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DISCLAIMER *********

The U.S. Bureau of the Census (Census) and the National Institute of Standards and

Technology (NIST) sponsored this Conference as part of a research program on machine

recognition of handprint. The efforts of the participants in conducting the tests were not

proctored or monitored in any way by Census or NIST, nor was any attempt made to

distinguish results obtained with research systems from those obtained with commercial

systems.

While some test results from this Conference may appear in marketing literature, poten-

tial buyers must beware! Census and NIST can make only one recommendation to potential

buyers: use your own application-specific data to thoroughly test the performance of any

system (or component) in a realistic setting. Caveat Emptor.

Also, reference is made to some commercial products at various points in this report.

Such reference constitutes neither endorsement by Census or NIST, nor impHcation that the

product so referenced is the best for the particular application.
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1 Executive Summary

Bob Hammond and Jon Geist

1.1 Background

Since 1790, the United States has conducted a decennial census, or head count, of the

American population. Over the last century, growth in the population and demand for

quicker tabulations have presented very strenuous tasks for data capture and information

technology. In the late 1800’s, tabulating machines with punched cards were invented for

Census use. In the 1950’s, staff at Census and NBS helped develop the UNIVAC for general

purpose computing. About the same time, they jointly developed the first optical scanning

device for high speed mark recognition from microfilm. For over 40 years, this scanning

technology has worked well for multiple-choice answers; however, the census still requires an

enormous amount of paper handling and labor-intensive data entry operations to capture

handwritten responses. Increasing workloads, rising labor costs and shrinking budgets have

prompted this research into optical character recognition (OCR).

1.2 The Conferences

After the 1990 Census, NIST and Census sponsored a scientific experiment and set of confer-

ences (hereafter referred to as the Conferences) to determine the state of the art in the op-

tical character recognition industry. To organize each Conference, NIST and Census formed

a Committee having representatives from government, industry, and academia, and NIST
personnel ran the Conference. Twenty nine different groups from North America and Eu-

rope responded to the call for participation in the first Conference. Each party received

an image database of isolated (segmented), handprinted, alpha and numeric characters for

training their systems. Later, each party received a similar database for test purposes. Each

attempted to recognize the characters, and all but three submitted their results to NIST
for scoring. In late May 1992, all parties that submitted results convened in Gaithersburg,

Maryland to discuss the results. Scientific and academic participation was encouraged, and

marketing interests were discouraged. Attendance was strictly limited to sponsors, partici-

pants, and associates designated by each participant, along with a few observers from federal

agencies (FBI, IRS, USPS) that are currently sponsoring work in the field.

The first Conference and related exercises focused on a single step in the process: machine

recognition of individual (or segmented) characters with no context. With the single variable

nature of this study, no valid comparisons can be made regarding cost or performance of

systems designed to process entire forms or documents. Further, the efforts of participants

were not proctored or monitored in any way by Census or NIST staff. Nor were any attempts

made to distinguish between results obtained from experimental systems and those obtained

from commercial systems.

The second Conference, whose results are described in this report, focused on a much more
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realistic recognition task: reading answers from a digital image of forms scanned from paper

and from microfilm. Lessons from the first conference also led to improvements in the design

and preparation of materials for the second conference. The sample included handwriting

from a much larger number of different writers and the training materials included several

dictionaries to allow dictionary-based correction of OCR results.

The second Conference required a much more comprehensive OCR capability, and consti-

tuted a much more difficult OCR task than that of the first Conference. Otherwise, the

second Conference was organized similarly to the first. Again, there were no efforts to proc-

tor or monitor participation, nor any attempt to distinguish between results obtained from

experimental systems and those obtained from commercial systems.

Twenty five different groups responded to the call to participate in the second Conference.

Each party received training materials on two CD-ROMs. Some participants dropped out

before receiving the test CD-ROM. Overall, ten groups submitted test results (eight were on

time and two were late). All ten groups attended the meeting associated with the second

Conference in mid February, 1994.

To establish a baseline for comparison, an independent set of reference data was created for

a subsample of this test. This allowed scoring of the 1990 Census key entry operations as

an eleventh participant in the test (at the zero percent rejection level). At rejection levels

between 40 and 60%, several systems achieved accuracy levels that exceeded the human

performance levels at the 0% rejection level (see Chapter 2, Section 5, Summary of Results).

1.3 General Conclusions

These Conferences demonstrate that the accuracy of optical character recognition systems

for handwriting has improved dramatically over the last few years. Machine performance in

reading words and phrases may now be good enough to decrease the cost and time needed

to carry out a Census without decreasing the accuracy of the results. Improved techniques

to separate text strings into individual characters (or pieces of characters for later recon-

struction) and various algorithms to check spelling and context have contributed to these

improvements (see Chapter 2, Section 3, OCR Methods Used).

It should be noted that some applications of OCR are easier than reading the Industry

and Occupation answers for the Census. For example, reading and reconciling the legal

and courtesy amounts on checks may be easier because it would require smaller dictionaries.

Other applications that include many numeric fields might benefit from the use of checksums,

and other techniques. Therefore, the results of this test suggest that OCR may already

be good enough for these applications. Furthermore, this general conclusion is supported

indirectly by the increase of commercial products and services that claim to perform OCR
on handwritten text.

Of course, there are still a number of questions that were not addressed by these Conferences

that remain to be answered. Also, more sophisticated, application-specific tests along with

valid cost and benefit analyses are needed to answer the ultimate question of cost effective-

ness. Fortunately, this conference has helped to frame most of the questions that need future
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research and development:

1) What throughput rates can be achieved by OCR systems on various hardware platforms?

