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Abstract

This paper describes a robust, pixel-based adaptive algorithm to track image features, both

spatially and temporally, over a sequence of monocular images. The algorithm assumes no

a priori knowledge about the features to be tracked, or the motion of the camera or the

objects, in the 3-D scene. The features to be tracked are selected by the algorithm and

these correspond to the peaks of a 'matching surface' constructed from the first image of

the sequence to be analyzed. Any kind of motion can be tolerated keeping in mind the

pixels- per-frame motion limitations. In our experiments, we have used the algorithm for

tracking up to 3 pixels motion between frames with absolutely no subpixel calculations

being necessary. Taking into account constraints of temporal continuity, the algorithm

uses simple and efficient predictive tracking over multiple frames. The algorithm accepts a

slow, continuous change of brightness D.C. level in the pixels of the feature. Trajectories

of features on multiple objects can be computed. As an application of the algorithm we

show how the algorithm can be used to find the Focus of Expansion (FOE) using a

sequence of real images.

Index Terms- Matching, feature tracking, visual motion

* This work was supported in part by a grant to Florida Atlantic University from the

National Science Foundation, Division of Information, Robotics and Intelligent Systems,

Grant #IRI-91 15939



1. INTRODUCTION

It is well known that a significant amount of useful information can be obtained

about 3-D motion and structure using the projected 2-D image motion sequence resulting

from the movement of a camera and/or that of 3-D objects. The various approaches to

motion analysis can be broadly classified into those using optical flow techniques and

those using feature tracking techniques.

Optical flow techniques are extremely useful in the analysis of motion by a

monocular observer. However, they are in general noisy and inaccurate. Moreover, most

methods need pre-processing of the image before optical flow techniques can be applied.

A good reference for motion analysis using optical flow techniques can be found in [17].

A number of researchers have developed 2-D feature tracking algorithms for the

analysis of motion. Until recently, many of these were based on the assumption that a

priori knowledge about the camera motion and/or, the 3-D environment or its 2-D

projection, was available. Methods which do not need prior knowledge about the motion

have the advantage of applicability to a variety of situations.

This paper describes a feature tracking algorithm that needs no a priori knowledge

about either the motion of the camera or the objects in the 3-D scene or their 2-D

projection in the image.

1.1 PREVIOUS WORK

In this section, we give an overview of some of the methods for feature tracking

and the extraction ofthe Focus ofExpansion found in the literature.

Various approaches to motion analysis developed till 1989 can be found in [28].

Figure 1.1 is a diagram that gives a classification of some of the feature tracking

methods in the literature.
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Feature Tracking Methods

Feature-based 1- Pixel-based Other Methods

Point features
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Trajectories

Figure 1.1 : A diagram giving a classification of feature tracking

methods.

1.1.1 Feature Tracking Methods - An Overview

Tracking line segments is one approach to solve the feature tracking problem as

presented in [30] and [6]. Using straight line correspondences, one can determine the

motion parameters as well as structure information of the objects. Line tracking may fail in

situations which give rise to the so-called 'aperture problem'.

Block matching is another approach to tackle the feature tracking problem [11],

[31], [22], [16] which is based on tracking coherent entities together. As described in [1 1],

the image is divided into fixed size areas and the best match is found by minimizing a

distortion function between the reference image and the desired image. Motion estimation

can be done using block matching. In [22], the velocity vector approach is used, where

elements of a region moving coherently share a common velocity vector. All these

algorithms are based on the coherence in a region. The tradeoff in the block matching

approach would be in determining the size of the blocks for optimum speed of

computations as well as the size necessary for accuracy.

The 3-D model has been used in quite a few approaches to motion analysis [8],

[9], [3]. Gennery, [8], was among the earlier attempts at tracking known 3-D objects. The

motion parameters are used in the analysis of motion. Prediction is usually done using

Kalman Filtering or its modifications. In practical situations, the 3-D objects to be tracked,

or the motion of the camera, may not always be known .

Curves and contours can also be used for tracking purposes [2],[19]. An algorithm

based on energy minimization is presented in [2], the attempt being to preserve the

matching of high curvature, at the same time ensuring a smooth field of displacement

Blocks Comers
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vectors. Tracking contours and curves is particularly useful in the absence of any

geometric model of the observed structures.

