional.

An SCU parses and executes ALPS plans and provides scheduling and rescheduling for

ALPS plans when required. An SCU supports the schedule negotiation message suite.

An SCU has a subset of the five interfaces required by the MSI architecture.

Of the interfaces listed in Section 3.2.4.2.3, all SCUs must have interfaces 1-4. The

specification for interface 5 may be used if desired.

Processing in the shop is initiated when the Shop level control unit receives an order for

parts to be produced. It is expected the Shop level control unit will usually be an SCU.

At this point, the method by which an SCU is notified that an order exists and the

method by which an appropriate tree of ALPS plans is retrieved or generated, are not

specified by the architecture.

For SCUs that are not at the shop level, processing is initiated when an appropriate

message is received from the superior controller. This message contains a pointer to the

plan to be executed and the input parameters for the plan.

SCUs use the interrupt-driven control paradigm. The rationale for this is that, since

there is so much information which may affect the control unit, it is not practical to poll

eveiy bit of information. Instead, the control unit is notified when something changes

which may make a difference. Changes which produce events are such things as: a

change in the status of a resource affecting the control unit, receipt of a message from

the subordinate or superior, and changes in semaphores or locks. The disadvantage of

this approach is that the code for the SCU is complex.

Real-time Control Units

The Real-time Control Unit (RTCU) is a specialization of the RCS controller. As
indicated in the Feasibility Report, [Kramer] there are several variations upon the basic

RCS architecture [Albusl], [Albus2], [Albus3], [Barbera], [Herman], [Quintero].

While the joint architecture will attempt to permit as many of these variations as

possible, choices may be made to obtain a working architecture.

As previously stated in Section 3.2.3.2, an RTCU operates on sensory information from

the environment, processing it into an internal representation, determining appropriate

actions, and performing them (with actuators). Following the RCS architecture, the

internal representation of selected features of the environment and the state of the RCS
system is termed the world model of the system. The world modeling architectural unit

17

Reference Architecture Interim Report

governs interactions with the world model. In addition to world modeling and the associated

world model, an RTCU includes three other architectural units. The four internal architectural

units of an RTCU are:

(1) Sensory Processing (SP)—which processes sensory information for insertion into

the world model.

(2) World Modeling (WM)—which controls access to the world model.

(3) Value Judgment (VJ)—which determines the course of action to take in responding

to the environment.

(4) Behavior Generation (BG)—which generates the actions of the system.

Behavior generation is further decomposed into three parts:

(1) Job Assignment (JA)—which decomposes tasks into subtasks and assigns them to

subordinates.

(2) Planning (PL)—which orders the subtasks into a temporal sequence.

(3) Execution (EX)—which performs the designated subtasks.

A parallel exists between the SCU’s planner and controller, and an RTCU’s planning and

execution.

A variety of plan representations are used by RTCU’s ranging from state tables [Barbera],

[Quintero] to directed graphs having some of the same features as ALPS. A command and

status interface exists between BG in adjacent control levels. This command and status

interface is not standardized by the architecture, but in all cases task execution can be initiated

by naming a work element and passing appropriate parameters.

RTCUs can operate using either a cyclic execution control paradigm or an interrupt-driven

control paradigm. Neither paradigm poses a problem for integration, provided that a TCU is an

immediate superior.

In an RTCU, the amount of information that is to be processed or exported during control unit

operation must be limited to what can be handled quickly enough to meet the real-time

requirements of the RTCU. It is anticipated that real-time requirements of many applications

will preclude having an RTCU handle information not available through the processor on

which the RTCU is running or through another processor on the same backplane.

To integrate with the shop, it is necessary to export to the supervising TCU the status of the

physical equipment which the RTCU is operating and the status of tasks which it is performing.

It is also desirable that the RTCU have a notion of a system wide clock so that it can report on

task status and timing. Obtaining equipment status and system clock time may be so time-

consuming that an RTCU cannot do it and meet its real-time requirements. If an RTCU cannot

provide these, the supervising TCU must supply this information. Recovery from an

unforeseen error affecting controllers outside the part of the control hierarchy subordinate to

the RTCU experiencing the error cannot be performed for control units at a lower level of

control than that RTCU.

18

Reference Architecture Interim Report

RTCUs have the ability to provide the following services to aid in error detection and

recovery:

(1) detect when a subordinate has failed,

(2) abort task execution, and

(3) halt task execution and discard all information related to the task.

The other functions required for full participation in the error-recovery of the shop

listed in Section 3.2.4.2.3 must be provided by the supervising TCU.

Transition Control Unit

Transition Control Units are responsible for bridging between SCUs and RTCUs. The

exact functions which the TCU performs depends upon the capabilities of the RTCU to

which it is interfacing. Therefore, it is unclear how generic a TCU can be. While it is

desirable that a TCU be generic, it is more important that it is possible to build a TCU
with the desired capabilities. With this in mind, we look at the functions required of a

TCU and mechanics for building such a TCU.

A TCU is required to be able to parse ALPS plans and participate fully in the Schedule

Negotiation Protocol. It is unclear if it is desirable for aTCU to control equipment itself

directly. As this makes the functional description more complex, we will assume that it

cannot. If the RTCU which it supervises is not capable of performing the functions

requested, the TCU is responsible for translating the message or ALPS plan node,

substituting a related message or node or simulating the required action, instead of

passing the function down. Additionally, a TCU must ensure that appropriate

information about the RTCU is available to allow the TCU to participate in the

execution of the ALPS plan and the Schedule Negotiation Protocol. We will discuss

each of these in turn.

Participation in ALPS Plan Execution

While this discussion does not assume a detailed knowledge of each of the types of

nodes in ALPS, it is helpful to know that ALPS nodes fall into several general types.

These are:

(1) Task Nodes—which contain a description of work to be done.

(2) Information Nodes—which contain a description of information to be

retrieved for use by the plan.

(3) Navigational Nodes—^which mark the start and end of a plan and allow

choices of which plan branches are executed.

(4) Synchronization Nodes—^which provide for synchronizing paths in a single

plan or paths in plans for controllers in separate parts of a hierarchy (see

Section 3.2.4.2.1).

(5) Resource Nodes—which describe resources which can be used.

A more detailed discussion of the nodes may be found in [Catron], [Ray], [Barkmeyer].

19

Reference Architecture Interim Report

Each type of node poses its own unique challenges to the TCU. We will start with

discussing task nodes. Like the SCU, a TCU needs to have the ability to reference a

system-wide clock to see whether it is on schedule and to accommodate ALPS nodes

which require a notion of external time. Designing such a clock for a variety of

platforms is a great technical challenge. This is eased somewhat because the clock is

explicitly not to be used for sequencing messages. Therefore, the degree of accuracy

can be set at an acceptable level. Although it is desirable that a RTCU can report its own

time, it may be necessary for the TCU to keep track of the time for the subordinate

RTCU.

When an ALPS node indicates that it should start at a particular time, the TCU will give

the command at the correct time"^. It will use the available time to update the status of

the node and the resources associated with its subordinate and to determine whether a

task is on-time, etc. This will limit the ability of the hierarchy to recover from errors to

the level of the highest RTCU only, which may not be adequate, but is the best that can

be done in this arrangement without a serious violation of the hierarchical control

principle that the superior does not know the internals of the subordinate controller.

The form of mediation between the ALPS plan which the TCU is given and the plan(s)

which the subordinate RTCU expects is dependent on the type of plans which the

RTCU expects. In the simplest case, the RTCU can perform only one task, generated

by one plan; then the passing of the plan is moot. If the RTCU has the ability to choose

the plan which it executes dynamically, the name of the plan can be passed down in an

‘execute’ command with the other plan parameters. If an RTCU uses plans which are

state tables, the RTCU will be able to recover only from those errors for which error

states and recovery actions have been included in plans.

Part of the responsibility of the TCU is to know which parameters are valid for the

subordinate and which are not. For example, a subordinate might need to know the feed

and speed going with a milling command, but a subordinate might not know how to

handle a request for information from a database, and the TCU would need to place an

appropriate form of the retrieved data into the form and the location that the RTCU
requires.

Interactions of a TCU with an RTCU may require the TCU to have detailed knowledge

of the internals of the RTCU. They might even require certain hardware

accommodations; if the RTCU is on a personal computer and uses shared memory to

store its world model, the TCU might need to run on a (different) personal computer

(pc) processor which had access to the same pc memory board as well. One presumes

that such arrangements need only be made with the lowest levels of control, where the

cycle time is fast and the response requirements are great.

4. Note that this means that the RTCU supervised by a TCU will not be able to queue commands at its level,

although it may allow its subordinates to queue commands.

20

Reference Architecture Interim Report

A more generic TCU might be achieved by determining which types of information

about the RTCU are normally needed (e.g. parameters, world model storage locations,

types, names, and parameters of specific plans, execution times of plans with various

parameter values, stopping, starting, resuming, and replanning abilities of the RTCU,
and a description of the resources controlled by the RTCU and their status, resource

consumption). An RTCU could modify its execution of the plan based upon sensory

input. In this case, it would be desirable for the RTCU to have some way of exporting

its new expected ending date and time to the TCU.

Handling nodes for processing information and navigation requires the TCU to access

information about both the Shop, itself, and the resources which the subordinate RTCU
manages, and to make the appropriate choices. This is a service for the (hard) real-time

controller which cannot handle queries and information processing of indeterminate

duration.

Synchronization nodes pose more of a challenge for the TCU. Since the RTCU is not

expected to have the same notions of semaphores and locks as ALPS, the TCU must

handle this. This means that, like resources, plans can only be synchronized at the level

of the RTCU immediately below the TCU. Whether this will be enough

synchronization capability to permit the system to function fully must be investigated

by looking at the application of the architecture to a number of specific cases. If this

does not prove sufficient, it may be possible to allow an exception to strict hierarchical

control, whereby the superior could know more about the plans and resources of some

part of the RTCU hierarchy below the immediate subordinate.

Finally, since RTCUs only use the concept of exclusive resource allocation, the TCU
must simulate all other types of resource allocation by updating the appropriate

resource description for the overall shop model. By virtue of the plans, the proper

resource allocations will be maintained.

Participation in the Schedule Negotiation Protocol

As previously indicated, RTCUs already support some of the functionality required for

participation in the Schedule Negotiation Protocol. The other functionalities can be

supported to various degrees based on the capabilities of the controller. In some cases,

the functionality cannot be supported by the RTCU which the TCU supervises. In these

cases, the TCU must determine an acceptable alternative command to pass down to the

RTCU to support the following functions:

(1) Detect when a subordinate’s task is late.

If the RTCU can detect when its subordinate’s task is late, it may pass this

information up to the TCU, which can negotiate appropriately.

If the RTCU cannot detect when its subordinate’s task is late, the TCU must

assume that the task is on time, until the RTCU it supervises is late.

(2) Estimate task completion time and alter task execution based on new
parameters (e.g., new start, completion times).

If the RTCU can detect that the task completion time has changed from the

standard for that plan, it may pass this information up to the TCU, v^ hich can

21

Reference Architecture Interim Report

negotiate appropriately.

If the RTCU cannot detect when the task completion time has changed from

the standard for that plan, the recovery mechanism will not be able to operate

until the RTCU is late.

(3) Halt task execution and retain information to restart later.

If the TCU is halted and instructed to save all information necessary to

resume the task later, and if the RTCU it supervises can save its information,

the RTCU simply waits for the TCU to resume execution.

If the RTCU is not capable of performing this, the TCU can either save all the

information for the subordinate controller and its place in the plan, or it can

issue a response to the superior controller that this task has not been

successful. The latter option will produce a halt or an abort.

(4) Restart task execution from the previous point.

This depends upon the TCU having a notion of which of the RTCU’s tasks

can be resumed safely, which can be repeated safely and which cannot.

If a task can be repeated, the TCU can simulate the correct behavior by re-

issuing the original task.

If the RTCU has the notion of restarting a task, the TCU can then tell the

RTCU to restart.

Otherwise, a negative response for the request will be sent, resulting in the

task being halted or aborted.

(5) Halt task execution and regard the task as complete.

Given that most RTCUs do not keep a record of previously performed tasks,

this requirement is merely a requirement for the TCU to update the ALPS
plan with the ‘complete’ state.

A re-thinking of the Schedule Negotiation Protocol might produce a more satisfactory

solution to 3 and 4.

3.2.4.2.5 Controller Interfaces

When the control system is in operation, controllers of all types need interfaces for a

human or other intelligent agent to provide monitoring and intervention. Exact

requirements for the joint architecture have yet to be determined, but the current

practices in the MSI and RCS architectures can be used as input.

MSI controllers (on which SCUs are based), have an interface called the guardian

which provides external support for external monitoring and intervention. It is designed

to be used primarily for user intervention when automatic error recovery cannot be

done. A guardian interface may be either passive, which is used for monitoring only, or

active, which can also provide intervention. A controller can have any number of

passive guardian interfaces, but only one active guardian interface. A guardian interface

has specific messages which may be sent to and from the controller. Details are given

in the Schedule Negotiation Protocol (see Section 3.2.4.2.3). The intelligent user is

permitted to alter quite a few aspects of task execution, but may alter only limited

aspects of task planning.

22

Reference Architecture Interim Report

RCS controllers (on which RTCUs are based), have a user interface for each controller

the details of which are left to the implementor. Frequently, the monitoring interface

can be used to track data exchange between controllers and alter virtually any aspect of

task planning or execution.

3.2.4.3 Communications

For the levels of the architecture which participate in the Schedule Negotiation

Protocol, communication channels for command and status messages must use a point

to point, guaranteed message communication paradigm. Such a protocol is provided by

the Manufacturing Automation Protocol (MAP) [MAPI], [MAP2], with the

Manufacturing Messaging Specification (MMS) application layer [IS02]. However,

the use of Ethemet/TCP/IP instead of the Token Bus (as required by MAP)
[Tanenbaum] has been more workable in our experience in the past and is strongly

encouraged in future implementations of the joint architecture. The requirement of

point to point communication for command and status may be softened to allow other

forms of communication (such as communication via a memory board in a backplane

shared by the processors on which the command and status senders are running)

provided that the communication method is used to send command and status messages

from one specified party to another specified party.

For control units in the architecture which use ALPS plans, some type of

communications mechanism which permits data to be read by multiple readers who are

not known in advance must be used to implement locks and other synchronization

structures. NIST’s Common Memory [Libes], [Rybczynski] provides such a

mechanism, as do databases.

For other required communications, standard communication protocols such as

Ethemet/TCP/IP or RS-232 [EIA] can be used. For processes running in the same

computer, shared memory may be available, as may a common bus.

23

Reference Architecture Interim Report

3.3 Framework for the Joint Architecture and Description via the Framework

This section gives an overview of the framework of the joint architecture and a tier-by-

tier description of the architecture.

An incomplete model of the joint architecture written in the EXPRESS language is

included in this report as Appendix B. The EXPRESS model also takes a tier-by-tier

view. Sections 3.3.4 through 3.3.6 of the text are natural language equivalents of the

major sections of the EXPRESS model. Reading and understanding these sections

requires no knowledge of EXPRESS. Large portions of the text in this section are

identical to comments in the EXPRESS model. If there is any deviation of the English

language description of the EXPRESS model from the EXPRESS model description

here, it is unintentional, and the EXPRESS model should be regarded as definitive.

3.3.1 Textual Description Methods

Starting with Section 3.3.4, the text in this section consistently uses the same

constructions for the same purposes. The motivation for this is to provide as

unambiguous a description as possible of what is intended.

The textual description of the architecture presented here uses the same approach as

many object-oriented languages, including EXPRESS. The model is comprised largely

a number of class definitions. Each class has a name, may be derived from another

class, may have other classes derived from it, and may have a number of attributes. The

data type of each attribute is either a universally recognized type (such as an integer) or

is one of the other classes defined in the model.

If class B is derived from class A, class B will have all the attributes that A has, and it

may have additional attributes A does not have. Also, if class B is derived from class

A, the data type of an attribute of B may be constrained from the data type of the same

attribute of A. For example, if the data type of the “favorite_food” attribute of A is

“meat”, the data type of the “favorite_food” attribute of B might be constrained to be

“beef’. Thirdly, if class B is derived from class A, we will say that “B is a kind of A”,

or “an A may be a B”. We will not use “kind of’ or ^‘may be a” in any other sense in

this section. If class B is derived from class A and class C is derived from class B, it is

implicit that C is a kind of A. We could say that explicitly, but we will not do so in this

section, to avoid adding confusion.

