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Abstract

For Monte Carlo simulations of systems of size M that use the method

of Bortz, Kalos, and Liebowitz (BKL), the best computer time per event has

been 0(M^/^). We present two new methods whose computer time per event

is 0(M^/-^) or O(logM). In practice, for typical simulation sizes, if = 4 or if

= 5 is fastest, requiring even less computer time than the O(logM) method.

For typical simulation sizes, we are able to achieve speedup factors of 5 to 7

over the 0(M^/^) technique.
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Monte Carlo (MC) simulations use a noticeable fraction of the available time on many

supercomputers and scientific workstations. This paper presents algorithms to do the

same simulations in substantially less computer time. The algorithms are applicable both

to equilibrium [1.2] and kinetic [3] Monte Carlo simulations. We use the terminology of

kinetic Monte Carlo to describe our methods.

Let M be the number of possible MC events (or state transitions), and let r* be the

rate at which the event should occur. The total rate is

M
'R = T'’*- (1)

t=l

For an accurate simulation, event i should occur with probability rJR. (For equihbrium

MC, the calculations are the same, but the {r*} are transition probabilities, not rates.)

The inner loop is as follows.

1. Choose a random number, p, in the range [0,i2).

2. Find the corresponding u such that

(
2

)

t=l t=l

3. Carry out event u.

4. Update those r* that have changed as a resrdt of event u; update R and any data

structures being used.

Steps 1 and 3 take time independent of M, but step 2 is time-consuming. Depending

on the data structure needed for the search scheme, the step 4 time may or may not grow

wdth M

.

If a simple hnear search is used for step 2, the search time is 0{M) and the step

4 time is independent of M

.

The current state of the art [4-6] is the binning method due to Maksym [7]. To facihtate

the search, maintain a data structure of partial sums; there are [AF/p] partial sums, each

containing the sum of g rates,

s,= x; r„ j = l,...,\M/g]. (3)
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The search in step 2 has two parts: searching for the right bin, which takes time 0{Mjg)

and searching wdthin the bin, which takes time 0(g). The updating in step 4 is independent

of M. Minimizing the total time leads to g = a depends on the relative time in

the two searches. In our simulations, the time used is reasonably insensitive to a in the

range 0.5 to 1.5, and a = 1 is used in the results presented later. Clearly, the computer

time per simulated event is

We refer to Maksym’s method as a 2-level search scheme. Better asymptotic beha\dor

can be obtained by constructing /i -level schemes wath K > 2. The lowest level is identical

except for a slight change in the notation,

5^ ’ = Y. j = l,...,\M/g]. (4)

and higher levels are defined recursively,

39

Sf) = ^ j = ,k = Z,...,K. (5)

(The g's can depend on k and should depend on K, but for simpHcity this is not refiected

in the notation.) Minimizing the total time, we find g is and the total search

time is 0(K The time for step 4 is 0(A"), independent of M. The extra space

required for the data structure is 4- + • •
• +

For a given M

.

the best asymptotic time beha\dor is obtained by using the largest

feasible K

.

namely the one for which there are only two items in each partial sum, =

2, or K = log
2
M. The data structure is then a binary tree. The search time and the step

4 time are each 0(log2 M). The extra space required for the data structure is 0(M).

The binary tree may be built as follows (for simplicity of notation, we assume M = 2^).

Let = Fj and generate the rest of the tree recursively.

jW ^ j{k-p
k = 2,,...,K.

(
6

)

Note that = R.

Searching the binary tree is done recursively, starting wdth Start with j = 1.

k = K. Recursively, if p < T^jlP

,

the desired event is in the left half; set j = 2j — 1.
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Otherwise, subtract from p and set j = '2j. li k = we are done; otherwise set

k = k — 1 and continue.

Updating the binary tree after an event is also done recursively by propagating the

effects of a change from = 1 to k = K

.

Both the searching time and the updating

time are 0{K) = 0 (log
2
M).

To compare these methods, w'e simulated a sohd-on-sohd model of epitaxial growth

[4,5,8] on a simple cubic N x N lattice. Atoms are deposited at a steady rate and can

hop around on the surface, but do not evaporate from the surface. Further details of the

model may be found in [5,8]. Of interest here is the computer time for the simulation,

expressed in microseconds per simulated deposition or hop event.

For the A'-level methods, g = was used. Simulations w^ere done on an IBM

RISC 6000 Model 590 w’orkstation^ wdth one gigabyte of memory. For each data point,

five trials wdth different seeds of the random number generator were done and the median

time w^as used. As showmin Fig. 1, for typical simulation sizes, about N = 512, the 2-level

scheme takes more than seven times as long as the 5-level. Our runs on other computers

(Sihcon Graphics Indigo2 and Convex C3820) give qualitatively similar results, with the

2-level scheme taking about five times as long as the 5-level at N = 512, but the details of

the curves vary considerably, depending on the compiler/computer combination and the

presence of cache memory.

For the shortest times, K should grow as logAf, keeping the bin size, constant.

Based on our experiments, bin sizes of three to five are reasonable. Speedups by a factor

of five or more for typical problem sizes are obtained over the 2-level method.

^Certain commercial equipment may be identified in order to adequately specify or describe the

subject matter of this work. In no case does such identification imply recommendation or endorse-

ment by the National Institute of Standards and Technology, not does it imply that the equipment

identified is necessarily the best available for the purpose.
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FIGURES

FIG.

A K =

. Log-log plot of time per event for different search schemes. Q) K = 2\ U K — 3;

V ^ = 5; O binary tree.
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