
Quality Characteristics and
Metrics for Reusable Software
(Preliminary Report)

W. J. Salamon
D. R. Wallace

Prepared by the

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

for the

Department of Defense

Ballistic Missile Defense Organization

—Qe

100

.U56 NIST
NO. 5459

1994

4

NISTIR 5459

Quality Characteristics and
Metrics for Reusable Software
(Preliminary Report)

W. J. Salamon
D. R. Wallace

Prepared by the

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

for the

Department of Defense

Ballistic Missile Defense Organization

May 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arad Prabhakar, Director

ABSTRACT

This report identifies a set of quality characteristics of software and provides a summary of

software metrics that are useful in measuring these quality characteristics for software products.

The metrics are useful in assessing the reusability of software products.

This report is preliminary. Additional research is needed to ensure the completeness of the

quality characteristics and supporting metrics, and to provide guidance on using the metrics.

KEYWORDS

Reusable Software; Quality Characteristics; Software Reliability; Completeness; Correctness;

Software Metrics

^ W '
..

: IBIOL
^

,fi> i^fi.'4»^lw(ti>bi ncwp>t «frfT'

'^^m'^ki^'m m tBtis ir^m^t »mw^g

EXECUTIVE SUMMARY

The Software Producibility Manufacturing Operations Development and Integration Laboratory

(Software Producibility MODIL) was established at the National Institute of Standards and

Technology (NIST) in 1992. The Software Producibility MODIL was one of four MODILs
instituted at national laboratories by the U.S. Department of Defense/Ballistic Missile Defense

Organization (BMDO).^ The purpose of the MODILs was to investigate technology that could

be transitioned from the research community to improve software development within the

BMDO.

The initial focus of the Software Producibility MODIL was software reuse. When software is

considered for reuse, especially in the high-integrity^ applications for the BMDO, the quality of

the software is of paramount importance. Organizations considering existing software for reuse

must consider many variables to decide if the software is fit for reuse. One variable is the

quality of the software; hence, organizations must be able to assess the quality of software.

Organizations who are developing new software that is intended for reuse must also be able to

assess whether the software meets reusability criteria.

This report on quality characteristics and metrics for reusable software is preliminary. It

identifies a set of quality characteristics that are most commonly referenced in technical literature

and standards. These quality characteristics are common to all software products (e.g.,

requirements documentation, design documentation, code, and test documentation.) Different

metrics for each product may be used to assess the degree to which the product contains each

quality characteristic. This report provides some explanation of the value of each metric for

determining the reusability of the software. However, more research is needed to ensure the

completeness of the quality characteristics and associated metrics.

This preliminary study alone does not provide sufficient measurement information for

determining the reusability of software. For example, the value of each characteristic and each

metric for each product should be correlated to a reusability index. The reusability index, which

no one yet has defined, should also include process metrics (e.g., effort). Most of the metrics

have been used for several years and are well-understood relative to structured design methods

but most have not yet been applied to software developed with object-oriented technology.

Another important topic to be considered for reusing software in high integrity applications is the

knowledge about the software relative to its specific domain and application within that domain

and the type of information that must be present for analysts to decide how the software must

change to meet new requirements.

'xhe BMDO was formerly known as the Strategic Defense Initiative Organization (SDIO).

^igh integrity software is software that can, and must be. trusted to operate dependably in some critical function (e.g., national defense systems).

V

Additional research topics include, but are not limited to, the following:

• algorithms for relating measures to a reusability index

• criteria for selecting specific metrics

• user of the data (program manager, technical staff)

• purpose for which data will be used

• constraints (e.g., language, development environment, products available)

• value (e.g., quality characteristic most important)

• ability to collect and analyze data (e.g., automated support for specific measures).

• application of the quality characteristics and metrics to object-oriented development methods

• mapping of characteristics and metrics to existing and draft standards

• guidance on collecting measurement data for the metrics

• guidance on using the resulting measures

VI

TABLE OF CONTENTS

1. INTRODUCTION 1

2. QUALITY CHARACTERISTICS FOR REUSABLE SOFTWARE 3

2.1 Definitions of Software Quality Characteristics 3

2.2 Other Definitions 5

3. QUALITY METRICS FOR REUSABLE SOFTWARE 9

3. 1 Quality Metrics for All Products 9

3.1.1 Completeness 9

3.1.2 Correctness 10

3.1.3 ReUability 10

3.2 Quality Metrics for Requirements Documentation 11

3.2.1 Completeness 11

3.2.2 Correctness 12

3.2.3 Generality 12

3.2.4 Understandability 13

3.3 Quality Metrics for Design Documentation 16

3.3.1 Completeness 16

3.3.2 Correctness 17

3.3.3 Generality 17

3.3.4 Efficiency 18

3.3.5 Modularity 18

3.3.6 Portability 19

3.3.7 Reliability 20

3.3.8 Understandability 20

3.4 Quality Metrics for Code 24

3.4.1 Completeness 24

3.4.2 Correctness 25

3.4.3 Efficiency (of execution) 26

3.4.4 Efficiency (of storage) 27

3.4.5 Adaptability 28

3.4.6 Generality 29

3.4.7 Maintainability 29

3.4.8 Modularity 32

3.4.9 Portability 33

3.4.10 Reliability 33

3.4.11 Understandability 34

3.5 Quality Metrics for Test Documentation 36

3.5.1 Completeness 36

3.5.2 Efficiency 38

vii

3.5.3 Understandability 38

4. SUMMARY 39

5. REFERENCES 41

viii

1 . INTRODUCTION

The purpose of this report is to summarize a set of metrics that are useful in measuring certain

quality characteristics for software. In particular, these characteristics are applicable in assessing

the reusability of software products. The quality characteristics are defined first. For each

software product (requirements, design, code, test documentation), several metrics are given that

will help to qualify the quality characteristics for that product.

A definition of software quality characteristics as given in [IS09126] is "A set of attributes of

a software product by which its quality is described and evaluated." The set of attributes

includes functionality, reliability, usability, efficiency, maintainability, and portability. Several

other documents ([SAC], [OPALS]) include other characteristics (e.g. adaptability, complexity)

that apply to assessing the reusability of software products.

The metrics listed in this report are product metrics, and therefore, are meant to be applied to

software products. The products are requirements documentation, design documentation, code,

and test documentation. Because the focus on quality for software in the past has been on code,

there are many more code metrics listed in this report.

A complete measure of reusability should also include process metrics applied to the development

process. This report does not include process metrics.

One document, [SAC2], gives three criteria that should be used to evaluate the metrics

themselves. These criteria are:

Objective We can base the metric on the physical attribute of the object of

interest and minimize the amount of guessing required.

Observable We can extract the metric from existing products, such as source

code, documentation, and maintenance histories.

Predictive The metric correlates well with an attribute of interest, such as

development effort and maintenance cost.

In this report, the attributes of interest are the quality characteristics of the software product. The

metrics and characteristics can then be used to assess the reusability of the product, and that is

the overall attribute of interest.

Most of the metrics in this report have been used for several years and are well-understood

relative to structured design methods, but most have not yet been applied to software developed

with object-oriented technology. Another important topic to be considered for reusing software

in high integrity applications is the knowledge about the software relative to its specific domain

and application within that domain and the type of information that must be present for analysts

I

to decide how the software must change to meet new requirements. Some work on this topic

has been conducted by NIST and may be found in [NIST5309].

Section 2 of this report provides definitions for each quality characteristic. Section 3 lists

suggested metrics for each quality characteristic which pertain to a specific software product.

Section 4 provides a summary of this report.

2

2 . QUALITY CHARACTERISTICS FOR REUSABLE SOFTWARE

The definitions in sections 2.1 and 2.2 are stated as they appear in the referenced documents and

may be associated with software reuse. Several quality characteristics have more than one

definition.

This report makes no preference on the source of the definitions. The definition used for each

characteristic in section 3 of this report is an aggregate meaning taken from the various sources,

mixed with the intuitive definition.

2.1 Definitions of Software Quality Characteristics

One standard, [IS09126], has identified several software quality characteristics: portability,

efficiency, reliability, functionality, usability, and maintainability. In this section, completeness

and correctness are equivalent to functionality as described in [IS09126]. Understandability is

substituted for usability in this section because the quality characteristics used in this report are

meant to be applied to individual software products and not the only final software system.

The other quality characteristics in the following list have been extracted from several documents,

including [AFSCP800-14] and [CONTE]. There is no standard set of quality characteristics for

assessing software which is widely accepted. The list below is an aggregation of the most

common quality characteristics.

adaptability • The ease with which software can be modified to meet new requirements.

[OPALS] [MODIL]
• The ease with which software allows differing system constraints and user

needs to be satisfied. [MODEL]
• {Flexibility) The ease with which a system or component can be modified

for use in applications or environments other than those for which it was

specifically designed. [lEEEGLOSS]
• The ease with which software can accommodate to change. [NSWC]

completeness The degree to which the component implements all required capabilities.