Deformable models can be used for visual tracking [24]. Such models can be used

to represent the change in shape and position of a region of pixels. For each frame, the

algorithm computes the model parameters that best explains the motion in the new frame.

Deformable models are very useful in real-life situations involving conditions in the

environment like human faces.

The method of cross correlation is usually used to search for a 3-D object's 2-D

projection in different views of the same scene. It can also be used to get the relative

displacement of the 2-D projection of a 3-D object from one image to the next. Cross

correlation is used in [27] to detect pixel by pixel motion. Cross correlation methods are

accurate but computationally expensive.

There are a number of algorithms in the literature for tracking point features.

Jenkin [13] proposed a method for computing correspondences where he uses the

smoothness of velocity of points. Sethi and Jain, [25], make use of this property over a

series of monocular images. They exploit the fact that due to inertia, motion of an object

cannot change abruptly. The trajectories of the feature points are computed so as to

maximize a gain function. In this approach, however, the same set of features are required

to be present in successive frames. The algorithm due to Sethi and Jain [25], is made use

of in [7] to compute initial, partial trajectories which are subsequently used to initialize an

algorithm based on the Stochastic Approximation method. Moving object trajectories can

be found using the constraint of path and shape coherence constraint [10]. In [14] a

proximal uniformity constraint is used to solve the correspondence problem. Initial

matches are established using a gradient-based optical flow approach. A smoothness

constraint similar to that of [25] is used in [29] where a smoothness measurement is

computed for each trajectory and the best trajectory is selected using a heuristic approach.

In the algorithm for point correspondences given in [32], intensity-based area correlation

is used to match point features over consecutive frames. For feature localization, greater

weightage is attached to points closer to the feature center. The method however, needs

computations upto subpixel accuracy because of the camera motion compensation

involved.

As in the computation of motion using the optical flow approach, the fact remains

that tracking points is difficult in practice because of greater possibilities of errors due to

noise and mismatches inasmuch as there are not too many distinguishing qualities, that can

be found between points.
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The tracking process can be made faster via appropriate hardware [1], [4]. Other

algorithms which have been developed commercially such as Econolite Control Products,

Inc., 'Autoscope vehicle detection system'* have not been published yet This has been

used for real-time road intersection detection and control.

The algorithm presented in this paper selects a priori unknown features to be

tracked over a sequence of images. However, changes in the brightness D.C. level in the

pixels of the feature can be accommodated. Another important feature of the algorithm is

the use of an adaptive feature matching threshold and the capability of detecting multi-

pixel motion between frames. Further, any kind of motion can be tracked within the limits

of number-of-pixels-moved-by-the-feature per frame. No subpixel computations are

required. The method may be used as an alternative to optical flow for the analysis of

motion. We also show how we used the feature tracking algorithm to extract the Focus of

Expansion, using real image sequences.

1.1.2 Methods to extract Focus of Expaiision(FOE)-An overview

Focus of Expansion, FOE, plays a vital role in the extraction of information about

relative motion between the observer and 3-D objects. It is defined as the intersection of

the imaging plane and the direction of motion [12], [5]. Most of the approaches available

in the literature for FOE computation are optical-flow based. The results however,

become extremely inaccurate in the presence of noisy data. Our approach, on the contrary,

is based on feature tracking.

Until recently, FOE had been considered only in the context of the translatory

motion. In Prazdny [23], it is shown that the rotation component can be canceled for two

image points if the flow component along the line joining them is used. FOE, as used in

[15], would be the intersection of the imaging surface and the axis of instantaneous

translation, the surmise being that this would make it independent of the observer's

instantaneous rotation. But the method is optical flow based and is bound to suffer from

the effects of noise in real situations. In [21], a method for locating FOE is presented,

based on computations in selected circular patches each of which is around an estimated

FOE. The direction from the estimated to the true FOE is determined thereof. The

intersection of these so-called FOE constraint lines for each patch gives the location of the

FOE.

Cettain conunercial equipment, instruments or materials are identified in this paper. Such identification does not imply recommendation

or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are

necessarily the available for the purpose.
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A method that takes into account the uncertainty in determining the precise

location of the FOE is given in [26]. The normal component of the optical flow due to

translational egomotion is used in this approach. The method is insensitive to independent

motion, if the portion of the scene corresponding to independently moving objects is small.