Where class A has attribute B, which must be of type C, we say, “C serves as the B of

A”.

Except at the frrst level of subsections of this section (which have numbers like 3.3.1 or

3.3.2), the remaining subsections of this section are organized hierarchically. Where B
is a kind of A, a description of B will either be given as a subsection of the description

of A or as part of the same subsection that describes A.

Two varieties of classes of are needed to define the joint architecture: those that

describe generic components and those that describe which specific sorts of the generic

components are put together to form the architecture. An analogy is that in specifying

24

Reference Architecture Interim Report

the designs of pieces of furniture (whose generic components include wood), it is

necessary to have terminology for identifying different types of wood (such as “pine”,

“oak”, and “cherry”) in order to say which specific type of wood is to be used for a

given piece of furniture. In several cases in the joint architecture, a generic component

is defined as the singular form of a term (such as “architectural_specification”) while

use of the component is identified by the plural form of the same term (such as

“architectural_specifications”). We have not tried to segregate the two varieties of

classes in the organization of this section.

Terms defined in the EXPRESS model by using underscores to convert a phrase into a

single word are written using underscores in this section, rather than with spaces. Thus,

for example, “control architecture” becomes “control_architecture”. Other typographic

devices for clarifying meaning, such as using different fonts, are not used here to avoid

taxing the reader’s eyes, but are used in Appendix B.

3.3.2 Framework Overview

As noted earlier, the joint architecture conforms to the conceptual framework presented

in Section 2.1. That is, it has explicit tiers_of_architectural_definition, and the

elements_ of„architectural_definition are defined at each tier.

The joint architecture has five tiers. The lowest two or three tiers are intended to be

defined differentiy for different applications and implementations, with little or nothing

fi-om those tiers specified beforehand, provided, of course, that they conform to all the

higher tiers of the architecture. This section describes only the top two tiers of the joint

architecture. Appendix B includes aU five tiers, but the lowest three tiers are empty

shells.

In addition to the five tiers of the joint architecture, many generic control architecture

concepts are needed as the foundation for building the tiers. These concepts are

described in Section 3.3.4 and may be thought of as comprising tier 0 of the joint

architecture. They are very general, however, and could equally well serve as the

foundation for radically different architectures.

3.3.3 Model Overview

Following the framework, the model of the architecture is composed of an EXPRESS
schema for the framework itself (the generic control architecture) and five separate

EXPRESS schemas, one for each tier of architectural definition. The overall form of

the model is shown in Figure 2.

25

Reference Architecture Interim Report

schema: Geifciic Control Architectore

control tier of archie element of archit. architectural

architecture definition definition unit

schema: Tier 1 Hierarchical Control

scope purpose analyses architectural

specifications

methodology
for arch. dev.

conformance
criteria

schema: Tier 2 Discrete Parts

scope purpose analyses architectural methodology conformance
specifications for arch. dev. criteria

schema: Her 3

I scope ' purpose < an'^yses ["architectui^ < methodologyTconformance

)
I ^

(Specification^for arch. dev.
^ criteria

schema: Tier 4 j

scope I purpose ' an^yses "i architectui^ I'methodorogyi conformance ^

»
'specifications(for arch, devJ criteria

j

schema: Tier 5 <

r 1

scope » purpose
,

analyses ' architectural ^ methodology
,

conformance <

I

I jspecificationsj^for arch. dev. » criteria J

Figure 2. EXPRESS Model of Joint Architecture - Overall Form

The generic control architecture model has several important classes: control_

architecture, tier_of_architectural_definition, element_of_architectural_definition, and

architectural_unit. These classes correspond directly to the concepts in Section 2.1.2

and Section 2.1.3. The correspondence between the EXPRESS model and the

operational description of the architecture in Section 3.2 is less immediate. The
following sections discuss highlights of the correspondence to give the reader an

overall feel for how the two descriptions relate.

26

Reference Architecture Interim Report

The description of the architecture in Section 3.2.4 gives architectural_specifications.

These architectural_specifications consist of information_specifications,

communications_specifications, and functional_specifications, corresponding to key

aspects of the architecturaLspecifications listed in the previously referenced section.

We will discuss each of these specifications.

3.3.3. 1 Information_Specifications

The information_specifications of the joint architecture discuss the storage mechanism

for data, the information access paradigm for the data and the semantics of the data

itself.

The physical storage location for a datum is of class data_store, which may be a

temporary or a permanent place for data storage. A data_store has an associated

data_.store_manager which accesses the data_store.

A party which communicates with one or more other parties is an interactive_unit.

Interactive units communicate via an interaction specification. In the model, a non-

specific interaction specification is represented by the class

generic„interaction_specification. There are two fundamentally different types of

generic„interaction_specifications, direct_interaction_specification and

indirect„interaction_specification.

In an indirect__interaction_specification, a set of permitted_stored_data_units (which

consist of data__units) may be stored in one or more data_stores through the associated

data„store_managers. The indirect_interaction_specification specifies any number of

interactive_units which may read the data in the data_store and any number of

interactive„units which may write the data in the data_store. Conflict among the

interactive„units permitted either read_access, write_access or both is resolved

according to the access_scheme which is associated with the

indirect__interaction_specification.

In a direct_interaction_specification, the physical moving of bits from one

interactive„unit to another is accomplished via a communication_method. Data_units

are exchanged via messages with a message_content The mode of interaction is given

by an interaction_protocol which specifies the two interacting parties (labelling them

first_party and second_party) and giving a set of message_protocols which may be used

for the communication. Note that since the model allows only two interacting parties,

direct communication is explicitly point-to-point.

In the case where one of the interacting parties is a data_store_manager, the data_store

manager controls the access to the data_store by the parties specified in an

data„interaction_setup, according to the rules set forth by a data_interaction_protocol.

In the interaction, data_messages are exchanged. Data messages can be either to or

from the data_store. Data_messages are part of a data_message_protocol. There is no

analog to this protocol description of architecture given in Section 3.2.4.3, where

communication via database or Common Memory is indirect.

27

Reference Architecture Interim Report

In the case where neither of the parties is a data_store_manager, the two

interactive_units specified in a functional_interactive_setup communicate by

exchanging functional_messages according to the rules set forth by a

functional_interaction_protocol. Functional_messages may be either command or

status messages and are part of a functional_message_protocol. The

functional_message_protocol specified in the joint architecture is the Schedule

Negotiation Protocol (SNP). The full details of the messages specified in the SNP is not

yet part of the model of the joint architecture, although it may appear at a lower tier_of_

architectural_definition.

The data represented in the joint architecture in the information models is not yet fully

represented in the EXPRESS model. Certain elements are stubbed out: for example,

plans (and derived types process, production, and schedule plans), resources, and

message information.

3. 3. 3.2 Communication_Specifications

As previously discussed, the EXPRESS model represents both indirect communication

via a database or other data storage location and direct communication via message

exchange. Both paradigms are supported by the architecture. The presently filled in

tiers of the architecture do not include a communications specification detailed enough

to discuss MS, RS-232 or other standards described in Section 3.2.4.3.

3. 3. 3.3 FunctionaLSpecifications

The functional_specifications of the architecture are described by the subclasses and

relationships of system_activity. The primary activities of the system are planning and

control. Planning has the expected derived types process_planning,

production_management_planning, and schedule_planning. Parts of the EXPRESS
model having to do with planning and control are shown in Figure 3. It will be

necessary to add subtypes to “plan” for those plans which are used by RTCUs. Our

initial hope of using the “process_plan” subtype or the parent “plan” for RTCUs does

not seem workable.

28

Reference Architecture Interim Report

Figure 3. Planning and Control

in EXPRESS Model of Joint Architecture

29

Reference Architecture Interim Report

The planning and control functions are performed by a special type of interactive_unit

called a functional_unit. Functional_units are specialized as control_units and planners.

There are three types of planners: process_planners,

production_management_planners, and schedule_planners which perform

process_planning, production_management_planning, and schedule_planning,

respectively. Planners produce plans: Process_planners produce process_plans;

production_management_planners produce production_managed_plans, and

schedule_planners produce schedules. Control units operate using plans of one of these

three sorts, although this fact is not reflected anywhere in the EXPRESS model.

Control_units perform control functions. A control_unit is part of a

superior_and_subordinate (complex). A control_unit has at most one superior in the

superior_and_subordinates and may have zero or more subordinates. A control_unit

may be either a scheduled_control_unit, real_time_control_unit, or a

transition_control_unit The characteristics of these different types of control_units are

discussed in Section 3.2.4.2.4.

The handling of functional units should be re-examined because the current model does

not provide for building functional units from other functional units, and it is expected

that some mechanism for combining subunits will be required.

3.3.4 Generic_Control_Architecture

The “generic_control_architecture” is the most abstract level of the model of the joint

architecture. This section gives the many detailed definitions which are required to

specify unambiguously what is intended.

It should be noted that other models exist for some of these concepts —
communications and data, in particular. The intent of the model described here is to

specify those aspects of these concepts which are relevant to control systems. Further

study of existing models should be undertaken to determine if they are usable in the

context of control systems.

3.3.4. 1 Control_Architecture

A control_architecture is not a kind of anything else and has attributes:

tiers_of_architectural_definition (which is an ordered list of tiers) and an

overall_methodology (which is a methodology_for_architectural_development). The

tiers are ordered by degree of abstraction, as described earlier. A control_architecture

may be a hierarchical_control_architecture (see Section 3.3.5). Other types of

architectures could be defined which are kinds of control_architecture.

A control_architecture does not serve as part of any other defined thing.

The overall_methodology is a methodology_for_architectural_development which is

applicable to the entire architecture, not just to a single tier. For example a general

approach, such as “define tiers from the bottom up” lies outside any one tier and applies

to the architecture as a whole.

30

Reference Architecture Interim Report

3 .3 .4.2 Tier_of_Architectural_Definition

A tier_of_architectural_definition is not a kind of anything else and has attributes:

tier_scope (a scope), tier_purpose (a purpose), tier_analyses (an analyses),

tier_architectural_specifications (an architectural_specifications), tier_methodology (a

methodology_for_architectural_development), and tier_conformance_criteria (a

conformance_criteria). The tier_methodology is a method of building lower or higher

tiers.

Tier_of_architectural_definition serves as one element in the list of tiers (of

architectural definition) of a control_architecture. The concept

tier_of_architectural_definition is the same one as that discussed in Section 2.1.3.

3.3.4.3 Element_of_Architectural_Definition

An element_of_architectural_definition is not a kind of anything else and may be a:

scope, purpose, analyses, architectural_specifications, methodology_for_

architectural_development, or conformance_criteria. Note that scope and purpose are

two separate items here.

An element_of_architectural_definition does not serve directly as part of any other

defined thing.

The elements_of_architectural_definition are the same as those discussed in Section

2.1.2. The EXPRESS definitions of elements_of_architectural_definition and the

relationships among them are shown in Figure 4.

31

Reference Architecture Interim Report

Figure 4. Elements of Architectural Definition

in EXPRESS Model of Joint Architecture

(see key on Figure 3)

32

Reference Architecture Interim Report

3. 3.4.3. 1 Scope

A scope is a kind of element_of_architectural_definition. A scope is the range of areas

to which an architecture is intended to be applied. It is expected that the scope of each

lower tier of a control_architecture will be defined as a kind of the scope of the

preceding tier, with an a^ded attribute; the attribute will be a scope_restriction, which

may be unstructured text. The scope_restriction serves to further limit the scope which

was described in the preceding tier. A scope may be a j_scope_one; see Section 3.3.5.

A scope serves as the tier_scope of a tier_of_architectural_definition.

The initial scope for the joint architecture is given in Section 3.2.1, Section 3.3.5. 1, and

Section 3.3.6."'

3.3.4.3.2 Purpose

A purpose is a kind of element_of_architectural_deftnition. A purpose is a statement of

what the architecture is intended to help accomplish within the scope of that tier. It is

expected that the purpose of each lower tier of a control_architecture will be a defined

as a kind of the purpose of the preceding tier, with an added attribute; the attribute will

be a purpose_restriction, which may be unstructured text. The purpose_restriction

serves to further limit the purpose which was described in the preceding tier. A purpose

may be a j_purpose_one; see Section 3.3.5.

A purpose serves as the tier_purpose of a tier_of_architectural_definition.

The initial purpose for the joint architecture is given in Section 3.2.1 and Section

3.3.5.2.

3. 3.4.3.3 Analyses

An analyses is a kind of element_of_architectural_definition. An analyses is a

collection of analyses that should be performed. An analyses has attributes:

information_analyses (which is a set of information_analysis), functional_analyses

(which is a set of functional_analysis), dynamic_analyses (which is a set of dynamic

analysis), and other_analyses (which is a set of other_analysis).

An analyses serves as the tier_analyses of a tier_of_architectural_definition.

The initial domain analyses for the joint architecture are given in Section 3.2.3.

3.3.4.3.4 Architectural_Specifications

An architectural_specifications is a kind of element_of_architectural_definition. An
architectural_specifications has attributes: communications_specifications (which is a

list of zero to many communications_specification), functional_specifications (which

is a list of zero to many functional_specification), hardware_specifications (which is a

list of zero to many hardware_specification), information_specifications (which is a list

of zero to many information_specification), language_specifications (which is a list of

zero to many language_specification), and other_specifications (which is a list of zero

to many other_specification). Of course, at least some of these elements must be non-

zero in order for the architecture to have any content.

33

Reference Architecture Interim Report

An architectiiral_specifications serves as the tier_architectiiral_specifications of a

tier_of_architectural_definition.

3 . 3 .4.3 .5 Methodology_for_Architectural_Development

A methodology_for_architectiiral_development is a kind of element_of_architectiiral_

definition. A methodology_for_architectiiral_development is a set of procedures for

applying an architecture.

A methodology_for_architectural_development serves as the overall_methodology of

a control_architecture and as the tier_methodology for a tier_of_architectural_

development.

3. 3.4.3.6 Conformance_Criteria

A conformance_criteria is a kind of element_of_architectural_definition.

Conformance_criteria are criteria which specify how an architectural_unit at one tier of

an architecture conforms to the architectural_specifications of a higher tier, or how a

process for building part of an architecture conforms to the development methodology

given by the architecture for building that part. A conformance_criteria has one

attribute: criteria (which is a set of conformance_criterion).

A conformance_criteria serves as the tier_conformance_criteria of a

tier_of_architectural_definition.

3.3.4.4 Architectural_Unit

An architectural_unit is an atomic or molecular unit that is recognized by an

architecture. An architectural unit is not a kind of anything else and may be an

access_scheme, an analysis, an architectural_specification, a communication_method,

a conformance_criterion, a control_hierarchy, a data_unit, a generic_interaction_

specification, an interaction_setup, an interactive_unit, a message_protocol, a

planning_model, a resource, a superior_and_subordinates, or a system_activity. All

these except control_hierarchy, resource, and superior_and_subordinates are discussed

immediately below. The notions of superior_and_subordinates and control_hierarchy

are introduced in tierl of the joint architecture (not in generic control architecture) and

are described in Section 3.3.5. Resource is defined in tier 2 and is described in Section

3.3.6.

An architectural_unit does not serve directly as part of any other defined thing.

The model given here needs improvement. Several things which are kinds of

architectural_unit (such as generic_interaction_specification, control_hierarchy, and

communication_method) should be kinds of one of the kinds of architectural_

specification, instead. For example, a control_hierarchy should be a kind of

functional_specification.

34

Reference Architecture Interim Report

3. 3.4.4. 1 Access_Scheme

An access„scheme is a kind of architectiiral_unit. An access_scheme describes the

reading and writing access of interactive_units to the various stored_data_units

involved in an indirect_interaction_specification. It also describes any locking

mechanism that may be used.

An access„scheme serves as the scheme of an indirect_interaction_specification.

3.3.4.4.2 Analysis

An analysis is a kind of architectural_unit. An analysis is the examination of the

components of some complex system and how they relate to one another. An analysis

may be a dynamic_analysis, a functional_analysis, an information_analysis, or an

other_analysis.

An analysis does not serve directly as part of any other defined thing.