[OPALS]
Contains all references and required items. [SOFTECH]

correctness • (1) The degree to which a component is free from faults in its

specification, design, and implementation; (2) The degree to which a

component meets specified requirements or user needs and expectations;

(3) The ability of a component to produce specified outputs when given

specified inputs, and the extent to which they match or satisfy the

requirements. [NISTIR4909]

• (1) The degree to which a system or component is free from faults in its

specification, design, and implementation; (2) The degree to which

3

efficiency

generality

maintainability

modularity

portability

software, documentation, or other items meet specified requirements; (3)

The degree to which software, documentation, or other items meet user

needs and expectations, whether specified or not. [lEEEGLOSS]
Strict adherence to specified requirements. [NSWC]

• The degree to which a component performs its designated functions with

minimum consumption of resources. [lEEEGLOSS]
• A set of attributes that bear on the relationship between the level of

performance of the software and the amount of resources used, under

stated conditions. [IS09126]

• The breadth of applicability of the component. [GPALS]
• The degree to which a system or component performs a broad range of

functions. [lEEEGLOSS]

• The ease with which a component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed

environment. [lEEEGLOSS]
• The ease with which software can be maintained, for example, enhanced,

adapted, or corrected to satisfy specified requirements. [FIPS 106]

• Modifiable with minimal impact. [SOFTECH]
• The ease with which corrections can be made in response to recognized

inadequacies. [NSWC]
• A set of attributes that bear on the effort needed to make specified

modifications. [IS09126]

• Degree to which perfective, adaptive and corrective changes can be cost

effectively made to the component. [SAC2]

• The degree to which a system or computer program is composed of

discrete components such that a change to one component has minimal

impact on other components. [lEEEGLOSS]
• The way the component is decomposed into sub-components. [GPALS]

• The ease with which a system or component can be transferred from one

hardware or software environment to another. [lEEEGLOSS]
• The extent to which a module originally developed on one computer or

operating system can be used on another computer or operating system.

[MODIL]
• Operating environment independence. [GPALS]
• Platform independence. [SOFTECH]
• The ease in transferring software to another environment. [NSWC]
• A set of attributes that bear on the ability of software to be transferred

from one environment to another. [IS09126]

4

Ease with which a software component can be implemented in new
applications and virtual machine environments. [SAC2]

reliability • The ability of a component to perform its required functions under stated

conditions for a specified period of time. [lEEEGLOSS]
• The error-free use of software over time. [NSWC]
• Low error rate. [SOFTECH]
• A set of attributes that bear on the capability of software to maintain its

level of performance under stated conditions for a stated period of time.

[IS09126]

• Expected time between failures while running the application in it’s

operational environment. [SAC2]

understandability • The degree to which the meaning of a software component is clear to a

user. [NISTIR4909]

• {Clarity, Self-Descriptiveness) Ease of comprehending the meaning of the

software (opposite of complexity). [GPALS]
• Low complexity and Documentation. [SOFTECH]

2.2 Other Definitions

The definitions in this section are definitions of terms used throughout this report. Several of

the terms defined here are characteristics of software products which can be measured (e.g.

cohesion and complexity.) These characteristics are used to further define the quality

characteristics from section 2.1 in sections 3.1 through 3.5.

application domain • The knowledge and concepts that pertain to a particular computer

application area. [STARS]
• An identifiable area or subarea of an organization’s software

development activities in which similar software requirements occur.

[GPALS]

cohesion • The binding of statements within a software component. [NSWC]
• The manner and degree to which the tasks performed by a single software

module are related to one another. [lEEEGLOSS]
• The degree to which the functions or processing elements within a module

are related or bound together. [FIPS 106]

• The degree to which a component’s structure is unified in support of its

function. [MODIL]

cohesiveness The degree to which a component’s structure is unified in support of its

function. [GPALS]

5

complexity

component

coupling

domain

expandability

fault

functionality

• An abstract measure of work associated with a software component.

[NSWC]
• The degree to which a system or component has a design or

implementation that is difficult to understand and verify. [lEEEGLOSS]
• The degree of complication of a system or system component, determined

by such factors as the number and intricacy of interfaces, the number and

intricacy of conditional branches, the degree of nesting, the types of data

structures, and other system characteristics. [FIPS 106]

• One of the parts that make up a system. A component may be hardware

or software and may be subdivided into other components. [lEEEGLOSS]

• The interdependence among software components. [NSWC]
• The manner and degree of interdependence between software modules.

[lEEEGLOSS] [MODIL]
• (1) The degree of data or control connectivity between different

components of a software system; (2) A measure of the strength of

interconnection between one component and another. [MODIL]
• {Interconnectivity) The degree of connectivity between different

components. [GPALS]
• The degree that modules are dependent upon each other in a computer

program. [FIPS 106]

• An area of activity or knowledge. [STARS]
• A group or family of related systems that share a set of common

capabilities and/or data. [SOFTECH]
• A distinct functional area that can be supported by a class of software

systems with similar requirements and capabilities. [MODIL]

• {Augmentability) The ability to support expansion of data-storage

requirements. [GPALS]

• {Extendibility, Extensibility) The ease with which a system or component

can be modified to increase its storage or functional capacity.

[lEEEGLOSS]
• {Extensibility) The extent to which a component allows new capabilities

to be added and existing capabilities to be easily tailored to user needs.

[MODIL]

• {Defect) An incorrect step, process, or data definition in a computer

program. [lEEEGLOSS]

• A set of attributes that bear on the existence of a set of functions and their

specified properties. The functions are those that satisfy stated or implied

needs. [IS09126]

6

readability

reusability

robustness

testability

traceability

unit

usability

• The difficulty in understanding a software component. [NSWC]

• The degree to which a component can be used in more than one software

system, or in building other components, with little or no adaptation.

[MODIL]

• The degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions.

[lEEEGLOSS]
• Measure of the breadth of the new problem domain addressed by the

current system, its subcharacteristics are generality and expandability.

[SAC]
• Ability to produce correct results despite input errors. [GPALS]

• The ability to evaluate conformance with requirements. [NSWC]
• Equipped with test plans. [SOFTECH]

• The ease in retracing the complete history of a software component from

its current status to its requirements specification. [NSWC]
• (1) The degree to which a relationship can be established between two or

more products of the development process, especially products having a

predecessor-successor or master-subordinate relationship to one another;

for example, the degree to which the requirements and design of a given

software component match; (2) The degree to which each element in a

software development product establishes its reason for existing; for

example, the degree to which each element in a bubble chart references the

requirement that it satisfies. [lEEEGLOSS]
• The characteristic of software systems or designs or architectures or

domain models that identifies and documents the derivations path (upward)

and allocation/flowdown path (downward) of requirements or constraints.

[STARS]

• (1) A separately testable element specified in the design of a computer

software component; (2) A logically separable part of a computer program;

(3) A software component that is not subdivided into other components.

[lEEEGLOSS]

• A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.

[IS09126]

7

liV.'

^ ^ •«—:_
gjtfipihtDHt

, iiiii«« 1
yiawmt mo »«* ,

jinijw'inl.t ati to *,

mmm m ® iJW ' ,1 :r:.j^
^

^^0* r^y H.i'Jfc«c

-.j^ilklelMW<;» m;- 0»’>im^' '-*M ips:^C^t

1

„ i-
y-

..« c»W*iW«» ggj/' ' IDI n^
^ ^ liWwiS^'

-

***>^^’ '”*^*<*-

'lili liK^' >
;jjfcJit*’ sfiSxvtcrr Mh^\'

»*' .». 5i!5 iSK.'*- . WZ>, ^,, U '!'!•§» -litf

K) 0W1 <^»^^3«l |»n^li^IWf••^'.^(»*f»«^rtp«"P!^;l»’ '» BWI»W;.pi.qp>ao«,w»*.:.t,if; 'C.JIIpiH ^?'.

r»({i0OB sn«?«>. q&kiiute-^«;m,
aBE,.?^y|£l ~

dovi^iMi V>, njfc-jb b(v.Jlioo«»fJiip^i(rtl HaW'^sgra^il?#^
»*»'Tflai-'lJOM,lfcM%<!«W»i^*l^

' JL. . s.

‘‘^
. a .VV'W k.. 1

'

., i.: —
vit %(lLv-tfr.yi...i!».e4f:M<-|ilp||J!f-}^ « S^t of comsiwn a

'

adJ *s|WwriSM

m

ffttB^iJO) dlaq imOUiV!ts4'9^'#«'W«^> i)il#l^Pi»t)i ;i.“'
<

0 ' Jl ^

fZj^raf
^

‘

.^(^teob

.anmaoifWHipfK:-'#
*..w««j.|i#j<fc>i'k^“ Vi<^ k'BWbtiitiCS

«#'^iat -

^^l| I . U.OT

,

!^' '^0 bfuV
.

ipl
_

1'k /• *;

fef].. in
'4

''j^v,»<t.^putrr

isfeozn j"
lir ¥ ’

i ilrtldflA
'

'iificj' ihipir

jfnplitsd

3. QUALITY METRICS FOR REUSABLE SOFTWARE

This section suggests metrics for each quality characteristic associated with software products

(requirements documentation, design documentation, code, test documentation). Each product

has several quality characteristics, along with metrics to be used \n assessing the quality

characteristic for the product.