Another method, for the direct computation for the Focus of Expansion can be

found in [12]. The approach involves the extremization of a function based only on the

location of points in frames. However, the motion is restricted to translation only. Though

correspondences need not be established, feature points however, need to be isolated. In

[20], the scene is assumed to be rigid and the spatial gradient and the time of rate of

change of brightness over the whole image is used.

In section 3, we show how the feature tracking algorithm can ben used to

determine the FOE.

2.

THE FEATURE TRACKING ALGORITHM

We present here an algorithm which tracks 2-D image features over several

frames. The method needs no a priori knowledge about the motion or the scene being

viewed. As far as selecting the features to be tracked is concerned, we do not use any pre-

defined notion as to what constitutes a feature. In our algorithm, any n x n brightness

pattern distinct from its neighbors, detected by the algorithm, can be used as a candidate

feature.

The primary assumptions made in the development of the algorithm are:

1. Small inter-frame 2-D feature displacements, i.e., features in the image do not move

more than a few pixels per frame. In our implementation we allow up to 3 pixels per

frame.

2. Sufficient texture in the image, i.e., the image is rich enough in features. This

assumption is made to ensure that features, as we define later on, exist

3. The features remain in the Field-of-View (FOV) of the observer.

4. Slow brightness changes are allowed in the feature pixels.

5. Temporal continuity of the features, i.e., the features exist in successive frames, within

the limitations of assumption 4.

There are two stages in the algorithm. They are,

1. Feature selection.

2. Tracking of selected features.
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2.1 FEATURE SELECTION

There are many algorithms for tracking point features. But tracking point features

is disadvantageous because of practical difficulties like noise as well as greater possibilities

of mismatches. Our algorithm tracks features which are chosen by the algorithm itself or in

other words, which are trackable to the algorithm.

There are other methods to detect features like the Moravec interest operator,

[18]. Features in images were picked using an interest operator, which returned regions of

local maxima of a directional variance. Directional variance was measured over small

windows. The sums of squares of differences between adjacent pixels in four directions,

i.e.y horizontal,vertical and the two diagonals, were computed for each window and the

window’s interest measure was the taken as the least of these four sums. A feature was

said to exist wherever the interest operator had local maxima.

We define a feature to be an a priori unknown n x n brightness pattern which is

distinct enough to be tracked. By 'distinct enough', we mean that if the n x n feature

candidate location were to be shifted as shown in Figure 2.1, in its immediate

neighborhood, it would have very little correlation between itself and the new n x n

neighboring brightness patterns (By feature location we refer to the top-left comer pixel of

the feature). In other words, a feature can be defined as a sharp peak on a matching

surface which is constructed using neighboring n x n patterns and the feature itself.

BCD
rs

Figure 2.1 : Each m x m square represents the search matrix. The

shaded portion represents the location of the top-left comer

of the feature candidate.
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Search Matrix

Feature Template Matrix

Figure 22 : A representation of the Search Matrix and the Feature Template

Matrix.

The following procedure is implemented to select a feature:

Starting at any pixel located at (a,b) in the first image of the sequence to be

analyzed, we scan the image for a feature candidate. Once a feature is found we may

continue to search for the next feature. We make sure that the pixel location (a,b) is not

located at the edges of the picture because that would prevent our doing the local search

as described below.

1) Pixel (a,b) is assumed to be the top-left pixel of the feature. Keeping (a,b) as the

starting point we construct an n x n feature matrix, say a 5 x 5 matrix, of pixel

intensities. We call this matrix our feature template matrix 'ms' ( Figure 2.2).This

feature template matrix contains image intensities at that location.

2) We construct an m x m local search matrix, say 3x3 with (a,b) being the center of this

matrix (Figure 2.2).