3.3.4.4.2.1 Dynamic„Analysis

A dynamic_analysis is a kind of analysis. A dynamic analysis is an analysis of the

characteristics of the function and information in a domain which vary over time during

control system operation. It provides qualitative and quantitative information about the

sequence, duration, and frequency of change in the function and information of the

domain.

A dynamic_analysis serves as one of the dynamic_analyses of an analyses.

3.3.4.4.2.2 FunctionaI„AnaIysis

A functionaI__anaIysis is a kind of analysis. A functionaI_anaIysis is an analysis of all

the activities within the scope of an architecture which a conforming system is

supposed to be able to perform.

A functional_analysis serves as one of the functional_analyses of an analyses.

3.3.4.4.2.3 Information_Analysis

An information_analysis is a kind of analysis. An information_analysis is an analysis

of all the information within the scope of an architecture needed for a conforming

system to function properly.

An information_analysis serves as one of the information_analyses of an analyses.

3.3.4.4.2.4 Other_Analysis

An other_analysis is a kind of analysis. An other_analysis is a kind of analysis which

is not an information_analysis, functional_analysis, or dynamic_analysis.

An other_analysis serves as one of the other_analyses of an analyses.

35

Reference Architecture Interim Report

3. 3.4.

4.3

Architectural_Specification

An architecturaLspecification is a kind of architectural_unit. An
architectural_specification is a prescription of what the pieces (software, languages,

execution models, controller models, communications models, computer_hardware,

machinery, etc.) of an architecture are, how they are connected (logically and

physically), and how they interact. An architecturaLspecification may be a

communications_specification, a functional_ specification, a hardware_specification,

an information_specification, a language_ specification, or an other_specification.

An architectural_specification does not serve directly as part of any other defined thing.

3.3.4.4.3. 1 Communications_Specification

A communications_specification is a kind of architecturaLspecification. A
communications_specification describes some aspect of the communications of a

control system.

A communications_specification serves as one of the communications_specifications

of an architectural_specifications.

3.3.4.4.3.2 Functional_Specification

A functionaLspecification is a kind of architecturaLspecification. A functionaL

specification describes part of the functioning of a control system.

A functional_specification serves as one of the functionaLspecifications of an

architectural_specifications.

3.3.4.4.3.3 Hardware_Specification

A hardware_specification is a kind of architecturaLspecification. A hardware_

specification describes part of the hardware of a control system.

A hardware_specification serves as one of the hardware_specifications of an

architectural_specifications.

3.3.4.4.3.4 Information_Specification

An information_specification is a kind of architecturaLspecification. An information_

specification describes part of the information or method of handling information of a

control system.

An information_specification serves as one of the information_specifications of an

architecturaLspecifications.

3.3.4.4.3.5 Language_Specification

A language_specification is a kind of architecturaLspecification. A language_

specification specifies the use of some particular language for modeling or

programming.

36

Reference Architecture Interim Report

A language_specification serves as one of the language_specifications of an

architecturaLspecifications.

3.3.4.43.6 Other_.Specification

An other_specification is a kind of architectiiral_specification. An other_specification

describes part of a control system which cannot be classified as having to do with

communications, function, hardware, information, or language.

An other_specification serves as one of the other_specifications of an

architectural„specifications.

3.3.4.4.4 Communication„Method

A communication_method is a kind of architectural_unit. A communication_method

specifies a method of getting messages from one interactive_unit to another. It is

important to note that two interactive_units are regarded as communicating whenever

one sends the other a message. The two interactive_units may be as close together as

blocks of code in a single program, or they may be as far separated as running on two

different computers which are physically far separated.

A communication_method serves as the link_method of an interaction_setup.

This part of the model is incomplete. In particular, specific subtypes of

communication_method will be defined in the completed joint architecture. Defining

these subtypes is expected to be a technical challenge. Many models of communication

and many types of communication hardware and software already exist. These will

have to be examined. It may be possible to use existing models. We plan to define only

communication„methods which can be implemented with existing hardware.

3.3.4.4.5 Conformance_Criterion

A conformance_criterion is a kind of architectural_unit. A conformance_criterion

specifies how an architectural_unit at one tier of an architecture conforms to the

architectural_specifications of a higher tier, or how a process for building part of an

architecture conforms to the development methodology given by the architecture for

building that part

A conformance_criterion serves as one of the criteria of a conformance_criteria.

3.3.4.4.6 Data_Unit

A data_unit is a kind of architectural_unit. A data_unit is any kind of data and may be

a data_store, message, message_information, plan, or stored_data_unit.

A data_unit does not serve directly as part of any other defined thing.

37

Reference Architecture Interim Report

3. 3.4.4.6.1 Data_Store

A data_store is a kind of data_unit. A data_store is a physical location where data

resides. It may be short-lived (dying with a computer process within which it resides,

for example) or long-lived (a file system, for example).

A data_store serves as the managed_store of a data_store_manager.

3.3.4.4.6.2 Message

A message is a kind of data_unit. A message may be a data_message or a

functional_message. A message has attributes: sender (which is an interactive_unit),

receiver (which is another interactive_unit), and contents (which is a

message_information). A message is used to carry information from the sender to the

receiver.

A message serves as one of the messages of a message_protocol.

Data_Message

A data_message is a kind of message. A data_message may be a

message_from_data_store_manager or a message_to_data_store_manager.

A data_message serves as one of the messages of a data_message_protocol.

MessageJrom_Data_Store_Manager

A message_from_data_store_manager is a kind of data_message in which the sender is

a data_store_manager.

MessageJo_Data_Store_Manager

A message_to_data_store_manager is a kind of data_message in which the receiver is

a data_store_manager.

Functional_Message

A functional_message is a kind of message in which the sender is a functional_unit and

the receiver is a functional_unit. A functional_message may be a command or a status;

see Section 3.3.5.

A functional_message serves as one of the messages of a functional_message_protocol.

3.3.4.4.6.3 Message_Information

A message_information is a kind of data_unit. A message_information is the

information content of a message. It is expected that subclasses of

message_information defined at lower tiers will specify the structure of the

information.

A message_information serves as the contents of a message.

38

Reference Architecture Interim Report

33.4.4.6.4 Plan

A plan is a kind of data_unit. A plan is a scheme developed to accomplish a specific

goal. A plan may be a process_plan, production_managed_plan, or schedule.

A plan serves as the output of a planner.

3.3.4.4.6.5 Stored_Data_Unit

A stored_data_unit is a kind of data_unit. A stored_data_unit describes a stored unit of

data. A stored_data_unit has one attribute: manager (which is a data_store_manager

which manages the data_store in which the stored_data_unit resides).

A stored_data_unit serves as one of the permitted_data_units of an

indirect_interaction_specification.

A stored_data_unit may be used in many indirect_interaction_specifications, each of

which has (probably different) sets of readers and writers, both of which are composed

of interactive_units, which can access the data. Because the relationship between a

stored_data_unit and its readers and writers may be complex, the readers and writers

are not modeled as part of the stored_data_unit, but rather as part of the

indirect_interaction_specifications in which the stored_data_unit is involved.

3 .3 .4.4.7 Generic_Interaction_Specification

A generic_interaction_specification is a kind of architectural_unit. A
generic_interaction_specification describes an interaction between two or more

interactive_units. A generic_interaction_specification may be a

direct_interaction_protocol (in which two interactive_units interact by sending

messages to one another) or an indirect_interaction_specification (in which two or

more interactive_units interact by access to common data).

A generic_interaction_specification does not serve directly as part of any other defined

thing.

3.3.4.4.7. 1 Direct_Interaction_Protocol

A direct_interaction_protocol is a kind of generic_interaction_specification. A
direct_interaction_protocol describes the continuing interaction between two

interactive„units. A direct_interaction_protocol may be a data_interaction_protocol or

a functional_interaction_protocol. A data_interaction_protocol has attributes:

first_party (which is an interactive_unit), second_party (also an interactive_unit), and

message_protocols (a set, each of which is a message_protocol). Each

message_protocol describes a sequence of messages to be passed between the two

parties needed to accomplish some specific purpose.

A direct_interaction_protocol serves as the interaction_specification of an

interaction_setup.

39

Reference Architecture Interim Report

Data_Interaction_Protocol

A data_interaction_protocol is a kind of direct_interaction_protocol in which all of the

message_protocols are data_interaction_protocols.

A data_interaction_protocol serves as the interaction_specification of a

data_interaction_setup.

Functional_Interaction_Protocol

A functional_interaction_protocol is a kind of direct_interaction_protocol in which all

of the message_protocols are functional_message_protocols.

A functional_interaction_protocol serves as the interaction_specification of a

functional_interaction_setup.

3.3.4.4.7.2 Indirect_Interaction_Specification

An indirect_interaction_specification is a kind of generic_interaction_specification.

An indirect_interaction_specification describes a continuing interaction between two

sets of interactive_units via a set of stored_data_units managed by one or more

data_store_managers and mediated by an access_scheme. An interaction_protocol has

attributes: readers (which is a set of interactive_units), writers (also a set of

interactive_units — possibly only one), permitted_data_units (which is the set of

stored_data_units which may be accessed by the readers and writers), a scheme (which

is an access_scheme), and managers (which is a set of data_store_managers). The

permitted_data_units must all be in the data_stores managed by the managers.

An indirect_interaction_specification does not currently serve directly as part of any

other defined thing.

Note that an indirect_interaction_specification does not specify messages. Messages

might well flow between the data_store_managers managing the stored_data_units and

the various interactive_units which have access to the permitted_data_units, but that is

not relevant here.

It might be useful to add a purpose to the definition of indirect_interaction_

specification.

3.3.4.4.8 Interaction_Setup

An interaction_setup is a kind of architectural_unit. An interaction_setup is an

arrangement between two interactive_units in which they have an agreed method of

communicating and an agreed direct_interaction_protocol. An interaction_setup has

attributes: first_party (which is an interactive_unit), second_party (which is also an

interactive_unit), link_method (which is a communication_method), and

interaction_specification (which is a direct_interaction_protocol). An interaction_setup

may be a data_interaction_setup or a functional_interaction_setup.

A data_interaction_setup does not serve directly as part of any other defined thing.

40

Reference Architecture Interim Report

3. 3.4.4. 8. 1 Data_Interaction_Setup

A data_interaction_setup is a kind of interaction_setup in which the second_party is a

data_store_manager and the interaction_specification is a data_interaction_protocol.

A data_interaction_setup does not currently serve directly as part of any other defined

thing, but is expected to be used in lower tiers of the joint architecture.

3 .3 .4.4.8 .2 Functional_Interaction_Setup

A functional_interaction_setup is a kind of interaction_setup in which the first_party

and the second_party are both functional_units and the interaction_specification is a

functional_interaction_protocol.

A functional_interaction_setup does not currently serve directly as part of any other

defined thing, but is expected to be used in lower tiers of the joint architecture.

3.3.4.4.9 Interactive_Unit

An interactive_unit is a kind of architectural_unit. An interactive_unit interacts with

other interactive_units of the architecture by sending and receiving messages.

Typically, the messages will be commands, status information, data, or requests for

data. An interactive_unit may be a data_store_manager or a functional_unit.

An interactive_unit serves as the first_party and the second_party of a

direct_interaction_protocol, as one of the readers and one of the writers of an

indirect_interaction_specification, as the sender and receiver of a message, and as the

first_party and the second_party of a message_protocol.

The interactive_unit is the basic active element of a control system. All active elements

in a control system are subtypes of interactive_unit.

The current model is too simplistic regarding interactive_units. In particular, the model

defines interactive_unit as an atomic thing with no substructure. However, we may
wish to have molecular interactive units. Both RCS and MSI define things which are

logically molecular interactive_units: an RCS controller includes world modeling,

behavior generation, sensory processing, and value judgement; an MSI control entity

includes a planner and a controller. Completing the joint architecture will include

redefining interactive_unit and devising a method of combining interactive_units to

form larger interactive_units.

3.3.4.4.9.1 Data_Store_Manager

A data_store_manager is a kind of interactive_unit and has one attribute:

managed_store (which is a data_store). A data_store_manager receives messages about

data (primarily requests to store or retrieve data) and acts on them. A
data_store_manager also sends messages about data.

41

Reference Architecture Interim Report

A data_store_manager serves as the second_party in a data_interaction_setup, as the

sender of a message_from_data_store_manager, as the receiver of a

message_to_data_store_manager, as one of the managers in an

indirect_interaction_specification, and as the manager of a stored_data_unit.

3. 3.4.4. 9. 2 Functional_Unit

A functional_unit is a kind of interactive_unit. A functional_unit may be a control_unit

or a planner. As noted earlier, the definition of functional_unit will probably need to be

revised to allow functional_units to be composed of other functional_units.

A functional_unit serves as the first_party and the second_party of a

functional_interaction_setup, as the first_party and second_party of a

functional_message_protocol, and as the sender and receiver of a functional_message.

ControlJUnit

A controLunit is a kind of functional_unit. A control_unit performs task execution - as

opposed to planning, information handling, sensory processing, etc. A controLunit

may be a real_time_control_unit, a scheduled_control_unit, or a

transition_control_unit. These correspond to the types of controllers identified in the

description of the joint architecture in Section 3.2.4.2.4.

A controLunit serves as the sender and receiver of a command (see Section 3.3.5), as

the sender and receiver of a status (see Section 3.3.5), and as superior and one of the

subordinates in a superior_and_subordinates (see Section 3.3.5).

As noted above, it will be desirable that some subtypes of interactive_units be

composed of interactive_units. ControLunit is a prime candidate for having

substructure. The definition of controLunit will be reconsidered as the joint

architecture is defined further.

Planner

A planner is a kind of functionaLunit. A planner is an agent which generates or selects

plans to accomplish one or more goals. The one attribute of a planner is output (which

is a plan). A planner may be a process_planner, production_management_planner, or

schedule_planner. These are defined in tierl of the joint architecture; see Section 3.3.5.

The types of planners and plans correspond to those defined in Section 3. 2.3.2. We
believe additional types of planners will be needed as we refine the way planning is

handled in different subtypes of controLunit.

A planner does not serve directly as part of any other defined thing.

3.3.4.4.10 Message_Protocol

A message_protocol is a kind of architecturaLunit. A message_protocol is a

specification of one or more messages which are exchanged between two

interactive_units in order to accomplish some specific purpose. A message_protocol

may be a data_message_protocol or a functionaLmessage_protocol. Each of these

42

Reference Architecture Interim Report

includes messages of only one type (either data_messages or functional_messages).

Further consideration should be given to whether another kind of message_protocol

should be defined in which a mixture of message types is allowed.

A message_protocol has attributes: first_party (which is an interactive_unit),

second„party (which is also an interactive_unit), purpose (which is a

message_protocol_purpose), and messages (which is an ordered list of messages).

A message_protocol_purpose is a textual statement of the purposed served by a

message_protocol.

A message_protocol serves as one of the message_protocols of a

direct_interaction_protocol.

As currently defined, a message_protocol can only exist between two interactive_units.

It may be desirable to have something like a message_protocol which involves more

than two interactive_units. We will consider this as we develop the joint architecture.

3.3.4.4.10. lData_Message_Protocol

A data„message_protocol is a kind of message_protocol in which all the messages are

data_messages.

A data_message_protocol serves as one of the message_protocols of a

data„interaction_protocol.

3.3.4.4.10.2Functional_Message_Protocol

A functional_message_protocol is a kind of message_protocol in which the first_party

is a functional_unit, the second_party is also a functional_unit, and the messages are all

functional„messages.

A functional_message_protocol serves as one of the message_protocols of a

functional_interaction_protocol.

The Schedule Negotiation Protocol described in Section 3.2.4.2.3 is a

functional_message_protocol.

3.3.4.4.11 Planning_Model

A planning_model is a kind of architectural_unit. A planning model is a model of how
planning is done in a control_architecture— the stages of planning, the types of plans,

etc. A planning_model may be a j_planning_model (see Section 3.3.5).

A planning_model does not serve directly as part of any other defined thing.

3.3.4.4.12 System_Activity

A system_activity is a kind of architectural_unit. A system_activity may be control or

planning.

The system_activity class could be expanded into a full activity model. This has not yet

been done.

43

Reference Architecture Interim Report

A system_activity does not serve directly as part of any other defined thing.

3.3.4.4.12.1Control

Control is a kind of system_activity. Control is the activity performed by controllers.