The analyst must identify the objectives to be achieved from collecting and analyzing metric data.

It must be possible to collect the data, and methods should exist for analyzing the data. The

analyst must present the results such that recommendations can be made concerning the

reusability of the software. Obviously, optimum values for all metrics cannot be achieved

simultaneously. Selection criteria for requirements for metrics include tradeoffs between the

quality characteristics and their priorities. For example, efficiency and understandability often

are in conflict with each other; efficient code may be necessarily coded in an assembly language,

which reduces the understandability (and hence, maintainability) of the software.

Another selection criterion is the ability to collect the required data for the metric. The

simplicity of data collection is one reason lines-of-code remains a popular metric despite its

deficiencies. Many other metrics have data collection requirements that can be automated, and

therefore, may be less costly to implement. Examples include defect counts and some complexity

metrics. Other metrics require more human involvement, such as requirements tracing, function

point analysis, and test coverage.

Section 3. 1 identifies the metrics for quality characteristics that may be applied to all software

products, with minor adjustment. Sections 3.2 through 3.5 identify metrics for the quality

characteristics of products of requirements, design, code, and test.

3.1 Quality Metrics for All Products

The metrics for the quality characteristics in this section can be applied to all software products.

Most of these metrics are primitive in the sense that they are simple counts of problem report

values. Cause and effect graphing and RELY^ require more analysis of the products.

3.1.1 Completeness

o cause and effect graphing [IEEE982.1]

Cause and effect graphing aids in identifying requirements that are incomplete and

ambiguous. Also, it explores inputs and expected outputs of a program and identifies

ambiguities. For test purposes, it is useful for evaluating test cases for probability of

detecting faults.

RELY is not an acronym, but is a short form of Required Software Reliability

9

Primitives:

List of causes: distinct input conditions

List of effects: distinct output conditions or system transformations

^existing
- number of ambiguities remaining

= total number of ambiguities identified

The requirements are analyzed and the requirements are broken down into specific

causes and effects. Each cause and each effect is assigned a unique node identifier.

A Boolean graph is made by connecting the cause and effect nodes based on the

semantic content of the requirements. Ambiguities are defined as any cause with no

effect, and effect with no cause, and any combination of cause and effects that are

inconsistent with the requirements or are impossible to achieve.

Calculation of Cause/Effect Completeness:

When no ambiguities exist, and all causes and effects are represented, then the CE
measure is 100%. See [IEEE982.2] for use of this metric.

3.1.2 Correctness

o number of problem reports per phase, priority, category, or cause [N1ST500-209]

o number of reported problems per time period [NIST500-209]

o number of open real problems per time period [NIST500-209]

o number of closed real problems per time period [NIST500-209]

o number of unevaluated problem reports [NIST500-209]

o age of open real problem reports [NIST500-209]

o age of unevaluated problem reports [NIST500-209]

o age of real closed problem reports [NIST500-209]

o rate of error discovery [NIST500-209]

3.1.3 Reliability

o RELY - Required Software Reliability [IEEE982.1]

RELY can be used to provide a reliability rating for a product through examination of

the processes used to develop it. At the early planning phases of a project, RELY can

be used to measure the trade-offs of cost and degree of reliability. RELY provides

ratings very low, low, nominal, high, and very high. See [IEEE982.2] for a table of

reliability factors for requirements and product design, detailed design, code and unit

test, and integration and test.

10

3.2 Quality Metrics for Requirements Documentation

Because requirements documentation is usually written in human readable format, the metrics that

have been defined for requirements typically require manual analysis. The data needed for many
of the metrics must be gathered by hand (i.e. counting requirements). Many of the metrics are

subjective in nature, and it is up to the analyst to decide what is a "good" value. For example,

the analyst must determine the acceptable readability level of the documents.

Many of the metrics for quality characteristics in this section can be used for other products. The

readability metrics may be applied to preliminary and software system design documents, for

example.

3.2.1 Completeness

o completeness metric [IEEE982.1] [AFSCP800-14]

This metric uses eighteen primitives (number of functions not satisfactorily defined,

number of functions, number of functions not used, etc.). Ten derivatives are defined

(ratio of functions satisfactorily defined to functions defined, ratio of defined functions

used to defined functions, etc). The completeness measure {CM) is calculated as the

weighted sum of the ten derivatives expressed as: (See [IEEE982.2])

10

CM = r w,D,

where:

w, = weighting factor for derivative D,
'

D, = derivative number /

o requirements traceability [IEEE982.1]

Aids in identifying requirements that are missing from, or in addition to, the original

requirements. R1 is number of requirements met by the architecture. R2 is the number

of original requirements. The traceability measure {TM) is computed:

TM = — X 100%
R2

o deviation between planned number of System/Segment Design Document (SSDD)

software requirements to be documented in the Software Requirements Specification

(SRS) and actual number of SSDD software requirements completely documented in

the SRS [AFP800-48]

11

o Document Relationships [NSWC2]
Document relationship is defined as "the structure among and within the individual

documents of a set of documentation, which ties the documents together into a single,

unified set." There are two categories: Decompositional and Referential.

Decompositional relationship is the natural, hierarchal ranking of a set of

documentation. Documents at a lower level in the hierarchy give more detail on a

given subject. For completeness, there should exist a definite or obvious hierarchial

ranking among the documents.

Referential relationships are the links between documents; i.e. a specific cited reference

to another document or another section in the same document. Appropriate references

to another documents (or within the same document) should be maintained.

3.2.2 Correctness

o number of discrepancies as a result of each review [STEP]

o number of conflicting requirements [IEEE982.1]

o requirements compliance [IEEE982.1]

System Verification Diagrams (SVDs) are used to detect inconsistencies,

incompleteness, and misinterpretations in the requirements. Requirement errors

detected using the SVDs are:

N

I

= Number of errors due to inconsistencies

N2 - Number of errors due to incompleteness

Nj = Number of errors due to misinterpretation

o requirement errors reported / total number of requirements [OPALS 2]

o requirement errors corrected / total number of requirements [GPALS2]
o number of requirements faults and structural design faults detected during detailed

design [NIST500-209]

3.2.3 Generality

o size of the application domain [STARS]
Reverse engineering performed on the requirements documentation is useful in

identifying common design and architectural features of existing systems. Reusable

requirements specifications must define the boundaries of the problem space, as well

as a set of variability descriptions. Requirements documentation can then be assessed

for application as subdomains of other domain areas.

12

3.2.4 Understandability

o size metrics

- number of requirements [N1ST500-209]

this is often expressed as the number of shalls

- number document pages [AMI] [NIST500-209]

- number of document words [NIST500-209]

- number of functions [NIST500-209]

o readability metrics

- number of grammatically incorrect statements

- number of misspellings

- readability indices such as Flesch-Kincaid, Gunning’s Fog Index [MURRAY]
These readability formulas are based on sentence length and polysyllable

frequency. Gunning’s Fog index is used to produce a grade level required for

reading the document. For example, an index of 12 means that 12 years of

education is required to understand the document.

- physical readability [NSWC2]
Four indicators of physical readability are given: format appropriateness,

adequacy of print, format consistency, and module appropriateness.

Format appropriateness assesses the suitability of the presentation style or layout.

For example, numeric data should be presented in a table or graph.

Adequacy of print includes quality of reproduction, font sizes, paper quality, and

font styles. Assessment can be done by sampling document pages.

Format consistency means that tables should all have the same format and

indexes should all have the same format. The same rule should be applied to

Tables of Contents, chapters, sections, etc. Again, sampling is used to provide

measurements.

Module appropriateness measures the suitability of the physical division of the

chapters, sections, paragraphs, tables, figures, and so forth. The assessment is

whether the document is physically divided in a manner consistent with the

logical division of the material.

o complexity

- function points [N1ST500-209] [SQE] [SYMONS]
Function point analysis was developed by Alan Albrecht at IBM in the 1970’s,

and furthered refined by Albrecht and others. As a measurement of size,

function points are language independent (as opposed to lines-of-code), and can

be applied to requirements specifications. Applying to requirements allows

estimates of size and complexity earlier in the life cycle.

13

The first part of calculating function points is determining information

processing size, measured in unadjusted function points (UFPs). The application

is divided into five types of components: inputs, outputs, enquiries (combinations

of inputs and outputs that give immediate results), interfaces to other

applications, and logical internal files. Each component is classified as simple,

average, or complex, and is assigned a simple number of weighting points. The

UFP count for the system is the sum of the individual UFPs.