The image processing associated with these systems is computationally intensive and the

storage requirements for digital images are very large. Overall performance benefits and/or

cost savings over traditional methods must be realized in order to justify the capital expense

of sophisticated image processing systems.

2) What design attributes of forms will facilitate optimal performance of image processing

systems while at the same time making the form easy for respondents to complete with

minimal instruction and/or annoyance?

3) How much additional improvement can be achieved by constructing better language mod-

els and lexicons, and the techniques to employ them?

4) How much additional improvement can be achieved by using multiple recognition sub-

systems and constructing a voting algorithm of some kind? Initial tests show that using

multiple systems to vote on the recognition might improve results, but the performance/cost

of this concept is unknown.

5) Can other holistic intelligence be designed into future OCR systems? For example, could

high confidence recognition of one answer help improve the recognition of answers to other

questions on the same form (completed by the same writer)? Several participants suggested

this possibility, but no one has implemented such techniques; thus, the performance/cost is

also unknown.

6) There are a number of open questions about how to score OCR accuracy for any specific

application (see Chapter 6). The answers to these questions depend heavily on the intended

use of the outputs from the recognition system. Some applications are more tolerant of

certain types of errors than other applications. The designers of each application must

discover the most eifective way to set rejection levels for their intended use.

7) Finally, what are the most efficient techniques to complement OCR systems with human
correction of the handwritten answers rejected by the OCR system?

NIST made every effort to assure the accuracy of the measures computed from the submis-

sions by the participants. Nevertheless, NIST and Census are aware that different tests,

which may be more pertinent to real applications, might give different results than those

reported here, and that other analyses of the submissions might give more complete results

than those reported here.

Neither NIST nor Census are in any way responsible for how the results presented in this

report may be used. While some results from this Conference may appear in marketing liter-

ature, under no circumstances should potential buyers use data from this study as a primary

basis for purchasing decisions. Census and NIST can make only one recommendation to

potential buyers: use your own application-specific data to thoroughly test the performance

of any system (or component) in a realistic setting.
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2 Introduction

Jon Geist

The goals of the First and Second Census Optical Character Recognition (OCR) Systems

Conferences were scientific in nature. The first goal was to gauge the state of the art of OCR
of handprinted characters with respect to the particular problems associated with entering

census data into a computer database. The second was to learn what is currently limiting

the state of the art. The third goal was to determine whether new databases of handprinted

characters for use either in training or in testing could be expected to help to improve the

state of the art of OCR for applications such as the census, and if so, what types of new

databases are needed.

Neither the First nor the Second Conference had any marketing goals. In particular, the

tests were not proctored, and no attempt was made to distinguish results obtained with

commercial systems from those obtained with research systems. Also, participants were

implicitly encouraged to carry out experiments that promoted the scientific goals of the

Conference, even though they might not contribute to optimum system performance.

Neither Conference was designed to produce results that could be used as the basis for

purchasing an OCR system. Anyone who does base a purchase on these results will probably

encounter a number of serious problems. Decisions regarding the application of an OCR
system to some specific task should be based on the results of proctored tests with test

materials that are representative of that task.

On the other hand, the methodologies developed for these Conferences and the results ob-

tained should prove quite useful in designing tests, both large and small, to support pur-

chasing decisions. Furthermore, it was hoped that preparation for (including new databases)

and participation in these Conferences would help to advance the state of the OCR art.

The full Census OCR task consists of document handling, document scanning, form identifi-

cation, field isolation, character segmentation, character recognition, and context-based field

correction. On the other hand, the recognition of properly segmented, isolated characters

has been the bellwether of handprint OCR progress for some time. Therefore, the tests asso-

ciated with the First Conference were limited to this task, and tests that were more typical

of the full Census OCR task were postponed for future conferences.

It was decided that tests open to organizations having strong OCR programs would be cost-

efficient tools for meeting the goals mentioned above. This would allow comparison of the

results from a wide variety of systems employing different algorithms for the different OCR
subtasks. Of course, it is not possible to control the variables as well as might otherwise be

desirable with this type of experiment, but comparison of the results from a broad range of

systems was thought to be more important than comparison of the results obtained from
different variations of a single type of system.

The activities of the First Conference [1] were carried out from February through May of

1992. The tests consisted of classifying about 85,000 binary images of properly segmented,

isolated characters (roughly 60,000 digits, 12,000 upper case, and 12,000 lower case letters)
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that were distributed on a CD-ROM. All participants received identical tests, and none had

seen any of the images on the CD before receiving it.

An important conclusion of the First Conference was that the OCR of isolated (properly

segmented) characters was essentially a solved problem. Chapter 3 of this report presents

the results of follow-up studies that strongly support this conclusion.

When planning the Second Conference at the end of the First Conference, there was an

overwhelming consensus among the participants about most issues. First they wanted the

training data to be more representative of the test data than in the First Conference. Second,

they wanted data from many more writers than in the First Conference. Third, when given

a choice between digital images scanned from forms designed to test segmentation accuracy,

and digital images of non-sensitive answers scanned from microfilm copies of 1990 Census

returns, they overwhelmingly chose the latter.