3) The feature template matrix is translated up, down, left, right and across both the

diagonals of the search matrix, i.e., m^-1 locations. At each such location, we

compute the matching coefficient as given below. The associated parameters are

designated as follows:

ms a feature template of size n x n,

fns[i][j] an element of ms,

im a sub-image of size n x n.
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net

ave

ni

^2

d

Cl

Cl

c

cf

Then,

the sum of differences between ms and im,

the average D.C. brightness level change per pixel,

the variance of the difference between ms and im taking into account D.C.

brightness level,

the sum of squared differences between the pixel values of ms and im,

the normalizing factor

the mismatch coefficient contribution without change of brightness D.C.

level,

the mismatch coefficient contribution with change of brightness D.C. level,

the net mismatch coefficient,

the matching coefficient

net =tt (ms[i][j]-im[i][j]) (1 )

i=l y=l

ave = net / (n^ ) (2)

(3)

i=l

i=l

‘^ =11 (ms[/][;]

+

im[i][j]f (5)

i=l

c,={thldf (6)

c^={n,ldf (7)

C=C,**,+C2**j (8)

where and 0^j<l, 0^<1;

cf^(l-c) (9)

ky and are used so that we do not totally ignore the contribution of the self

brightness changes.

Using these matching coefficients, an m x m matching surface is constructed

keeping (a,b) as the center location of this surface. An n x n pattern is called a feature if all

the gradients between the peak on the matching surface and its neighbors are greater than

9



a threshold value, that we specify a priori. In other words (a,b) is a peak on the matching

surface and is our feature location.

The matching coefficient computed at our feature location (a,b) then becomes our

matching threshold for the second frame of the sequence.

Table 1 gives the number of computations involved for an n x n feature template

matrix.

This whole procedure of feature selection needs to be done only once, in the first

frame in the sequence of frames to be analyzed.

Additions Subtractions Multiplications Divisions

8n^+l 3n^+2 15/1^ +8 3

Table 1 : Number of computations per feature at a search matrix

location.

22 SUBSEQUENT TRACKING

Once the features to be tracked have been selected in the first frame k=l,

subsequent tracking is done as given below.

2.2.1 Tracking in the second frame of the sequence

During the second frame, frame number k = 2, we center the search matrix of size

p X p, p > m, (as in Figure 2.2), around the location of our feature, the idea being that

using a larger search matrix would help to establish the initial motion pattern. Once a

pattern has been established, the search matrix can be changed accordingly.

The algorithm performs a local search to lock on to the feature. The location of the

maximum matching coefficient gives the new location of the feature in the second frame.

The equations given in section 2.1 are used in computing the matching coefficient

2.2.2 Subsequent Frames

For k ^3, there are 2 stages involved in the tracking:

1) Local spatial search

2) Check for directional temporal continuity

10



The algorithm centers the search matrix, this time of a size smaller than or equal to

that used in the second frame of the sequence, around the location of the feature in the

previous frame.

Once this local search has been done, all matching coefficients above an a priori

specified threshold, are further examined in the following manner.

The idea is to check if the direction of motion of the feature from frame k-2 to k-1

is similar to that between frame k-1 and the current frame k. Refer to Figure 2.3.

For each candidate location obtained using the spatial search, the best match is the

one that minimizes the constraint 'p' given in equation (11).

COS0 =
Idl^l

where a and b are vectors as shown in Figure 4.

P= 7 - COS0

(10)

(11 )

a is die motion vector between frames k-2 and k-1

b is the motion vector between frames k-1 and k

o represents feature location as pixel coordinates

Figure 23 : Representation of the check for motion vector continuity.

23 FEATURE AND THRESHOLD ADAPTATION

If the feature located is a very good match to the feature in the earlier frame, the

pixel intensities in the n x n feature are updated to that of the new location. The matching

threshold is also updated under such circumstances. This will ensure that the original 2-D

feature can still be detected even if it undergoes changes. This will avoid the constraint

that the same set of feature points have to be present in successive frames, as is necessary
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in [25]. There are many possibilities as to how the threshold can be adapted. Given below

is the manner in which we have implemented the threshold adaptation step.

In the threshold adaptation process, we try to take into account the fact that

brightness changes in the feature may also mean brightness changes in its neighbors. This

should add to the robusmess of the tracking.

Figure2.4 shows the matching coefficients used to determine the threshold.

al a2 a3

a4 a5 a6

a7 a8 a9

Figure 2.4 : Grid of coefficients used to determine the Feature

Matching Threshold. al..a9 are the matching coefficients

obtained using the equations given in Section 2.1.

