
Making Sense of Software
Engineering Environment
Framework Standards

Barbara Cuthili

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 225, Rm. B266
Gaithersburg, MD 20899

QC

100

.U56

N0.5W
1994

NIST

NISTIR 5487

Making Sense of Software
Engineering Environment
Framework Standards

Barbara Cuthill

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 225, Rm. B266
Gaithersburg, MD 20899

May 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Abstract

The purpose of software environment framework standards and specifications is to enhance tool

portability, interoperability, and integration by creating public interfaces to functionality

incorporated into the framework. If tools can access framework services in predictable ways, tool

vendors can take advantage of these services to avoid duplicating services and concentrate on the

unique functionality of the tool. This describes the functionality and integration support supplied

by selected set of software environment framework standards and specifications with respect to

common models.

1 Introduction

There is a growing interest in moving common functionality out of tools into the software

environment framework allowing tool vendors to concentrate on the specialized features of their

products and buyers to integrate tools easily into environments. Multiple standards and

specifications for interfaces to common facilities for data, control and presentation integration in

environments, especially software engineering environments (SEE), have begun to address these

needs. This leads to the problem of determining which specifications are compatible and can

coexist within the same environment. This article describes the functionality and integration

support provided by eight environment framework standards and specifications with respect to

common models. The selected framework standards and specifications follow: •

The International Standards Organization’s Portable Operating System Interface (POSIX),

Part 1: System Application Program Interface [25]

European Computer Manufacturers Association (ECMA) Portable Common Tool

Environment (PCTE) Standard^ [21-23]

Object Management Group’s (OMG) Common Object Request Broker Architecture

(COREA) [18]

H Object Database Management Group’s (ODMG) Object Database Management Standard

(ODBMS)[20]

Electronic Industry Associates (EIA) CASE Data Interchange Format (CDIF)^ [1-15]

American National Standards Institute (ANSI) Draft Messaging Standard^ [26]

MIT X Consortium’s X Window System [31]

Open Software Foundation’s (OSF) Motif [29]

Even though these standards are associated with POSIX platforms, they use different notations,

are in different stages of the standardization process, and meet different perceived needs. This

article describes the current versions of these standards and specifications with respect to

common models to examine the implications of these differences, the relationship of the standards

and specifications to each other, how each supports integration, and why a SEE might combine

these standards and specifications.

*ECMA submitted PCTE for ISO fast track standardization in Sept. 1993, and PCTE should become an ISO standard by fall,

1994.

^he CDIF committee will send completed standards to ISOAEC/JTC1/SC7/WG11 for progression in ISO.

^CaseCommunique and Case Interoperability Alliance originally developed this standard and submitted it to ANSI X3H6.

1

The goal of developing SEEs is to create more than computer aided software engineering

(CASE) tool collections. A SEE should integrate user selected CASE tools by supplying a

framework supporting the smooth iransition and exchange of control and data among tools in the

same or different phases of the software development life cycle to support a defined software

development process. One mechanism supporting tool integration is the use of standard

interfaces to framework services.

No one standard provides an interface to all the needed framework Capabilities, and the

selected standards are not an authoritative list, only a starting point. Industry needs to choose

and adapt sets of standards to form profiles defining how specifications provide an interface to

an environment framework. The information gained from examining the selected standards and

specifications relative to common reference models and the implications of the identified

differences, overlaps and incompatibilities among the standards and specifications can support

this profiling effort.

2 The Reference Model for Frameworks of Software Engineering Environments [27]

This article describes the functionality in each of the selected SEE framework

specifications by comparing each specification to the Reference Model for Frameworks of

Software Engineering Environments (Framework RM)[27]. The National Institute of Standards

and Technology (NIST) Integrated Software Engineering Environment (ISEE) Workshop and the

European Computer Manufacturer.' Association (ECMA) developed the Framework RM to define

the capabilities of SEE framewoii, The Framework RM defines a list of capabilities (termed

services) that a complete SEE framework might contain. The Framework RM divides these

definitions into seven groups of related services. Framework services can support tool integration

by supplying consistent services to the tools. Appendix A lists the Framework RM service

definitions. Mapping a specification to the Framework RM can position the specification relative

to a base set of SEE framework capabilities and help to define its relationship to other SEE
framework specifications.

3 Integration

One goal of using a SEE framework is to support tool integration. This article describes

each specification in terms of the possible support it might supply for tool integration in terms

of integration categories and levels. Integration categories describe areas in which CASE tools

can cooperate. Integration levels describe the extent to which CASE tools cooperate in a

particular integration category. Since there is no accepted set of definitions or reference model

for integration, this section provides definitions to clarify this article’s discussion.

3.1 Integration Categories

There is general agreement that integrated tools should exhibit the same "look and feel,"

share information, or invoke each other when appropriate [32, 33, 36, 38, 44, 45, 46]. These

capabilities correspond to the generally orthogonal categories of presentation, data and control

integration [35, 36, 44, 46]. For example, two tools can simultaneously exhibit extensive

presentation integration if their interfaces follow the same style guidelines and weak data

integration if they exchange only unformatted text files. While other integration categories exist

2

(e.g., [35, 44]), this article focuses on presentation, data, and control integration because these

have received widespread acceptance as fundamental to leveraging the combined capabilities of

tools in an environment [35, 36, 44, 46]. The definitions for the categories used in this article

follow:

Presentation integration imposes consistency on the tools’ user interfaces. Consistent user

interface conventions reduce the burden on the user to learn and maintain several sets of interface

commands and allow the user to concentrate on the unique functionality of each tool.

Data integration allows users to effectively employ multiple tools on a data item or a

group of connected items. An environment could support data integration ' through pipes,

common interfaces, or a shared repository. Sharing information implies that the tools use a

common format for locating and interpreting information.

Control integration allows the use of multiple tools on a single project. Mechanisms for

control integration usually support communication of notifications and requests among tools about

events such as the starting or ending of tasks. Control integration mechanisms can also support

combining tool functionality through remote procedure calls or other methods.

3.2 Integration Levels

This article uses Brown and McDermid’s [36] integration levels combined with

Wasserman’s [46] progression of integration capabilities to describe the extent of the integration

support provided by a SEE framework specification. The first four of Brown and McDermid’s

[36] proposed integration levels are carrier, lexical, syntactic, and semantic. Tools which can

independently use the same resource exhibit carrier level integration (e.g., many simple POSDC
tools can operate on the same ASCII file). Tools which use common formatting conventions

exhibit lexical level integration (e.g., specific messages to trigger tool operation). Tools which

use a common set of rules governing cooperative use of a shared resource exhibit syntactic level

integration (e.g., a cut and paste mechanism allowing the tools to cut and paste information

among their windows). Tools which use a common set of definitions for the meaning of

common structures exhibit semantic level integration (e.g., the user commands for the cut and

paste commands in the previous example). Table 1 provides example capabilities for the

different integration categories and levels. These definitions are the result of mapping

Wasserman’s [46] sequences of specific integration capabilities to Brown and McDermid’s

abstract integration levels [36] and extending Wasserman’s definitions as needed.