2.1 Organization of the Second Conference

The Second Conference was organized by a Committee consisting of the following individuals:

Bob Hammond, Norman W. Larsen, Randy M. Klear, Mark J. Matsko, and Robert Creecy;

US Bureau of the Census

R. Allen Wilkinson, Stanley Janet, Charles L. Wilson and Jon Geist: National Institute of

Standards and Technology

Dr. Jonathan J. Hull: Center of Excellence for Document Analysis And Recognition

Dr. Thomas P. Vogl: Environmental Research Institute of Michigan

Dr. Christopher J. C. Burges: AT&:T Bell Laboratories

Jon Geist, the Committee Chairman, handled the planning of the Conference and the major-

ity of the interaction with the participants. The Conference was run for the Committee by

the Image Recognition Group (IRG) at the National Institute of Standards and Technology

(NIST) under contract to the US Bureau of the Census. Bob Hammond administered the

contract supporting this Conference and coordinated the Census Bureau work in support of

the Conference.

The following individuals from the NIST IRG were instrumental in carrying out the NIST
portion of the work of the Conference. Charles Wilson, the Leader of the NIST IRG, assured

that resources were available when needed. AUen Wilkinson coordinated the technical activ-

ities of the Conference including the preparation of training and test materials, the receipt of

participant submissions, scoring submissions, and software trouble shooting until accepting

a new position at NIST. Stanley Janet modified the NIST scoring package to accumulate

the measures chosen by the Committee for the Conference, and assumed Mr. Wilkinson’s

duties after the latter’s departure. Patrick Grother provided valuable comments on various

aspects of the Conference based on his role as a participant representing the NIST IRG OCR
system. Mike Garris carefully reviewed this report before publication.

The following individuals from Census were instrumental in carr\dng out the Census portion
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of work for the Second Conference. Stan Matchett and Bob Bair assured that resources were

available when needed. Bob Hammond coordinated the technical activities at Census. Norm

Larsen and John Rotegard designed and implemented the scanning systems, prepared and

maintained the software for scanning operations, and provided technical analysis and trouble

shooting for the image capture activities. Brian Washington operated and maintained the

scanning equipment and performed a variety of general and special purpose tasks. Neal Bross

installed and maintained the network and provided overall UNIX system administration

and support. Dan Gillman developed software to extract the reference data from large

archived data files and provided advice about the extracts and the related automated coding

system. Randy Klear developed the key entry system and coordinated the production keying

of reference data for the paper sample. About 30 volunteers (and/or conscripts) from 10

different divisions performed the independent keying operations.

The activities of the Second Conference started in January of 1993, with attempts to create

a large sample of digital miniforms scanned from microfilm copies of a non-sensitive portion

of the Industry and Occupation section of the 1990 Census Long Forms. Each miniform

consisted of three answer boxes and the questions surrounding them, and covered an area

of about 75 mm by 95 mm on the 1990 Long Form. Reference data for each miniform

was obtained from the hand-keyed results of the 1990 Census. All of the reference data was

screened by two independent methods to remove potentially sensitive information that, while

not requested, was sometimes provided in answer to these questions. Finally, matching files

of digital images and the ASCII transcriptions (references) of the answers written on them

were prepared in a format chosen for the test.

During the Conference period, it became clear that the digital images obtained from micro-

film had far inferior image quality to those that could be obtained by scanning the original

paper forms. Therefore, the scope of the Conference was broadened to include a test with

images scanned from forms that had been reserved from the 1990 Census, as well as a test

with the images scanned from microfilm. Figures 1 and 2 at the end of this chapter compare

a miniform scanned from microfilm with a miniform scanned from paper. Note that Fig. 1

is well above the average image quality for the miniforms scanned from microfilm, while Fig.

2 is of average image quality for the miniforms scanned from paper.

Later, it was decided to score the hand-keyed results from the 1990 Census against indepen-

dently keyed reference data. Therefore, the answers on the paper forms were independently

keyed twice, and rekeyed a third time when differences occurred. These references were

used to score the participant submissions for the test scanned from paper. They were also

used to score the answers keyed during the 1990 Census. This allowed fair comparison of

the Conference submissions with human performance on the same task. The answers keyed

during the 1990 Census were used as the reference data for the test scanned from microfilm.

By the end of June, which was well behind the original schedule, enough progress had been

made to warrant issuing a Call for Participation on behalf of the Committee. A version of

the Call is reproduced in Appendix A.

Twenty five organizations agreed to participate in the Conference. The first and second sets

of training materials were shipped to the participants at the end of August and the beginning
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PARTICIPATING STATUS SYSTEM FROM FROM
ORGANIZATION PAPER //FILM

Adaptive Solutions, Inc.

Beaverton, OR
NO SUBMISSION

Aston University

Birmingham, UK
NO SUBMISSION

AT&T Bell Laboratories LATE ATT_0 X
Holmdel, NJ LATE ATT.1 X
CEDAR, SUNY ON TIME CEDAR_0 X
Bufallo, NY LATE CEDAR_1 X

LATE CEDARS X
CGA WITHDREW
Gentilly Cedex, France AFTER SDB13

CGK mbH ON TIME CGK.O X X
Konstanz, Germany LATE CGK_2 X X
Com Com Systems, Inc.

