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SOFTWARE NEEDS IN SPECIAL FUNCTIONS

DANIEL W. LOZIER

Abstract. Currently avedlable software for special functions exliibits gaps and

defects in comparison to the needs of modem high-performance scientific com-

puting and also, surprisingly, in compeirison to what could be constructed

from current algorithms. In this paper we expose some of these deficiencies

emd identify the related need for user-oriented testing software.

1. Introduction

A recent article by Lozier and Olver [21] provides a survey of algorithms and

software for the numerical evaluation of special functions. Its emphasis is on the

generation of function values although selected resources for zeros and integrals are

included also. Journals, books, conference proceedings, and software documents

were examined and a bibliography of nearly 500 references was constructed. Based

on this investigation, the functions were classified and cross-referenced to biblio-

graphic entries and to specific software libraries and systems^.

The bibliography was prepared using the authors’ professional experience sup-

plemented by assistance from interested individuals. Twelve journals were searched

systematically, and the review journals Mathematical Reviews and Zentralblatt fur

Mathematik were searched under Mathematics Subject Classification 65D20 (com-

putation of special functions and construction of tables). The period covered by

the bibliography is 1968-1993.

The survey disclaims any recommendation of algorithms or software. Its pur-

pose is to identify, not to evaluate. The important topic of evaluating, or testing,

numerical software for special functions is addressed in a few of the references in

the bibliography.

The first purpose of this paper is to scrutinize [21] and identify those functions

for which software is lacking, particularly in cases where algorithms have been

described in journal articles. The need to fill these gaps will be supported, in part,

by reviewing requests for software that have appeared on various electronic bulletin

boards or were received directly by the author of this paper. We mention here, as

an indication of current interest in numerical evaluation, that over 200 requests

for a preprint of [21] were received within two weeks of an announcement of its

Key words and ‘phrases. SpecieJ. functions-computing, special functions-software, special

functions-testing.

^Ccrtedn commercial software products eu'e identified in this paper. In no case does such

identification imply recommendation or endorsement by the National Institute of Stamdards and
Technology, nor does it imply that the products are among the best avciilable for the purposes

they serve.
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availability in the electronic NA Digest. Additional requests were generated by a

later announcement in the newsletter of the SIAM Activity Group on Orthogonal

Polynomials and Special Functions.

This paper’s second purpose is to venture beyond the mere identification of

resources into the more difficult terrain of software evaluation. A few examples of

defects in function software will be presented, and some general observations will

be made on the kind of developments we think are needed in the area of testing.

2. Libraries and Interactive Systems

Software is such a broad term, with so many meanings, that it is necessary to

define the kind of software that is of concern in this paper. We begin by offering

the following elementary classification of scientific computing:

El. Numerical Computing

El.l. Fixed-Precision Floating-Point Computing

El. 2. Variable-Precision Floating-Point Computing

El. 3. Non-Floating-Point Computing
E2. Non-Numerical Computing

E2.1. Symbolic Computing
E2.2. Graphical Computing

These categories are not mutually exclusive. Obviously, graphical computing re-

quires numerical computing. Scaling, shading and rotating, for example, involve

arithmetic operations and elementary functions, and coordinate transformations

may involve special functions. Similarly, variable-precision floating-point comput-

ing requires a considerable amount of non-numerical computing. Nevertheless, this

classification serves as a useful guide.

Special functions pervade all categories of this classification. Fixed-precision

floating-point computing encompasses the historical development of computers and

compilers for the purpose of numerically simulating the solutions of problems in

engineering and science using mathematical and statistical models. Often, in the

pre-computer era, these problems were considered solved when expressions in terms

of special functions were obtained, for then one could, in principle, generate numer-

ical results from tabulated values of the functions. Further, the mathematical prop-

erties of the special functions, particularly their asymptotic properties, contributed

to a qualitative understanding of the solutions. Because of their prominence in ap-

plied mathematics, it is not surprising that subroutines for special functions were

among the earliest examples of numerical software.