Control does not serve directly as part of any other defined thing.

3.3.4.4.12.2Planning

Planning is a kind of system_activity. Planning is the activity of making plans. A
planning may be a process_planning, a production_management_planning, or a

schedule_planning.

Planning does not serve directly as part of any other defined thing.

3.3.5 Tier One: Hierarchical Control

In tier one of the joint architecture, we restrict the scope of the architecture to control

of mechanical systems, and we specify that hierarchical control must be used. Several

classes used are defined in order to develop the notion of hierarchical control.

This tier is incomplete, entirely missing analyses, methodology_for_architectural_

development, and conformance_criteria.

3.3.5. 1 J_Scope_One

A j_scope_one is a kind of scope. A j_scope_one has one attribute: restriction! (which

is a scope_restriction). The limitation imposed by restriction! is that this tier applies

only to hierarchical control of mechanical systems. A j_scope_one may be a

j_scope_two (see Section 3.3.6).

3. 3. 5.2 J_Purpose_One

A j_purpose_one is a kind of purpose. A j_purpose_one has one attribute: restriction!

(which is a purpose_restriction). The purpose of this tier is to provide a control

architecture which will encompass all applications that one or both of RCS and MS!
can currently handle. A j_purpose_one may be a j_purpose_two (see Section 3.3.6).

3. 3. 5. 3 Architectural_Specifications

3. 3.5. 3.1 Command

A command is a kind of functional_message in which the sender is a control_unit and

the receiver is a control_unit. A command is an instruction from the sender to the

receiver which the receiver must try to carry out.

A command does not currently serve directly as part of any other defined thing.

44

Reference Architecture Interim Report

3 .3 .5 .3 .2 Command_and„Status_Protocol

A command_and_status_protocol is a kind of functional_interaction_protocol in which

all the messages in all the message_protocols for which the first_party is the sender are

commands, and all the messages in all the message_protocols for which the second

party is the sender are statuses.

A command_and_status_protocol serves as one of the protocols of a

superior_and_subordinates.

The Schedule Negotiation Protocol (SNP) is a command_and_status_protocol, in

which the first party is a superior and the second party is a subordinate. In the SNP,

some of the status messages sent by the subordinate are not solicited by a command
from the superior, but are sent spontaneously by the subordinate.

3.3.5.3.3 Control_Hierarchy

A control_hierarchy is a kind of architectural_unit. It has one attribute:

superior_subordinate_sets (which is a list of superior_and_subordinates). A
control_hierarchy may be a melded_control_hierarchy (see Section 3.3.6). A
control_hierarchy is an arrangement of control_units which is a tree, with one

control_unit at the top which has at least one subordinate. Each of the subordinates of

the top control_unit may have zero to many subordinates, each of which may also have

zero to many subordinates, and so on. Each of the subordinates has only one superior.

A control_hierarchy does not currently serve directly as part of any other defined thing.

3 .3 .5 .3.4 Hierarchical_Control_Architecture

A hierarchical_control_architecture is a kind of control_architecture in which the

controLunits are arranged in a control_hierarchy (which implies they interact via

command_and_status_protocols)

.

Other functional_units of the same architecture— those which are not control_units—
do not have to be arranged in a hierarchy.

A hierarchical_control_architecture does not currently serve directly as part of any

other defined thing.

3. 3. 5.3.5 Status

A status is a kind of functional_message in which the sender and receiver are

control_units. The content of a status message should be to give the status of the

execution of a command or the status of health of the sender of the status message.

A status does not currently serve directly as part of any other defined thing.

3.3.5.3.6 Superior_and_Subordinates

A superior_and_subordinates is a kind of architectural_unit. A
superior_and_subordinates has attributes: superior (which is a control_unit),

subordinates (which is a list— with no duplicates— of control_units), and protocols

45

Reference Architecture Interim Report

(which is a list of command_and_status_protocols). In each of the

command_and_status_protocols, the first_party must be the superior and the

second_party must be the subordinate in the corresponding place in the list of

subordinates.

A superior_and_subordinates serves as one of the superior_and_subordinate_sets in a

control_hierarchy.

A superior_and_subordinates may be thought of as a two-level hierarchy that may be

used as the building block for making multi-level hierarchies.

3.3.6 Tier Two: Discrete Parts

In the second tier of the joint architecture, we limit the scope to discrete parts

manufacturing and we define a specialized form of hierarchical control in which the

controLunits in upper levels of the hierarchy are scheduled_control_units, the

controLunits in the lower levels are real_time_control_units, and the controLunits

between the upper and lower levels are transition_control_units. Thus, this tier provides

for many of the major concepts discussed in Section 3.2.

This tier is incomplete, entirely missing purpose, analyses, methodology_for_

architectural_development, and conformance_criteria. The definitions of various

classes of plans, planners, and planning given here need improvement.

3.3.6. 1 J_Scope_Two

A j_scope_two is a kind of j_scope_one. A j_scope_two has one additional attribute:

restriction! (which is a scope_restriction). The limitation imposed by restriction! is that

this tier applies only to discrete parts manufacturing.

3.3.6.

! Architectural_Specifications

3.3.6.

!. 1 Melded_Control_Hierarchy

A melded_control_hierarchy is a kind of control_hierarchy in which the control_unit at

the top of the hierarchy is a scheduled_control_unit, the subordinates of each

scheduled_control_unit are either scheduled_control_units or transition_control_units,

and the subordinates of transition_control_units are all real_time_control_units. The

joint architecture, as defined in Section 3.2.4.! is a melded_control_hierarchy.

3.3.6.

!.! J_Planning_Model

A j_planning_model is a kind of planning_model. A j_planning_model has three

attributes: phase 1 (which is a process_planning), phase! (which is a

production_management_planning), and phase3 (which is a schedule_planning).

It is intended that the j_planning_model should serve for all controllers in a

control_hierarchy which has MSI-type controllers in the upper hierarchical levels

(requiring resource allocation and scheduling) and RCS-type controllers in the lower

46

Reference Architecture Interim Report

hierarchical levels (running in real time and doing sensory processing). The MSI-type

require aU three phases before plan execution is possible. The RCS-type require only

process„planning.

3. 3. 6.2.3 Process_Plan

A process_plan is a kind of plan.

A process„plan is a specification of the activities (possibly including alternatives)

necessary to reach some goal. A process_plan serves as a template, or recipe.

Process„plans may be distinguished from production_managed_plans and schedules,

both of which are derived from process_plans. This corresponds to the concept by the

same name Section 3.2.3.2.

3. 3.6.2.4 Process_Planner

A process„planner is a kind of planner for which the output is a process_plan.

3. 3. 6.2.5 Process_Planning

Process_planning is a kind of planning in which process_plans are produced. This

corresponds to the concept by the same name in Section 3.2.3. 1.

3. 3.6.2.6 Production_Managed_Plan

A production_managed_plan is a kind of plan. A production_managed_plan has one

attribute: antecedent__process_plan (which is a process_plan). A
production_managed_plan is derived from its antecedent_process_plan. This

corresponds to the concept by the same name in Section 3.2.3.2.

3 .3 .6 .2 .7 Production_Management_Planner

A production„management_planner is a kind of planner for which the output is a

production_managed_plan.

3. 3.6.2.8 Production„Management_Planning

production_management__planning is a kind of planning in which

production_managed_plans are produced. This corresponds to the concept by the same

name in Section 3.2.3.2.

3. 3. 6.2.9 Real_Time_Control_Unit

A real_time_control_unit is a control_unit that operates in hard real time. This

corresponds to the concept of the same name in Section 3.2.4.2.4.

3.3.6.2.10 Resource

A resource is a kind of architectural_unit. This definition needs to be expanded.

47

Reference Architecture Interim Report

3.3.6.2.11 Schedule

A schedule is a kind of plan. A schedule has one attribute:

antecedent_producdon_managed_plan (which is a production_managed_plan). A
schedule is derived from its antecedent_production_managed_plan. Schedules

correspond to production plans in Section 3. 2. 3. 2.

3.3.6.2.12 Schedule_Planner

A schedule_planner is a kind of planner for which the output is a schedule. A
schedule_planner corresponds to a production planner in Section 3.2.4.2.3.

3.3.6.2.13 Schedule_Planning

Schedule_planning is a kind of planning in which schedules are produced.

Schedule_planning corresponds to production planning in Section 3.2.3. 1.

3.3.6.2.14 Scheduled_Control_Unit

A scheduled_control_unit is a kind of control_unit which will support being scheduled

and does not necessarily run in hard real time. This corresponds to the concept of the

same name in Section 3.2.4.2.4.
3.3.6.2.15

Transition_Control_Unit

A transition_control_unit is a kind of control_unit which may be one of the

subordinates of a scheduled_control_unit and the superior of a real_time_control_unit.

This corresponds to the concept of the same name in Section 3.2.4.2.4.

48

Reference Architecture Interim Report

4

4.1

4.1.1

Completing the Architecture

For the architecture to be made complete, a great deal ofwork must be done. Only when
the details for an implementation have been worked out, can it be said with certainty

that the architecture is complete.

Technical Approach to Completing the Architecture

Since the joint architecture is to be suitable for control of a broad range of systems in a

discrete parts shop, only the upper two tiers of the architecture will be heavily populated

with elements of architectural definition when the architecture is complete. The lowest

three tiers are intended to be defined differently for different applications and

implementations, so the joint architecture will provide only the skeletons of those tiers.

These skeletons exist now in incomplete form. The skeletons will need to be completed

as part of finishing the joint architecture. The skeletons would be filled out differently

for different applications of the architecture, as shown in Figure 5, a hypothetical tree

of tiers. Our current thinking is that tier 3 is for some specific application (such as a

work cell with a 3-axis machining center), tier 4 is for the detailed design of an

implementation, and tier 5 is for defining implementation details.

Resolve Issues

As a first step in completing the architecture, tentative decisions should be made for the

issues raised in Sections 4 and 5 of the Feasibility Study. An explicit resolution of each

issue for the joint architecture should be documented. Most issues will have been

resolved, explicitly or implicitly, in the course of defining the joint architecture. If any

issue remains unresolved, it should be examined and a determination made of whether

a resolution is necessary; if so, the joint architecture should be revised or extended, as

necessary.

49

Reference Architecture Interim Report

Figure 5. Tree of Tiers (hypothetical example)

4.1.2 Define Scenarios

Scenarios should be written for how a system controlled by the joint architecture should

behave under nominal conditions and in a variety of error conditions.

4.1.3 Define Schedule Negotiation Protocol

The details of the Schedule Negotiation Protocol must be defined. Each message must

be worked out in detail and the entire suite must be examined for completeness.

Scenarios for the use of the protocol must be written out and examined for deadlocks

and other undesirable behavior. The details ofTCU actions when the RTCU is not able

to perform all the capabilities required for full participation in the Schedule Negotiation

Protocol (see Section 3.2.4.2.3) must be worked out.

50

Reference Architecture Interim Report

4. 1 .4 Complete Information Models

The information models which are closely tied in with the Schedule Negotiation

Protocol (SNP) must be examined and extended to support the new SNP. It should be

examined whether classes of RTCUs could be defined which have similar functionality

with respect to the Schedule Negotiation Protocol and information sharing behavior. If

this is the case, corresponding classes of TCUs could be created.

AU the information models will require additional work to tailor them for the joint

architecture. This is particularly true of the models relating to the communications

system.

4. 1 .5 Complete Formal Model

The existing formal model of the architecture of the architecture is incomplete in some

places and needs rethinking in others. Many of these places are noted in the preceding

section. Building the formal model will need to keep pace with resolving the issues and

deciding on specific features for the joint architecture.

What language or languages to use to build the formal model the joint architecture

should be considered further. The current formal model is built in EXPRESS, but

EXPRESS may not be adequate for building a complete and useful formal model. In

the cuirent model, we have not used some features of EXPRESS in order to keep the

model as simple as possible. We may be able to fix some shortcomings of the current

model by using EXPRESS features such as multiple supertypes and inverses; both of

those have been avoided in the current model. Other modeling languages should be

examined. If a better one can be found, it should be used.

4.1.6 Check RCS and MSI

The joint architecture is intended to combine the best features of the existing RCS and

MSI architecture. We have not yet given full consideration to several of these features.

RCS, for example, includes provisions for sensory processing, and we are certain that

sensory processing will be required in real_time_control_units, yet no provision for

sensory processing has yet been made in the formal model. We will check that we have

considered the existing architectures carefully as we complete the joint architecture.

4.1.7 Implement

Finally, it should be noted that many issues are not apparent until an implementation of

the architecture is being built. No architecture should be considered complete unless it

has first been tested and made to work in a practical application.

4.2 Programmatic Approach to Completing the Architecture

Work on completing the Joint Architecture is continuing under the Systems Integration

for Manufacturing Applications (SIMA) Manufacturing Systems Environment (MSE)

project here at NIST. The objective of this program is to integrate design, planning and

production applications in the mechanical parts manufacturing domain.

51

Reference Architecture Interim Report

During Fiscal Year 94 and early Fiscal Year 95, a second complete iteration of

architecture design is expected. This entails completing the technical items listed in

Section 4.1.1 through Section 4.1.6. During Fiscal Year 95, an implementation of the

architecture is planned.

52

Reference Architecture Interim Report

References

Albusl] Albus, James S.; McCain, Harry G.; Lumia, Ronald; NASA/NBS Standard

Reference Modelfor Telerobot Control System Architecture (NASREMf NIST
Technical Note 1235, 1989 Edition; National Institute of Standards and

Technology; April 1989

[Albus2] Albus, James S.; A Theory of Intelligent Systems’, Control and Dynamic

Systems; Vol. 45; 1991; pp. 197 - 248

[Albus3] Albus, James S.; RCS: A Reference Model Architecturefor Intelligent Control’,

IEEE Journal on Computer Architectures for Intelligent Machines; May 1992;

pp. 56 - 59

[Barbera] Barbera, Anthony J.; An Architecturefor a Robot Hierarchical Control System’,

NBS Special Publication 500-23; National Bureau of Standards; December

1977

[Barkmeyer] Barkmeyer, Edward J.; Ray, Steven; Senehi, M. Kate; Wallace, Evan; Wallace,

Sarah; Manufacturing Systems Integration Information Models for Production

Management, National Institute of Standards and Technology Interagency

Report, 1992, (forthcoming).

[Catron] Catron, Bryan; Ray, Steven R.; ALPS - A Languagefor Process Specification’,

International Journal of Computer Integrated Manufacturing; Vol. 4, No. 2;

1991; pp 105-113

[EIA] ANSI/EIA/TIA/232-E The Interface between Data Terminal Equipment and
Data Circuit Terminating Equipment Employing Serial Data Binary

Interchange; July 1991. (Available from Global Engineering Documents, 15

Inverness Way, E. Englewood, Colorado 80112-5704.)

[Fiala] Fiala, John; Manipulator Servo Level Task Decomposition’, NIST Technical

Note 1255; National Institute of Standards and Technology; October 1988; 37

pages

[Herman] Herman, Martin; Albus, James S.; Real-time Hierarchical Planning for

Multiple Mobile Robots’, Proceedings of DARPA Knowledge-Based Planning

Workshop; Austin, Texas; December 1987; pp. 22-1 to 22-10

[ISOl] ISO 10303, Product Data Representation and Exchange, Part I : Overview and

Fundamental Principles, ISO TCI 84/SC4/Editing: Document Nil (Working

Draft) (Available from the IGES/PDES/STEP Administration Office, National

Institute of Standards and Technology, Building 220, Room A 127,

Gaithersburg, MD 20899.)

[IS02] ISO 9506, Industrial Automation Systems Manufacturing Message

Specification, Part I: Service Definition. (AvaDable from the International

Organization for Standardization, Geneva, Switzerland.)

53

Reference Architecture Interim Report

[IS03]

[Kramer]

[Libes]

[MAPI]

[MAP2]

[McLean 1]

[Quintero]

[Rayl]

[Ray2]

[Rybczynski]

[Senehil]

[Senehi2]

[Simpson]

ISO TC184/SC5AVG1: Document N-282 Version 3.0, Framework for

Enterprise Modelling, May 1993 (Working Draft) (Available from National

Electrical Manufacturers Association, 2101 L Street, N.W. Washington, D.C.

20037.)