3

Table 1: Integration Levels and Capabilities

Integration Category Carrier Lexical Syntactic Semantic

Data file transfer using shared files use of the same

database/object base

use of the same

metadata

Control remote procedure

call

triggers message

servers

agreed messages

Presentation use of the same

window system

use of the same

window manger

use of the same

toolkit

standard semantics

for the toolkit

4 Reference Model Mappings

The first stage in developing a profile is to understand the functionality of each proposed

standard or specification. This section examines the functionality and integration support of the

selected specifications by mapping them to the Framework RM services. Identification of the

services (see Appendix A for service definitions) that a specification supplies begins the process

of identifying overlapping and complementary services supplied in a set of specifications.

The selected standards each supply a different set of framework services combining in

different specifications. OSF intended Motif to supplement X Windows making the combination

of services Motif requires and X-Windows supplies compatible. There is an X Windows toolkit

available to implement the features needed to support the Motif style guidelines. The X3H6 draft

messaging standard and ODBMS developers were aware of CORBA and worked to make these

standards potentially compatible with CORBA. The X3H6 draft messaging standard requires

services that CORBA generally supplies; however, ODMG did not design ODBMS to meet

CORBA ’s repository requirement but as a database interface compatible with CORBA. Neither

of the repository specifications discussed supplies exactly the services CORBA requires'^.

Similarly, it is unclear if PCTE schemas or ODBMS can implement CDIF meta-models.^ All

these standards and specifications were intended for products running on POSDC compliant

platforms.

4.1 POSIX

Functionality Provided -

The Portable Operating System Interface, Part 1 (POSIX) provides a standard interface

definition to key operating system services. These operating system services manage the low

level resources that applications may need to access or manipulate. These resources include file

systems, attached hardware devices, and operating system processes. POSIX provides an

“The OMG PCTE SIG is developing extensions to PCTE which should improve its compatibility with CORBA.

^ISO/IEC JTC1/SC7/WG11 (Software Engineering Data Description and Representation), CDIF and ECMA TC33 TGDI are

proposing to define PCTE schemas for CDIF meta-models.

4

interface to services for managing and communicating with these and the underlying environment.

Table 2 provides a mapping of POSIX to the Framework RM’s operating system services. This

mapping draws on the PSESWG mapping [28] POSIX provides an interface to the services that

other environment standards and products can use.

Table 2: Summary Mapping of POSIX

Operating System Services POSIX

OS Process Management Extensive support for the creation, management, and termination of processes

OS Environment Extensive support for querying and setting environment variables and process

characteristics

OS Synchronization not supported

Generalized Input and Output Support for the creation, deletion and use of pipes and files as means of

transferring information among processes

File Storage Extensive support for creating, deleting and managing files and directories

Asychronous Event Supports the generation and delivery of signals

Interval Timing Supports explicit interval timing

Memory Management Supports dynamic memory management

Physical Device Management of modems, terminals, and printers as lO devices

OS Resource Management Management of System Databases

Integration Supported -

POSIX provides a platform for minimally integrating applications in an environment.

POSIX provides the possibility of access to common resources without restrictions on how
applications will use those common resources. This access to common resources provides carrier

level integration for the applications using them. Because POSIX defines a file system interface,

tools can operate on the same files allowing for carrier level data integration. Because POSIX
defines a signalling mechanism and pipes for processes to communicate, tools can exchange

explicit signals supporting carrier level control integration. Because POSIX supports

communication with terminals and the definition of user sessions and child processes, multiple

tools can communicate with the user via the same terminal providing carrier level presentation

integration. While POSIX, by itself, supplies very weak integration capabilities, it supplies a

standard interface to the underlying resources needed for more extensive integration using other

specifications.

4.2 PCTE

Functionality Provided -

The Portable Common Tool Environment (PCTE) standard merges operating system and

repository functionality by providing an interface to services allowing tools to communicate.

5

share data, and manipulate operating system processes, data, user groups, message queues and

other environment components. PCTE manages processes, message queues and all other

repository objects using the same repository operations. PCTE organizes the repository using

schemas defined on the entity-relationship-attribute data model.

PCTE attaches security and integrity labels to all items in the repository. Entities,

attributes and links can have security labels or separate locks. PCTE provides 1 1 types of locks

for concurrency control and more than 20 types of access rights. These mechanisms allow PCTE
to support complex security and integrity policies but also make PCTE complex to use and

require substantial overhead on each element in the repository.

PCTE extends the repository interface to include control of operating system processes

and limited support for tool communication. PCTE can start, monitor, and close operating system

processes while treating the process as an object within the PCTE repository. For tools running

as PCTE processes, PCTE supports triggers used to send notifications to specific executing tools

and message queues and pipes for direct communication between executing tools.

In terms of the Framework RM, PCTE provides an interface to most of the object

management and policy enforcement services and to some of the communication services. Table

3 summarizes the mapping to the object management service. Table 4 summarizes the policy

enforcement services, and Table 5 summarizes the communication services. This mapping draws

on several previous mappings of older versions of PCTE to various editions of the Framework

RM [35, 37, 39, 41, 44] primarily Carney’s mapping[37].

6

Table 3: Summary PCTE Object Services Mapping

Object Management Services PCTE

Metadata allows creation of user-defined schemas containing different types;

enforces typing and schema constraints on repository; supports rich

semantics for metadata

Data Storage and Persistence stores persistent data in repository

Relationship requires that all objects have a link to another object;

controls relationships through metadata

Name provides multiple alternate "names" or "pathnames" to reach an

object; provides unique but temporary handles to objects

Distribution and Location can manipulate workstations, volumes, and devices as any other

objects in the PCTE repository; designed for distributed workstation

environment

Data Transaction are a class of activities; support for nested transactions

Concurrency supports concurrency; provides 1 1 locking modes

OS Process Support can start, monitor and close OS processes; treats OS processes as

objects in the object base

Archive supports archived objects; can assign objects to the contents of an

archive; maintains metadata and links among archived objects

Backup not covered

Derivation supports the inheritance of attributes

Replication and Synchronization can define or delete replicated objects; updates all copies of an

object

Access Control and Security provides rich syntax and semantics for defining security levels,

projects, user groups and access rights; access control on all objects,

links and attributes

Function Attachment not covered

Common Schema working schema provides the schema which is managing the data at

any given time; working schema assembled from user- and pre-

defined schemas

Version supports the definition and manipulation of versions of objects

Composite Object can define and manipulate composite objects

Query can query object base

State Monitoring and Triggering supports monitors and triggers and the creation, sending and

deletion of notifications

Data Subsetting provides views through schema definitions; treats schemas as filters;

applies access restrictions to views

Data Interchange can get files from and send files to other systems

7

As the mapping shows, PCTE provides a repository interface that allows for the creation,

management and maintenance of metadata in the form of schemas which describe and manage

the objects in and define views on the repository. The schemas describe all of the objects in the

repository; although, the schemas can describe parts of the same objects from different points of

view allowing subsetting of the repository. If the current schema (working schema) does not

describe an object’s type that object is not visible.