Second, a technical complexity adjustment {TCA) is determined by estimating the

degree of influence of general application characteristics, such as data

communications, performance, on-line update, etc. TCA is calculated:

TCA = 0.65+ 0.01 xDJ

where DI is the total degree of influence.

Finally, ihQ function point (FP) count is computed as:

FP = UFP X TCA

- Mk II Information Processing Size [SYMONS]
This metric looks evaluates the system as a collection of logical transactions,

each consisting of input, process, and output components. A logical transaction

is defined as a unique input/process/output combination triggered by a unique

event, or a need to retrieve information. Mk n Information Processing Size also

uses Unadjusted Function Points (UFPs) calculated with the formula:

UFP's = Wj X {no. of input data element- types)
+ X {no. of entity- types referenced)
+ Wq X {no. of outputdata element - types)

where:

Wf = weighting factor for input data element-types

= weighting factor for entity-types

Wq = weighting factor for output data element-types

The weighting factors can be determined by calibration.

14

Next, the technical complexity adjustment (TCA) is calculated:

TCA = 0.65 + C X DI

where:

DI = the total degree of influence

C = coefficient obtained by calibration

Finally, the Mkll Function Points is calculated as UFP x TCA.

15

3.3 Quality Metrics for Design Documentation

Software design documentation is often divided into three activities: functional allocation,

software system design, and unit design. These software design activities occur in three

chronological phases: preliminary design, detailed design, and unit design [CARD].

The first phase is preliminary design. Designers collect related requirements into functional

groups and identify dependencies among functions. The preliminary design may be represented

by data flow diagrams, high-level structure charts, or a simple list of requirements by subsystems

[CARD]. The choice of metrics depends on the representation used. Requirements traceability

can be applied to any representation to verify that requirements are being met. Data flow

complexity can be applied to data flow diagrams to evaluate the understandability of the

diagrams.

Next comes detailed design, where the overall architecture of the software system is defined.

This step allocates data and functions to individual units or design parts. Internal interfaces must

also be specified at this stage [CARD]. A structure chart is commonly used to represent the

system design. Some of the metrics applied to this type of design are data or information flow

complexity, external (DJ complexity, fan-in/fan-out per module, graph-theoretic complexity, and

readability metrics.

The final design phase is unit design. In this phase, algorithms and data structures are defined.

Application and implementation specific information is added to the design. The design itself

is often represented as pseudo-code and module prologues [CARD]. Nearly all of the metrics

specified below can be applied to unit design documents. Some metrics specific to unit designs

are internal (D-) complexity, document lines of code, and number of states per parameter.

The unit design phase is the first indication of the reusability of individual modules. For

example, the complexity of a module can be determined by its design, before any coding is done.

Many of the same metrics that are typically applied to code can be applied to unit designs.

Modularity can often be assessed at the unit design level. See [CARD] for references to studies

on heuristics for achieving modularity. These heuristics are small modules, limited data coupling,

medium span of control, and singleness of purpose. Modularity is a good indicator of the

reusability of an individual software module.

3.3.1 Completeness

o requirements traceability [IEEE982.1] (Applied to all designs)

For design, this metric indicates the percent of requirements that have been documented

in the design. See Quality Metrics for Requirements Documentation (section 3.2)

for a description of calculating this metric. See [IEEE982.2] for a complete description

of this metric.

16

o deviation between planned number of Software Requirements Specification (SRS)

requirements to be documented as Computer Software Components (CSC) into the

Software Design Document (SDD) and actual number of SRS requirements completely

documented as CSCs in the SDD [AFP800-48] (Applied to system design)

3.3.2 Correctness

o defect density [1EEE982.1] [NIST500-209] (Applied to unit design)

For design, the defect density is calculated after each design inspection of new

development or large block modifications. A structured design language is assumed.

See [IEEE982.2] for a description on using this metric.

Primitives:

D, = total number of defects found during f" design inspection

/ = total number of inspections to date

KSLOD = number of source lines of design statements in thousands

Calculation of Defect Density:

I

KSLOD

Design defect density may also be measured in terms of design defects/KSLOC [SPC].

Each defect from later phases that is determined to be a design defect is counted.

o number of structural (architectural) design faults detected during detailed

design [N1ST500-209] (Applied during unit design)

o number of design faults associated with each module [NIST500-209] (Applied to system

and unit design)

o number of integration test cases planned/executed involving each module

[N1ST500-209] (Applied to system and unit design)

o number of black box test cases planned/executed per module [N1ST500-209] (Applied

to system and unit design)

o number of design errors reported / total number of units [GPALS2] (Applied to all)

o number of design errors corrected / total number of units [GPALS2] (Applied to all)

3.3.3 Generality

o size of application domain [STARS] (Applied all designs)

Reverse engineering can be done on system designs to identify data structures and data

management patterns to aid in separating the functionality into two categories:

functionality that supports general domain concepts and functionality that achieves a

computer-based solution.

17

Reverse engineering can be done on unit designs to identify the modularization,

relationship among structural elements, declare/set/use patterns for variables, control

flow within structural elements, and scoping information. The information extracted

can be used to identify solution concepts and their interrelationships. Also, requirement

choices can be connected with design choices and the effect of performance, timing,

sizing, and functionality.

3.3.4 Efficiency

The percent metrics that follow can be applied to system and unit designs if the target

capacity for CPU and I/O usage are known. Likewise, if the target random access

memory (RAM) and storage capacities are known, then percent usage calculations may
be made. These estimates may then be used to assess the efficiency of the design and

its reusability in new environments. However, comparisons made between

environments must take into account processor speeds, I/O devices, and operating

system effects.

o target CPU usage as percent of capacity [STEP]

o target I/O usage as percent of capacity [STEP]

o target upper bound storage usage [STEP]

o percent actual of target upper bound storage usage [STEP]

o target upper bound RAM usage [STEP]

o percent actual of target upper bound RAM usage [STEP]

3.3.5 Modularity

o cohesion metric [N1ST500-209] [SQE] [CARD] (Applied to unit design)

Cohesion, or module strength, refers to the relationship among the elements of a

module. The cohesion value for a module is assigned using a standard rating chart,

that can be found in [SQE]. The best cohesion level is functional, and the worst is

coincidentaL

A high-strength (functional) module performs one function. A low-strength

(coincidental) module includes multiple unrelated functions. Studies referenced in

[CARD] find that higher strength modules tend to have lower fault rates, and tend to

cost less to develop. Also, the modularity is greater for higher strength modules.

The Software Measurement Guidebook [SPC] gives a strength metric proposed by

Cruickshank and Gaffney. Strength is a measure of the degree of cohesiveness of the

elements of a software module.

18

Calculation of Strength:

Strength = ^ {X^ + Y^)

where:

X = reciprocal of the number of assignment statements in the module

Y = number of unique function outputs divided by number of unique function

inputs

o coupling [N1ST500-209] [SQE] [CARD] (Applied to system and unit designs)

Coupling is a measure of the degree to which modules share data. Module coupling

is rated using a standard rating chart, that can be found in [SQE]. Data coupling is the

best type of coupling, while content coupling is the worst.

Data coupling is the sharing of data via parameter lists, while common coupling is the

sharing of data via global (common) areas. Earlier recommendations stated that

common coupling should be avoided. However, later studies have shown that the

distribution of error rate does not depend on the coupling mechanism [CARD].

However, In terms of modularity and the modules independence of external factors, a

lower coupling value is better.

A coupling metric given in [SPC] and originally proposed by Cruickshank and Gaffney

is calculated as follows:

Calculation of Coupling:

Coupling = ^ ^

where'.
n

=
m

Mj = sum of the number of input and output items shared between components i & J

Z, = average number of input and output items shared over m components with

component /

n = number of components in the software product

3.3.6 Portability

o number of features that are language-specific (Applied to unit design)

o number of features that are operating system specific (Applied to unit design)

Features that are operating system, hardware, or interface specific should be isolated

in modules that can then be changed for other platforms.