There are two cases to be considered:

1. A not-very-distinct feature:

By 'a not-very-distinct feature' we refer to a low peak on the correlation surface. In

other words, the feature is not as distinct from its neighbors as it was at the beginning

of the image sequence. The idea in this case is that if a feature is not veiy distinct from

its neighbors, it is easier to track it taking into account the presence of its neighbors. In

this case, we take the mean of a2, a4, a6, a8 and a5 ( Figure 2.4).

Threshold = (a2-^a4-\-a6-\’a8+a5)/5 (12)

2. A very distinct feature:

By -a very distinct feature' we mean a sharp peak on the matching surface.

In this case, the matching coefficient is used as the threshold.

Threshold = a5 (13)

A threshold to determine the sharpness of the peak is specified a priori.

A limited tolerance of matching threshold is allowed while determining possible

matches during the tracking.

Note : Once the threshold has been adapted in a particular frame, the matching coefficient

in the next frame is computed as follows.

If equation (12) is used while computing the threshold, then the matching coefficient is

computed in the same manner as given in equation (14)

cf= (a2+a4+(i6+a8+(i5)/5 (14)
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where the coefficients are arranged as shown in Figure 2.4.

Otherwise,

cf=a5 (15)

This is done to ensure that both the matching coefficient and the threshold can be

compared, by computing them in similar fashion.

2.4 OCCLUSIONS

In situations where the feature is lost or partially occluded for a short time period, the

search window is simply restored to its original size, as used in the second frame and the

search for the best match is done as it was done in the second frame. The decision as to

whether the algorithm is momentarily lost or whether there is occlusion, can be inferred

from the peak of the matching surface. A very low peak would indicate occlusion while a

peak that is simply lower than the matching threshold would indicate that the algorithm is

momentarily lost

3. EXPERIMENTS

Through our experiments, we aimed at obtaining two types of results.

a) Results of the tracking for both translational and rotational motion.

b) To use the feature tracking algorithm to extract the FOE.

Experimental Set-up - The implementation was done using a camera mounted on a six-

degree-of-ffeedom vision-based flight simulator robot controlled by an 80486-based PC.

The simulator has been obtained by modifying an IBM Clean Room Gantry Robot ( Figure

3.1). TTie modification is such that the robot's main controller is not being used. Instead it

is controlled by the PC that supplies analog signals to the six control loops, each

corresponding to a velocity input

Experiments were performed with the unstructured environment shown in Figure

3.2. To determine the real FOE, a '+' was marked on the TV monitor at some location. A
similar '+' was also placed in the 3-D environment within the FOV of the camera. The

camera was translated such that the '+' marked on the TV monitor and the '+' in the 3-D

environment as seen by the camera coincided at each camera location during the

translation. The location of the '+' thus gave us the location of the real FOE.

Experiments- In our experiments, the Focus of Expansion was defined as the intersection

of the image plane and the direction of motion.
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A series of 120 frames were acquired in succession using a frame grabber. The

algorithm tracked the features selected, in each frame of the sequence. The feature points

selected were all at different distances from the camera. In our experiments, the size of the

features used were 5x5 while the search regions used were 3x 3 and 5x5. The tolerance

used in the threshold value for determining feature updating was 3% of the threshold. The

tolerance in the threshold used to determine matches during tracking was 10%. Occlusion

thresholds used were 50% of the threshold value, and used in the computation of the

matching coefficient were 0.8 and 0.2, respectively.

The trajectories of the features were plotted over a sequence of frames. Then using

a least squares approximation a function was plotted to obtain each feature's smoothened

trajectory in the image sequence. The lines thus plotted for each of the features were

extended to find their point of intersection. This gave us the location of the FOE.

Results - Experimental results are presented in Figure 3.3-3.13.

In this section, the results presented are as follows:

1) Feature trajectories obtained using the feature tracking algorithm.

2) Using the feature trajectories to extract the FOE using real image sequences.

Figures 3.3-3.10 represent trajectories and the extraction of the FOE obtained by

tracking features in different image sequences. In all these experiments, motion was con-

fined to pure translation along the camera optical axis. Figures 3.11-3.13 represent

trajectories for different motions. The location of the FOE found using the tracking

algorithm was found to be in the vicinity of less than 4 pixels from the true FOE.