Many of the special functions arose from certain integrals and differential equa-

tions that appeared in the more tractable mathematical models. With the advent

of computers, brute-force methods replaced continuous models with huge discrete

analogs and permitted the numerical solution of more general problems. Never-

theless, special functions retain their importance in mathematical modeling. Their

value as an aid to qualitative understanding is well recognized and accepted. They
lead in some cases to more economical forms of solution, as measured by operation

counts; this is particularly valuable in so-called supercomputing applications. An
example is the use of the spectral method to solve partial differential equations in

terms of spherical harmonics in weather and climate models. Special functions are
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used also in validating brute-force methods through the consideration of specialized

test cases.

In statistics, cumulative distribution functions (integrals of density functions)

and their inverses are special functions that form the basis of successful statistical

analysis.

We conclude from the foregoing that the place of special functions in fixed-

precision floating-point computing is firmly established in general scientific compu-

tation. Variable-precision floating-point and non-floating-point computing are not

so clearly associated with scientific computing except in their connection to sym-

bolic computing, that is, using the computer to do mathematics by manipulating

symbols. This field of application of computers traces back almost as far as numer-

ical computing but, historically, the approach to using the computer is different.

Numerical computing, characterized by long but routine sequences of operations,

proceeds very well without monitoring. Symbolic computing is more exploratory

in nature, with responses from one calculation requiring human thought before the

next calculation is initiated. We say symbolic computing is interactive whereas

numerical computing is (relatively) non-interactive. A modern trend is for all com-

puting to be more interactive, except possibly for very long numerical simulations

done by supercomputers. Even in supercomputing, interactivity plays a role in the

interpretation of results by graphical computing, so-called visualization, and in the

derivation of complicated formulas by symbolic computing for use in mathematical

models.

Decimal (or binary) approximations are avoided as much as possible in sym-

bolic computing because the intention is to produce exact results. Integers and

rational numbers, introduced as exact quantities and combined by exact arithmetic

operations, avoid approximation and so they are admitted. Thus exact rational

arithmetic, with its attendant need for variable storage control, supports a form of

non-floating-point computing found in all symbolic computing systems. But deci-

mal approximations cannot always be avoided. Sometimes a formula needs to be

evaluated numerically, for example to produce a graph. Therefore, most symbolic

computing systems provide, as an option that can be exercised by explicit com-

mands, a means to evaluate formulas in variable-precision floating-point arithmetic.

The ability to compute in higher precision is important because formulas generated

by symbolic computing can be, and often are, numerically ill-conditioned. How-

ever, the numerical evaluation of special functions is sometimes limited to the fixed

precision of the hardware arithmetic because of the difficulty of devising suitable

variable-precision algorithms.

In this paper we are concerned exclusively with fixed-precision and variable-

precision floating-point evaluation of special functions, and we utilize the following

software classification [21]:

51. Software Packages

52. Intermediate, or Specialized, Libraries

53. Comprehensive Libraries

54. Interactive systems

These categories are to be regarded as progressively increasing in scope and orga^

nization.
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A software package is an algorithm, or collection of algorithms, that has been

implemented in a specific programming language and published in a research or

technical article ^
. Its purpose is to make new algorithms available to programmers

in an immediately usable form. Three important series of software packages are

the ACM Algorithms in ACM Transactions on Mathematical Software [17], the

AS Algorithms in Applied Statistics [28], and the CPC Programs in Computer

Physics Communications [14, 15]. All contributions to these series are refereed

before acceptance.

Intermediate and comprehensive libraries consist of software packages that have

been collected, developed, organized and unified to meet the practical needs of pro-

grammers. Intermediate libraries are limited to a subset of numerical mathematics.

Three examples that specialize in mathematical functions are the libraries of Baker

[5], Moshier [25] and United Laboratories, Inc. [31]. Comprehensive libraries strive

for complete coverage of numerical mathematics, with attention paid to uniformity

of documentation, style of usage, and handling of errors. Among the many ex-

amples are CERN [8], IMSL [2], NAG [16], NSWC [24], Numerical Recipes [27],

NUMPAC 3, Scientific Desk and SLATEC [7].