Table 4: Summary PCTE Policy Enforcement Services Mapping

Policy Enforcement Services PCTE

Security Information defines user groups, roles, access privileges and integrity levels

Identification and Authorization provides authentication services

Mandatory Access Control assigns confidentiality labels to objects and confidentiality

clearances to users; enforces restrictions; controls information

flow

Discretionary Access Control sets access control lists; controls tool access to objects; has 20

access modes

Mandatory Integrity assigns integrity labels to objects and clearances to users;

enforces restrictions

Discretionary Integrity see discretionary access control

Secure Exportation and Importation requires security labels and access control lists on all objects;

exports and imports labels; assigns labels volumes, workstations,

devices etc.

Audit maintains audit records according to audit criteria

The mapping to policy enforcement services demonstrates the substantial support available

for these services in PCTE. These services are useful, but exact a price in the overhead on each

object, link and attribute since PCTE maintains integrity, security and audit information about

each element. Future extensions of PCTE should address this granularity issue.

Table 5: Summary PCTE Communication Services

Communication Service PCTE

Data Sharing via PCTE’s object base which is managed through the definitions in the

metabase

Interprocess Communication PCTE processes can start, send messages to, stop or interrupt other PCTE
processes

Networking not covered (assumed to exist)

Message message queues are PCTE processes; message queues can be reserved;

some provided message types which the user can add to or extend

Event Notification can send event notifications

8

PCTE supplies limited communication services. PCTE supports direct communication

among tools running as PCTE processes but does not supply a general messaging facility. PCTE
processes are the result of executing PCTE objects, and PCTE controls executing processes as

it does other objects. In a full PCTE environment, there may be no processes running outside

PCTE [45].

Integration Support -

PCTE supports the definition of schemas for describing and managing the repository

contents requiring the storage of those schemas in the repository. Since new tools can use

subsets of the available schemas available within the repository, multiple tools can access the

same data from different viewpoints through the development or use of compatible schemas

defining different views on the same objects. Tools taking advantage of the PCTE repository are

at least syntactic level data integration and possibly semantic level data integration depending

on their use of common schemas.

PCTE does have significant limitations on integration. PCTE cannot support tool

integration through interface definitions. In PCTE, objects do not have interfaces (e.g., methods,

functions) as recent object-oriented techniques use; however, there are extensions to PCTE in

process which should address this. PCTE’s triggers, message queues and pipes provide limited

control integration which is available only to tools running as PCTE processes limiting the

usefulness of these mechanisms.

4.3 CORBA

Functionality Provided -

The Object Management Group (OMG) defined the Object Request Broker (ORB) to

provide interoperability among applications in heterogeneous distributed environments by

supplying a mechanism for objects to make requests and receive replies[18]. In an object

messaging model, objects send requests to other objects. The receiving object determines how
to satisfy the request by invoking one or more of its interface services. The implementation of

the service then performs the operation. In practice, a message routing mechanism such as the

ORB selects the service implementation receiving the message on behalf of the designated object.

For example, a message to a file object requesting it to display itself is routed directly to the

editor which can display that type of file.

OMG’s Common ORB Architecture (CORBA) specifies the infrastructure for supporting

message passing among a variety of tools, and repositories in a distributed, dynamic environment.

CORBA consists of several components, shown in Figure 1. CORBA uses the Interface

Definition Language (IDL) to specify object types by specifying the operations in the object’s

interface. Client applications provide IDL descriptions of their interfaces. Client stubs are

programming language bindings of these IDL descriptions. Tools can compile links to and

invoke the client stubs. Alternatively, tools can obtain operation descriptions at runtime through

an interface repository which provides persistent object interface descriptions that client

applications can dynamically invoke. The ORB uses an implementation repository to identify

the implementation supplying the requested service. The ORB uses implementation skeletons to

9

call implementations of object methods. The object adaptor provides the ORB services to the

implementations.

Client

Applications

Implementation

Interface Repository

(IDL Stubs)

ORB Interface

Implementation

Repository

(Implementation

Skeletons)

Object

Adaptor

Orb Core

Figure 1: CORBA Diagram

COREA provides mechanisms for objects to invoke each other’s operations. CORBA
treats objects as opaque by requiring that tools exchange object references or handles. Interfaces

either client stubs or from the interface repository provide access to an object’s contents. Table

6 provides a mapping of CORBA to the Framework RM communication services drawing on an

earlier mapping[43] done for NGCR PSESWG.

Table 6: Summary: CORBA Communication Services

Communication Service CORBA

Data Sharing can convert an object reference into a value that a client can store and

use later to access the object

Interprocess Communication via messages and events

Networking assumed to exist

Message can create, send, and delete messages; message passing can be

synchronous, deferred synchronous or asynchronous

Event Notification can raise exceptions or send requests that do not require a reply

CORBA clearly provides the mess;; ’ g and event notification services supporting

interprocess communication; however, CORBA assumes the existence of network capabilities and

provides limited data sharing.

The ORB needs minimal repositories (i.e., the implementation and interface repositories)

for its operation. The environment may provide these as separate repositories, one repository,

dedicated CORBA repositories or general purpose repositories. CORBA includes assumptions

about supplied object management services and their interfaces but not about the supplier of those

services. Table 7 lists the object management services that CORBA requires.

10

Table 7: Summary: CORBA’s needs for Object Management Services

Object Management Services CORBA

Metadata define types of objects by their interfaces; type codes provide

definitions of the structure of parameters

Data Storage and Persistence interface repository stores object type definitions and interfaces

Relationship containers create relationships between objects and modules

containing objects

Name Repository ID uniquely identifies objects to ORB; separate ID is

dependent on "container" object or module; can use module ids to

navigate namespace

Distribution and Location objects can be distributed across a network

Derivation inheritance and limited multiple inheritance allowed; inherited

objects and interfaces can extend definition not restrict or overwrite

it

Replication and Synchronization can duphcate and release copies of objects and object references

Access Control and Security provides the principal requesting the operation to the implementation

carrying out the request; ORB does no checking itself

Function Attachment interfaces can be associated with objects

Query can query the Interface Repository

Data Interchange provides connections for foreign object systems

Integration Supported -

CORBA defines a complete messaging environment infrastructure providing at least

syntactic level control integration to the tools using it CORBA supplies facilities for tools to

exchange messages and to use operations but does not specify the syntax or semantics of the

messages. By proving both a static interface through client stubs and a dynamic interface

through the interface repository, CORBA allows tool developers to decide how to combine

performance and flexibility for individual tools.

CORBA meets its goal of providing maximum control integration with minimum data

sharing. Tools using CORBA publish externally information about operations that they supply

while providing minimal information about the data structures they manipulate.

4.4 ODBMS

Functionality Provided -

The Object Database Management Group (ODMG), a consortia of leading object-oriented

database (OODB) vendors have defined the Object Database Management Standard (ODMS) for

incorporating OODBs into tools, environments and systems [20]. The goal of ODBMS is to

11

extend the semantics of OO programming languages to transparently access OODBs. ODBMS
database objects possess the usual characteristics of OO programming objects: associated

methods, attributes, and inheritance.

To achieve its goals while maintaining compatabiltiy with other standards, ODMG
extends existing standards. ODBMS includes an Object Definition Language (ODL) for OODBs
compatible with CORBA’s Interface Definition Language (IDL), and an Object Query Language

(OQL) partially compatible with ISO Structured Query Language standard (SQL)[30]. ODBMS
uses the current (relational) version of SQL. It is important for future harmonization work in the

database community that ODBMS be compatible with the next (object-oriented) version of SQL.