Clearwater, FL
NO SUBMISSION

Environmental Research ON TIME ERIM_0 X X
Institute of Michigan

Ann Arbor, MI
ON TIME ERIM_1 X X

Gamma Research, Inc. WITHDREW
HuntsviUe, AL BEFORE SDB13

GTESS Corporation WITHDREW
Richardson, TX BEFORE SDB13

Hughes Aircraft Company ON TIME HUGHES.O X
Reston, VA LATE HUGHES.l X

LATE HUGHES_2 X
IBM Almaden ON TIME IBM_9 X X
Research Center, ON TIME IBM_0 X X
San Jose, CA ON TIME IBM_1 X X

ON TIME IBM_2 X X
LATE IBM_3 X X

Table 1: Participating organizations, status, system names, and tests.



PARTICIPATING
ORGANIZATION

STATUS SYSTEM FROM
PAPER

FROM
//FILM

IDIAP ON TIME IDIAP^O X
Martigny, Valais LATE IDIAP_1 X
Switzerland LATE IDIAP_2 X

LATE IDIAP_3 X
INM, Inc. NO SUBMISSION
Waterloo, Ontario

Intrafed, Inc. NO SUBMISSION
Bethesda, MD
MCC LATE MCC_0 X
Austin, TX LATE MCC.1 X
Mimitecs SA NO SUBMISSION
Chatenay-Malabry

Cedex, France

Mitek, Inc. WITHDREW
San Diego, CA BEFORE SDB13

Nestor, Inc. WITHDREW
Providence, RI BEFORE SDB13

National Institute of ON TIME NIST_9 X X
Standards and Tech. ON TIME NIST_0 X X
Gaithersburg, MD LATE NIST.1 X

LATE NIST_2 X
LATE NIST_3 X

RAF, Inc. WITHDREW
Redmond, WA BEFORE SDB13

Symbus Technology WITHDREW
Waltham, MA BEFORE SDB13

University of Bologna ON TIME UB0L_9 X X
Bologna, Italy ON TIME UBOL.O X X

LATE UBOL_l X
U. of Florida NO SUBMISSION
Gainsville, FL
U. of Michigan NO SUBMISSION
Dearborn, MI

Table 2: Participating organizations, status, system names, and tests.

8



of October, 1993, respectively. The test materials were shipped to the participants by express

carrier to arrive on December 1, 1993. The OCR results returned to NIST for scoring were

to be received by the participant’s express carrier by December 15, 1993 in order to be ON
TIME. However, LATE results were accepted provided that an express carrier received them

by January 31, 1994.

The test was very hard, and many participating organizations either withdrew from participa-

tion or did not submit results for scoring before the Conference deadlines. Only participants

who submitted plausible entries before January 31, 1994 were permitted to attend the meet-

ing run in connection with the Conference. Note that participation without attendance at

the meeting could still be considered beneficial to the participants because it gave them early

access to the databases prepared for the Conference. All participants, the names assigned

by NIST to the systems for which they submitted results, and the type of results submitted

are summarized in Tables 1 and 2. Note that some participants submitted results only for

the test scanned from paper, while others submitted results for both tests.

2.2 Training and Test Materials

Chapter 4 describes the selection and scanning of both the microfilm and the paper samples of

the industry and occupation answers from the 1990 Census that were used in the Conference.

The NIST multiple image set (mis) file format [2] was used for storing the miniform images

after they were extracted from the images scanned from microfilm or paper, and comple-

mentary file formats were used for the reference, hypothesis, and confidence files used in

conjunction with the training and test images. [2] Each mis file contained digital images of

five miniforms, each of which had three answer fields. Each reference file had 15 lines of

ASCII transcriptions of the answers entered into the answer fields on the five miniforms in

the corresponding mis file. The hypothesis files produced by the participant’s OCR systems

had exactly the same format as the reference files, but contained the hypothetical answers

produced by the OCR systems. Each confidence file had 15 lines of the ASCII represen-

tations of numbers ranging from 0.0 through 1.0 to convey the relative reliability of the

corresponding hypotheses in the associated hypothesis file. More information about the file

formats used to distribute the training and test materials and to return the test results can

be found in Appendices A and B.

The training and test materials were distributed on CD-ROM. There were two training CD-
ROMs and one test CD-ROM. The first training CD-ROM, Special Database (SD 11), had

images scanned from microfilm, the associated references, some image manipulation software,

and the first dictionaries for optional use in correcting the OCR results. These served to

acquaint the participants with the data formats, and had the side effect of scaring some

participants into withdrawing from the Conference. The second training CD-ROM (SD 12)

had new microfilm-scanned images plus images from paper, the associated references, the

image manipulation software, and dictionaries augmented by the addition of any words or

phrases appearing in the images on SD 11. The test CD-ROM (SD 13) had everything that

SD 12 had except the references. The participants returned hypothesis files and confidence

files to NIST for scoring on floppy disks, using the same directory structure used on the test

9



CD-ROM.

SD 11 contained 25 subdirectories having 100 mis files in each directory and 5 miniforms

per file for a total of 12,500 miniforms and 37,500 answer fields. SD 12 contained images

from microfilm and images from paper. Its microfilm and its paper directories each had 12

subdirectories having 100 mis files in each directory and 5 miniforms per file for a total of

6000 miniforms and 18,000 answer fields for each test (microfilm and paper). SD 13 also

contained images from microfilm and images from paper. Its microfilm and paper directories

each had 6 subdirectories having 100 mis files in each directory and 5 miniforms per file for

a total of 3000 miniforms and 9,000 answer fields for each test.

The number of miniforms on the CD-ROM databases was decreased during the course of the

Conference because it became apparent that many participants would not be able to process

the larger data sets in the two weeks allowed for ON TIME test submissions. Instructions for

the test phase of the Conference were sent with SD 13. One version of these is reproduced

in Appendix B.