Software packages and libraries are usually written in a standard programming

language such as Fortran or C. They are used in the traditional compile-link-execute

cycle of fixed-precision floating-point programming. Interactive systems break this

cycle by providing a comprehensive set of commands, or in some cases items on

menus, that produce an immediate response when entered at the keyboard or se-

lected by the mouse. These systems are extensible in that user-written commands
can be added, much like user-written subroutines are added to a library. How-

ever, straightforward extension of an interactive system requires programming in

the specialized language of the system. Some systems provide a way of incorpo-

rating software written in a standard programming language but the process tends

to be cumbersome. Three examples of interactive systems for symbolic computing

with integrated support for graphics and floating-point computing are Macsyma

[30], Maple [9] and Mathematica [32]. Three examples of interactive systems for

fixed-precision floating-point computing with integrated support for graphics are

HiQ [6], Mathcad [22] and Matlab [23]. HiQ and Mathcad, in particular, make
extensive use of menus.

Software packages, intermediate and comprehensive libraries, and interactive

systems serve different purposes. For special functions in a supercomputing appli-

cation, the manufacturer’s optimized library would be the preferred choice except

that these libraries typically include little beyond algorithms for linear algebra and

Fourier transforms. Accordingly, comprehensive libraries, augmented by software

packages and intermediate libraries where necessary and when available, are the

norm. Interactive systems are not much used in the number-crunching stage of

supercomputing, because of the emphasis on very high execution rates, but sym-

bolic and graphical systems are important during the algorithm development and

^It must be noted here that our usage of the term software “package differs from common usage.

More usually, it means a comprehensive, integrated, and usually commercially supplied, software

product. For the latter we prefer to distinguish between libraries and interactive systems.

® Information can be obtedned from Ichizo Ninomiya, Chubu University, Kasugai, Aichi, 487

Japan, or Yasuyo Hatano, Chukyo University, Yagoto, Nagoya, 466 Japan.

^Information can be obtained from C. Abaci, Inc., P. O. Box 2626, Raleigh, NC 27602.
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visualization stages.

Similar remarks apply to numerical computing in general when a standard pro-

gramming language is being used. However, interactive systems are becoming in-

creasingly popular for small to medium-scale computations because they provide

an integrated computing environment that can substantially ease the programming

burden.

3. Current Software

To assess the current state of affairs with respect to the availability of fixed-

precision and variable-precision floating-point software for special functions, the

following method of scoring was applied. For a given function and library or sys-

tem, the score is zero if there is no support for the function, one if the function is

supported but only for real variables, two if the function is supported for complex

variables but without separate provision for real variables, or three if there is sepa-

rate provision for real and complex variables. The distinction between scores of 2

and 3 is made because real computation is less demanding, in general, than complex

computation, and the resulting efficiency can be of importance in supercomputing

applications. On the other hand, a score of 2 is quite satisfactory if high efficiency

is not critical, a situation that is typical when an interactive system is being used in

numerical applications and even in many standard programming applications with

floating-point libraries.

Scores for 44 functions and 15 libraries and systems were determined with the

aid of the survey paper [21], augmented by reference to software manuals and direct

experimentation with the software where necessary. Figure 1 is a graphical depiction

of the resulting matrix of scores where white corresponds to a score of 0, light gray

to 1, dark gray to 2, and black to 3. A software package, or at least an algorithm,

is listed in the survey paper for all the functions. The functions and software

that correspond to the matrix rows and columns are identified in Tables 1 and 2,

respectively. The rows and columns are arranged by their decreasing cumulative

scores.

The figure and tables summarize and extend the survey paper. They can be

used for several purposes. One immediately obvious use is in the software consul-

tant’s role in providing information to programmers upon request. Another use

is in identifying gaps in the coverage of special functions. Among the comprehen-

sive libraries, so important in supercomputing and general scientific computing,

only 7 functions are present in every one: Bessel functions of real order, the er-

ror function and Dawson’s integral, the exponential integrals, the complete and

incomplete gamma functions, and the incomplete elliptic integrals. Eight functions

are present in none: generalized hypergeometric and zeta functions, incomplete

Bessel functions, integrals of Anger-Weber functions, Landau density and distri-

bution functions, polylogarithms, spheroidal wave functions, and Weber parabolic

cylinder functions. Among the 29 functions that are present in at least one but

not all comprehensive libraries, we And Airy functions, Bessel functions of com-

plex order, the dilogarithm, elliptic functions, Legendre and associated Legendre

functions, inverse incomplete gamma and beta functions, the psi and polygamma
functions, and the zeta function.