Kramer, Thomas R.; Senehi, M. K.; Feasibility Study: Reference Architecture

For Machine Control Systems Integration', NISTIR 5297; National Institute of

Standards and Technology Interagency Report; November 1993

Libes, Don; NIST Network Common Memory User Manual; NISTIR 90-4233;

National Institute of Standards and Technology; February 1990

Manufacturing Automated Protocol Version 3.0, August 1, 1988. (Available

from North American MAP/TOP Users Group, ITRC, P.O. Box 1157, Ann
Arbor, MI 48106.)

Technical and Office Protocols Version 3.0 August 31, 1988. (Available from

North American MAP/TOP Users Group, ITRC, P.O. Box 1157, Ann Arbor,

MI 48106.)

McLean, C. R.; Interface Concepts for Plug-Compatible Production

Management Systems; Proceedings of the IPTP WG5.7 Working Conference on

Information Flow in Automated Manufacturing Systems; Gaithersburg, MD;
August 1987. Reprinted in Computers in Industry; Vol. 9; pp. 307-318; 1987.

Quintero, Richard; Barbera, Anthony J.; A Real-Time Control System

Methodology for Developing Intelligent Control Systems; NISTIR 4936;

National Institute of Standards and Technology; October 1992

Ray, Steven R.; Wallace, Sarah; A Production Management Information Model

for Discrete Manufacturing; submitted for publication to Production Planning

and Control; September 1992

Ray, S.; “Using the ALPS Process Plan Model,” Proceedings of the

Manufacturing International Conference, 1992, Dallas, Texas.

Rybczynski, S.; et al.; AMRF Network Communications; NISTIR 88-3816;

National Institute of Standards and Technology; June 1988

Senehi, M. K.; Barkmeyer, Edward J.; Luce, Mark E.; Ray, Steven R.; Wallace,

Evan K.; Wallace, Sarah; Manufacturing Systems Integration Initial

Architecture Document, NISTIR 4682; National Institute of Standards and

Technology; September 1991

Senehi, M.K.; Wallace, Sarah; Luce, Mark E.; An Architecture for

Manufacturing Systems Integration; Proceedings of ASME Manufacturing

International Conference; Dallas, Texas; April 1992

Simpson, J.; Hocken R.; Albus, J.; The Automated Manufacturing Research

Facility; Journal of Manufacturing Systems; Vol. 1; Number 1, 1982

54

Reference Architecture Interim Report

[Spiby] Spiby, Philip; draft STEP Part 11 EXPRESS Language Reference Manual',

April 1991

[Tanenbaum] Tanenbaum, Andrew S.; Computer Networks-Second Edition; Prentice Hall;

Englewood Cliffs, New Jersey; 1988.

[Wallace] Wallace, Sarah; Senehi, M. K.; Barkmeyer, Edward J.; Ray, Steven R.;

Wallace, Evan K.; Manufacturing Systems Integration Control Entity Interface

Specification', NISTIR draft; National Institute of Standards and Technology;

October 1992

[Wavering] Wavering, Albert J.; Manipulator Primitive Level Task Decomposition', NIST
Technical Note 1256; National Institute of Standards and Technology; October

1988

55

Reference Architecture Interim Report

Appendix A - Glossary

With a few exceptions, this glossary is the same as that of the Feasibility Study

analysis

an examination of the constituents of some complex system and how they relate to one

another.

application

a subset of a domain for an architecture.

architectural specification

a prescription of what the pieces (software, languages, execution models, controller

models, communications models, computer hardware, machinery, etc.) of an architecture

are, how they are connected (logically and physically), and how they interact.

architectural unit

an atomic unit or molecular unit that is recognized by an architecture.

architecture

the design and structure of a system. Typically, an architecture consists of a set of

components, together with specifications of how the components work together within the

system, and how they may interact with the environment outside of the system.

aspect

a cross-cutting view of an architecture from some specialized viewpoint, such as

information, communications, or control flow.

atomic unit

an architectural unit of an architecture which the architecture does not break down further

into simpler architectural units.

black box
a subsystem which is described only in terms of its inputs, outputs, and functionality, but

whose internal architecture is unspecified.

broadcast communication
a communications system style in which a communication entity can send a given

message to other communication entities without specifying addressees.

centralized control

a control method in which single controller (usually running on a single computer)

controls everything directly.

command
an instruction from a superior controller to a subordinate controller (or from a client

controller to a server controller) to carry out a task.

command and status exchange
an exchange of messages between a superior (or client) controller and a subordinate (or

server) controller in which the superior tells the subordinate what is to be done by sending

56

Reference Architecture Interim Report

a command and the subordinate sends a status message back.

command-and-status protocol

a specification of the messages which two interacting controllers exchange and the rules

by which they exchange them. There are two types of messages: those which are

commands and those which give the status of the execution of the commands.

component
an implementation of an architectural unit of an architecture,

conformance class

a set of architectures (or implementations) distinguished by a combination of features at a

tier of architectural definition. Different conformance classes may have different and

incompatible choices of features or may correspond to different degrees of conformance to

an architectural requirement.

conceptual data model
a description of a set of information, always giving relationships among the members of

the set, often including the data type of the members of the set, and often including some

of the semantic content of the information.

conformance criteria

criteria which specify how an architectural unit at one tier of an architecture conforms to

the architectural specifications of a higher tier, or how a process for building part of an

architecture conforms to the development methodology given by the architecture for

building that part

conformance test

a procedure that determines if conformance criteria have been met.

controller

the agent which directs the performance of or performs specific tasks.

cyclic development
development (of a control system, controller architecture, etc.), by doing an initial

implementation, assessing the finished product, and using the results of the assessment as

feedback for refining the system. The assessment and refinement may be repeated several

times.

domain
the class of situations for which an architecture is intended to be used,

domain analyses

analyses of the target domain of an architecture. Commonly used forms of domain

analysis are functional analysis, information analysis, and dynamic analysis.

dynamic analysis

an analysis of the characteristics of the functions and information in a domain which vary

over time during control system operation. It provides qualitative and quantitative

information about the sequence, duration, and frequency of change in the functions and

57

Reference Architecture Interim Report

information of the domain.

dynamic aspects

aspects of a control system which describe how the information and functioning of the

system vary over time.

dynamic reconfiguration

modifying the control hierarchy of a hierarchical control system while the system is

working.

element of architectural definition

a part of the definition of an architecture. The elements of architectural definition are:

statement of scope and purpose, domain analyses, architectural specification,

methodology for architectural development, and conformance criteria.

execution model
a logical view of how the execution of a control system is carried out.

functional analysis

an analysis of all the activities within the scope of an architecture which a conforming

control system is supposed to be able to perform.

functional aspects

aspects of a control system architecture which describe what a system conforming to the

architecture does.

goal

a state of affairs intended to be brought about. Goals are such items as manufacturing a

part, moving a robot arm to a specific place, or navigating a vehicle from one point to

another.

granularity (of a tier of architectural definition of an architecture)

the size of the atomic units which the architectural specification of that tier addresses.

hard real-time (control system)

a control system in which a response must be generated within a fixed time interval.

heterarchical control architecture

a type of control system architecture in which each controller has no superior and no

subordinates, and controllers interact by issuing requests for bids, making bids, and

entering into contracts to do work.

hierarchical control architecture

a type of control system architecture in which controllers are arranged in a hierarchy, each

controller has one superior and zero to many subordinates (except the topmost has no

superior), and controllers interact through a command-and-status protocol.

implementation

the realization of an architecture in hardware and software.

58

Reference Architecture Interim Report

information analysis

an analysis of all the information within the scope of an architecture needed for a

conforming control system to function properly.

information aspects

aspects of a control system architecture which describe the information required for the

operation of a system conforming to the architecture.

information modeling language

a formal language intended to be useful for representing information. Examples are

EXPRESS, NIAM, and IDEFIX.

interoperable (architectures)

two architectures such that a control system built according to the specifications of one

architecture can be used (possibly with minor modifications) in a control system built

conforming to the other architecture.

life cycle

the stages in the life of the system or product

methodology for architectural development
a set of procedures for applying an architecture.

molecular unit

a combination of atomic units or smaller molecular units recognized by an architecture,

non-persistent data

data which is stored temporarily and which is lost when the system containing it is reset,

operational mode
a style of operation of a controller or control system. Operational modes might include, for

example: debugging (enabled vs. disabled), autonomy (automatic, shared control, or

manual), logging (enabled vs. disabled), single stepping (on vs. off).

operational state

the fitness for operating of a controller or control system. Operational states might include,

for example: down, idle, ready, active.

organizational extent (of an architecture)

the set of related activities of an organization covered by the architecture.

persistent data

data stored on a permanent medium such as files or databases.

plan

a scheme developed to accomplish a specific goal.

planner

an agent which generates or selects plans to accomplish one or more goals.

planning

the activity of making plans. The plans may be process plans, production plans, schedules.

59

Reference Architecture Interim Report

etc.

point to point communication
a communications system style in which a communication entity can send a given

message only to one other communication entity, i.e. communication occurs between pairs

of communication entities.

process

The term is commonly used in several senses. See discussion in Feasibility Study Section

4 .4 .3 .3 .

process plan

a specification of the activities (possibly including alternatives) necessary to reach some

goal. A process plan serves as a template, or recipe. Process plans may be distinguished

from production plans and schedules, both of which are derived from process plans.

real-time

the condition that a system must keep pace with events in the environment.

reference architecture

a generic architecture for a specific domain.

resource allocation

assigning resources (temporarily or permanently) for some specific purpose.

resource definition

a description of a resource, usually given in a formal information modeling language.

scheduler

an agent which performs scheduling.

scheduling

the assignment of specific resources and times.

scope

see statement of scope.

soft real-time

requiring real-time response, but not within a specific time interval.

Statement of purpose
a statement that identifies what the objectives of an architecture are within the given

scope.

Statement of scope

a description of the range of areas (domain) to which an architecture is intended to be

applied.

Step (of a plan)

the basic procedural unit of a plan, usually specifying that a single activity (single at some

conceptual level) be carried out (drill a hole, deliver a tray, machine a lot of parts, etc.).

60

Reference Architecture Interim Report

submodule
an internal unit of an atomic unit of an architecture.

synchrony
a fixed relation in time between the execution cycles of two controllers.

task

a piece of work which achieves a specific goal— i.e., actual work, not a representation of

work.

tier of architectural definition

one group in an ordered set of disjoint groups of architectural units of an architecture, such

that whenever two architectural units are related by the first one being an abstraction of the

second, the tier of the first is higher than or the same as the tier of the second.

work element

a generic representation of a type of work, such as moving in a straight line from one point

to another, opening a gripper, or drilling a hole.

world model
a description of the state of the world.

world modeling
the function in a control system of maintaining a world model. This function may also

predict events and sensory data and answer questions about the world model.

61

Reference Architecture Interim Report

Appendix B - EXPRESS Definition of Joint Architecture

(*

INTRODUCTION

This is a model of a proposed joint architecture for the control of mechanical systems. The model

is given using the EXPRESS information modeling language [Spiby] with added conventions

regarding the meaning of the organization of the EXPRESS statements.

This model is a work in progress. The model is syntactically complete, so that EXPRESS parsers

will not find anything missing, but it is not a full description of an architecture. Additions need to

be made to all parts of the model. The most obviously missing parts are the conformance criteria

and methodologies for architectural development.

Typographic and Naming Conventions

In the comments mixed with EXPRESS definitions below, terms from EXPRESS, such as

schema , are given in underlined italics while terms defined in the schemas, such as

control_architecture are given in boldface italics. The EXPRESS statements themselves are

given in helvetica type face. In the rest of this introduction, only the typographic convention for

EXPRESS statements is used.

Many of the names of entitv s> start with the prefix “j_”. The “j” is an abbreviation of “joint”. Only

entity^ specific to the joint architecture have this prefix.

Organization of the Model

This model provides a schema for generic_control_architecture plus a separate EXPRESS schema

for each tier of architectural definition. Thus, this model contains six schema s,, since the joint

architecture has five tiers. Each schema (except the generic_control_architecture schema^ uses the

previous schema . This seems to be the most useful way to match decreasing abstraction in the

tiers of the architecture to decreasing abstraction in the representation of the architecture.

Each schema representing a tier is divided into five sections corresponding to the five elements of

architectural definition required by an architecture. The sections are simply marked as such by

comments, so the sectioning is invisible to EXPRESS parsers. In each section, the definitions are

arranged in subsections by type. The order of subsections is: type , entity, function . Within each

subsection, definitions are given alphabetically.

Wherever possible, the notion of decreasing abstraction in moving firom tier to tier has been

implemented by having more abstract entitys in higher tiers be supertypes of less abstract entitys

in lower tiers. Exceptions to this include the handling of: tier, analyses, architectural

specifications, methodology, and conformance criteria. These are all defined as entitys in the

generic_control_architecture schema . Tier is represented by schemas (not subtypes) in the rest of

the model, while the other exceptions are handled as sections of schema s.

62

Reference Architecture Interim Report

The bottom three tiers contain little of substance. They are included here as shells which can be

filled out for specific applications.

This model has been written in “DIS” EXPRESS, which is the August 31, 1992 version. The

latest version of the NIST EXPRESS parser handles this version of EXPRESS. The model passes

through the NIST EXPRESS parser without error or warning.

Where subtypes without attributes are used, the idea is usually that there may be other subtypes

that could be defined and usefully distinguished (preferably by having different attributes^ from

the subtype that has been defined.

The model has been written so that it contains no multiple inheritance; only tree structures are

found in the inheritance scheme. All subtypes of each entity are given in the supertype statement

for the entity. For many entitys in the model, however, a suvertype statement is included and

commented out, implying the entity is a supertype of an entity in another schema . Including the

supertype statement has been done to make it easy to trace through the model. Commenting out

has been done to avoid getting error messages from the NIST EXPRESS parser. The rules of

EXPRESS do not allow explicit supertype statements when subtypes are in other schemas.

The term tier_of_architectural_definition has been abbreviated to tier in many places, though not

in any EXPRESS statements.

Possible Alternatives

It would be possible to define an entire tree of schemas, rather than a single series. Each path

through the tree would represent an alternative to the joint architecture that would be the same as

the joint architecture at the root of the tree, but diverged from the joint architecture at some tier.

Note that a path into the tree of any length starting at the root node would be an architecture. A
path of zero length would consist of the root node only.

Another alternative approach would be to have independent trees for the major facets of the

architecture (control, communications, and data, for example), and have an architecture consist of

a set of paths, one through each tree.

Model Assumptions

This model assumes that all direct interactions are between two identified parties. Thus, for

example, there are no one-to-many, many-to-one, or three-way direct interactions, and in no

interaction is the identity of either party a variable.

Some Items Not Modeled

The terms “atomic unit” and “molecular unit” are useful in describing architectures but do not

appear to be required or useful in modeling an architecture.

63

Reference Architecture Interim Report

An atomic unit is an architectural unit of an architecture which the architecture does not break

down further into simpler architectural units. A molecular unit is a combination of atomic units or

smaller molecular units recognized by an architecture. Atomic units and molecular units could be

identified in the architecture defined by this model.

Usability of EXPRESS

EXPRESS is not fully adequate for defining architectures. There are many concepts about

architectures that are hard to state using the EXPRESS language.

One major drawback of EXPRESS for modeling an architecture is that it is not possible to define

an entir\' (such as tier), instantiate the entity, and then model the instantiated entity in more detail

(by adding attributes or making subtypes, for example).

This model contains some features that were adopted so that EXPRESS would be usable. The

convention of using separate schemas for separate tiers of architectural definition was adopted to

work around the fact that there did not seem to be another good way to handle tiers. There is no

formal method in EXPRESS for saying that the schemas included in the model for the individual

tiers correspond to the tier entity defined in the generic_control_architecture schema .

Dividing the schemas in sections with comments is a second work-around. A third oddity is that

no instantiation of any entitys from the model in a STEP exchange file is required for using the

model, as is the normal method for using an EXPRESS model.

All in all, the work-arounds included in this model constitute a large departure from the normal

use of EXPRESS. It would be better to use a language tailored for describing architectures, but if

such a thing exists, we have not been able to identify it.

The template mechanism that has been proposed as an extension of EXPRESS would be useful in

several places (the definitions of scope and purpose, for example). It has not been used since it is

not a standard part of EXPRESS.

