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This paper establishes to first order the sensitivity of the center coordinates and radius of a

circle through three points in terms of small, random perturbations of those points. This problem arises

in the estimation of measurement errors from coordinate measurement systems. Formulas developed

herein express the uncertainty of circle parameters as functions of point measurement uncertainty and

the arc angle between points. We show that for practical measurement procedures, task uncertainties

depend only on the mean and variance of the point measurement errors and are essentially independent

of their statistical distribution.
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INTRODUCTION
Coordinate measurement systems are commonly used to inspect the dimensions of

manufactured parts. These systems are often used in the following way:

1) measure points on the part surface;

2) fit the points by some means to obtain a “substitute geometry” model of the

surface;

3) compare the parameters of the substitute geometry to the product specifications.

In some applications, the last step might be replaced with:

3') use the parameters of the substitute geometry to update the process control

settings.

For both inspection and process control applications, the quality of the measurement data is an

important economic factor. That is, the uncertainty of the fit parameters determines the worth

of an inspection. Various standards [1-4] specify methods for determining the uncertainties

associated with measuring points on the part surface. Very little has been, published, however,

on how these uncertainties propagate through the fitting procedure (Step 2). It is commonly

accepted by practitioners in the field that the point measurement uncertainties can have drastically

different effects on the end result, depending on the inspection task. A challenge facing industry

today is to develop ways of estimating “task-specific uncertainties”—how the point measurement

uncertainties affect specific measurements.

A common industry task is measuring an arc of a circle (say, for a fillet or a section of

a spherical mirror). Common wisdom is that measuring a small arc (say, 30°) can produce

unreliable results. Recent work at NIST [5] has used simulation to quantify the uncertainty of

the center coordinates and radius of a circle to the arc angle and point uncertainties for this task.

Such results allow an inspection planner to determine if a given arc is too small to be measured

on a given machine or, conversely, what point uncertainties are needed to measure a given arc.
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Various researchers are advocating the systematic use of simulation to estimate task-

specific uncertainties [6,7]. In this paper, we develop, at least for circles, an analytic approach

to this endeavor. This provides an alternative to the computationally intensive simulation

approach, and the two approaches can be used to validate one another. Using a simple model

of point errors, we develop equations to “derate” the measurement uncertainty of the machine,

thereby obtaining task-specific uncertainties for measuring circular arcs.

PROBLEM FORMULATION
Suppose we wish to inspect a unit

circle by measuring three points spaced uni-

formly over an arc subtending an angle of 20,

as shown in Figure 1. Typically, we are

interested in the size and position of the

circle. The point coordinates are P,=(-sin 0,

cos 0), P
2
=(0

, 1), and P
3
=(sin 0, cos 0).

However, these points cannot be measured

exactly: each point is perturbed by a small

amount from the ideal point on the unit circle.

For small perturbations along the circum-

ference, we would expect the resulting fit to

remain unchanged. However, radial pertur-

bations will have an effect. So without much
loss of accuracy, we can assume that the point

perturbations are strictly radial.

The last assumption can be viewed in

another way. The perturbation of a point can

be decomposed into a radial component and a

tangential component. For small perturba-

tions, the tangential component has no effect

—the point is still approximately on the circle

To make things concrete, we will assume that the magnitude of the radial perturbations

are strictly random, uncorrelated, and distributed with zero mean and common standard deviation

of a.‘ (We might regard the distribution in the radial direction as the marginal distribution of

the volumetric error characteristics of the machine.) We will furthermore assume that a«l.

(Modern coordinate measuring machines typically have point uncertainties on the order of a few

microns or less. The smallest features typically measured on such machines are on the order of

centimeters. Thus, a practical upper bound for a is 10“^.)