A third use is in identifying possibilities for software testing, a topic that will be



6 DANIEL W. LOZIER

/ 5 H r 6 I o M )2- 13 LH lT
1

amiisiiixi

Ki dim'm
'

.. _...

mnmm
. .5-

1

' T'

'immm. b?#cir*'x /<i^AWM
*(imiiniii!n

EWW
"T 2zs: >'l!"l"

"•'"

PTP
'

'i

^El
imiiiiiiiii

' ,

'7".’
r.,..x

iilH^ t-,x -x. 'y y ' .:.

^ •’ ^V' ZIZ
I.n i-S y •x.t .• 1 1 ^

1

_
1

'
Hprp

i

lu ' -ii ''''''

A

in^^i^ml ^ X. >
m"Mm :<....'

'\%
"J"

'"j
I 1

irMM; 1 l'yy'yy'>'\ T777^'
^ <7mmm kfi-?in<rf-ff.iilL.^^.";,-:.r..l

g-.fvr<>A.| jjj 1isi
iMiiii ilM —

Miiiiii
1 1 mmwA

HHHH timM mii
E^'' gCjW*^='‘l 777^

' '
\ TFr:^.. // , 1WWM ^ ^
I

til J; i,0i

^

5' "'

''"/i

1 1 1

'777v !!."x"!’"k'

/ -vx X <

n'lmsmM WMMM
[

WSil
i

I

3 ||
1

'^mmm
ttt:

1

i

1

T < ^ 1

SA 1 TTTz 1

^7 1

^<4 ss
1

i

1

1

1

47. im....... 1

M.2

1

Figure 1. Matrix of scores for 44 functions and 15 libraries and

interactive systems. See the text for the definition of score. A score

of 3 is indicated by black, 2 by dark gray, 1 by light gray, and 0 by

white. The functions are identified in Table 1. The libraries and

systems are identified Table 2.
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Function Cum. score

Gamma function 33

Error function 29

Bessel functions of real order 28

Airy functions 25

Exponential integrals 21

Psi and polygamma functions 19

Incomplete gamma function, generalized exponential integrals 19

Bessel functions of integer or half-integer order 17

Dilogarithm 16

Jacobian elliptic functions 16

Incomplete elliptic integrals 15

Dawson’s integral 13

Incomplete beta function 13

Sine, cosine, hyperbolic sine and hyperbolic cosine integrals 12

Fresnel integrals 12

Complete elliptic integrals 12

Bessel functions of orders 0 and 1 10

Inverse error function 9

Classical orthogonal polynomials 9

Legendre and associated Legendre functions 9

Confluent hypergeometric functions 9

Zeta function 8

Inverse incomplete gamma function 8

Inverse incomplete beta function 8

Logarithmic integral 7

Hypergeometric functions 7

Weierstrass’ elliptic functions 7

Generalized zeta function 6

Bessel functions of complex order 6

Polylogarithms 5

Struve functions or integrals of Struve functions 5

Generalized hypergeometric functions 5

Zeros of Bessel functions 4

Fermi-Dirac, Bose-Einstein and Debye integrals 4

Coulomb wave functions 3

Integrals of Bessel functions 3

Integrals of the error function 2

Mathieu functions 2

Weber parabolic cylinder functions 1

Integrals of Anger-Weber functions 1

Generalized polylogarithms 1

Spheroidal wave functions 1

Landau density and distribution functions 0

Incomplete Bessel functions 0

Table 1. Functions and their cumulative scores over 15 libraries

and systems. See the text for the definition of score. See Figure 1

for individual scores. See also Table 2.
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Library or interactive system Cum. score

1 Mathematica [S] 58

2 C Mathematical Function Handbook [IL] 46

3 Naval Surface Warfare Center Library [Fortran CL] 43

4 CERN Library [Fortran CL] 40

5 Nagoya University Mathematical Package [Fortran CL] 35

6 IMSL Library [Fortran CL] 31

7 Mathematical Function Library for Microsoft Fortran or C [IL] 25

8 Methods and C Programs for Mathematical Functions [IL] 25

9 NAG Library [Fortran CL] 24

10 Maple [S] 22

11 SLATEC Library [Fortran CL] 22

12 Scientific Desk [Fortran CL] 22

13 Macsyma [S] 18

14 Numerical Recipes [Basic, C, Fortran or Pascal CL] 17

15 Matlab [S] 12

Table 2. Intermediate libraries [IL], comprehensive libraries [CL],

and interactive systems [S] and their cumulative scores over 44

functions. See the text for the definition of score. See Figure 1 for

individual scores. See also Table 1.