A number of different dictionaries for optional use with algorithms that correct the results

of raw OCR were created from a 132,000 sample of answers to the Industry and Occupation

questions obtained from the 1980 Census, and augmented with the references associated with

the training images. Dictionary creation and format is discussed in Chapter 5.

In summary, the test required each participant to convert the letters, digits, and spaces be-

tween words in the answers on the images of the miniforms into their ASCII representations,

retaining their order. Note that the participants were instructed not to have their OCR
systems correct any misspelhngs that were detected. This same instruction was given to the

key entry personnel during the 1990 Census. It resulted in the inclusion of a large fraction of

misspellings as well as abbreviations in the dictionaries. This makes the dictionaries much
larger than they would otherwise be. It is possible that dictionaries containing only correct

spelling and abbreviations would have improved the results of the Conference, but neither

NIST nor Census knew how to remove the misspellings without also removing the abbrevia-

tions from the dictionaries in the time available. Removal of abbreviations would probably

have hurt the test results. This issue is discussed in more detail in Chapter 5.

The original plans were to carry out the test phase of the Second Conference during Septem-

ber of 1993, but it soon became clear that neither Census nor NIST could complete their

role in support of the Conference soon enough for this time scale, particularly after the scope

of the Conference was extended to include images scanned from paper and the generation

of reference answers independent of the answers collected during the 1990 Census. Also,

most, but not all, participants indicated a desire to see the time frame for the Conference

extended. Thus the test phase was postponed until December 1 of 1993, with all other

schedules slipping proportionally. The actual meeting where the results were discussed was

held on February 15 and 16 of 1994.
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2.3 OCR Methods Used

A wide variety of preprocessing, feature extraction, and classification algorithms were em-

ployed by the OCR systems used for the recognition of isolated characters in the First

Conference. The overall task of the Second Conference was far more complex. Nevertheless,

it appears that all of the systems used in the Second Conference can be roughly described

in terms of the following subtasks:

1) FORM IDENTIFICATION: This subtask consists of identifying certain expected features

on each miniform image presented for recognition. The output of this subtask is either

the rejection of the miniform form as unrecognizable or a set of locations of key features

that identified the miniform as acceptable for further processing. (Two slightly different

miniforms were used in the Second Conference test. Figure 1 is one type and Fig. 2 is the

other type.)

2) FIELD ISOLATION: This subtask consists of extracting the text image of each answer

from the form. The output of this subtask consists of one or more images of text minus the

surrounding portions of the form. (There were three answer fields, each marked by a dashed

rectangle, on each miniform. There were no guidelines for participants about what to do

with parts of answers written outside the boxes.)

3) LINE ISOLATION: This subtask consists of extracting images of single lines of text from

each answer field. The output of this subtask is one or more images of a single line of text.

(Some answers were written on more than one line in each answer field.)

4) SEGMENTATION: This subtask consists of breaking each image of a line of text into

smaller units for recognition. The output of this subtask is one or more image segments.

Each segment is either the image of an isolated character, an image of an isolated piece of a

character, or the image of an isolated group of connected or otherwise undersegmented char-

acters. (Images of characters that are broken into more than one segment are oversegmented

and images of characters that are grouped together are undersegmented.)

5) RECOMBINING SEGMENTS: This subtask consists of selecting various combinations of

segments (including single segments) as plausible candidates for isolated character images.

The output of this subtask is one or more isolated character-image candidates. (Some systems

purposely oversegment enough to assure that no undersegmentation occurs. In this case, it

is necessary to recombine segments in different ways to be sure that all isolated character

images occur among the different combinations.)

6) RECOGNITION: This subtask consists of one of two slightly different functions depending

upon the OCR system. The more general consists of assigning relative confidences to all of

the allowed classes for each character-image candidate; the less general consists of assigning a

single character class to each character-image candidate. The output of this subtask is either

a single class (possibly with a confidence) or a set of ordered pairs consisting of character

class and associated confidence. (In either case, this output is called raw OCR to emphasize

that it has been generated without the help of any context other than that existing in the

isolated character-image candidates.)

7) ORGANIZING CHARACTER CANDIDATES: This subtask consists of organizing the
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output of subtasks 5 and 6 (sometimes just 6) into a form useful for the dictionary input

stage. The output of this task is just the output of those task in a format suitable for the

particular dictionary look-up method being used. (Examples from the Conference include

various combinations and modifications of well known techniques such as hidden Markov,

Viterbi, and Levenstein-distance algorithms. [3]).

8) DICTIONARY-BASED CORRECTION: This subtask consists of selecting the dictionary

entries that best match the properly organized character-image candidates according to some

set of criteria. The output of this subtask is the hypothetical answer provided by the OCR
system as its final result and (usually) a confidence for the field. (Different systems used

different dictionaries or combinations of dictionaries.)

In order for the above set of subtasks to properly describe all of the Conference systems, it is

necessary to consider some of the subtasks to be empty tasks for some of the systems, that is,

to return their input as output. For instance, some systems did not carry out segmentation,

but attempted to recognize each character or stroke without isolating it from the other

characters or strokes in the same line. For those systems, subtasks 4) and 5) were empty

tasks. It is also necessary to allow some of the subtasks to be carried out simultaneously

with other subtasks or in iterative loops containing one or more subtasks, and to allow for

decision points and alternative paths through the subtasks.