4. DISCUSSION

Presented here is a simple feature tracking algorithm, which has been used to

extract the Focus of Expansion in a real image sequence. The definition of FOE that we

have used is similar to the definition found in [5], i.e., we define the FOE to be the point

of intersection of the image plane and the direction of motion. The method was found to

be quite robust even under noisy conditions.

Our contributions are as follows:

1. The algorithm presented here tracks unknown 2-D features obtained from an unknown

3-D environment. The features can undergo temporal changes in brightness.

2. This is a pixel-based method. Hence it can work in parallel

3. No subpixel calculations are necessary.

4. The algorithm can track multiple 2-D features on multiple 3-D objects.

14



5. The method can tolerate more than one pixel motion between frames (in our

experiments we track up to 3 pixels motion between frames)

6. It can be used for many applications such as extracting the Focus of Expansion (FOE).

7. There is no need to compute optical flow. In fact the method could be used as an

alternative to optical flow methods.

8. Since the algorithm initiates its own feature search, the method can be applied in indoor

as weU as outdoor environments.

9. The algorithm can tolerate any kind of motion, /.£., translation and rotation.

Like all template matching algorithms, this method faces the problem of numh ^

computations. Since, the initial search, in the second frame, is not based on any kma

of a priori knowledge about the 3-D environment, it is vital that the initial matches are

correct, as this affects subsequent tracking. The algorithm also faces problems in the face

of occlusions, but this can be overcome using the temporal continuity constraint The

feature selection process, the most time-consuming, can be modified or done away with if

more a priori information is available.

The location of the FOE extracted using the tracking algorithm can be made more

precise by using a larger number of features.

5. FUTURE WORK

The proposed algorithm can be used for object segmentation in a situation

involving multiple clustered objects. More work is necessary to make it computationally

more efficient The problem of occlusions can be viewed in greater depth. In case the

tracking algorithm gets lost due to occlusions, the trajectories obtained using the above

algorithm may not yield proper results. In such situations, the image velocities from

previous frames can be used for correct tracking.

Another way to overcome the problem of occlusion will be to make use of the

motion continuity constraint to determine the feature location during periods of occlusion.

It may also be possible to build hardware to implement the algorithm in future.

Attempts are being made to incorporate more a priori data to make the method more

robust One approach would be to incorporate the 6 parameter camera constants to

improve the correlation.
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Figure 3.1 : IBM Robot used in experiments.

Figure 3.2 : Environment used for Feature Tracking and FOE
experiments.
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Figure 3.3 : Trajectories for 5 features, translatory

motion.

Figure 3.4 : FOE e.xtracted for trajectories in Figure 33.
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Figure 3.5 : Trajectories for 5 features, translatory motion.
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Figure 3.6 : FOE extracted for trajectories in Figure 3.5.
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Figure 3.7 : Trajectories for 6 features, translatory motion.

Figure 3.8 ; FOE extracted for trajectories in Figure 3.7.
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Figure 3.9 : Trajectories plotted for 8 features
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Figure 3.10 : FOE extracted for trajectories in Figure 3.9.
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Figure 3.11 : Trajectories for 10 features, translatory motion.

Figure 3.12 : Trajectories for 2 features, rotational and translational

motion.
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Figure 3.13 : Trajectories for 3 features, rotational and translational

motion.
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Abstract

This paper describes a robust, adaptive algorithm for tracking image features, both spatially and

temporally, over a sequence of monocular images. The algorithm assumes no a priori knowledge about

the features to be tracked, or the motion of the camera/the objects, in the 3-D scene. The features to be

tracked are selected by the algorithm and these are the peaks of a 'matching surface' constructed from the

first image of the sequence to be analyzed. Any kind of motion can be tolerated keeping in mind the

pixels- per-frame motion limitations. In our experiments, we have used the algorithm for tracking up to 3

pixels motion between frames. Absolutely no subpixel calculations are necessary. Taking into account

constraints of temporal continuity, the algorithm uses simple and efficient predictive tracking over

multiple frames. The algorithm accepts a slow, continuous change of brightness D.C. level in the pixels of

the feature. Trajectories of features on multiple objects can be computed. As an application of the

algorithm we show how the algorithm can be used to find the Focus of Expansion (FOE) using a sequence

of real images.
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