treated in more detail in the next section of this paper. The comprehensive libraries

support fixed-precision fioating-point computing. Variable-precision floating-point

computing is supported by Macsyma, Maple and Mathematica, and also by Matlab

(which markets an add-on symbolic computing capability using Maple). Therefore,

a library function could be tested, in principle, by comparison against the same

function in one of the interactive systems, provided its system score is sufficiently

high. From Figure 1, such a procedure is potentially feasible for 30 of the 36

functions that are included in one or more comprehensive libraries. The excluded

functions are Struve functions or integrals of them. Coulomb wave functions, in-

tegrals of Bessel functions, integrals of the error function, Mathieu functions, and

generalized polylogarithms.

The need to fill some of the gaps in the coverage of special functions is evidenced

by recent inquiries. The NA Digest has been serving numerical analysts since 1987

with a moderated (edited) newsletter that is distributed by electronic mail. It

is maintained by the Oak Ridge National Laboratory and it has a readership of

approximately 4000. Sixteen inquiries have appeared: 3 for Legendre and associ-

ated Legendre functions; 2 each for Gauss hypergeometric, Mathieu and spheroidal

wave functions; one each for Bessel functions of pure imaginary order, spherical

Hankel functions. Rummer’s or Whittaker’s confluent hypergeometric functions,

complex elliptic integrals, partial derivatives of the incomplete beta function, the

inverse of the complementary error function, and standard probability functions

accurate to full double precision. The newsgroup sci .math. num-analysis is an

unmoderated electronic bulletin board with thousands of postings each year. Only

a small number of these from the spring of 1994 have been reviewed. Inquiries

about the following functions have been observed: the incomplete gamma function

of complex argument; the integral of the incomplete gamma function; the digamma.
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Fermi-Dirac, Hankel, Jacobi and Weierstrass elliptic, parabolic cylinder, and zeta

functions. Recent inquiries have been received directly by the author of this paper

for the Gauss hypergeometric function, Legendre and associated Legendre func-

tions, and spheroidal wave functions. In view of the number of gaps and the effort

that would be required to fill them, those who wish to provide new software should

be guided by the expressed needs of the scientific community.

4. Testing, Validation and Characterization

The previous section identified gaps in the coverage of special functions in current

libraries and systems. It did not raise the question of the quality of the software.

This topic has many ramifications but we are interested here only in numerical ac-

curacy. As an example of the need for testing, we cite [26] in which an intermediate

library with extensive coverage of special functions was reviewed. It was found that

a subroutine for evaluating the Bessel function x and i/ real, returned highly

inaccurate or even totally incorrect values for certain arguments and orders. For

example, the sign and all the digits of the computed value of Ji,(x) were wrong

when X ^ Qtt and = 2|(2)10|. The reason appeared to be, at least in part, that

Miller’s backward recurrence algorithm was applied with normalization of the trial

values by a computed value of Since Ji/2(9'7r) = 0, this cannot succeed.

An alternative normalization based on

^ (ly -h 2k)r(i^ -h k)
^

(p =2^ Ju+2k{x)

k=0

^ ^ 0
,

1
,

2 , . . .

.

[1, eq. (9.1.87)] would have avoided the failure.

There are two principal approaches to testing. The first is comparison against

a standard. More than 20 years ago, this was described and applied to elementary

functions in [18, 19, 29]. The second approach is verification offunctional identities.

This has been described and applied to elementary and special functions in a long

series of papers by W. J. Cody and co-workers, of which [11, 12, 13] are recent

examples. Comparison testing is conceptually simple but requires computing in

higher precision. Verification testing is performed entirely in one precision but

requires great care in choosing an appropriate identity and in programming its

verification. This complication is due to the necessity for separating the error that

arises in the evaluation of the identity from the error in the numerical evaluation

of the function itself.