Notice that it was only subtask 6) that was tested in the First Conference. Recall that this

subtask has been the bellwether of OCR progress for some time. For the First Conference,

subtask 6) was divided into three smaller subtasks: preprocessing, feature extraction, and

classification. No new preprocessing or classification techniques were reported as being used

for the Second Conference, but one new feature extraction process similar to computer

tomography was reported by one participant. It is illustrated for the letter C in the System
Summary for CGK in Appendix C.

Each participant was requested to fill out the questionnaire shown as Enclosure 6 in Appendix
A about the algorithms used in his or her OCR system. It turned out that the question-

naire was very poor at extracting the key ideas about the different systems. Therefore, the

questionnaires returned by the participants are not included anywhere in this report. On
the other hand, many participants presented quite detailed descriptions of the systems they

used at the Conference meeting, so their viewgraphs are reproduced in either Appendix C
or Appendix D along with graphs of their test results. Appendix C contains the ON TIME
results. Appendix D the LATE results.

It is well beyond the scope of this report to compare and discuss the details of the algorithms

used for the different subtasks by the different systems. However, some comments and general

conclusions seem warranted. Most systems were empty for one or more of subtasks 1), 4),

5) and 7). It appears that making 1) empty caused little or no error for this test. On the

other hand, both of the lowest error systems carried out non-empty versions of subtasks 4),

5), and 7).

None of the systems using empty (no) segmentation were among the most accurate. This sug-

gests that segmentation is an important subtask for this type of test, at least at the current

state of the art. All systems that attempted segmentation except NIST’s used intentional
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oversegmentation as a means of avoiding undersegmentation, and the best performing sys-

tems had sophisticated means for recombining segments prior to dictionary-based correction.

This suggests that segmentation is the most challenging subtask for this type of test, and

that intentional oversegmentation followed by sophisticated recombination methods, possi-

bly in more than one of the downstream subtasks, is the best solution to the segmentation

problem at the current state of the art.

Finally, there is rather fundamental trade-off between dictionary coverage (size) over the

set of test phrases, on one hand, and confusion among the dictionary entries, on the other.

This limits the accuracy that can be achieved with purely dictionary-based methods. Use

of language models, particularly more sophisticated models based on a much larger set of

training-reference phrases should allow this problem to be solved. More details about this

problem are presented in Chapter 5.

2.4 Summary of Results

Classification, recognition, hypothesis, reference, rejection, and confidence are general ideas

of importance in the OCR of words and phrases. The precise definitions of these terms as

used in this report are given in Chapter 6. Two different measures of classification error

were calculated for this Conference: the field error rate and the field distance rate. These

too are defined in Chapter 6.

Notice that the field error rate does not distinguish among different ways that fields can be

incorrect. For instance, the incorrect hypothesis CARRIES BAGS for the reference DRIVES
THE TRUCK makes the same contribution to the field error rate as the incorrect hypothesis

DRIVES THE TRUCKS even though the first hypothesis is completely wrong and the second

almost right. In many applications (such as the generation of Industry and Occupation codes

from Census Long Forms), the error in the second hypothesis will have no effect on the final

use of the ASCII version of the answer. The field distance rate is much less sensitive to this

type of problem, but it does not have a unique definition, as discussed in Chapter 6.

The introduction of two different OCR accuracy measures raises the question of which should

be used in any given application or how to use both. The short answer is that this remains

an open question.

There are a number of unresolved issues associated with scoring field hypotheses in contrast

to the scoring of isolated character hypotheses, which is relatively straightforward. These in-

clude insensitivities to important properties of word and phrase alignments in the algorithms

used to align references and hypotheses before scoring, as well as alternate error measures.

As an example, suppose that two systems produce the same field distance at a given rejection

rate, but that the first produces a much smaller field error rate than the second. Intuition

says that the first should be the superior system, but in some applications the second may
actually produce more useful results. This and related issues are also addressed in more

detail in Chapter 6.

Tables 3 and 4 list the field error and field distance rates at rejection rates of 60%, 50%,

40%, and 0% for both the paper and the microfilm tests for all of the results returned to
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Scanned Field Rejection Rate

From Paper 60% 50% 40% 0%

Percent Classification Field Error And Distance Rates

On Time error distance error distance error distance error distance

System rate rate rate rate rate rate rate rate

CEDAR.O 37.6 20.5 38.7 20.4 41.5 21.3 58.7 37.3

CGK.O 13.8 4.7 19.6 6.2 26.3 9.0 50.5 24.6

ERIM_0 3.6 0.8 6.3 1.6 12.2 4.3 39.7 18.7

ERIM_1 3.9 1.0 7.5 2.4 14.1 5.4 41.9 20.8

HUGHES-O 61.6 26.0 69.2* 38.7* 74.3* 47.5* 84.6 63.4

IBM-O 49.6 24.3 56.9 28.8 62.4 32.9 75.0 44.8

IBM.1 53.6 24.7 60.3 29.4 65.0 33.0 76.8 44.8

IBM_2 86.6 58.6 88.4 58.8 89.9 59.4 93.1 63.4

IDIAP.O 10.7 2.6 16.8 5.2 25.8 10.5 52.6 33.4

NIST_0 46.6 16.2 53.8 21.7 60.1 27.2 75.3 46.2

UBOL.O 57.1 36.0 61.8 38.6 64.9 39.9 71.7 43.1

KEY_90 NA NA NA NA NA NA 8.5 1.6

Table 3: Field error and distance rates at certain field rejection rates for the classifications

that were carried out on the images scanned from paper and submitted to NIST on time

for scoring, including the results for the 1990 Census key entry operation. *These results

contain hypotheses with 0.0 confidence.