19

3.3.7 Reliability

o cumulative failure profile [IEEE982.1]

For design, a graph is made of the cumulative failures in the software resulting from

design deficiencies. The curve of the graph can be used to predict the reliability of the

design. (Applied to unit design)

3.3.8 Understandability

o Design Structure Metric [IEEE982.1]

Used to determine the simplicity of the detailed design of a software program. The

values determined for the primitives can be used to identify problem areas within the

software design. See [IEEE982.2] for information on using this metric. (Applied to

system and unit designs)

Primitives:

PI - total number of modules in the program

P2 = number of modules dependent on the input or output

P3 = number of modules dependent on prior processing (state)

P4 = number of database elements

P5 = number of non-unique database elements

P6 = number of database segments (partition of the state)

P7 = number of modules not single entrance/single exit

Derived Metrics:

Dj = design organized top-down (Boolean)

D
2 = module dependence {P2IP1)

Dj = module dependent on prior processing (P3IPJ)

D4 = database size {P5/P4)

D5 = database compartmentalization {P6/P4)

= module single entrance/single exit

Calculation of Design Structure Measure:

6

DSM =

g W^D.

where is the weight given to the derived measure

o size metrics

Several studies have been done to investigate the affect of module size on the

modularity (and hence, reusability) of single modules. The conclusion, as given by

[CARD], is that module size alone does not affectfault rate. Also, larger modules cost

less per executable statement than smaller ones. These statements suggest that lines-of-

design and -code are not good indicators of modularity. However, when used with

other measurements (complexity, etc.), size measures can provide an indication that a

20

module may need to be separated into smaller modules. The unit design phase is a

better time to perform the separation of function, rather than during coding.

- number of design modules [N1ST500-209] (Applied to system design)

- number document pages [NIST500-209] (Applied to all design)

- document lines-of-code [N1ST500-209] (Applied to unit design)

- number of functions [N1ST500-209] (Applied to preliminary and system designs)

- number of inputs and outputs [N1ST500-209] (Applied to system and unit

designs)

- number of interfaces [NIST500-209] (Applied to system and unit designs)

o complexity metrics

- graph-theoretic complexity for architecture [IEEE982.1]

(Applied to system and unit designs)

There are three graph-theoretic complexity metrics:

Static complexity is used to measure the complexity of the software

architecture, as represented by a network of modules, useful for design

tradeoff analysis.

Generalized static complexity is used to measure of the complexity of the

software architecture, as represented by a network of modules and the

resources used.

Dynamic complexity is used to measure the complexity of the software

architecture as represented by a network of modules during execution.

Primitives:

K = number of resources, indexed by /: = 1,...^^

E = number of edges, indexed by i = 1,...,E

N = number of modules, indexed by j = 1,...,A

c, = complexity for program invocation and return along each edge e

= 1 if resource required for edge, 0 otherwise

= complexity for allocation of resource k

21

Calculation of Complexity Measures:

Static Complexity:

C = £ - iV + 1

Generalized Static Complexity:

/=1 \ k-l

\

)

Dynamic Complexity:

Dynamic complexity is calculated using the formula for static complexity

at various points in time. The behavior of the measure is then used to

indicate the evolution of the complexity of the software.

- number of entries/exits (fan-in/fan-out) per module [IEEE982.1] [NIST500-209]

(Applied to unit design)

This metric can be used to determine the difficulty of the software architecture.

It is assumed that a modular specification/design language is used. This metric

can also be used to evaluate the encapsulation of the data at the design phase.

If data is properly encapsulated, the number of entry and exit points for each

module function will be small [IEEE982.2].

Primitives:

e^ = number of entry points for the i^ module

jc, = number of exit points for the i^ module

Calculation of Entries/Exits:

m, = e^ + Xi

- data or information flow complexity [IEEE982.1] (Applied to all designs)

This metric can be used to evaluate the information flow structure of large

systems, the procedure and module information flow structure, and the

complexity of interconnections between modules. This metric can also be used

for code evaluations. See Quality Metrics for Code (section 3.4) for a

description of the metric primitives and calculations. See [IEEE982.2] for a

complete description of this metric.

- number of parameters per module [NIST500-209] (Applied to system and unit

design)

- number of states or data partitions per parameter [NIST500-209] (Applied to unit

design)

- decision count [CONTE] (Applied to unit design)

22

See Quality Metrics for Code (section 3.4) for a description of this metric.

Can be used, with the above two metrics, to identify early in development

modules that are potentially complex or hard to test.

- external (Z)^) complexity [ZAGE] (Applied to all designs)

Based on information available during architecture design such as hierarchial

module diagrams, dataflow, functional descriptions, and interface descriptions.

Calculation of Z),:

= ejiinflow * outflow) + e
2(fan-in "^fan-out)

where:

inflow is the number of data entities passed to the module

outflow is the number of data entities passed from the module

fan-in is the number of superordinate modules directly connected to the

module

fan-out is the number of subordinate modules directly connected to the module

Cj and 62 are weighting factors for the two terms

- internal (D-) complexity [ZAGE] (Applied to unit design)

Based on information available after detailed design, including information used

for plus the chosen algorithms and possibly pseudo-code or program-design-

language representations.

Calculation of D{.

D, = ifCC) + fiDSM) + ifllO)

where:

CC (central calls) is the number of procedure or function invocations

DSM (data-structure manipulations) is the number references to complex data

types

HO number of external device accesses

i
2 ,
and i^ are weighting factors

- composite metric {D(G)) to measure design quality [ZAGE]:

D(G) = D, + D,

o readability metrics

- number of grammatically incorrect statements (Applied to all designs)

- number of misspellings (Applied to all designs)

- readability indices such as Flesch-Kincaid, Gunning’s Fog Index [MURRAY]
(Applied to preliminary and system designs)

See Quality Metrics for Requirements Documentation (Section 3.2) for a

description of these indices)

23

3.4 Quality Metrics for Code

Much of the research into metrics has focused on code mettics. Hence, there are many different

kinds of code metrics, and many variations on common metrics. In terms of reusability, useful

metrics are the product metrics are used to measure the size, complexity, and readability of the

source program. In order for a component to be reusable, it must be understandable by the

software engineers. Also, the component should encapsulate as much implementation detail as

possible. Well-defined, simple interfaces are desirable.

In assessing existing components for reusability, it is useful to examine the history of the

component in actual use. Fault density, code-related problem counts, defect density, and

efficiency are some of the metrics used for this assessment. The longer a component has been

in actual use, the higher the confidence in the component’s correctness, assuming low fault and

defect counts. Also, the testability of the component is critical when reusing the software. A
well-defined set of test cases aids in quickly assessing the components use in a new environment.

The testability of a component is defined in part by its complexity, as well as its size.

There are many methods used to calculate lines-of-code. Two documents, [IEEE 1045] and [SEI],

give methods which are used to ensure consistent counting of lines-of-code.

3.4.1 Completeness

o number of ambiguous references [SAC]

References to inputs, functions, and outputs should be unique. An example of an

ambiguous reference is a function being called one name by one module and a

different name by another module.

o number of improper data references [SAC]

All data references should be properly defined, computed, or obtained from identifiable

external sources.

o percentage of defined functions used [SAC]

All functions defined within the software should be used.

o percentage of referenced functions defined [SAC]

All functions referenced within the software should be defined. There should be no

dummy functions present.

o percentage of conditional processing defined [SAC]

All conditional logic and alternative processing paths for each decision point should be

defined.

24

3.4.2 Correctness

o fault density [IEEE982.1]

This metric can be used to predict remaining faults by comparison with expected fault

density, and determine if sufficient testing has been completed [IEEE982.2]. A fault

density is calculated for each severity level.

Calculation of Fault Density:

F^ = F / KSLOC
where:

F = total number of unique faults found in a given time interval resulting in

failures of a specified severity level

KSLOC = number of source lines of executable code and non-executable data

declarations in thousands

o number of code-related problems/errors reported [CONTE]
o number of code-related problems fixed [CONTE]
o number of program changes per time period [CONTE]
o number of changed lines of code per time period [CONTE]
o number of coding errors / total number of units [GPALS2]

o defect density [IEEE982.1] [NIST500-209]

For code, the defect density is calculated after each code inspection of new

development or large block modifications. See [IEEE982.2] for information on using

this metric.

Primitives:

D, = total number of defects during code inspection

/ = total number of inspections to date

KSLOC = number of source lines of executable code and non-executable data

declarations in thousands

Calculation of Defect Density:

DD 1=1

KSLOC

o defect indices [IEEE982.1]

Defect indices provide a relative index of how correct the software is as it proceeds

through the development cycle. For each phase of development, calculate index PI:

25

S: M.
PI, = w,— + w^— + w.

'
‘ D, ^ D ^

II

where:

D, = Total number defects detected during the phase

5, = Number of serious defects found

= Number of medium defects found

T, = Number of trivial defects found

PS = Size of product at the phase

Wi - Weighting factor for serious defects

Wi = Weighting factor for medium defects

= Weighting factor for trivial defects

Defect index (D/) is calculated at each phase by cumulatively adding the calculation

of P, as the software proceeds through development.

Calculation of Defect Index:

DI = X P/.)/PS

3.4.3 Efficiency (of execution)

o non-loop dependent statement in loops: (number of modules with non-loop dependent

statement in loops) / (total number of modules) [SAC]

Practices such as calculating values treated as constants within loops should be avoided.

o compound expression evaluation: (number of modules with repeated compound

expression evaluation) / (total number of modules) [SAC]

Repeated compound statements should be avoided.

o total number of memory overlays [SAC]

The use of memory overlays imposes processing overhead and should be avoided.

o amount of non-functional executable code: (number of modules with non-functional

executable code) / (total number of modules) [SAC]

The presence of non-functional executable code is an obvious inefficiency. This

condition often arises during maintenance or redesign updates with incomplete removal

of obsolete code.