Both approaches require a method of selecting test arguments and a method of

measuring the error. Typically, test arguments are generated on a uniform grid

or randomly except near special features of the function, algorithm, or computer

arithmetic. These features include zeros, poles, and special values of the function,

cross-over boundaries between approximations that are used in the algorithm, un-

derflow and overflow thresholds, and special bit patterns. Often these non-random

test arguments are the most instructive, as in the example of the Bessel function

described above, but they also require careful analysis of the algorithm to identify

its weaknesses. Unfortunately, black-box testing alone can never be used to prove

correctness. Verification testing imposes an additional difficulty: the function must

usually be evaluated at more than one point. This leads to the process known as

“purification” in which the multiple arguments are carefully adjusted after initial



10 DANIEL W. LOZIER

generation so as to minimize the error due to evaluation of the identity; see, for

example, Cody and Stoltz [13].

Relative error is the usual error measure but it suifers from two deficiencies: it

is not a genuine distance function, and it is totally inappropriate in the vicinity of

a zero. An alternative measure that overcomes the first deficiency, and that closely

approximates relative error, is relative precision [10]

rp(z, s) =
I

Ini — lns|
,

x,s>0.

Next, in the vicinity of a zero, relative error is often replaced by absolute error.

However, this is not entirely satisfactory because the location of the transition

is arbitrary. A uniform error measure that avoids this difficulty is the distance

function

d[x, x) = \'ip{x) —
5

x,x > 0

where

tP{x)
X if 0 < X < 1,

1 + Inx if X > 1,

At their present stage of development, neither approach to accuracy testing is

entirely satisfactory. Indeed, it is an accepted belief that good software must be

developed in conjunction with test programs, and that the test programs should

be distributed with the software. Test programs can be found that use either or

both approaches. Typically, the tests are run when the software is installed. This

process, often known as validation, is necessarily cursory in that only a tiny fraction

of the whole set of possible inputs is tested. Validation cannot guarantee that the

software will be accurate enough for a specific application. Therefore, a need exists

for improved software that can be used to characterize the numerical accuracy of

special functions in any subset of the input domain, to any degree of detail. We will

use the term characterization for the process of determining the detailed behavior

of the error in software for numerically evaluating a special function.

Testing that goes beyond validation to characterization should be oriented to-

ward users and software analysts who are independent of the developers. This

makes the conceptual simplicity of the comparison method particularly attractive.

Fortunately, the computational obstacles that were burdensome twenty years ago

can be largely overcome today. Previously, the limited capabilities of program-

ming languages and the high cost of computing on main-frame equipment were

serious issues. Now modern programming languages such as Fortran 90 and C'*”*'

are adequate to support higher-precision operations in a convenient, user-friendly

manner; see, for example, [4]. Alternatively, following the suggestion made in the

previous section, an interactive system could be used to provide higher precision for

testing functions in fixed-precision libraries. And networks of workstations provide

an abundance of numerical computing power that could be harnessed using mod-

ern programming and communications technology. It is possible today to consider

establishing a software testing service center that would offer customized charac-

terization of special functions on request. Ideally, such a service would be offered

on the Internet so that individuals could formulate and carry out the desired tests.

The remainder of this section is devoted to an example of how such a request could

be answered with the aid of a graphical presentation of the results.
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50

Figure 2. Error in D. E. Amos’s software for the Airy function

Ai(2:), z complex, ^ = (2/3)2^/^, on the 51 x 21 grid with \zij
\

=
(i — l)/2, i = 1, 2, . . 51 and aigZij = — 27r/3 + 27r(j — l)/30,

j = 1, 2, . . 21. The maximum error on the grid is 1.7 x 10”^.

Let us take as our example two software packages for the Airy function Ai(2
)
for

complex 2 . Package A is that of D. E. Amos [3]. This has been incorporated into

numerous libraries and systems because of its comprehensive, efficient and accurate

coverage of Bessel and Hankel functions. Ai(2
)

is provided through its representa-

tion in terms of the modified Bessel function where ^ = (2/3)2^^^. Pack-

age B, unpublished as yet, uses the algorithm described in [20]. This algorithm

computes Ai(2
)

directly from its asymptotic expansion and its defining differen-

tial equation, which is integrated numerically. Both packages provide an option to

evaluate the scaled function Ai(2
)
= Ai(2 ). We wish to characterize the error in

Ai(2
)
in the zero-free sector \z\ < 25, |arg 2

|

< 27r/3.