Scanned Field Rejection Rate

From /ifilm 60% 50% 40% 0%
Percent Classification Field Error And Distance Rates

On Time error distance error distance error distance error distance

System rate rate rate rate rate rate rate rate

CGK.O 23.4 7.1 31.6 11.3 38.7 15.5 60.7 32.6

ERIM.O 9.7 5.0 16.2 7.5 24.6 11.8 50.0 25.7

ERIM_1 10.1 5.2 16.7 8.0 25.4 12.4 50.9 26.7

IBM.O 66.8 36.6 71.6 40.6 75.1 43.7 83.7 53.3

IBM_1 69.5 36.7 73.8 40.4 77.2 43.9 85.1 53.4

IBM.2 91.3 65.1 92.6 65.3 93.3 64.9 95.6 66.9

NIST.O 77.3 42.3 81.4 48.2 84.3 52.4 90.4 62.6

UBOL.O 70.8 47.6 73.6 48.5 77.1 52.4 82.0 55.4

Table 4: Field error and distance rates at certain field rejection rates for the classifications

that were carried out on the images scanned from microfilm and submitted to NIST on time

for scoring.
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NIST for scoring by December 15. Figures 3 and 4 at the end of this Chapter plot this data

over the entire range of the rejection rate. As mentioned above, the individual results for

each organization can be found in Appendices C and D. The latter Appendix also explains

why some of the curves turn up with increasing rejection rate.

Table 3 also gives the field distance and error rates at 0% rejection rate for the 1990 Census

key entry operation (KEY_90) for comparison with the machine results for the paper test. [4]

Since the human key entry operators did not produce confidences for their entries, no data

is available for the greater rejection rates.

The best machine system in the Conference does not reach the 8.5% field error rate achieved

by the key operators at 0% rejection rate until over 45% of the fields have been rejected.

Similarly, the best machine system in the Conference does not reach the 1.6% field distance

rate achieved by the key operators at 0% rejection rate until 50% of the fields have been

rejected. Clearly, machines cannot yet read handprint phrases as well as people can even

though Chapter 3 presents evidence that machines can classify isolated characters about as

well as humans can, at least in economically significant applications. This is not surprising.

People do not read by first isolating the characters in a word and then classifying them, but

by reading whole words and phrases using many different types of context.

Note, however, that it is not necessary for OCR systems to read handprint words and phrases

as well as people before they can be economically viable for use in a Census. What is

necessary is a combination of an OCR system and human keyers that provides no greater

error and costs less than doing the whole job with human keyers. This might be achieved by

having the OCR system classify all of the Census forms and reject a fraction of the forms as

having imreliable hypotheses. The rejected forms could then be turned over to humans for

keying.

Figures 3 and 4 at the end of this Chapter and Table 3 show that the field error rates for two

ON TIME systems fall below 8.5% at rejection rates between 40% and 50%, while the field

distance rates for two ON TIME systems fall below 1.6% at rejection rates between 50% and

55%. This is the reason that Tables 3 and 4 list results at 60%, 50%, and 40% rejection rate,

as well as at 0% rejection rate.

A hybrid system was made from the ERIM_0 and 1990 Census results. The 60% of the

ERIM_0 hypotheses that had the lowest confidences were replaced by the corresponding

1990 Census hypotheses. This simulates a system where a machine classifies all of the Cen-

sus fileds but humans only classify the 60% of them rejected by the machine. To two decimal

place accuracy, the resulting field distance and error rates were 1.55% and 8.34%, respec-

tively, while the KEY_90 field distance and error rates were 1.56% and 8.58%, respectively. [4]

However, the hybrid system got 96 fields incorrect that KEY_90 got correct, and KEY_90
got 116 fields incorrect that the hybrid system got correct. This highlights the possibility

that the errors made by the hybrid system could have a more or less detrimental impact on

the Census application than those made by the 1990 Census key operators. In fact, this can

be the case even for the fields that both systems got incorrect since they need not get them
incorrect in the same way.

All but one of the participants providing ON TIME submissions also provided LATE sub-
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missions. Two participants provided only LATE submissions. The system summaries for the

LATE submissions and the viewgraphs for the two systems providing only LATE submissions

are contained in Appendix D.

Most of the LATE submissions were significant improvements over the ON TIME systems

from the same participant. In fact, there were considerably more late submissions than ON
TIME submissions. However, the significant improvements achieved by the LATE submis-

sions do not affect the overall conclusions of the Conference. On the other hand, the fact

that significant improvements to system performance were still being achieved right up to

the end of the Conference suggest that further improvements will be obtained in the future.

For this reason, it was decided to allow the participants (and anyone else) purchasing the

test data base to submit their results to a NIST anonymous ftp site for scoring. The only

purpose of this is to assure uniform scoring and to keep NIST apprised of the state of the

art. NIST has reserved enough materials to run a second test if the state of the art improves

enough to warrant it. More details are given in Chapter 8.

The fact that for rejection rates greater than 40% some OCR systems had lower error and

distance rates than humans at 0% rejection rate does not mean that OCR systems are now

good enough to be used in a Census, but it does mean that they might be. Only more

sophisticated, application- specific tests that have not yet been developed will be able to

resolve this question. To emphasize this point, consider the following specific question which

was brought up earlier in this report. Ignoring the rejection rates, which is better, the

combination of a field distance rate of 1.6% with a field error rate of 8.5% that was achieved

by the human classifiers or the combination of a field distance rate of 1.6% with a field error

rate of 6.3% that was achieved by the ERIM system at 50% rejection rate? There is no way

to answer this question without further work on scoring.