0

64

Reference Architecture Interim Report

SCHEMA generic__control_architecture

;

^

TYPES
*)

(* message_protocol__purpose

A message^protocol_purpose is a string giving the purpose of a message_protocol.

*)

TYPE message_protocol_purpose = STRING;
END^TYPE;

(* purpose^restriction

A purpose^restriction is a statement restricting the purpose of a

tierjof_architectural_definition. The purpose_restrictiom of a tier must not conflict with one

another. This constraint is not currently modeled here in EXPRESS. Usually the purpose of a tier

will be strictly narrower than that of the tier above, but it is possible to narrow one of scope and

purpose without narrowing the other.

*)

TYPE purpose_restriction - STRING;
END__TYPE;

(* scope^restriction

A scope^restriction is a statement restricting the scope of a tier_of_architectural_definition. The

scope^restrictions of a tier must not conflict with one another. This constraint is not currently

modeled here in EXPRESS. Usually the scope of a tier will be strictly narrower than that of the

tier above, but it is possible to narrow one of scope and purpose without narrowing the other.

TYPE scope__restriction = STRING;
END_TYPE;

ENTITIES
*)

[* access_scheme

An access_scheme is a kind of architecturaljunit which applies to an

indirect_interaction_specification. An accessjscheme describes the reading and writing access

Df interactivejunits to the various storedjdatajunits involved in the

indirect_interaction_specification. It also describes any locking mechanism that may be used.

None of these details are currently modeled here in EXPRESS.

65

Reference Architecture Interim Report

*)

ENTITY access_scheme
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* analyses

analyses are a kind of element_of_architectural_definition. At each tier, at least three kinds of

analyses should be considered: information_analyses, functionaljanalyses, and

dynamic_analyses. A fourth kind, other_analyses, is included here, but may not be needed.

*)

ENTITY analyses

SUBTYPE OF (element

information_analyses:

functional_analyses:

dynamic_analyses:

other_analyses:

END_ENTITY;

(* analysis

An analysis is an examination of the components of some complex system and how they relate to

one another [from Glossary].

In the context of this schema for generic_control_architecture, at least three subtypes of analysis

are important: informationjanalysis, functional_analysis, and dynamicjanalysis. A fourth,

otherjanalysis subtype has been provided here, as weU; it may not be needed.

*)

ENTITY analysis

SUPERTYPE OF (ONEOF
(
dynamic_analysis,

functional_analysis,

information_analysis,

other_analysis))

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* architectural_specification

An architectural_specification is a prescription of what the pieces (software, languages,

execution models, controller models, communications models, computer_hardware, machinery,

etc.) of an architecture are, how they are connected (logically and physically), and how they

interact, [from Glossary]

An architectural_specification is a kind of architecturaljunit.

pf_architectural_definition);

SET [0:?] OF information_analysis;

SET [0:?] OF functionaLanalysis;

SET [0:?] OF dynamic_analysis;

SET [0:?] OF other_analysis;

66

Reference Architecture Interim Report

Several suhtvpe^ are provided here. Additional explicit suhtvpe ^ may be desirable.

The model given here needs improvement. Several things which are subtype s of

architecturaljunit (such as control_hierarchy, and communication_method) should be subtypes

of one of the subtypes of architectural_specification, instead. For example, a control_hierarchy

should be a subtype offunctional_specification.

*)

ENTITY architectural_specification

SUPERTYPE OF (ONEOF
(
communications_specification,

functionaLspecification,

hardware_specification,

infornnation_specification,

language_specification,

other_specification))

SUBTYPE OF (arch itectural_u nit);

END_ENTITY;

(* architectural_specifications

architectural_specifications are a kind of elementjofjarchitecturaljdefinition consisting of a

list of communications_specifications, a to of functional_specifications, a to of

hardware_specifications, a to of information_specifications, a to of languagejspecijications,

and a to of other_specifications.

The aggregates of various types of specification given here should be sets, since they should not

have duplicates, but the order is irrelevant. However, lists (in which the order is relevant) are

easier to use (since they allow one to place requirements on the entry at a specific position), so

lists are used here.

*)

ENTITY architecturaLspecifications

SUBTYPE OF (element_of_architectural_clefinition);

communications_specifications:

functional_specifications:

hardware_specifications:

information_specifications:

language_specifications:

other_specifications:

END_ENTITY;

LIST [0:?] OF communications_specification;

LIST [0:?] OF functionaLspecification;

LIST [0:?] OF hardware_speclficatlon;

LIST [0:?] OF information_speclfication;

LIST [0:?] OF language_specification;

LIST [0:?] OF other_specification;

(* architecturaljunit

An architecturaljunit is an atomic unit or molecular unit that is recognized by an architecture.

67

Reference Architecture Interim Report

[from Glossary]

architectural_units make up the architectural_specifications of a control_architecture. Thus,

architectural_unit is the supertvpe of all entitv s used in describing architecturaljspecifications

.

architecturaljunits are not used for defining the other element_of_architectural_deflnitions.

architecturaljunit might reasonably be defined as a select type , but it is more convenient as an

entirw since siihtvpe s, can be added without changing the definition of an entity but not a type

defined with select . Also, if there turns out to be an attribute , it can be inserted easily.

*)

ENTITY architectural_unit

SUPERTYPE OF (ONEOF
(
access_scheme,

analysis,

architectural_specification,

communication_method,

conformance_criterion,

(* control_hierarchy, *)

data_unit,

genericJnteraction_specification,

interaction_setup,

interactive_unit,

messagejDrotocol,

planning_model,
(* resource, *)

{* superior_and_subordinates, *)

system_activity));

END_ENTITY;

(* communication_method

A communication_method is a kind of architecturaljunit which specifies a method of getting

messages from one interactivejunit to another.

*)

ENTITY communication_method
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* communications_specification

A communicationsjspecification is a kind of architectural_specification which specifies some
aspect of communications.

*)

68

Reference Architecture Interim Report

ENTITY communications_specification

SUBTYPE OF (architecturaLspecification);

END^^ENTITY;

(* conformancejcriteria

conformancejcriteria are criteria which specify how an architecturaljunit at one

tierjofjarchitecturaljiefinition of an architecture conforms to the architectural_specifications

of a higher tier, or how a process for building part of an architecture conforms to the development

methodology given by the architecture for building that part [from Glossary].

conformancejcriteria are a kind of element_of_architectural_definition which consists of a set

of conformancejcriterions.

*)

ENTITY conformance_criteria

SUBTYPE OF (element_of_architecturaLdefinition);

criteria: SET [0:?] OF conformance_criterion;

END^ENTITY;

(* conformancejcriterion

A conformancejcriterion is a kind of architecturaljunit. See the definition of

conformancejcriteria.
*)

ENTITY conformance_criterion

SUBTYPE OF (architecturaLu nit);

END^ENTITY;

(* control

control is the activity control_units perform. This definition should probably be expanded.

control is a kind of systemjactivity.

*)

ENTITY control

SUBTYPE OF (system_activity);

END__ENTITY;

(* controljarchitecture

The general approach to defining controljarchitecture used here is that a controljarchitecture

consists of a series of tier_of_architectural_definitions plus a

methodology_forjarchitecturaljdevelopment. The idea of an overall methodology is that there

may be a general approach, such as “work bottom up” to architectural development which lies

outside of any single tier and is applicable to the architecture as a whole.

69

Reference Architecture Interim Report

Each successive tier_of_architectural_definition should have a lower degree of abstraction than

the previous one. This is modeled implicitly by having each tier in a separate schema

*)

ENTITY controLarchitecture

(* SUPERTYPE OF (ONEOF (hierarchical_control_architecture)) *);

tiers: LIST [1 :?] OF tier_of_architectural_definltion;

overall_methodology: methodology_for_architectural_development;

END_ENTITY;

(* control_unit

A controljunit is a kind of functionaljunit which performs control of task execution - as

opposed to planning, information handling, sensory processing, etc.

*)

ENTITY control_unit

SUBTYPE OF (functional_unit);

END_ENTITY;

(* datajinteraction_protocol

A datajinteraction_protocol is a kind of direct_interaction_protocol in which all the

message_protocols are datajmessage_protocoh.

*)

ENTITY dataJnteractionjDrotocol

SUBTYPE OF (direct_interaction_protocol);

S E LRd i rectj nte ractio njdrotoco I .messagejprotoco Is

:

SET [1 :?] OF data_messagejDrotocol;

END_ENTITY;

(* datajinteractionjsetup

A data_interaction_setup is a kind of interaction_setup in which the message_protocols of the

interaction_specification consist solely of data_message_protocoh, the first_party of the

interactionjsetup is an interactivejunit and the second_party is a data_store_manager.

All data access activities are modeled as though there is a data_store_manager taking part. Even

if the activity is reading or writing a shared variable in a single computer process, where it is

usually not considered that there is data_store_manager, there seems to be no harm or loss of

generality in imagining there to be one. The advantages of modeling this way are: 1. a single

model will do for all forms of data access, 2. in case of a change in data handling, only the identity

of the datajstorejmanager need change.

*)

70

Reference Architecture Interim Report

ENTITY dataJnteraction_setup

SUBTYPE OF (interaction_setup);

SELRinteraction__setup.secondjDarty: data_store_manager;

SELRinteraction_setup.interaction_specification: datajnte faction_protocol;

END_ENTITY;

(* data_message

A data_message is a kind of message concerning data. It may be a specific item of data, a query,

an ir struction to a data_jtore_manager, or any other message concerning data. A datajmessage

does not directly cause system functioning.

The definition states that there are only two subtypes of data_message, both requiring that either

the sender or the receiver of the message be a data_store_manager. This is implicitly excluding

having two functional_interactive_units sending datajmessages to one another.

This could also be modeled as a type which is a select either message_Jrom_data_store_manager

or message_tojdata_store_manager, which would be direct subtypes of datajmessage.

*)

ENTITY data_message
SUPERTYPE OF (ONEOF

(message__from_data_store_manager,

m8ssage__to_data_store_manager))

SUBTYPE OF (message':

END__ENTITY;

(* data_message^protocol

A data_messagejtrotocol is a kind of message_protocol in which all the messages are

datajnessages.

*)

ENTITY data_messagejDrotocol

SUBTYPE OF (messagejDfotocol);

SELRmessagejDfotocol.messages: LIST [1 :?] OF data_message;
END_ENTITY;

(* data_store

A data_store is a kind of datajunit which stores data. It may be short-lived (dying with a

computer process in which it resides, for example) or long-lived (a file system, for example).

Every data_store is managed by a data_store_manager. That is not currently modeled here in

EXPRESS. A data__store stores storedjdatajunits. That is also not modeled. Both unmodeled

items could be modeled with inverse statements.

*)

71

Reference Architecture Interim Report

ENTITY data_store

SUBTYPE OF (data_unit);

END_ENTITY;

(* data_store_manager

A data_store_manager is a kind of interactivejunit which gets incoming data_messages and

sends outgoing datajmessages and uses the datajstore in some way in dealing with the

messages. Every data_store is assumed to have a data_store_manager which has control of the

data_store.

In the case of many database systems, the data_store_manager may be an identifiable process

recognized by the operating system. Even if the data link is composed of reading or writing a

shared variable in a single computer process, where it is normally considered that there is no

data_store_manager, there seems to be no harm or loss of generality in imagining there to be one.

In the case just described, the computer instruction executor is acting as the data_store_manager,

and the data_store is RAM memory.

*)

ENTITY data_store_manager

SUBTYPE OF (interactive_unit);

managed_store: data_store;

END_ENTITY;

(* datajunit

A datajunit is a kind of architecturaljunit which consists of any kind of data.

datajunit is a supertvpe of data_store, message, messagejinformation, plan, and

stored_datajunit.

*)

ENTITY data_unit

SUPERTYPE OF (ONEOF
(
data_store,

message,

messagejnformation,

plan,

stored_data_unit))

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* directjinteraction_protocol

A direct_interaction_protocol is a kind of generic_interaction_specification. A
directjnteraction_protocol describes the continuing interaction between two interactivejunits.

It consists of a first_party and a second_party, both of which are interactivejunits, and a set of

message_protocols.

12

Reference Architecture Interim Report

The first_party and second_party of all the message_protocols must be the same as the

firstjarty and secondjarty of the direct_interaction^protocol. This is not currently modeled in

EXPRESS.
*)

ENTITY directJnteraction_protocol

SUPERTYPE OF (ONEOF
(
dataJnteractionjDrotocol,

functionaIJnteractionjDrotocol))

SUBTYPE OF (genericJnteraction_specification);

firstjDarty: interactive_unit;

secondjDarty: interactive_unit;

messagejDrotocols; SET [1 :?] OF messagejDrotocol;

END^ENTITY;

(* dynamicjanalysis

A dynamicjanalysis is an analysis of the characteristics of the functions and information in a

domain which vary over time during control system operation. It provides qualitative and

quantitative information about the sequence, duration, and frequency of change in the functions

and information of the domain, [from Glossary]

A dynamicjanalysis is a kind of analysis.

*)

ENTITY dynamic_analysis

SUBTYPE OF (analysis);

END„ENTITY;

(* elementjofjarchitecturaljdefinition

A elementjofjarchitecturaljdefinition is a part of the definition of an architecture. The

elementjof_architecturaljdefinitions are statement of scope and purpose, domain analyses,

architecturaljspecifications, methodologyJorjarchitecturaljdevelopement, and

conformancejcriteria. [from Glossary]

*)

ENTITY element_of_architecturaLdefinition

SUPERTYPE OF (ONEOF
(scope,

purpose,

analyses,

architecturaLspecifications,

methodology_for_architecturaLdevelopment,

conformance_criteria))

;

END_ENTITY;

(* functionaljanalysis

73

Reference Architecture Interim Report

K functional_analysis is an analysis of all the activities within the scope of an architecture which

a conforming system is supposed to be able to perform, [from Glossary]

A functional_analysis is a kind of analysis.

*)

ENTITY functional_analysis

SUBTYPE OF (analysis);

END_ENTITY;

{* functional_interaction_protocol

A functional_interaction_protocol is a kind of direct_interaction_protocol in which all the

message_protocols aie functional_message_protocoh.

*)

ENTITY functionaIJnteractionjDrotocol

SUBTYPE OF (direct_interaction_protocol);

SELRdirectJnteraction_protocol.message_protocols:

SET [1 :?] OF functional_messagej3rotocol;

END_ENTITY;

(* functional_interaction_setup

A functional_interaction_setup is a kind of interaction_setup in which the first_party and

second_party are both functionaljunits, and all the message_protocols of the interactionjsetup

are functional_message_j)rotocoh.

*)

ENTITY functionalJnteraction_setup

SUBTYPE OF (interaction_setup);

SELRinteraction_setup.firstjDarty: functional_unit;

SELRinteraction_setup.secondjDarty: functional_unit;

SELRinteraction_setup.interaction_specification: functionalJnteraction_protocol;

END_ENTITY;

functional_message

A functional_message is a kind of message, such as a command or a status, used directly to

perform the functions of the system. This constraint on the nature of the message is not currently

modeled here in EXPRESS. Only functionaljunits can send functional_messages, and that is

modeled.

*)

74

Reference Architecture Interim Report

ENTITY functional_message

(* SUPERTYPE OF (ONEOF (command, status)) *)

SUBTYPE OF (message);

SELRmessage. sender: functional_unit;

SELRmessage. receiver: functional_unit;

END_ENTITY;

(* functional_message_protocol

A functional_message_protocol is a kind of message_protocol in which all the messages are

functionaljmessages.

*)

ENTITY functional_messagejDrotocol

SUBTYPE OF (messagejDrotocol);

SELRmessagejDrotocol.firstjDarty: functional_unit;

SELRmessagejDrotocol.second_party: functional_unit;

SELRmessagejDrotocol. messages: LIST [1 :?] OF functional_message;

END_ENTITY;

(* functional_specification

A functional_specification is a kind of architectural_specification. Afunctional_specification

describes part of the functioning of a control system.

*)

ENTITY functionaLspecification

SUBTYPE OF (architectural_specification);

END^ENTITY;

(* functionaljunit

A functionaljunit is a kind of interactivejunit directly involved in the functions of a control

system. A functionaljunit may be a controljunit or a planner but may not be a

data_store_manager.