The ODBMS standard supports a strongly typed OODB controlled through metadata

defined in ODL. ODBMS supplies predefined types which form the root of the type hierarchy,

all user-defined types ultimately inherit from these predefined types. The same operations apply

to user and pre-defined types. ODBMS supplies the ODL, OQL and OML (Object Manipulation

Language) operations in bindings to C+-i- and Smalltalk to support portability of and transparent

access from applications in these languages. Table 8 provides a summary of the ODBMS
mapping to the Framework RM’s object management services.

Table 8: Summary ODBMS Mapping

Object Management Services ODBMS

Metadata can define object and interface types; enforces typing

Data Storage and Persistence stores persistent and non-persistent data in repository; requires specification

of object lifetime on creation

Relationship defines relationships between object types as traversal paths; maintains

referential integrity

Name uses unique ID for each object and flat namespace

Distribution and Location supports defining site for an operation

Data Transaction supports nested transactions; restricts object access to transactions

Concurrency supports pessimistic concurrency control

Derivation supports inheritance and multiple inheritance

Function Attachment defines behavior of types; enforces on instances

Common Schema

permits the definition of a common schema; provides predefined schema

Composite Object permits structured and unstructured collections of one type

Query provides language for querying the object base (OQL); includes select and

select-from-where

12

Integration Supported -

Because the ODBMS specification builds on ISO SQL [30] and CORBA’s IDL [18], its

integration support builds on that available from SQL and IDL. ODBMS supports schema design

moving it into the area of syntactic level data integration by establishing ODL as a schema

definition language and by building on SQL for a common query language.

While ODBMS supports data integration through schema definitions, there is no

mechanism for enforcing the schemas on the general OODB or repository. The tool developers

must compile these definitions within the tools. This is a significant drawback because

developers must agree on the schemas in advance making it difficult to add new tools using the

same schemas to the environment.

4.5 CDIF

Functionality Provided -

The CASE Data Interchange Format (CDIF) is a set of standards for describing the data

imported and exported among CASE tools and repositories. CDIF’s component standards

describe interchanged data from the following viewpoints:

the physical representation of the data (encoding)

the grammar and structure of an exchange format (syntax)

the datatypes or schemas (meta-models) in areas of specialization (subject areas)

The meta-meta-model is the set of rules for defining meta-models in CDIF. The meta-meta-

model includes the minimum information needed to describe the meta-model defined for each

of the CDIF subject areas. The CDIF committee has deliberately kept the meta-meta-model, like

the rules for defining encodings and syntaxes, as simple as possible. The meta-meta-model

includes meta-objects and meta-relationships which a subject area can refine into a meta-model.

The CDIF meta-models in specific subject areas define a meta-model or rnetadata for that

area. The CDIF committee has or is planning to define meta-models in a number of subject areas

including the following:

Foundation [6] Common [2]

Data Definition [3] Data Modeling [5]

Data Flow Model [4] State/Event Model [11]

Physical Relational Data Base [7] Presentation Location and Connectivity [8]

Presentation Global [10] Project Planning and Scheduling [11]

All the subject areas define views of the Integrated Meta-Model (IMM); therefore, subject areas

can provide overlapping views of the same elements. While CDIF users can define new subject

areas consistent with the existing ones, they cannot alter the existing subject areas for

conformance and portability reasons. CASE tools can use one or more subject areas to define

a data model, but not exclude subject area elements from the model. All the current subject areas

build on the foundation and common subject areas.

13

CDIF both supplies and requires several Framework RM object management services for

the management of metadata. The CDIF standards require that a system supply some

functionality in order to use CDIF. Table 9 maps CDIF to the object management services.

Table 9: Summary: CDIF Object Management Services Mapping

Object Management Services CDIF

Metadata uses metadata management and creation services supplied in repositories or

tools

Relationship uses definitions of relationships

Derivation uses a generalization/specialization hierarchy, limited multiple inheritance and

inheritance of relationship types

Function Attachment can attach "usage" or operations to an entity

Common Schema defines meta-models in several subject areas

Composite Objects supports definition of "collectable" meta-objects

Data Subsetting uses different views of data

Data Interchange defines a format exchanging data and meta-data

Integration Supported -

By using bindings of CDIF meta-models to specific syntaxes and encodings, tools can

achieve semantic level integration because CDIF meta-models, syntaxes, and encodings supply

the necessary definition of the structure and meaning of exchanged data. One possible binding

is to PCTE schema definitions. ISO committee JTC1/SC77WG11 and the CDIF Committee are

investigating the use of PCTE schema definitions of the CDIF meta-models as working schemas

for structuring the PCTE repository. While this is theoretically possible, it has not yet been done,

and there is some concern that the CDIF committees designed a mechanism for data exchange

without considering its possible uses as a repository schema definition^. There may be different

tradeoffs associated with a repository scheme than with an exchange format. CDIF could provide

a set of standard deftnitions for meta-models or schemas supporting semantic level data

integration.

4.6 X3H6 Draft Messaging Standard

Functionality Provided -

The ANSI standards committee X3H6 (CASE tool integration methods) has recognized

that for tools to effectively use messages requires agreement on the infrastructure to exchange

messages, the semantics of the messages, and the syntax for recording the messages. The X3H6
Draft Messaging Standard (originally suppL J to ANSI X3H6 by Case Communique and Case

^Minutes of ISO/IEC/JTC1/SC7/WG11 meeting in Orlando, FL in January, 1994.

14

Interoperability Alliance) defines a set of abstract messages (termed servicegrams) representing

agreement on message semantics. The draft standard defines a set of requirements on an

environment exchanging bindings of these servicegrams. The servicegrams are an abstract

representation of the semantics of messages; X3H6 has not defined bindings for the messages in

any specific syntax. Representation of the messages in a specific syntax has been left for the

vendors and consortia until a common or stable representation has emerged. Agreement on the

message semantics should make agreement on the syntax easier. In future, the authors of the

standard hope that tool vendors will be able to reference on the tool’s label, the messages the tool

sends and the messages it accepts.

The draft standard presumes but does not require an object-oriented model of messaging,

similar to CORBA’s approach, and places specific requirements on the messaging infrastructure.

These requirements are the minimal assumptions built into the messages. These assumptions on

the messaging environment follow:

It uses an asychronous or deferred synchronous routing mechanism.

It supports request messages which require a reply (if the tool cannot supply a reply then

the environment wiU).

It supports notification messages which do not require a reply.

H An object receives multiple messages from the same source in the order they were sent.

The environment will at least deliver messages to all running tools that have registered

to receive that type of message.

The message routing mechanism may use the name of the message, the type of the

primary parameter and the primary parameter itself to route the message.

A servicegram specifies aU the information that a developer needs for writing a message

corresponding to that servicegram in a messaging notation and to define the requested service.