Figures 2 and 3 show the results of this characterization of Packages A and B,

respectively. The figures are surface plots of the error measure

e(2
)
= rp(Aii(2 ), Ai2 (

2 ))

where the subscript 1 indicates the single-precision approximation computed by

Package A or B and 2 indicates the double-precision approximation computed by

Package A. For small errors, e(2
)

is almost the same as the conventional relative

error.

The maximum of e(2
)

is 1.7 x 10“® in Figure 2 and 0.28 x 10“® in Figure 3. For
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X 10
-5

1 .5 ^

1

50

Figure 3. Error in a new algorithm for the Airy function Ai(2 ),

z complex, ^ = (2/3)2^/^, on the 51 x 21 grid with \zij
|
= (i— l)/2,

i— 1, 2, . . 51 and arg^tj = —27r/3+2x(j— 1)/30, j = 1, 2, . . 21.

The maximum error on the grid is 0.28 x 10“®.

comparison, the maximum relative error due to a difference of one bit at the end

of the 24-bit floating-point mantissa is 0.012 x 10”^. Accordingly, the maximum
error in this characterization of Package A affects the last 8 bits of the mantissa,

compared to the last 5 bits for Package B.

Often the maximum and root-mean-square errors are the only statistics given in

tests; see, for example, [11]. But Figures 2 and 3 show how much information can

be lost by attempting to characterize a function with only one or two numbers. A
user might feel more confidence in Package B because the error appears to be more

regular and predictable. A software analyst might be interested in explaining a

failure in one of the packages, or in ruling out a package as the cause of a failure in

a larger application, or in attempting to improve the performance of the package. In

all of these circumstances, detailed graphical output is illuminating and the ability

to craft detailed tests is valuable in developing an adequate characterization of a

function.

5. Summary and Conclusions

In section 2, we presented a simple classification of scientific computing in which

we distinguished numerical computing from symbolic and graphical computing, and

we described some of the ways special functions interact with the categories of the
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classification. Then, following the classification of software given in the survey

paper [21], we defined and gave examples of software packages, intermediate and

comprehensive libraries, and interactive systems.

In section 3, we devised a method of scoring the coverage of a particular function

in a library or interactive system, and we applied it to 44 functions and 15 libraries

and systems. The resulting matrix of scores was depicted graphically in Figure 1

with accompanying detail presented in Tables 1 and 2. Then we discussed ways of

discerning gaps in the coverage and how to evaluate the potential for testing library

software by comparison against system functions. This approach is suggested by the

fact that many systems support variable-precision floating-point computing while

most libraries are limited to fixed precision. At the end of section 3, we reviewed

inquiries about special functions that have surfaced in the electronic media and

elsewhere, thereby providing evidence of need to fill the gaps.

We addressed the question of evaluating the quality (numerical accuracy) of

function software in section 4. We distinguished between comparison testing and

verification of functional identities as the two chief testing strategies, and we intro-

duced the term characterization for the process of determining the detailed behavior

of the error. Then we proposed the establishment of a software testing service cen-

ter that would offer powerful testing software for use by anyone on the Internet.

Finally, as an example of characterization, we presented surface plots in Figures 2

and 3 of the relative error in two different packages for the complex Airy function.

Our conclusions are as follows. First, given that over 50% of the scores in Figure 1

are 0, the computation of special functions is not a mature field when it comes to

the provision of software in libraries and interactive systems. Second, since nearly

75% of the non-zero scores are 1, the computation of complex functions is an area of

particular need. Third, since an algorithm or software package has been published

for all the functions in Table 1, the foundations exist for improving the coverage of

special functions. Fourth, in view of the characterization of the Airy functions in

Figures 2 and 3, describing the accuracy of functions by giving one or two simple

statistics is not adequate. And fifth, in view of the current advanced state of network

communications and abundance of computational power, the development of user-

oriented software for characterizing functions, over the Internet if possible, should

be considered.
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