*)

ENTITY functional_unit

SUPERTYPE OF (ONEOF
(controLunit,

planner))

SUBTYPE OF (interactive_unit);

END_ENTITY;

(* generic_interaction_specification

A generic_interaction_specification is a kind of architecturaljunit. A
generic_interactionjspecification describes a continuing interaction between interactivejunits.

A generic_interaction_specification may be a directjnteraction_protocol (in which two

75

Reference Architecture Interim Report

interactivejunits interact via message_protocols) or an indirect_interaction_specification (in

which sets of interactive_units interact via shared data)

*)

ENTITY genericJnteraction_specification

SUPERTYPE OF (ONEOF
(
direct_interaction_protocol,

indirectJnteraction_specification))

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* hardware_specification

A hardware_specification is a kind of architectural_specification that describes the hardware of

a control system.

*)

ENTITY hardware_specification

SUBTYPE OF (architectural_specification);

END_ENTITY;

(* indirect_interaction_specification

An indirect_interaction_specification is a kind of generic_interaction_specification. An
indirect_interaction_specification describes a continuing interaction between two sets of

interactivejunits via a^ of storedjdatajunits managed by one or more data_store_managers,

and mediated by an accessjscheme. It consists of readers and writers (both of which are sets of

interactivejunits), permittedjdatajunits (which is the ^ of storedjdatajunits which may be

accessed by the readers and writers), a scheme (which is an accessjscheme), and managers

(which is a^ of data_store_managers).

Note that an indirect_interaction_specification does not specify messages. Messages might well

flow between the data_store_managers managing the storedjdatajunits and the various

interactivejunits which have access to the permittedjdatajunits, but that is not relevant here.

The permittedjdatajunits must all be in the data_stores managed by the managers. That is not

currently modeled here in EXPRESS.

It might be useful to add a purpose to the definition of an indirect_interaction_specification.

*)

76

Reference Architecture Interim Report

ENTITY indirectJnteraction__specification

SUBTYPE OF (genericJnteraction_specification);

readers: SET [1 :?] OF interactive_unit;

writers: SET [1 :?] OF interactive_unit;

permitted__data_units: SET [1 :?] OF stored_data_unit;

scheme: access_scheme;

managers: SET [1 :?] OF data_store_manager;

END ENTITY;

(* informationjanalysis

A informationjanalysis is an analysis of all the information within the scope of an architecture

needed for a conforming control system to function properly, [from Glossary]

An informationjanalysis is a kind of analysis.

*)

ENTITY information__analysis

SUBTYPE OF (analysis);

END__ENTITY;

(* information_specification

An information_specificatwn is a kind of architectural_specification.

*)

ENTITY mformation_specification

SUBTYPE OF (architecturaLspecification);

END_ENTITY;

(* interaction_setup

An interaction_setup is a kind of architecturaljunit. An interaction_setup describes the

continuing interaction between two interactivejunits. It consists of a first__party and a

second_party, both of which are interactivejunits, a link_method which is a

communicationjmethod, and an interactionjspecification which is a

directjnteraction_protocol. The first_party and second_party of the interaction_setup are the

same as those of the direct_interaction^protocol.

It might be feasible to simplify the definition of interaction_setup by leaving out the first_j)arty

and secondjparty, since they are identified in the directjnteraction_protocol, but it seems more

natural to keep them.

The first__party and second_party must be different; that is not currently modeled here in

EXPRESS.

An interaction_setup is persistent and is modeled as a static part of a controljarchitecture. The

77

Reference Architecture Interim Report

current model provides no explicit support for changing interaction_setups, i.e., dynamic

reconfiguration. Explicitly providing for dynamic reconfiguration will require large changes in the

model.

*)

ENTITY interaction_setup

SUPERTYPE OF (ONEOF
(
data_interaction_setup,

functionalJnteraction_setup))

SUBTYPE OF (architectural_unit);

first_party: interactive_unit;

secondjDarty: interactive_unit;

link_method: communication_method;

interaction_specification: directjnteraction_protocol;

WHERE
firstjDarty_same: firstjDarty :=: interaction_specification.firstjDarty;

secondjDarty_same: secondjDarty :=: interaction_specification.secondjDarty;

END_ENTITY;

(* interactivejunit

An interactivejunit is a kind of architecturaljunit that interacts with other interactivejunits of

the architecture, interactivejunits are software running on computers, not hardware.

*)

ENTITY interactive_unit

SUPERTYPE OF (ONEOF
(
functionaLunit,

data_store_manager))

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* language_specification

A languagejspecification is a kind of architectural_specification which specifies the use of

some particular language for modeling or programming.

*)

ENTITY language_specification

SUBTYPE OF (architectural_specification);

END_ENTITY;

(* message

A message is a kind of datajunit which is used to carry information from one interactivejunit

(the sender) to another (the receiver).

The sender and receiver must be different; that is not currently modeled here in EXPRESS.

78

Reference Architecture Interim Report

Note that this is implicitly excluding broadcasting. If it is deemed desirable to model

broadcasting, the definition of message could be made more general and the entity defined here

could be called a point„to„point„message.

As modeled here, a message is intended to serve as a prototype for instances of itself. It may be

useful to define message„instance, but this has not yet been done.

*)

ENTITY message
SUPERTYPE OF (ONEOF (

data_message,

functionaLmessage))

SUBTYPE OF (data_unit);

sender: interactive__unit;

receiver: interactively nit;

contents: messagejnformation;

END__ENTITY;

(* message_fromjdata_store_manager

A message_fromjiata_store_manager is a kind of data_message in which the sender is a

datajstore_manager.

*)

ENTITY message__from__data__store„manager

SUBTYPE OF (data__message);

SELRmessage.sender: data_store_manager;

END^ENTITY;

(* messageJinformation

A messageJinformation is the information of a message.

As modeled here, messagejnformation has no structure. It is expected that structured subtypes

wiU be defined as needed.

*)

ENTITY messagejnformation
SUBTYPE OF (data_unit);

END^ENTITY;

(* message_jfrotocol

A message_protocol is a kind of architecturaljunit. A message_protocol is the specification of

one or more messages which are exchanged between two interactivejunits (the first_party and

the second_party) in order to accomplish some specific purpose. Either the first_party or the

second_party of the message_protocol must be the sender or receiver of each message.

79

Reference Architecture Interim Report

depending on the direcdon in which the pardcular message is going. It would be nice to add a

where clause to make this relationship explicit in the definition.

As modeled here, message_protocol has two subtype s. data_message_protocol (the messages of

which are all data_messages) and functionaljmessage_protocol (the messages of which are all

functional_messages). It might turn out to be useful to allow message_protocols with messages

of mixed kinds.

The first_party and second_party must be different; that is not currently modeled here in

EXPRESS.

The messages of a message_protocol are modeled here as a list, but they might have more

structure than a /l£I, since which messages are sent might depend on the circumstances. A simple

example is that in response to a command, a subordinate controller might send an indeterminate

number of status messages (one each cycle until the command was carried out). This definition

should be improved to handle more complex cases.

*)

ENTITY messagejDFOtoco I

SUPERTYPE OF (ONEOF
(
data_messagejDrotocol,

functional_messagejDrotocol))

SUBTYPE OF (architectural_unit);

first_party:

secondjDarty:

purpose:

messages:
END_ENTITY;

interactive_unit;

interactive_unit;

messagejDrotocoljDurpose;

LIST [1 :?] OF message;

(* message_to_data_store_manager

A message_to_data_store_manager is a kind of data_message in which the receiver is a

data_store_manager.

*)

ENTITY message_to_data_store_manager
SUBTYPE OF (data_message);

SELRmessage. receiver: data_store_manager;

END_ENTITY;

(* methodology_for_architectural_development

A methodology_Jor_architectural_development is a set of procedures for applying an

architecture, [from Glossary]

A methodology_Jor_architectural_development is a kind of

elementjofjarchitecturaljdefinition.

80

Reference Architecture Interim Report

*)

ENTITY methodology_for_architectural_development

SUBTYPE OF (element_of_architectural_definition);

END_ENTITY;

(* otherjanalysis

An otherjanalysis is a kind of analysis which is not an information_analysis,

functionaljanalysiSy or dynamicjanalysis. This entiP^ may not be needed.

*)

ENTITY other_analysis

SUBTYPE OF (analysis);

END_ENTITY;

(* otherjspecification

An oiher_specification is a kind of architecturaljspecification.

ENTITY other_specification

SUBTYPE OF (architectural_specification);

END_ENTITY;

(* plan

A plan is a scheme developed to accomplish a specific goal, [from Glossary]

A plan is a kind of datajunit.

*)

ENTITY plan

(* SUPERTYPE OF (ONEOF (processjDlan,

production_managedjDlan,

schedule)) *)

SUBTYPE OF (data_unit);

END_ENTITY;

(* planner

A planner is an agent which generates or selects plar^ to accomplish one or more goals, [from

Glossary]

A planner is a kind offunctionaljunit which produces plans. It is not clear that a planner should

be a subtype of functionaljunit, since plans are data. Also, the EXPRESS definition makes it

appear that the output is a single plan, whereas the intent is to identify the type of output. This

needs more thought.

81

Reference Architecture Interim Report

*)

ENTITY planner

(* SUPERTYPE OF (ONEOF (process_planner,

production_management_planner,

schedulejDlanner)) *)

SUBTYPE OF (functional_unit);

output: plan;

END_ENTITY;

(* planning

planning is the activity of making plans. The plans may be process_j)lans,

production_managed_plans, schedules, etc.

planning is a kind of systemjactivity.

*)

ENTITY planning

(* SUPERTYPE OF (ONEOF (processjDlanning,

production_management_planning,

schedulejDlanning)) *)

SUBTYPE OF (system_activity);

END_ENTITY;

(* planningjmodel

A planning_model is a kind of architecturaljunit which describes how planning is done in the

architecture.

*)

ENTITY planning_model
(* SUPERTYPE OF (ONEOF (jjDlanning_model)) *)

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* purpose

A purpose is a kind of elementjofjarchitecturaljdefinition applicable to a

tier_of_archUectural_definition. The purpose serves as a statement of what the architecture is

intended to help accomplish within the scope of that tier.

In this model, one entiP^ which is a subtype of the purpose of the preceding tier is included in

each tier. Each such entity includes an attribute which is a further restriction of the purpose of the

architecture.

As used in this model, purposes are tied only to tier_of_architectural_definitions.

82

Reference Architecture Interim Report

The behavior of the purpose elementjofjarchitecturaljdefinition with respect to the entire

model given here is interesting. The purpose elementjofjarchitecturaljdefinition does not

change in level of abstraction between tiers, so narrower and narrower purposes are conveniently

modeled as suhtvpes. The scope entity shares this property, but the other

element_of__architectural_definitions in the model do not; they generally change level of

abstraction between tiers.

*)

ENTITY purpose
(* SUPERTYPE OF (ONEOF (j_purpose_one)) *)

SUBTYPE OF (element_of_architecturaLdefinition);

END_ENTITY;

(* scope

A scope is the range of areas to which an architecture is intended to be applied, [from Glossary]

A scope is a kind of elementjofjarchitecturaljdefinition.

In this model, one entity which is a subtype of the scope of the preceding tier is included in each

tier. Each such entity includes an attribute which is a further restriction of the scope of the

architecture.

*)

ENTITY scope
(* SUPERTYPE OF (ONEOF (Lscope.one)) *)

SUBTYPE OF (element_of_architectural_definition);

END.ENTITY;

(* storedjdatajunit

A storedjdatajunit is a kind of datajunit. A storedjdatajunit describes a stored unit of data. It

consists of a manager which is a data_store_manager, which manages the datajstore in which

the storedjdatajunit resides.

Our current thinking is that, at any one time, a storedjdatajunit has sets of readers and writers,

both of which are composed of interactivejunits, which can access the data. The readers and

writers may change dynamically, so they are not modeled as part of the stored_datajunit, but

rather as part of an interaction specification.

It might be a good idea to add an attribute here giving the type of the data which is stored. It

might also be useful to add an attribute giving the data_store in which the storedjdatajunit is

stored, but this information is already available through knowing the datajstore_manager. It

could be added as a derived attribute.

83

Reference Architecture Interim Report

A concept not currently included in this conceptual model is that of a

“stored_data_conglomerate”. A stored_data_conglomerate would consist of a set of

stored_data_units, each of which is intended to represent the same data as all the others. Each

representation would be in a different data_store. This would put a formal handle on the common
problem of keeping different representations of the same data the same.

*)

ENTITY stored_data_unit

SUBTYPE OF (data_unit);

manager: data_store_manager;

END_ENTITY;

(* system_activity

A system_activity is a kind of architecturaljunit. It would be feasible to define system_activity

more fully by adding attribute s. The IDEFO concepts of activity could be used, ICOM in

particular (inputs, outputs, controls, means). This takes us a bit far afield from the topic of

controljarchitecture, so it has not been done. It would probably be better in a separate schema .

Currentiy, the only subtypes of systemjactivity are control and planning. It might be better to

have functional_activity be a subtype of systemjactivity and control be a subtype of

functionaljactivity.

*)

ENTITY system_activity

SUPERTYPE OF (ONEOF
(

control,

planning))

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* tier_of_architectural_definition

A tier_of_architectural_definition is one group in an ordered set of disjoint groups of

architecturaljunits of an architecture, such that whenever two architecturaljunits are related by

the first one being an abstraction of the second, the tier of the first is higher than or the same as the

tier of the second, [from Glossary]

A tier_of_architectural_definition consists of the six element_of_architectural_definitions:

scope, purpose, analyses, architectural_specifications,

methodology_Jor_architecturaljdevelopment, and conformancejcriteria.

*)

84

Reference Architecture Interim Report

ENTITY tier_of_architecturai_definition;

tier_scope: scope;

tier_purpose: purpose;

tier_analyses: analyses;

tier_architectural_specifications: architectural_specifications;

tier_methodology: methodology_for_architectural_development;

tier_co nf0rmance_crite ria : co nformance_crite ria

;

END_ENTITY;

FUNCTIONS
*)

END_SCHEMA;

85

Reference Architecture Interim Report

SCHEMA tier1_hierarchical_control;

(* This schema gives the first tier of the joint architecture. It restricts the scope of the architecture

to hierarchical control of mechanical systems and specifies a hierarchical_control_architecture

(the generic_control_architecture is not necessarily hierarchical).

This schema includes the following main ideas which are specific to hierarchical control:

superior_and_subordinates, control_hierarchy, command_and_status_protocol.

This schema does not include any concepts concerning resources.

As noted earlier, this tier uses all of the concepts of the generic_control_architecture schema .

*)

USE FROM generic_control_architecture;

SCOPE
*)

ENTITIES
*)

{*j_scope_one

Aj_scope_one is a kind of scope which is the scope of the first tier of the joint architecture.

The scope is restricted to hierarchical control of mechanical systems.

*)

ENTITY j_scope_one

r SUPERTYPE OF (ONEOF (Lscopejwo)) *)

SUBTYPE OF (scope);

restrictioni : scope_restriction;

WHERE restrictioni = ’hierarchical control of mechanical systems’;

END_ENTITY;

PURPOSE
*)

86

Reference Architecture Interim Report

ENTITIES
*)

(*7_purpose_one

A j_purpose_one is a kind of purpose which is the purpose of the first tier of the joint

architecture.

The purpose is to provide a control architecture which will encompass all applications which one

or both of RCS and MSI can currently handle.

*)

ENTITY j_purpose_one
(* SUPERTYPE OF (ONEOF (jjDurposeJwo)) *)

SUBTYPE OF (purpose);

restriction 1
:

purpose_restriction;

WHERE restrictioni = The purpose of this tier is to provide a control architecture

which will encompass all applications which one or both of RCS and MSI can

currently handle.’;

END_ENTITY;

ANALYSES
*)

ARCHITECTURAL SPECmCATIONS
*)

ENTITIES
*)

(* command
A command is an instruction from a superior controller to a subordinate controller (or from a

client controller to a server controller) to carry out a task, [from Glossary]

A command is a kind of functional_message in which the sender is a controljunit and the

receiver is a controljunit. A command is an instruction from the sender to the receiver, this

constraint on the message is not modeled here in EXPRESS.