'However, this means that our analysis does not apply to the effects of feature deviation from perfect form. That

is, our conclusions will be about an imperfect machine measuring a perfect part, not about the influence of part deviations

on measurement results. In practice, perturbations are strictly random and uncorrelated only when the measurements

extend over a small fraction of the working volume of the machine. The perturbations will have zero mean if the

systematic errors of the coordinate measuring machine have been eliminated from the point coordinates. This is the case

for many modern, computer-controlled systems. All the assumptions can be tested for a particular machine.
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Let the magnitude of the perturbations be m,, /=1, 2, 3. For convenience, define y=\+ii..

Then we are fitting a circle to three points with coordinates y,P,, z=l, 2, 3. Since the points are

random variables, the center coordinates and radius of the circle going through the three points

are also random variables. Our problem is to determine the mean and standard deviation for

these quantities. (If we were to assume some particular distribution for the u^, we could—in

principle—find the distributions of the center coordinates and radius.)

Many results in this paper rely on two results from probability theory. The first is that

the mean of the sum of random variables is the sum of their means. (That is, the operations of

addition and taking expectation can be interchanged freely.) The second result is the following

theorem, the proof of which can be found in many introductory books on probability and

statistics (for example, [8]):

Theorem Let {Xj, .., X }
be n uncorrelated random variables with means and

variances oA and let z=H(X .. X ) Then (assuming the necessary derivatives

of H exist), the mean and variance of Z are approximately

, 1 A 2

mz =
^ M OX,

f \

dH

dx

where all the partial derivatives are evaluated at the point (m^ ..., m„).

The proof involves expanding // in a Taylor series about the point {m^, ..., mj to one or two

terms, discarding the remainder, and taking the expectation and variance of both sides. (When

higher derivatives are zero, the expressions are exact.)

As special cases of the Theorem, we have the following relationships, which will be used

frequently in what follows:

• The mean of a+X is a+m
• The mean of aX is am
• The mean of X ^ is m^+a^

• The variance of a+X is

• The variance of aX is aV
• If Xi and Xj are uncorrelated, the variance of Z

1
+X

2
is c^^+G2

'

All of the above relationships are exact, since the associated Taylor series terminate.

SOLUTION OF THE CIRCLE EQUATION
We start by representing the circle in standard form: x^+y^+ax+by+c=0. This corresponds

to a circle centered at {-a/2, -b/2) with radius r=V2{a^+b^-4cy'^

.

Substituting each of the point
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coordinates in turn, we obtain three equations in the unknowns a, b, and c, which can be written

in matrix form as:

'-y
,

sinG y jCosG r f
-Yi

0 Yz 1 b =
1

-y'l

y,sinG
v

'
y3CosG 1

/

This can be solved using Cramer’s rule. The denominator is the determinant of the coefficient

matrix:

= -sine(y,y
2 +Y,y -2Y,y,cos0)

-YjSinG YjCosG 1

D = 0 Yz 1

y3sinG y3CosG 1

The X coordinate of the center, is determined by coefficient a, which in turn is given by

Q —

"Yi YjCosG 1

-y\ h >

f
\

Y 1 -T 3 YiY2'"Y2Y3-(Y,Y3n^cose

“Y 3 Y 3
‘^0SG 1

sinG
k /

Y,Y2+Y2Y3-2YiY3Cos0

D

Y,-Y3
,

(y,Y3-Y2)cos0
1 +

sinG
'v / / YiY2-"Y2Y3-2YiY3COS0^

For small i/,, the second factor is approximately 1. (The approximation is exact when G=90°.)

Thus,

Yi"Y3
a ~ =

sinG sinG

Then is
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2sin0

Thus, has zero mean and standard deviation cj =G/(/Tsin0)- We will call the ratio a/a the

sensitivity of It represents how much more uncertainty there is in than there is in the

individual measured points.

A plot of the x coordinate sensitivity is

shown in Figure 2. The machine’s point

uncertainty is doubled when measuring arcs of

0=20° (40° total arc) and continues to grow

as 0 gets smaller. The sensitivity of the .y

coordinate also grows as 0 approaches 180°,

corresponding to the indeterminacy of when

the circle is measured using opposing points

along the y axis. Note that the uncertainty of

,Y is at a minimum when 0=90°, where it has

the value l/yT- As we shall see later, this

does not represent the minimum in the uncer-

tainty of the center, which also depends on

the uncertainty of the y coordinate.