26

o coding of decision statements: (number of modules with inefficient decision coding) /

(total number of modules) [SAC]

Decision statements should be coded for efficient execution, e.g., the most frequently

exercised alternative of an IF statement should normally be specified in the THEN
clause, rather than in the ELSE clause.

o data grouping: (number of modules with inefficient data grouping) / (total number of

modules) [SAC]

Example of inefficient data grouping: complicated nesting of pointers and indices.

o initialization of variables: (number of modules with variables not initialized when

declared) / (total number of modules) [SAC]

Efficiency is lost when variables are initialized during execution or repeatedly

initialized during iterative processing.

o target CPU usage as percent of capacity [STEP]

o actual CPU usage as percent of capacity [STEP]

o projected CPU usage as percent of capacity [STEP]

o target I/O usage as percent of capacity [STEP]

o actual I/O usage as percent of capacity [STEP]

o projected I/O usage as percent of capacity [STEP]

Target and actual CPU and I/O usage counts are useful in determining the degree CPU
and I/O usage is approaching or exceeding the maximums specified in the requirements.

As software modules are reused in new environments, it is necessary to assess the

impact of the resource usage in the new environment. Ideally, projected CPU and I/O

usage should be specified in the design phase, while upper bounds should be specified

in the requirements.

3.4.4 Efficiency (of storage)

o duplicate global data definitions: (number of modules with duplicated data definitions

/ (total number of modules) [SAC]

This metric is used to measure the frequency in which global data items and constants

(e.g., pi, acceleration of gravity) are defined more than once within a software system.

Duplicate data definitions consume additional storage, so the greater the value of the

measure, the lower the storage efficiency.

o duplicate code: (number of modules with duplicated code) / (total number of modules) [SAC]

This metric is used to measure the percentage of modules with duplicated code. Code

for commonly-used functions (e.g., vector dot product or arithmetic mean) is often

duplicated and consumes additional storage. The higher the value of the measure, the

lower the storage efficiency.

27

o software requirements allocation [SAC]

This metric can be used indicate whether a storage (sizing) requirement allocation was

performed during the system design phase to allocate overall sizing or storage

utilization requirements to individual modules. A value of 1 means yes, 0 means no.

o dynamic memory management [SAC]

Generally, the use of dynamic memory management techniques (e.g., buffer memory
allocation and release as necessary) promotes efficient utilization of storage. A value

of 1 means yes, 0 means no.

o storage optimizer [SAC]

This metric can be used to indicate whether a storage optimizing compiler or assembler

is being used. A value of 1 means yes, 0 means no.

o target upper bound storage usage [STEP]

o actual storage usage [STEP]

o percent actual of target upper bound storage usage [STEP]

o projected storage usage [STEP]

o target upper bound RAM usage [STEP]

o actual RAM usage [STEP]

o percent actual of target upper bound RAM usage [STEP]

o projected RAM usage [STEP]

The target and actual storage and RAM usage measures are useful in determining how

well software components "fit" into the allocations documented in the requirements.

Storage counts the use of disk space and other mass storage, while RAM counts the use

of Random Access Memory. Project usage counts are useful during development to

scale the usage counts to the full system based on partial system measurements.

Ideally, projected CPU and I/O usage should be specified in the design phase, while

upper bounds should be specified in the requirements.

3.4.5 Adaptability

o expandability

- processing independent of storage: (number of modules whose size constraints

are hard-coded) / (total number of modules with such size constraints) [SAC]

The processing performed by a module should be independent of storage size,

buffer space, array sizes, etc. Provisions for these entities should be provided

dynamically, e.g., array sizes passed as parameters.

- percentage of uncommitted memory: (amount of uncommitted

memory) / (total memory available) [SAC]

- percentage of uncommitted processing capacity: (amount of uncommitted

processing capacity) / (total processing capacity available) [SAC]

28

3.4.6 Generality

o multiple usage metric: (number of modules referenced by more than one module) /

(total number of modules) [SAC]

A module is more general if it is referenced by more than one module, so the larger

the value of this metric, the greater the generality.

o mixed function metric: (number of modules that mix functions) / (total number of

modules) [SAC]

A module that performs input/output as well as processing is not as general as one

which only performs I/O or only performs processing. The lower the value of this

metric, the greater the generality.

o data volume metric: (number of modules that are data volume limited) / (total number

of modules) [SAC]

A module that is designed to process only a certain number of data item inputs is not

as general as one that can accept an unlimited number of inputs.

o data value metric: (number of modules that are data value limited) / (total number of

modules) [SAC]

A module that is designed to process only a limited range of data item values is not as

general as one that is capable of processing a broader range of values.

o redefinition of constants metric: (number of constants that are redefined) / (total

number of constants) [SAC]

A module should not redefine a constant for the purpose of changing the function of

the module, e.g., changing the base of a logarithm function from 10 to 6? for the

purpose of providing a natural log function. Such items should be defined as

parameters, not constants.

3.4.7 Maintainability

o complexity

- decision count: count of IF, DO, WHILE, CASE, and other conditional and loop

control statements [CONTE]
- number of I/O variables per unit [AMI]
- cyclomatic complexity [IEEE982. 1] [CONTE] [MCCABE]
Cyclomatic complexity may be used to determine the stmctural complexity of

a code module. The cyclomatic complexity is calculated in a manner similar to

the static complexity of the design. The difference is that the cyclomatic

complexity is calculated from a flowgraph of the module, with an edge added

from the exit node to the entry node.

29

Calculation of Cyclomatic Complexity:

V = e - n + 2

where:

V = complexity of the graph

e = number of edges (program flows between nodes)

n = number of nodes (sequential groups of program statements)

If a strongly connected graph is constructed (one in which there is an edge

between the exit node and entry node), the calculation is [IEEE982.2]:

V = ^ ^ + 1

The cyclomatic complexity is also equivalent to the number of splitting nodes

(S) in the graph plus 1

:

v = 5+ 1

(A splitting node is a node with more than one edge emanating from it.)

Because each splitting node is associated with a condition, the expression

\ = S + \ can be calculated by counting the number of conditions in the source

code [MCCABE]. Cyclomatic complexity can also be calculated by counting

the number of regions in the graph [IEEE982.2] [MCCABE].
The cyclomatic complexity for a multi-module program is sum of the v’s for the

individual modules [CONTE]:

program

Alternatively, can be calculated as [CONTE]:

m

program i

i=l

where DE- is the decision count for the module, which is the same as the

number of conditions.

- average nesting level [CONTE]
The nesting level of a statement is defined by the location of the statement

within control structures. Statements in the main flow of the module are at level

one. Statements within loops, conditional clauses, etc. are at higher nesting

levels. The average nesting level is calculated as follows: For each statement,

determine the nesting level. Average nesting level is the sum of all the nesting

levels divided by the total number of statements. A low average nesting level

is an indicator of lower complexity in the logic of the module.

30

executable lines of code per module [STEP]

Software Science Metrics [IEEE982.1]

Primitives:

rij = number of unique operators

= number of unique operands

Nj = total number of operators

N
2 = total number of operands.

Derived Metrics:

program vocabulary: I = ni + n2

observed program length: N = Nj + N
2

estimated program length: N = nj{\og2nj) +
Jensen’s estimator of program length: Np = log2Aiy! + \og2n2

\.

program volume: V = L(log2/)

program difficulty: D = {nil2){N2ln^

program level: LI = 1/D

effort: E = V I LJ

Data or Information Flow Complexity [IEEE982.1] [CONTE]
Primitives:

Ifi = local flows into a procedure

datain - number of data structures the procedure accesses

Ifo = local flows from a procedure

dataout = number of data structures that the procedure updates

length = number of source statements in a procedure, excluding

comments

Derived Metrics:

fanin = Ifi + datain

fanout = Ifo + dataout

Information Flow Complexity IFC = (fanin x fanoutf

Weighted IFC = length x (fanin x fanoutf

number of live variables [N1ST500-209] [SQE] [CONTE]
A variable is live from its first to its last reference within a procedure. The

average number of live variables is calculated [CONTE]:

n

LV =
n

where:

/v, is the count of live variables in the executable statement

n is the total number of executable statements

31

The average number of live variables for a program of m modules is [CONTE]:

- variable spans [N1ST500-209] [SQE] [CONTE]
Variable span is the number of statements between two successive references to

the same variable. For a program that references a variable in n statements,

there are w - 1 spans for that variable. Average span size is calculated as the

total of the span counts divided by the total number of spans. The average span

size of a program of n spans is calculated [CONTE]:

_ isP;
SP = -ii!

program

- variable scope [N1ST500-209] [SQE]

Variable scope is the number of source statements between the first and last

reference of a variable. With large scopes, the understandability and readability

of the code is reduced.

o size metrics

- lines of code - total lines of code including comments [KHOSH]
- total number of code lines [CONTE]

o effort to fix bugs

- number of errors to be corrected [AMI]

- number of hours needed for correction [AMI]
- number of units that were modified [AMI]

- number of errors detected during system/integration tests [AMI]

3.4.8 Modularity

o cohesion [NIST500-209] [SQE] [SPC]

See Quality Metrics for Design Documentation (section 3.3) for a description of

cohesion.

o coupling [NIST500-209] [SQE] [SPC]

See Quality Metrics for Design Documentation (section 3.3) for a description of

coupling.