X3H6 provided a template for the servicegrams which follows:

Type - Request or notification

Name - Unique identifying name, describes the expected operation performed on the

primary parameter or state of the primary parameter

Primary Parameter - Artifact that the servicegram concerns

Description - English language description of the purpose of the servicegram

Required Parameters - Auxiliary parameters to the primary parameter

Optional Parameters - Allowed on request messages, may have a default value

Error Parameters - Parameters describing returned error conditions

Preconditions - Expected state of the environment when the servicegram is sent

Postconditions - Expected state of the environment on the successful completion of the

services invoked by the servicegram

Failure Conditions - Conditions under which the servicegram will return an error

The postconditions and failure conditions define the expected responses of the tool to a specified

range of inputs. These inputs are a mix of the environment or context variables and the

parameters. For situations in which the inputs or context variables are outside of this range, the

behavior of the tool in response to the servicegram is undefined. This leaves a range of inputs

for the extension of the tool behavior beyond the minimal requirements of the servicegram.

15

Parameters are complex entities. There are four categories of parameter: primary,

required, optional and error. The primary parameter is singled out for routing purposes since the

message is sent to this object. The parameter template records the semantics of what each

parameter is and how the tools will use it. The template describes the following attributes:

Name - Name of the parameter

Description - English language description of what the parameter represents

Type - One of the specified types for parameters

Invariant - Qualifications on the value of the parameter

Constraints - Any constraints on the value of the parameter

Default Values - Values to be used in place of optional parameters

There are servicegrams for the following functional areas:

Software Analysis and Design

Common (creation/deletion etc.)

Debug

Edit

Static Analysis

Window

Build

Configuration Management

Documentation

Process Management - Agenda

Process Management - Enactment

The message sets contain functionally related messages. There is no conformance requirement

or expectation that an application would be able to process all of the messages in any one group.

Conformance is at the level of the individual servicegram so that a tool can define a set

consisting of any combination of servicegrams representing its interface. The standards

developers expect that an application will supply lists of the request messages that the application

can respond to, notification message that it will process and messages that it will send. This

labelling will allow environment integrators to recognize if the application supplies needed

services for a particular environment.

Integration Supported -

This draft standard provides one of the necessary pieces for semantic level control

integration by providing agreement on the contents of messages. While the standard defines

requirements on the environment, in the same way that COREA defines requirements on a

repository, it does not define the environment. The authors of the standard used an object-

oriented model of messaging to remain compatible with CORBA which is one mechanism for

supplying the messaging environment infrastructure. The servicegrams are a first step to building

commonly recognized messages for use on such an infrastructure. Developers still have to agree

on bindings for the servicegrams before there are commonly recognized messages available.

4.7 X Windows

Functionality Provided -

The X Windows System provides a single widely accepted interface to workstation display

systems. The goal of the X Windows System is "to provide a network-independent and vendor-

16

independent operating [display] environment for workstation software." [41] An application

running on X can use any vendor’s display hardware through the same interface, and control

multiple displays across a local area network. The wide acceptance of X Windows has meant

that tool developers do not have to rewrite their tools for different display hardware; a version

of X exists for almost every machine.

The X Windows System provides a layered set of components. Figure 2 illustrates the

structure of those components. The Base Window System provides a common interface to the

display hardware (vendor-independence). The X Network Protocol is the interface to the Base

Window System for all applications, window managers, programming language interfaces, or

toolkits running on X. The network protocol can operate within or between CPUs providing

network transparency. The X Window Manager organizes and arranges windows according to

a user defmed policy. A window manager is crucial to allowing the display of multiple

applications. The X Windows System provides a library of C interface routines which access the

Base Window System through the network protocol. Xlib provides access to a large, flexible set

of primitives for access and control of input and display features. There are alternative interface

libraries for other programming languages. The toolkit provides these features in combination

to gain more complex display components.

Window
Manager

Applications

High-Level X Toolkit

Low-Level Programming Interface (X Lib)

X Network Protocol

Base Window System

Figure 2: X Windows System Structure[41]

The X Windows System provides most of the capabilities of the Framework RM User

Interface Services as Table 10 shows. This mapping extends the mapping from the NGCR
PSESWG Progress Report [43].

17

Table 10: Summary mapping of X Windows to the User Interface Services

User Interface Services X-Windows

User Interface Metadata Xlib, Xt Intrinsics, X Widget Sets provide the connections to the

display hiding increasing amounts of the low level details of the

implementation and making the establishment of conventions

possible

Session X-Windows supports setting defaults and startup information for

configuring the user interface

Text Input supports user input through text

Dialog sends "events" to client applications when the user provides input

and supports the response of the client application

Display Management provides a window manager to control the size and location of

windows on the screen; Xlib provides C functions for interacting

with the window manager

Presentation Xlib and Xtoolkit define, create, delete, and manage display

objects

User Interface Security not covered

User Interface Name and Location X Windows servers can execute client operations and control

displays on other workstations in the network

Internationalization X windows supports changing the standard character set and

conventions used in the display

User Assistance not covered

The X Window System defines its own messaging system on top of the network to

provide network transparency. Table 11 maps the X Window System to the Framework RM
Communication Services.

Table 11: Summary mapping of X Windows to the Communication Services

Communication Services X-Windows

Interprocess Communication Can exchange information among client processes

Message can pass messages

Network transparent to network

Event Notification can pass event messages to client applications; typical mechanism driving

applications is to wait until receipt of an event notice indicating the user

has performed an action and respond to event

18

Integration Support -

X provides the mechanisms and network transparency needed for syntactic level

presentation integration. Because X Windows has concentrated on defining as complete and as

flexible a set of mechanisms as possible, X has been able to represent a wide range of policies

and has achieved broad acceptance as an interface standard. The X consortium has specifically

avoided the issue of defining policies for using those mechanisms.

4.8 MOTIF

Functionality Provided and Integration Supported -

Motif provides a set of user interface policies outlined in the draft standard [29] and

implemented in the Motif toolkit[29]. The purpose of Motif is to provide a consistent style of

user interfaces across multiple platforms in order to minimize user confusion and the time needed

to understand new user interfaces. Consistency in the user interface allows tool developers and

users to focus on the parts of the user interface accessing important or unique tool functionality.

Motif provides a toolkit for the X Window System. The X Window System provides the

mechanisms to design standard interface toolkits combining features in expected ways. The

Motif toolkit is a subroutine library of the features needed to implement a Motif style user

interface. While a developer can implement the Motif style using other mechanisms, the Motif

toolkit already has an interface to the necessary features.

The X Window System provided the means to specify the user interface metadata through

toolkits; Motif actually specifies those user interface policies. Establishment of a common user

interface policy corresponds to the User Interface Metadata Service of the Framework RM. Motif

provides semantic level presentation integration on top of the X windows mechanisms by

providing a specification for the semantics or look and feel of the user interface.

5 Combining Standards

5.1 Functionality

Section 4 contained mappings of the selected standards and specifications to the

Framework RM. Table 12 summarizes these mappings. This summary lists the services supplied

or required by each standard or specification identifying broad areas where relationships might

exist. More work will help to understand the relationships among the specifications in the

following circumstances:

(1) Multiple standards providing extensive (E) interfaces to the same service -

If there are two different versions of a service in an environment, system integrators may
not know which to use. If both specifications must be part of the environment, this may
be an important area for defining guidelines on using the services.