The y coordinate of the center, y^, is

determined by coefficient b, which is given by

Figure 2 Plot of x center coordinate sensitivity

against arc angle between points.

“YjSinO “Yi 1

0 -Y2 1

Y3sin0 -y] 1

D

(yiY3-Y2)(Yin3)

YiY2n2Y3-2YiY3Cos0

For small w,, b is approximately

2 (Wj -2^2 ^^3)
b ~

2(1 -COS0) “(Wj -2^2 "^^
3 )

Wj ”2«2 '^3

1 -COS0

1

-2^2 ^^^3

2(1 -COS0)

This approximation is independent of the choice of 0. If 0 is not too small (i.e., 1-cos 0 » a)

the factor in brackets is about 1, and we have
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II
,
-2u^ +U.

b = -I—?—

1

1 -COS0

Then is

ly
li^-2u^+u^

2 2(1 -COS0)

The numerator is a random variable with zero mean and variance 6a^. Thus, has zero mean

and standard deviation a == y372G/(l -cos0) •

A plot of the coordinate sensitivity is

shown in Figure 3. As with the x coordinate,

the uncertainty in y^ grows dramatically for

small 0. The y coordinate uncertainty is

twice the machine point uncertainty when

measuring arcs of about 134° (as compared to

40° for the ;c coordinate); in measuring a 40°

total arc (0=20°), the y coordinate uncertainty

is over 20 times the point uncertainty.

The individual x and y coordinates of

the center are of limited interest in metrology

applications. (They may be used, for in-

stance, in checking bidirectional position

tolerances.) A much more common quantity

is the Euclidean distance of the measured

center from its specified position. This sug-

gests we study the quantity

Figure 3 Plot of y center coordinate sensitivity

against arc angle between points. (Note that the

vertical axis is ten times that of Figure 2.)

^ =
\l^c +yc =

The expected value of d represents the expected shift of the fit circle from its true center due to

point measurement uncertainties. The analysis is complicated by the presence of the square root.

We can derive an expression for the expected value of as follows. For convenience, let

a=(M
3
-i<,)^ and P=(u^-2u2+u2)^. Then the expected values of a and (3 are 2a^ and 6a^, respectively

and

(w^-Wj)^ {u^-2u^+u^y

4sin^0 4(1 -cos0)^
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E(J-) = 2 +COS0

sin‘0(l -COS0)

A plot of ^JE{d-) /a is shown in Figure 4.

The minimum occurs at 0=120°, correspond-

ing to equally spacing the points around the

circle. This result is satisfying, because it

corresponds to an intuitive sense of how to

get the most accurate measurement of a circle

center.

Unfortunately, a knowledge of E(<i^)

does not tell us too much about the distribu-

tion of d. For instance, we do not know the

variance of d~, which requires knowledge of

the fourth moments of the u^. If we assumed

particular distributions for the w,, it would be

fairly straightforward to calculate the distribu-

tion of d.

Nevertheless, we can assume that the

expected value of d will be on the order of the square root of the expected value of d~. The

expected value of d represents the uncertainty in determining the circle center. As such, it can

be used as an estimate of measurement uncertainty in center position in the Euclidean sense. In

this sense, the expression ^£(<7 /a is analogous to the expressions for the sensitivity of the ;c

and >’ coordinates developed above.

We now turn to the last characteristic commonly measured for circles: the radius. The

radius depends on coefficient c as well as a and b. Coefficient c is given by

Figure 4 Plot of the expected Euclidean dis-

tance of the center from the origin against arc

angle between points.

-YjSin0 yjCos0 -Yt

0 Y2 -72

y3sin0 y3cos0
?