32

o number of entries/exits per module [IEEE982.1] [N1ST500-209]

It is desirable to have one entry and one exit point per major function, with exceptions

for error exits. Also, the number of functions per module should be limited; a

suggested maximum number of functions is five per module [IEEE982.2]. See Quality

Metrics for Design Documentation (section 3.3) for the calculation of measures for

this metric.

3.4.9 Portability

o software independence

- number of operating systems software is compatible with [SAC]
- total number of system software utilities utilized [SAC]

This metric can be used to measure the degree of dependence on system

software utilities. The more usage is made of system software utilities,

libraries, and operating system calls, the more dependent the system is on that

particular software environment.

- common, standard subsets of language used: (number of modules utilizing non-

standard constructs) / (total number of modules) [SAC]

The usage of non-standard constructs or extensions of programming languages

provided by particular compilers may impose difficulties in conversion of the

system to new or upgraded software environments.

o hardware independence

- open systems [SAC]

Are the programming languages and tools (e.g., compilers, database management

systems, user interface shells) used by the implementation available on other

machines? A value of 1 means yes, 0 means no.

- input/output references: (number of modules making I/O references) / (total

number of modules) [SAC]

Input/output references or calls are frequently a cause of machine dependence.

Minimization and localization of these references facilitates machine

independence and conversion from one machine to another. [SAC]
- word/character size: (number of modules not following convention / total

number of modules) [SAC]

Code that is dependent on machine word or character size should be avoided or

parameterized to facilitate use on other machines.

3.4.10 Reliability

o reliability models

The Jelinski-Moranda reliability model attempts to predict the time of the next fault

by assuming that fault times are independent random variables with exponential

distributions. One criticism of the model is that it is assumed that each fault is

removed instantaneously and with certainty. Another, more serious, criticism is that

33

the model assumes that all faults contribute equally to the unreliability of the program.

The removal of a fault diminishes the rate of occurrence of failures by a fixed amount

[LITTLEWOOD].

The Littlewood-Verrall model attempts to capture the uncertainty of the fixing

operation; fixes are not certain to improve the reliability of the program. The rate of

occurrence of failures is treated as a sequence of independent stochastically decreasing

random variables. There is uncertainty about the magnitude of improvement of each

fix [LITTLEWOOD].

o testability

- number of independent paths [CALDIERA]
- cyclomatic complexity [IEEE982.1] [CONTE] [MCCABE]
See [MCCABE] for details on using cyclomatic complexity in determining the

testability of software modules. McCabe’s techniques can be used to assess the

testability of software based on its complexity.

3.4.11 Understandability

o size metrics

- lines of code [CONTE]
- function points [NIST500-209]

- function count [CONTE]

o traceability metrics

- number of comment lines per total source lines of code [OPALS 2]

- percent comment lines of total lines [STEP]

- correctness of comments

o complexity metrics

- See complexity metrics defined above under Maintainability.

- number of tokens [CONTE]
The Halstead software science measure of observed program length can be used

as a readability indicator. Observed program length A = Ay + Nj, where Ay is

the total number of operators, and A
2

is the total number of operands. Halstead

originally didn’t count declaration statements, input/output statements, or

statement labels. However, later researchers do count the operands in these

types of statements.

34

o readability metrics

- number of grammatically incorrect comments
- number of misspellings

- total number of characters [KHOSH]
- total number of comments [KHOSH]
- number of comment characters [KHOSH]
- number of code characters [KHOSH]

35

3.5 Quality Metrics for Test Documentation

Software testing metrics are used to assess the adequacy of the test procedures and test data in

verifying the software code. In order to gain confidence in a software component’s reusability,

a comprehensive set of test cases is necessary. A direct relationship between test cases and

components is necessary in order for the component to be adequately tested in a new

environment. Component test cases should be traceable to the components, and should be

maintained as the components are changed. Also, component test cases should be delivered with

the components.

System test cases should be linked to requirements specifications, and ideally, to the domain of

interest. In order for system test cases to be reusable, there must be a tie-in to a specific

requirements area, and therefore, a specific application domain. System test plans may be

extracted from several subdomains and regrouped to test subdomains in a new domain area.

3.5.1 Completeness

o See [MCCABE] for details using cyclomatic complexity to "measure the completeness

of the testing that a programmer must satisfy." Specifically, branch coverage and path

coverage are verified for completeness. McCabe’s technique can be used to develop

a set of test cases which test every outcome of each decision, and execute a minimal

number of distinct paths.

o test coverage [IEEE982. 1]

Functional (modular) test coverage index = FE ! FT, where FE is number of

software functions (modules) tested and FT is total number of software functions

(modules).

o Test Sufficiency Indicator [AFSCP800-14] [IEEE982.1]

This indicator is useful in assessing the sufficiency of software integration and system

testing, based on the prediction of the remaining software faults. If fewer faults than

expected are detected (outside the minimum tolerance limit), an adequate number of

tests may not have been designed. See [AFSCP800-14] for a complete discussion of

this indicator.

Primitives:

PF = total number of predicted faults in the software

FP - number of faults detected before software integration testing

IJl = number of units integrated

UT = total number of units in the Computer Software Configuration Item

FD = total number of faults detected to date during test

36

Derived Metrics:

Remaining Faults FR = {PF - FP) x {UHUT)
Maximum Tolerance MAXT = Cj x FR
Minimum Tolerance MINT = C2 x FR
Percent of remaining faults to total predicted faults

where Cj and C
2
are maximum and minimum tolerance coefficients

o coverage metrics

- statement coverage: percentage of statements executed (to ensure that each

statement has been tested at least once) [SQE]

- branch coverage: percentage of branches executed [SQE]

- path coverage: percentage of program paths executed, or the number of paths

tested divided by total number of paths [SAC]

It is generally impractical and inefficient to test all paths in a program. The

number of paths may be reduced by treating all possible loop iterations as one

path.

- Test Coverage Indicator [AFSCP800-14] [IEEE982.1]

^ Number of Implemented Capabilities Tested
^

Total Required Capabilities

Software Structure Tested
^ iqq%

Total Software Structure

o Data flow metrics [WEYUKER]
Data flow testing requires the selection of test data that exercise certain paths from a

point in a program where a variable is defined, to points at which the variable

definition is subsequently used.

- Categories for variable occurrences:

Definition: variable is given a new value

P-use: variable is used in predicate portion of a decision statement

C-use: all other variable uses, including variable occurrences in the right-

hand side of an assignment statement, or an output statement

- Six data flow testing criterion are defined:

all-definitions: test data be included that causes the traversal of at least

one subpath from each variable definition to some p-use or some c-use

of that definition

all-c-uses: test data be included that causes the traversal of at least one

path from each variable definition to every c-use of that definition

all-p-uses: test data be included that causes the traversal of at least one

path from each variable definition to every p-use of that definition

37

all-uses: test data be included that causes the traversal of at least one

subpath from each variable definition to every p-use and every c-use of

that definition

all-du-paths: test data be included that causes the traversal of every

simple subpath from each variable definition to every p-use and c-use

of that definition

- Metrics:

Percent of all-definitions covered by test scenarios

Percent of all-c-uses covered by test-scenarios

Percent of all-p-uses covered by test scenarios

Percent of all-uses covered by test scenarios

Percent of all-du-paths covered by test scenarios

o percentage of defects uncovered in testing: (number of defects located by testing) /

(total number of system defects) [PERRY]

3.5.2 Efficiency

o execution time of test cases

o (number of tests required) / (number of system errors) [PERRY]

This metric shows the number of tests occurring per detected error. The smaller the

ratio, the greater the test efficiency. This shows the efficiency of tests in uncovering

errors.

o (number of defects uncovered) / (size of system) [PERRY]

This metric assumes there is a common number of defects in an application system

based upon its size.