(2) A specification supplying a service that another specification requires -

19

The specifications may be a useful combination, and a more detailed mapping of the

operations supplied and required can indicate if the two specifications are presently

compatible or need some evolution or need guidelines on how to combine them.

(3) A specification requiring a service that no other selected specification supplies -

This illustrates a possible gap in coverage in the selected set of specifications.

(4) Lack of support for object-oriented technology (OOT) as indicated by failure to provide

extensive coverage for both the derivation and function attachment services -

OOT typically supports inheritance among objects (derivation service) and attaching

interfaces to objects (function attachment). If OOT is important then those services are

important for the environment.

To understand the compatibility issues among a set of standards requires a detailed mapping of

the operations defined in those standards, including their syntax and semantics, to the reference

model. Developing more detailed mappings is important for identifying where standards and

specifications may need to evolve for greater compatibility.

5.2 Integration

The support these standards and specifications provide for integration is mixed. While

use of a common resource through a set of common services may avoid duplicate functionality,

it will not automatically define common behavior. Common behavior requires agreed

conventions on the use of the resource. For presentation integration, the X Windows System

specifies mechanisms for the presentation system while Motif specifies a policy for using those

mechanisms. While there are other specifications in the presentation area, X Windows and

MOTIF have received widespread acceptance. For control integration, among the selected

standards, CORBA specifies a messaging environment supplying the control integration

infrastructure needed for a SEE, and the X3H6 draft messaging standard begins to define

agreement on messages or conventions for that environment. There are other specifications in

the control integration area, but this set has received considerable attention and endorsement^.

For data integration, several communities have developed competing repository and database

interface standards receiving different levels of market acceptance and use (e.g., SQL [30], IRDS

[19], and CAIS [16]). Among the selected standards, both PCTE and ODBMS supply

mechanisms for data integration while CDIF begins to define the conventions for de.. ribing data.

While this article has drawn distinctions among presentation, data and control integration

mechanisms, the reality is not as well-defined. The Common Desktop Environment (CDE) [17]

by defining an integrated desktop is adding messaging infrastructure to its environment moving

from presentation into control integration. OMG has begur to address the data integration issues

of locating objects referred to in messages and defining the interface and implementation

’Over 350 companies participate in OMG and over 100 companies participated in CASE communique and CASE
Interoperability Alliance.

20

repositories. PCTE has always included triggers, pipes and message queues for control

integration. Combining framework standards and specifications to support the smooth integration

of tools requires recognizing how current standards and specifications support integration.

21

Table 12: Summary of Mappings^

integration Data Controi Presentation Aii

Reference Modei Services ODBMS PCTE CDiF CORBA X3H6 X Motif POSiX

Object Management Services E E P

Metadata P E RE RE

Data Storage & Persistence E E RP
i

Relationship E E RE

Name E E

Distribution and Location E

Data Transaction E E

Concurrency E

OS Process Support E

Archive P

Backup

Derivation E P

Replication & Synchron. P

Access Control & Security E

Function Attachment E RE

Common Schema P E

Version P

Composite Object E P

Query E E RP

State Monitoring & Trigg. E

Data Subsetting P E

Data Interchange P RP
1

Process Management Services
1

*RE - Requires extensive support from this service; RP - Requires some functions from this service; E - provides extensive

coverage of this service; P - provides partial coverage of this service; L - provides a very limited version of this service

22

Table 12: Summary of Mappings (continued)^

Integration Data Control Presentation Ali

Reference Model Services ODBMS PCTE CDIF CORBA X3H6 X Motif POSiX

Communications Services

Data Sharing E E P

Interprocess Communication P RE

Network RE RE

Message E RE L

Event Notification E RE L

Operating System Services

OS Process Mgmt P E

OS Environment RE E

OS Synchronization RP P

Generalized I/O RP RE RP RE E

File Storage RE E

Asychronous Event RP RE RE E

Interval Timing P

Memory Management

Physical Device P RE P

OS Resource Mgmt. RE P

User Interface Services

Ul Metadata E

Session E RE

Text Input E RE

Dialog E RE

Display Management E RE

Presentation E RE

Ul Security

Ul Name and Location P

Internationalization P

’RE - Requires extensive support from this service; RP - Requires some functions from this service; E - provides extensive

coverage of this service; P - provides partial coverage of this service; L - provides a very limited version of this service

23

Table 12: Summary of Mappings (continued)^®

Integration Data Control Presentation Aii

Reference Model Services ODBMS PCTE CDIF CORBA X3H6 X Motif POSIX

Policy Enforcement Services

Security Information E

Ident. & Authentication E

Mandatory Access Control E

Discretionary Acc. Control E

Mandatory Integrity Control E

Discretionary Integ. Control E

Secure Obj. Exp. & Import.

Audit E

Framework Admin. Services

Registration L L

Resource Management

Metrication

Sub-Environment

Self-Configuration Mgmt. L

License Managernent

6 Conclusions

The purpose of framework standards and specifications is to enhance tool portability,

interoperability and integration by creating public interfaces to functionality incorporated into the

framework. If tools can access framework services in predictable ways, tool vendors can take

advantage of those services to avoid duplicating services and concentrate on the unique

functionality of the tool. Use of common services can increase tool integration by supporting

consistency in the behavior of tools using those services.

There is a significant difference in the maturity, acceptance and compatibility between the

interfaces focusing on presentation integration and the interfaces focusing on control and data

integration. Products for POSIX platforms today, generally, use the X Windows System and

follow Motif or a similar style guideline. The general availability of X \\' vs on POSIX
platforms allows developers and users to rely on its presence. Develop . recognize the

'®RE - Requires extensive support from this service; RP - Requires some functions from this service; E - provides extensive

coverage of this service; P - provides partial coverage of this service; L - provides a very limited version of this service

24

usefulness of not having to recode the user interface for each new platform, and users appreciate

not having to learn an entirely new interface for each tool.

There are no standards with comparable acceptance and availability supporting data and

control integration. CORBA has received considerable support from vendors but is not yet a

routinely supplied part of the platform; however, vendors are beginning to commit to supplying

CORBA. The lack of consensus on the definition of needs for repository capabilities has

prevented consensus on repository standards. Each repository standard dr specification was

developed in response to a different set of perceived needs. This lack of consensus has prevented

tool vendors from relying on the presence of a repository.

Mappings of a set of standards to the Framework RM can provide a common terminology

for describing the standards. With standards and specifications coming from a variety of

communities to meet different requirements on the SEE framework, current standards and

specifications, like the eight discussed here, do not share a common terminology or view of a

SEE. Mappings are an important way of positioning the standards in the framework. These

mappings can contribute to a better understanding of how the standards may interact within a

SEE profile.

References

Standards and Other Reference Works

[1] CASE Data Interchange Format - Framework for Modeling and Extensibility. Electronics

Industry Association, Interim Standard #107, 1994.

[2] CASE Data Interchange Format - Integrated Meta Model - Common Subject Area.

Electronics Industry Association, Interim Standard #112 1994.

[3] CASE Data Interchange Format - Integrated Meta Model - Data Definition Subject Area.

Electronics Industry Association, Interim Standard #113, 1994.

[4] CASE Data Interchange Format - Integrated Meta Model - Data Row Model Subject Area.