In this model, a functional_message is not called a command if the sender or receiver is a

functionaljunit (such as a planner) which is not a controljunit. It mignt be nice to have a name

87

Reference Architecture Interim Report

forfunctionaljmessages which are not commands.

*)

ENTITY command
SUBTYPE OF (functional_message);

SELRmessage. sender: control_unit;

SELRmessage. receiver: control_unit;

END_ENTITY;

(* command_and_status_protocol
A command_and_status_protocol is an exchange of messages between a superior (or client)

controller and a subordinate (or server) controller in which the superior tells the subordinate what

is to be done by sending a command and the subordinate sends a status message back, [from

Glossary]

A commandjandjstatus_protocol is a kind of functional_interaction_protocol in which all

messages for which the first_party of the functional_interaction_j)rotocol is the sender of the

message are commands, and all messages for which the second__party of the

functional_interactionprotocol is the sender of the message are status messages. This is not

currently modeled here in EXPRESS.
*)

ENTITY command_and_status_protocol

SUBTYPE OF (functionaijnteractionjDrotocol);

END_ENTITY;

(* controljiierarchy

A control_hierarchy is a kind of architecturaljunit. It describes an arrangement of controljunits

which is a tree, with one control_unit at the top with at least one subordinate. Each of the

subordinates of the top controljunit may have zero to many subordinates, each of which may
also have zero to many subordinates, and so on. Each of the subordinates has only one superior.

The controljiierarchy is modeled as a of superior_and_subordinates, with the restriction

that any one control_unit may appear at most once in the role of subordinate, and every

controljunit that appears in the role of superior, except the superior in the first entry in the list.

must appear earlier in the Uji in the role of subordinate. These restrictions are not currently

modeled here in EXPRESS. By using the superior_and_subordinates entity as the building block

for controljiierarchy, the requirement that there be a command_and_status_protocol between a

superior and each of its subordinates is automatically imposed.

A nicer modeling technique might be to define hierarchy more abstractly, using a superior-

subordinate relationship, and then use the command_and_status_j)rotocol (or an abstraction of it)

as the relationship.

*)

88

Reference Architecture Interim Report

ENTITY controLhierarchy

SUBTYPE OF (architecturaLunit);

superior__subordinate_sets: LIST [1 :?] OF superior_and_subordi nates;

END^ENTITY;

(* hierarchical_control_architecture

A hierarchicaljcontroljarchitecture is a kind of controljarchitecture in which the

controljunits are arranged in a controljhierarchy and interact via a

commandjand_status^protocol.

Note thatfunctional_units of the architecture which are not controljunits are not necessarily

arranged in a hierarchy.

*)

ENTITY hierarchicaLcontroLarchitecture

SUBTYPE OF (controLarchitecture);

WHERE
controLunitsJn__a_hierarchy(SELRcontrol_architecture);

END„ENTITY;

(* status

A status is a kind offunctional_message in which the sender and receiver are controljunits. The

content of a status message should be to give the status of the execution of a command or the

status of health of the sender of the status message. This constraint on the nature of the message

is not currently modeled here in EXPRESS. It might be useful to relax the constraint that the

sender and receiver both be controljunits to require only that they both b&functionaljunits.

*)

ENTITY status

SUBTYPE OF (functionaLmessage);

SELRmessage.sender:
SELRmessage. receiver:

END_ENTITY;

(* superiorjand_subordinates

A superior_and_subordinates is a kind of architecturaljunit. It consists of a superior (which is

a controljunit), a list of subordinates (each of which is a controljunit and occurs only once in the

list) and a Ujt of command_and_status_protocols. In each of the

commandjand_status_protocols theirs/_party must be the superior and the second_party must

be the subordinate in the corresponding place in the to of subordinates', this constraint is not

currently modeled here in EXPRESS.

control_unit;

control_unit;

89

Reference Architecture Interim Report

This entire serves as the building block from which control_hierarchy is made.

The subordinates attribute could be derived from the protocols, but the model seems more

natural as it is given now.

*)

ENTITY superior_and_subordinates

SUBTYPE OF (architectural_unit);

superior: control_unit;

subordinates: LIST [1 :?] OF UNIQUE control_unit;

protocols: LIST [1 :?] OF command_and_status_protocol;

END_ENTITY;

FUNCTIONS
*)

(* control_units_in_a_hierarchy

This function is currently a stub (always returns TRUE) for a function which tests whether the

control_units of a control_architecture are arranged in a control_hierarchy. The real version of

the function will return the logical value TRUE if so and FALSE if not.

The function is used by the hierarchical_control_architecture entity.

*)

FUNCTION control_unitsJn_a_hierarchy (input: control_architecture) : LOGICAL;
RETURN (TRUE);

END_FUNCTION;

METHODOLOGY
*)

CONFORMANCE CRITERIA
*)

END_SCHEMA;

90

Reference Architecture Interim Report

91

Reference Architecture Interim Report

SCHEMA tier2_discrete_parts;

(* This schema gives the second tier of the joint architecture. It restricts the scope of the

architecture to discrete parts manufacturing. This schema includes the following main ideas

which are needed in discrete parts manufacturing: real_time_control_unit,

scheduled_control_unit, transition_control_unit (which combines features of the other two

types of controljunit), a melded_control_hierarchy using the three types of controljunit, a three

phase planning_model (with process_planning, productionjmanagement_planning, and

scheduling), and resources (which is not yet done).

As noted earlier, this tier uses all of the concepts of the previous tier.

*)

USE FROM tier1_hierarchical_control;

SCOPE

ENTITIES
*)

*)

{*j_scope_two

A j_scope_two is a kind of j_scope_one which is the scope of the second tier of the joint

architecture.

The scope is restricted further to discrete parts manufacturing.

*)

ENTITY j_scope_two

r SUPERTYPE OF (ONEOF (Lscopejhree)) *)

SUBTYPE OF {j_scope_one);

restriction2: scope_restriction;

WHERE restriction2 = ’discrete parts manufacturing’;

END_ENTITY;

PURPOSE
*)

ENTITIES

92

Reference Architecture Interim Report

*)

(*jjpurposejtwo

A jpurposejtwo is a kind ofjpurposejone which is the purpose of the second tier of the joint

architecture.

The purpose is to be restricted further.

*)

ENTITY jjDurpose_two

(* SUPERTYPE OF (ONEOF (j_purposeJhree)) *)

SUBTYPE OF ([j3urpose_one);

restriction2: purpose_restriction;

WHERE restriction2 = ’tbd’;

END^ENTITY;

ANALYSES
*)

^

4
^ 4^ 4^ 4^ 4^ 4^ 4^ 4^ 4^ 4

|^
4^ 4^J

^
4^ 4^ 4^ 4

^^
4
^^

4^ 4^ 4^ 4^ 4^ *Ji* ^

ARCHITCCTURAL SPECMCATIONS
*)

ENTITIES
*)

(* melded_control_hierarchy

A melded_control_hierarchy is a kind of controljtierarchy in which the controlpnit at the top

of the hierarchy is a scheduled_control_unit, the subordinates of each scheduled_controi_unit

are either scheduled_control_units or transition_control_units, and the subordinates of

transition_control_units are all real_time_control_units. This constraint is not currently

modeled here in EXPRESS.
*)

ENTITY melded_control_hierarchy

SUBTYF OF (controLhierarchy);

END_ENTI i Y;

{*jplanningpiodel

93

Reference Architecture Interim Report

A j_planning_model is a kind of planning_model with three phases. The first phase is

process_planning, the second phase is production_management_planning, and the third phase

is schedule_planning.

The intent is that the j_planning_model should serve for all controllers in a controljhierarchy

which has MSTtype scheduledjcontroljunits in the upper hierarchical levels (requiring resource

allocation and scheduling) and RCS-type real_time_control_units in the lower hierarchical levels

(running in real time and doing sensory processing). The MSI-type require all three phases before

plan execution is possible. The RCS-type require only process^planning. That is why the second

and third planning phases are marked OPTIONAL in the EXPRESS.

*)

ENTITY jjDlanning_model

SUBTYPE OF (planning_model);

phasel

:

phase2:

phases:

END_ENTITY;

(* process_plan

A process_plan is a specification of the activities (possibly including alternatives) necessary to

reach some goal. A process_plan serves as a template, or recipe, process_plans may be

distinguished from production_managed_plans and schedules, both of which are derived from

process_plans. [from Glossary]

A process_plan is a kind of plan.

*)

ENTITY processjDlan

SUBTYPE OF (plan);

END_ENTITY;

(* process_planner

A process_planner is a kind of planner which makes process_plans.

*)

ENTITY process_planner

SUBTYPE OF (planner);

SELRplanner.output: processjDlan;

END_ENTITY;

process_planning

process_planning is a kind of planning in which process_plans are produced.

*)

processjDlanning;

OPTIONAL production_management_planning;

OPTIONAL schedulejDlanning;

94

Reference Architecture Interim Report

ENTITY process_planning

SUBTYPE OF (planning);

END_ENTITY;

(* production_managed_plan
A productionjntanaged_plan is a kind ofplan. It is derived from a process_plan.

*)

ENTITY production_managedjDlan

SUBTYPE OF (plan);

antecedentjDrocessjDlan: processjDlan;

END_ENTITY;

(* productionjmanagement_planner

A productionjmanagement_planner is a kind ofplanner which makes

productionjmanaged_plans.
*)

ENTITY production_managementj3lanner

SUBTYPE OF (planner);

SELRplanner.output: production_managedjDlan;

END_ENTITY;

(* productionjnanagement_planning

production_management_planning is a kind of planning in which production_managed_plans

are produced.

*)

ENTITY production_management_planning

SUBTYPE OF (planning);

END_ENTiTY;

(* realjtime_control_unit

A realjtimejcontroljunit is a kind of controljunit which operates in hard real time. In addition,

it is expected that a realjtimejcontroljunit will not require scheduling. The restrictions on

realjtimejcontroljunit are not currently modeled here in EXPRESS.
*)

ENTITY real_time_controLunit

SUBTYPE OF (control_unit);

END_ENTITY;

(* resource

95

Reference Architecture Interim Report

A resource is a kind of architectural_unit.

This is currently a stub definition.

*)

ENTITY resource

SUBTYPE OF (architectural_unit);

END_ENTITY;

(* schedule

A schedule is a kind of plan which includes the assignment of specific resources and times. It is

derived from a production_managed_plan

*)

ENTITY schedule

SUBTYPE OF (plan);

antecedent_managedjDlan: production_managedjDlan;

END_ENTITY;

(* schedule_planner

A schedule_planner is an agent which performs scheduling, [from Glossary - scheduler]

A schedule_j)lanner is a kind ofplanner which makes schedules.

*)

ENTITY schedule_planner

SUBTYPE OF (planner);

SELRplanner.output: schedule;

END_ENTITY;

(* schedule_planning

schedule_planning is a kind ofplanning.

*)

ENTITY schedulejDlanning

SUBTYPE OF (planning);

END_ENTITY;

(* scheduledjcontroljunit

A scheduledjcontroljunit is a kind of controljunit which will support being scheduled and does

not necessarily run in hard real time.

The restrictions on scheduledjcontroljunit are not currently modeled here in EXPRESS.
*)

96

Reference Architecture Interim Report

ENTITY scheduled_control_unit

SUBTYPE OF (control_unit);

END_ENTITY;

(* transition_control_unit

A transition_controljunit is a kind of controljunit which may be one of the subordinates of a

scheduledjcontroljunit and the superior of a real_time_control_unit.

The restrictions on transition_control_unit are not currently modeled here in EXPRESS.
*)

ENTITY transition_control_unit

SUBTYPE OF (controLunit);

END_ENTITY;

METHODOLOGY
*)

CONFORMANCE CRITERIA
*)

END_SCHEMA;

97

Reference Architecture Interim Report

SCHEMA tier3;

(* This schema describes the third tier of the joint architecture. It is currently a shell.

*)

USE FROM tier2_discrete_parts;

SCOPE
*)

ENTITIES
*)

(* j_scope_three

A j_scope_three is a kind of j_scope_two which is the scope of the third tier of the joint

architecture.

The scope is to be restricted further, possibly in this model, but that has not been done yet.

ENTITY j_scope_three

r SUPERTYPE OF (ONEOF (Lscopejour)) *)

SUBTYPE OF (Lscopejwo);
restrictions: scope_restriction;

END_ENTITY;

PURPOSE
*)

^ij."
*

ENTITIES
*)

(* J_purpose_three

A j_purpose_three is a kind ofj_purpose_two which is the purpose of the third tier of the joint

architecture.

The purpose is to be restricted further.

*)

98

Reference Architecture Interim Report

ENTITY j_purpose_three

(* SUPERTYPE OF (ONEOF (j_purpose_four)) *)

SUBTYPE OF (j_purpose_two);

restrictions: purpose_restriction;

END_ENTITY;

ANALYSES
*)

ARCHITECTURAL SPECIFICATIONS
*)

METHODOLOGY
*)

CONFORMANCE CRITERIA
*)

END_SCHEMA;

99

Reference Architecture Interim Report

SCHEMA tier4;

(* This schema describes the fourth tier of the joint architecture. It is currently a shell.

*)

USE FROM tiers;

3^ 3^ 3^ 3^ sjc 3j(3^ 3^ 3^ 3^ 3^ 3jc 3^ 3{(3jc 3jc 3j(3^ 3jc

SCOPE
*)

ENTITIES
*)

(*j_scope_/our

A j_scopeJour is a kind of j_scope_three which is the scope of the fourth tier of the joint

architecture.

The scope is to be restricted further, possibly in this model, but that has not been done yet.

*)

ENTITY j_scope_four

(* SUPERTYPE OF (ONEOF (Lscopejive)) *)

SUBTYPE OF (j_scope_three);

restriction4: scope_restriction;

END_ENTITY;

%1^ sl^ 0.« ^t« *1^ ^1*
^5 ^y ^y ^y ^y ^y ^y ^y ^y ^y ^y ^y ^y ^y <fy ^y ^y <|s ^y ^y ^y ^y

PURPOSE
*)

ENTITIES
*)

{*j_purposeJour
Aj_purposeJour is a kind ofj_purpose_three which is the purpose of the fourth tier of the joint

architecture.

The purpose is to be restricted further.

*)

100

Reference Architecture Interim Report

ENTITY j_purpose_four

(* SUPERTYPE OF (ONEOF (j_purposeJive)) *)

SUBTYPE OF (jj3urpose_three);

restriction4: purpose_restriction;

END_ENTITY;

ANALYSES

ARCHITECTURAL SPECIHCATIONS
*)

METHODOLOGY
*)

CONFORMANCE CRITERIA
*)

END_SCHEMA;

101

Reference Architecture Interim Report

SCHEMA tiers;

(* This schema describes the fifth tier of the joint architecture. It is currently a shell.

*)

USE FROM tier4;

SCOPE
*)

(*j_scope_Jive

A j_scope_Jive is a kind of jjscope_Jour which is the scope of the fifth tier of the joint

architecture.

The scope is to be restricted further in applications of the architecture, but not in this model.

*)

ENTITY j_scope_five

SUBTYPE OF (j_scopeJour);

restrictions : scope_restriction

;

END_ENTITY;

PURPOSE
*)

{*j_purposeJive

A j_purposeJive is a kind ofj_purposeJour which is the purpose of the fifth tier of the joint

architecture.

The purpose is to be restricted further.

*)

ENTITY j_purpose_five

SUBTYPE OF (j_purpose_four);

restrictions: purpose_restriction;

END_ENTITY;

ANALYSES

102

Reference Architecture Interim Report

*)

(*

ARCHITECTURAL SPECMCATIONS
*)

METHODOLOGY
*)

CONFORMANCE CRITERIA
*)

END„SCHEMA;

m

-* tla*'*:

"i)ft ||T 1l|]cjt:t^^"' ~ t
»> - >. Ik .» *, I M' 1.

im ’’ "

••t#f'5i''*\,4'«* » '.••• <«* » -I *' to %,#># « «#,AA !.k ''i*' .< j*<
^ '*

'!«^

.frir;'

flf^

isi'..jO«»Tf>

A*4 'A',>>-'*%ifcf» inn. -Anf^AKi

if
'

iff

.
" * s»

-i^'
'

:

!t'ji=f®-
.V'*i,*y

SUFisiv-

W./i, }'
„

'

..Fl(,f" jit'

4j ,1 Si'

I

5