3.5.3 Understandability

o size metrics

- number of test steps

- number of test cases

- number of unique tests (test cases may cover more that one test)

38

4 . SUMMARY

The initial focus of the Software Producibility MODIL was software reuse. When software is

considered for reuse, especially in the high-integrity applications, the quality of the software is

of paramount importance. While organizations must consider many variables to decide if

software is fit for reuse, one important variable is the quality of the software. The term "quality"

has many different meanings and even the characteristics commonly used to define quality have

different meanings. Yet, organizations must be able to assess the quality of existing software in

terms of its completeness for a new use, its correctness, its maintainability and other

characteristics that impact how much work will be necessary to adapt the existing software for

another application. Organizations who are developing new software that is intended for reuse

must also be able to assess whether the software meets reusability criteria.

This report on quality characteristics and metrics for reusable software is preliminary. It

identifies a set of quality characteristics that are most commonly referenced in technical literature

and standards; these are completeness, correctness, generality, understandability, efficiency,

modularity, portability, reliability, adaptability, and maintainability.

The metrics listed in this report help to define the quality attributes for software products. This

report does not address any of the process metrics that should also be considered in assessing

reusability. The products associated with metrics in this report are requirements documentation,

design documentation, code listings and test documentation. Because the focus on quality for

software in the past has been on code, there are many more code metrics listed in this report.

Different metrics for each product may be used to assess the degree to which the product

contains each quality characteristic. This report provides some explanation of the value of each

metric for determining the reusability of the software. However, more research is needed to

ensure the completeness of the quality characteristics and associated metrics.

This preliminary study alone does not provide sufficient measurement information for

determining the reusability of software. For example, the value of each characteristic and each

metric for each product should be correlated to a reusability index. The reusability index, which

no one yet has defined, should also include process metrics (e.g., effort). Most of the metrics

have been used for several years and are well-understood relative to structured design methods

but most have not yet been applied to software developed with object-oriented technology.

Another important topic to be considered for reusing software in high integrity applications is the

knowledge about the software relative to its specific domain and application within that domain

and the type of information that must be present for analysts to decide how the software must

change to meet new requirements.

39

Additional research issues for measuring the reusability of software include, but are not limited

to, the following:

process metrics relative to the effort needed to achieve the quality requirements of the

reusable software

algorithms for relating measures to a reusability index, for both product and process

metrics

criteria for selecting specific metrics

• user of the data (program manager, technical staff)

• purpose for which data will be used

• constraints (e.g., language, development environment, products available)

• value (e.g., quality characteristic most important)

ability to collect data (e.g., automated support for specific measures)

application of the quality characteristics and metrics to object-oriented development

methods

mapping of characteristics and metrics to existing and draft standards.

40

5. REFERENCES

[AFP800-48]

Air Force Pamphlet 800-48, "Acquisition Management: SOFTWARE MANAGEMENT
INDICATORS," United States Air Force, June 1992.

[AFSCP800-14]

Air Force Systems Command Pamphlet 800-14, "Software Quality Indicators:

Management Quality Insight," United States Air Force, January 1987.

[AMI]

"Metrics Users’ Handbook: Quantifying Software Projects," Applications of Metrics in

Industry (AMI) consortium, draft of version 2, January 1992.

[CALDIERA]
Caldiera, Gianluigi and Victor R. Basili, "Identifying and Qualifying Reusable Software

Components," IEEE Computer , February, 1991.

[CARD]
Card, David N. and Robert L. Glass, Measuring Software Design Quality , Prentice Hall,

1990.

[CONTE]
Conte, S.D., H.E. Dunsmore and V.Y. Shen, Software Engineering Metrics and Models ,

The Benjamin/Cummings Publishing Company, 1986.

[FIPS 106]

FIPS 106, "Guideline on Software Maintenance," U.S. Department of Commerce/National

Bureau of Standards, June 1984.

[GPALS]

"GPALS Software Reuse Strategy," Department of Defense, Strategic Defense Initiative

Organization, February 1992.

[GPALS2]

SDI-S-SD-9 1-000006, "Software Metrics Evaluation Plan (SMEP) for the Level System

Simulator (L2SS)," Department of Defense, Strategic Defense Initiative Organization,

January 1992.

[lEEEGLOSS]

ANSI/IEEE Std. 610.12, "IEEE Standard Glossary of Software Engineering Terminology,"

The Institute of Electrical and Electronics Engineers, February, 1991.

41

[IEEE982.1]

IEEE Std. 982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable

Software," The Institute of Electrical and Electronics Engineers, June, 1988.

[IEEE982.2]

IEEE Std. 982.2-1988, "EEEE Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software," The Institute of Electrical and Electronics

Engineers, June, 1989.

[IEEE 1045]

IEEE Std. 1045-1993, "Standard for Software Productivity Metrics," The Institute of

Electrical and Electronics Engineers.

[IS09126]

ISO/EEC 9126, "Information technology - Software product evaluation - Quality

characteristics and guidelines for their use," International Organization for Standardization

and International Electrotechnical Commission, December 1991.

[KHOSH]
Khoshgoftaar, Taghi M., John C. Munson, Bibhuti Bhattacharya and Gary D. Richardson,

"Predictive Modeling Techniques of Software Quality from Software Measures," IEEE

Transactions on Software Engineering, Vol. 18, No. 11, November 1992.

[LITTLEWOOD]
Littlewood, B., "How Good are Software Reliability Predictions?," Software ReUabilitv

Achievement and Assessment , Blackwell Scientific Publications, 1987.

[MCCABE]
McCabe, Thomas J., NBS Special Publication 500-99, "Structured Testing: A Software

Testing Methodology Using the Cyclomatic Complexity Metric," U.S. Department of

Commerce/National Institute of Standards and Technology, December 1982.

[MODIL]
Katz, Susan, Christopher Dabrowski and Margaret Law, "Glossary of Software Reuse

Terms," prepared for The Department of Defense/Ballistic Missile Defense Organization,

by the U.S. Department of Commerce/National Institute of Standards and Technology,

October 1993.

[MURRAY]
Murray, Melba Jerry and Hugh Hay-Roe, Engineered Writing , Second Edition, PennWeU
Publishing Company, 1986.

42

[NIST500-209]

Peng, Wendy W. and Dolores R. Wallace, NIST Special Publication 500-209, "Software

Error Analysis," U.S. Department of Commerce/National Institute of Standards and

Technology, April 1993.

[NISTIR4909]

Wallace, Dolores R., Wendy W. Peng and Laura M. Ippolito, NIST IR 4909, "Software

Quality Assurance: Documentation and Reviews," U.S. Department of Commerce/National

Institute of Standards and Technology, September 1992.

[NISTIR5309]

Dabrowski, Christopher and Susan B. Katz, NIST IR 5309, "A Context Analysis of the

Network Management Domain," U.S. Department of Commerce/National Institute of

Standards and Technology, December 1993.

[NSWC]
Technical Report SRC-88-01 1, "Management Indicators: Assessing Product Reliability and

Maintainability," Naval Surface Warfare Center, August 1988.

[NSWC2]
Technical Report SRC-88-008, "A Taxonomy for the Evaluation of Computer

Documentation," Naval Surface Warfare Center, June, 1988.

[PERRY]
Perry, William E., "Measuring the Effectiveness of Testing," Quality Assurance Institute,

1984.

[SAC]

"Software Reuse Metrics Phase 1 Metrics Model," prepared by Space Applications

Corporation, January 8, 1993.

[SAC2]

"Software Reengineering and Software Reuse Technologies," prepared by Space

Applications Corporation, March, 1993.

[SEI]

Park, Robert E., "Software Size Measurement: A Framework for Counting Source

Statements," Technical Report CMU/SEI-92-TR-20, Software Engineering Institute,

September 1992.

[SOFTECH]
Vitaletti, Bill and Ravinn Chhut, "Maximizing Software Reuse, A Comprehensive Reuse

Environment," SofTech, Inc., Prepared for the National Institute of Standards and

Technology, June 10, 1992.

43

[SPC]

SPC-91060-CMC, Software Measurement Guidebook , Software Productivity Consortium,

December 1992.

[SQE]

"Software Measurement," Seminar Notebook, Version 1.2, Software Quality Engineering,

1991.

[STARS]

"Informal Technical Report for the Software Technology For Adaptable, Reliable Systems

(STARS)," prepared by The Boeing Company Defense & Space Group, IBM Federal

Sector Division, and Paramax Systems Corporation Tactical Systems Division, February

14, 1992.

[STEP]

Betz, Henry P. and Patrick J. O’Neill, "Software Metrics Initiatives Report," Army
Software Test and Evaluation Panel (STEP), March 21, 1991.

[SYMONS]
Symons, Charles R., Software Sizing and Estimating , John Wiley & Sons, 1991.

[WEYUKER]
Weyuker, Elaine J., "More Experience with Data Flow Testing," IEEE Transactions on

Software Engineering , Vol. 19, no. 9, September 1992.

[ZAGE]

Zage, Wayne M. and Dolores M. Zage, "Evaluating Design Metrics on Large-Scale

Software," IEEE Software, Volume 10, No. 4, July 1993.

44