Electronics Industry Association, Interim Standard #115, 1994.

[5] CASE Data Interchange Format - Integrated Meta Model - Data Modeling Subject Area.

Electronics Industry Association, Interim Standard #114, 1994.

[6] CASE Data Interchange Format - Integrated Meta Model - Foundation Subject Area.

Electronics Industry Association, Interim Standard #111, 1994.

[7] CASE Data Interchange Format - Integrated Meta Model - Physical Relational Data Base

Subject Area. Electronics Industry Association, Interim Standard #117, 1994.

[8] CASE Data Interchange Format - Integrated Meta Model - Presentation Location and

Connectivity Subject Area. Electronics Industry Association, Interim Standard #118, 1994.

25

[9] CASE Data' Interchange Format - Integrated Meta Model - Presentation Global Subject Area.

Electronics Industry Association, Interim Standard #120, 1994.

[10] CASE Data Interchange Format - Integrated Meta Model - Project Planning and Scheduling

Subject Area. Electronics Industry Association, Interim Standard #121, 1994.

[11] CASE Data Interchange Format - Integrated Meta Model - State/Event Model Subject Area.

Electronics Industry Association, Interim Standard #116, 1994.

[12] CASE Data Interchange Format - Overview. Electronics Industry Association, Interim

Standard #106, 1994.

[13] CASE Data Interchange Format - Transfer Format - Encoding. 1. Electronics Industry

Association, Interim Standard #110, 1994.

[14] CASE Data Interchange Format - Transfer Format - General Rules. Electronics Industry

Association, Interim Standard #108, 1994.

[15] CASE Data Interchange Format - Transfer Format - Syntax. 1. Electronics Industry

Association, Interim Standard #109, 1994.

[16] Common Ada Interface Set. United States Department of Defense, MIL-STD-1838A, 1989.

[17] Common Desktop Environment: Functional Specification. X/Open, Ltd., 1993.

[18] Common Object Request Broker: Architecture and Specification, Revision 1.1. OMG
Document Number 91.12.1, 1991.

[19] Information Resource Dictionary System. International Standards Organization, IS 10728,

1992.

[20] Object Database Standard: ODMG-93. Ed. by R. G. G. Cattell. San Mateo, California:

Morgan Kauffman, 1993.

[21] Portable Common Tool Environment: Abstract Specification. European Manufacturer’s

Association, ECMA-149, Version 2, 1993.

[22] Portable Common Tool Environment: C Binding. European Manufacturer’s Association,

ECMA-i58, Version 2, 1993.

[23] Portable Common Tool Environment: Ada Binding. European Manufacturer’s Association,

ECMA-162, Version 2, 1993.

[24] Portable Common Tool Environment: C++ Binding. European Manufacturer’s Association,

Draft, 1992.

26

[25] Portable Operating System Interface (POSIX) - Part 1: System Application Program

Interface (API). International Standards Organizaton/Intemational Electronics Commission

IS 9945-1, 1990.

[26] Proposed Draft Standard, Messaging Architecture. American National Standards Institute,

Committee X3H6, 1994 (draft).

[27] Reference Model for Frameworks of Software Engineering Environments, Edition 3.

National Institute of Standards and Technology, Special Publication 500-211, 1991.

[28] Reference Model for Project Support Environments. National Institute of Standards and

Technology, Special Publication 500-213, 1993.

[29] Standard for Information Technology - X Window System Graphical User Interface - part

1: Modular Toolkit Environment (Draft). IEEE Working Group PI 295.1, 1993.

[30] Structured Query Language. American National Standards Institute Standard X3. 135- 1992

and International Standards Organization IS 9075:1992.

[31] X Window System Protocol, Version 11. MIT X Consortium, 1988.

Additional Reference on SEEs, SEE Specifications, and Integration

[32] Arnold, John E. and Gerard Memmi. Control Integration and its Role in Software

Integration. Nanterre, France: EC2, 1992.

[33] Brown, Alan W. An Approach Toward the Selection of Data Interface Standards. Draft

Technical Report from Next Generation Computer Resources Project, 1992.

[34] Brown, Alan W., David J. Carney, Peter H. Feiler, Patricia A. Oberndorf and Marvin V.

Zelkowitz. "Issues in the Definition of a Project Support Environment Reference Model"

in Annual Report of the SEL Pittsburg: Software Engineering Institute, 1993.

[35] Brown, Alan W., Anthony N. Earl and John A. McDermid. Software Engineering

Environments: Automated Support for Software Engineering. New York, McGraw-Hill

Book Co., 1992.

[36] Brown, Alan W. and John A. McDermid. "Learning from IPSE’s Mistake" in IEEE
Software, Vol. 9, No.2, March 1992.

[37] Carney, Dave. Mapping of PCTE to the PSESWG Reference Model. Software Engineering

Institute, to be published, 1993.

[38] Chen, Minder and Ronald J. Norman. "A Framework for Integrated CASE" from IEEE
Software Vol. 9, No. 2, March, 1992.

27

[39] Earl, Anthony. NIST Reference Model (1.0a) Mapping of ECMA PCTE(149). HP
Laboratories, Bristol, England, 1991.

[40] Flecher, Tom and Jim Hunt. Software Engineering and CASE: Bridging the Culture Gap.

New York: McGraw-Hill, 1993.

[41] Jones, Oliver. Introduction to the X Window System. Englewood Cliffs, NJ: Prentice-Hall,

Inc., 1989.

[42] NIST Framework Model Mapping Guidelines, Version 1.2. (Draft) National Institute of

Standards and Technology, 1991.

[43] Report on the Progress of the NGCR PSESWG. NADC, 1993.

[44] Thomas, Ian and Brian A. Nejmeh. "Definitions of Tool Integration for Environments" from

IEEE Software, Vol. 9, No.2, March, 1992.

[45] Wakeman, Lois and Jonathan Jowett. PCTE: the Standard for Open Repositories. New
York: Prentice HaU, 1993.

[46] Wasserman, Anthony I. "Tool Integration in Software Engineering Environments" from

Lecture Notes in Computer Science: Software Engineering Environments ed. by Fred

Long. New York: Springer-Verlag, 1989.

[47] Young, Douglas A. X Window Systems Programming and Applications with Xt. Englewood

cuffs, NJ: Prentice-Hall, 1989.

[48] Zelkowitz, Marvin V. "Use of an Environment Classification Model" ACM/IEEE 15th

International Conference on Software Engineering. Baltimore, MD, May 1993 (to appear).

28

Appendix A: Service Definitions from the Reference Model for Frameworks of Software

Engineering Environments (NIST SP 500-211)

The numbers in parenthesis are section numbers as found in the Framework RM [6].

[These are the same as the service definitions in the frameworks section of the Project Support

Environment Reference Model (NIST SP 500-213).]

Object Management Services (4) - The object management services support the definition,

storage, maintenance, management, and accessing of data objects and the relationships among

those data objects.

The Metadata Service (4.1

)

defines, controls, and maintains metadata, typically according to a

supported data model.

The Data Storage Service (4.2) defines, controls, and maintains objects, typically according to

defined schemas and type definitions.

The Relationship Service (4.3) defines and maintains relationships among OMS objects.