-73

D

~'>'j2Y3Cyi'"Y3~2Y2COse)

Yiy2'"Y2Y3-2Y,Y3Cos0

This can be written
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^ = -Y1Y3-
27|y3(Y,Y3-Y2)cos0

YiY2'"'y2Y3-2Y,Y3Cos0

For small c is approximately

c +u^ +11^ +
(i/j -2«2 '^n^)cosQ 1

1 -COS0
ii, -2u. +u^

1
-

2(1 -COS0)

and, as with the expression for b, when 0 is not too small the expression in the inner brackets

is about 1 and

c
ii, -2w-cos0

1 +_L__i i

1 -COS0

As mentioned above, the circle radius r is given by r =-\la^ -^b^-Ac • Observe that and b^

are on the order of (T, while -c is of the form 1+e, where e is on the order of a. Thus, the

radius reduces to

r
P « -2wtCos0+w

1 +- = 1 +-^—^

2 2(1 -COS0)

Thus, r is distributed with a mean of 1 and standard deviation

a
1 +2cos^0

^] 2(1 -COS0)'

A plot of the sensitivity of r as a function of 0 is shown in Figure 5. As with determining the

center position, this curve has a minimum at 0=120°, where it has a value of l/Vs. The radius

sensitivity becomes less than one at cos(0)=O.25 (0-75.5°, or a total measured arc of 151°).

Although the center position sensitivity rises dramatically as 0 increases past 120° (because of

the rising sensitivity of the x coordinate), the radius remains relatively insensitive for increasing

0. Thus, even for an opposed-point measurement (0=180°), the radius sensitivity is only about

0 .6 .
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SUMMARY
We have developed equations for the

uncertainty of various circle characteristics

when they are determined by measuring three

points using a coordinate measuring system

with known point measurement uncertainties.

Using the angle between points as a parame-

ter, we developed equations and plots that

relate the point measurement uncertainty to

uncertainty in measuring the center x coordi-

nate, center y coordinate. Euclidean distance

of the center from the origin, and circle radi-

us. These task-specific uncertainties depend

on the mean and variance of the point mea-

surement errors, but are independent of the

distributional form of the point errors.

The results developed here apply to measuring a circle with perfect form. (They might

apply when measuring a calibration artifact, for instance.) They say nothing about how to

measure a part with significant form errors. For one thing, using three points to measure a circle

is very poor policy—many processes for making circles (rather, holes and shafts) generate form

errors with three-fold symmetry, and three-fold symmetry is the last thing one wants in the

surface sampling.

In one sense, our results merely confirm what practitioners have always known. The

optimal angle between points—the angle that minimizes the uncertainty of the measured quantity

—is 120° for the radius and the Euclidean center position, and opposed-point measurement for

determining a single center coordinate (x or y).

The main value of our results is that it provides quantitative methods for estimating task-

specific uncertainties. Even when an inspection planner has the luxury of placing the

measurement points in an optimal position, there have been few methods available for estimating

the resulting uncertainty. Beyond that, one is often forced to measure a limited arc of a circle.

(That may be all there is of the part!) In such cases, one can expect the uncertainty of measured

quantities to behave according to the curves presented here.

FUTURE WORK
One would expect the uncertainty of circle characteristics to decrease with increasing

number of points. The results herein will have to be extended to provide guidance as to what

to expect with more than three points. More generally, the analysis should be extended to

realistic sampling plans and fitting procedures (e.g., many equally-spaced points fit using

orthogonal distance regression). This work remains to be done, but we can outline the necessary

elements based on our experience with the NIST Algorithm Testing System [9]. To start, we

should think of the points as defining a vector of residuals for any particular fit. The proper tool

to examining the sensitivity of the solution to small perturbations in the data is the condition

number of the Jacobian of this residual vector. By parameterizing the Jacobian by the angle

between points, we should be able to develop general expressions for “derating” the machine

Figure 5 Plot of radius sensitivity against arc

angle between points.
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points uncertainty in terms of total measured arc and number of points. The analysis can

likewise be extended to other geometries. These extensions will be the subject of future research.
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