The Name Service (4.4) supports naming objects and associated data and maintains relationships

between surrogates and names.

The Distribution and Location Service (45) manages and accesses distributed objects

The Data Transaction Service (4.6) defines and enacts transactions.

The Concurrency Service (4.7) ensures reliable concurrent access to the OMS.

The Operating System (OS) Process Support Service (4.8) provides the ability to define OS
processes (i.e., active objects) and access them using the same mechanisms used for objects, i.e.,

integration of process and object management.

The Archive Service (4.9) allows on-line information to be transferred to off-line media and

vice-versa.

The Backup Service (4.10) restores the development environment to a consistent state after any

media failure.

The Derivation Service (4.11) supports definition and enactment of derivation rules among
objects, relationships or values (e.g., computed attributes, derived objects).

The Replication and Synchronization Service (4.12) provides for the explicit replication of objects

in a distributed environment and the management of the consistency of redundant

copies.

29

The Access Control and Security Service (4.13) defines and enforces access control rules on the

OMS.

The Function Attachment Service (4.14) attaches or relates of functions or operations to object

types or object instances.

The Common Schema Service (4.15) provides a means to create common (logical) definitions of

the objects (and operations) from the underlying objects in the OMS.

The Version Service (4.16) manages data from earlier states of objects in the OMS.

The Composite Object Service (4.17) creates, manages, accesses, and deletes composite objects,

(i.e., objects composed of other objects).

The Query Service (4.18) is an extension to the data storage service’s “read” operation. It

provides capabilities to retrieve sets of objects according to defined properties and values.

The State Monitoring and Triggering Service (4.19) enables the specification and enaction of

database states, state transformations, and actions to be taken should these states occur or persist.

The Data Subsetting Service (4.20) enables the definition, access, and manipulation of a subset

of the object management model (e.g., types, relationship types, operations if any) or related

instances (e.g., actual objects).

The Data Interchange Service (4.21) offers two-way translation between data repositories.

Process Management Services (5) - This service group supports the unambiguous definition and

execution of software development process activities across software life cycles.

The Process Development Service (5.1

)

provides for the creation, control and maintenance of

process definitions.

The Process Enactment Service (5.2) provides for the instantiation and execution of process

definitions by process agents that may be humans or machines. It also provides services to

access, maintain and control the persistent state of the process.

The Process Visibility Service (5.3) provides facilities for the definition and maintenance of

visibility and scoping information.

The Process Monitoring Service (5.4) observes the evolving enactment state of processes, detects

the occurrence of specific process events, and enacts other processes to response to detected

events.

The Process Transaction Service (55) supports the definition and enactment of process

transactions.

30

The Process Resource Service (5.6) provides a means of assigning process agents to enact various

processes and process elements.

Communication Service (6) - This service group supports inter-tool and inter-component

communication among the tools and components of the SEE.

The Data Sharing Service (6.1) provides data sharing operations within the OMS or memory or

by other data manipulation services.

The Interprocess Communication Service (6.2) provides primitive operating system process

communication via the RPC mechanism of the network service.

The Network Service (6.3) supports communication among collections of processes and transfer

of data between machines.

The Message Service (6.4) supports managed communication among a large number of elements

of a populated environment framework.

The Event Notification Service (6.5) supports the notification of messages based upon certain

triggering conditions.

Operating System (OS) Services (7) - These are the low-level platform functions.

The OS Process Management Service (7.1

)

creates, manages and schedules OS processes.

The OS Environment Service (7.2

)

passes information among OS processes.

The OS Synchronization Service (7.3) synchronizes the execution of OS processes.

The Generalized Input and Output Service (7.4) provides basic operations to transfer data

between processes and input and output devices attached to a PSE.

The File Storage Service (7.5) provides the basic operations to read and write files and to store

and access them in directories.

The Asynchronous Event Service (7.6) creates and sends signals between OS processes.

The Interval Timing Service (7.7) sets and tests timers on individual OS processes.

The Memory Management Service (7.8) manages the main memory.

The Physical Device Service (7.9) manages physical devices.

The OS Resource Management Service (7.10) provides general computer system management.

31

User Interface (UI) Services (8) - The subject of user interfaces is an extremely complex issue

which is far more general than integration frameworks. Nevertheless, a consistent User Interface

Service may be adopted for a complete framework.

The UI Metadata Service (8.1) describes the objects used by the UI Services.

The Session Service (82) initiates and monitors a session between the user and the environment.

The Text Input Service (8.3) provides for textual input processing by application programs.

The Dialog Service (8.4) provides the interface between the application program and physical

display devices.

The Display Management Service (8.5) provides for interaction among individual windows.

The Presentation Service (8.6) creates and manages the physical interface between the user and

the environment.

The User Interface Security Service (8.7) provides the security constraints needed by the UI.

The User Interface Name and Location Service (8.8) manages multi-user and multi-platform

environments permitting communication among sessions, tools and display devices.

The Internationalization Service (8.9) provides capabilities concerned with different national

interests.

The User Assistance Service (8.10) provides a consistent feedback from various tools to the user

for help and error reporting.

Policy Enforcement Services (9) - These services provide the functionality of security

enforcement and integrity monitoring.

The Security Information Service (9.1) supports the establishment of security information for use

within the PSE.

The Identification and Authentication (92) provides for the ability to identify users and to

properly associate them with appropriate access rights prior to any operations being carried out

on their behalf.

The Mandatory Access Control Service (9.3) provides capabilities to assign access values by a

security officer to govern access to the information contained in an object.

The Discretionary Access Control Service (9.4) provides the ability to permit users to control

individual modes of access to objects that they own by individual users and aU members of sets

of users.

32

The Mandatory Integrity Service (9.5) provides the capabilities to protect objects from

unauthorized or unconstrained modification as determined by the PSE security officer.

The Discretionary Integrity Service (9.6) provides the capabilities to protect objects from

unauthorized or unconstrained modification as determined by a user.

The Secure Exportation and Importation of Objects Service (9.7) provides the ability to export

and import objects in a secure manner.

The Audit Service (9.8) provides the ability to record information about calls on the PSE facilities

in order to track and control security related actions.

Framework Administration and Configuration Services (10) - These services support the

administration of the framework.

The Registration Service (10.1) incorporates new tools into an environment based on the

framework effectively coordinating the new tool and the environment.

The Resource Management Service (10.2) manages, models and controls environment resources.

The Metrication Service (10.3) collects technical measurement information for the framework.

The Sub-Environment Service (10.4) provides the capability to divide the SEE into separate sub-

environments and to restrict the access s of users to a subset of the available SEE resources.

The Self-Configuration Management Service (105) supports the existence of many simultaneous

coresident configurations of a framework implementation.

The License Management Service (10.6) enforces of licensing requirements on components.

33

^ fi-

^- :.';tr(* 'ji?^ f. ‘| tjfl't niiJ.i^fe:iaiK m’fj 'fl ii^' i#|i|i^¥0
T,

'*’

^-’-’0*r •ffirr^Tr\'^
^yt-r

-f, •»•

.

' . i£Sm

'
':^

"

,

'

”^"'S^vl

•<fev '

«i3^-4is4^4jiiW'!<;*':,il|$|riiSi^

V

>,

.1
;