It has often been suggested that a consensus OCR system formed from the results of two

or more OCR systems might out-perform the systems from which it was made. Chapter 7

presents the results of a small and preliminary study using some systems in the Conference

in simple voting schemes that requires no training. Significant improvements were found

at some rejection rates, but decreased performance was found at the most economically

significant rejection rates. It is possible that more sophisticated voting schemes that re-

quire training to renormalize the confidences produced by the individual OCR systems may
produce improved results, but further work is necessary to investigate this possibility.

2.5 Major Conclusions

The major conclusions of the first two OCR Systems Conferences are listed below. The
justifications for these conclusions are contained in the Chapters referred to above.

1) Humans are no longer clearly better than machines at the recognition of isolated charac-

ters, and certainly not in any economically significant way. (See Chapter 3.)

2) Humans are still much better than machines at reading words and phrases drawn from a

large sample of possible words and phrases. (See this Chapter.)

3) Despite the above conclusion, machine performance in reading words and phrases may
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now be good enough to decrease the cost and time needed to carry out a Census without

decreasing the accuracy of the results. Only more sophisticated application-specific tests can

answer this question. (See this Chapter.)

4) It should be recognized that there are a number of applications of the OCR of words

and phrases, such as reading and reconciling the legal and courtesy amounts on checks, that

are much less diflicult than reading the Industry and Occupation answers for the Census

because they use smaller dictionaries. Therefore, the results of this test suggest that OCR
may already be good enough for these applications.

5) There are a number of open questions about how to score OCR output for any specific

application. (See Chapter 6.)

6) Segmentation was probably the most difficult subtask required for the Second Conference

tests. (See this Chapter.)

7) Intentional oversegmentation (more precisely, intentional avoidance of undersegmentation)

at the character level seems to be the best solution to the segmentation problem, at least at

the current state of the art. (See this Chapter.)

8) As dictionary size is increased, coverage over some domain can also be increased. At the

same time, the average similarity among the entries in the dictionary will also increase. If

only a small fraction of the words or phrases added to the dictionary actually contribute

to increased coverage over some test domain, the increase in field error due to increased

confusion may be larger than the decrease in field error due to increased coverage. A similar

phenomena may also occur with the field distance. (See Chapter 5.)

9) The trade-off between dictionary size (coverage) and dictionary confusion can probably be

overcome with more sophisticated context-based correction schemes such as language models

based on the statistical properties of a suitably typical set of training data. (See Chapter 5.)

10) There seemed to be a consensus among the Second Conference Participants and Com-
mittee that improved form design and utilization of the context provided in all three fields

would decrease the field error and distance rates significantly. The systems in the Conference

recognized each field separately and did not utilize context across the three fields.
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Figure 1: A well above average quality image scanned from microfilm.
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Figure 2: A typical image scanned from paper.
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Figure 3: Field distance and error rates versus field rejection rate for all on-time system

submissions for the test images scanned from paper.
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Figure 4: Field distance and error rates versus field rejection rate for all on-time system

submissions for the test images scanned from microfilm.
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3 Machine Recognition of Isolated Characters

Jon Geist

3.1 Background

Within the context of this report, isolated characters are single characters presented in isola-

tion from all context not contained within the character itself. Even though the recognition

of isolated handprint characters is not a task with a real application, it was the task chosen

for the First Census OCR Systems Conference. By contrast, the Second Conference had

a real application as its task: reading handprint word and phrase answers from a form.

In this case, the recognition of isolated characters is just one of many subtasks of the real

application, and it is not necessarily the error limiting subtask as mentioned in Chapter 2.

In this connection, it is important to understand that people do not read words and phrases

by isolating each of the characters in the word or phrase, recognizing each of them in isolation

from the other characters, and then reconstructing the word or phrase from the isolated

recognitions. They do not even read multidigit numbers this way.

For example, some people print fours that look like other people’s nines. It is much more

common for an isolated handprint 4 to be mistaken for a 9 or vice versa than for a handprint

49 to be mistaken for a 94, 44, or 99. Each digit of 49 carries information not only about

its own identity but also about how the adjacent digit should be decoded. When people

read words, phrases, and multidigit numbers they use a large number of contextual clues

carrying syntactic, semantic, and other types of information such as how nearby characters

are formed.

Even though the OCR of isolated characters has no real application except as part of a larger

process, it has long been considered the bellwether of OCR capability. This is the reason that

the First Conference tested this capability. The results of that conference convinced most of

the participants that it was time to see how well words and phrases could be read. Implicit

in this decision was the assumption that machine recognition of isolated characters would

probably not be the performance-limiting step in this much more complex task. Chapter 8

presents data that support this assumption.

The present chapter presents data obtained following the First Conference that suggests

that there is no reason to believe that humans are currently superior to machines in the

classification of isolated handprint characters in any economically significant way. This is so

despite the fact that the results of the Second Conference show that humans are still clearly

superior to machines in the reading of handprint words and phrases. Before presenting this

data, it is necessary to discuss human classification results obtained on the First Conference

test materials.
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3.2 Human Classification of the First Conference Tests

Before the First Conference, a machine assisted human classification process [5] was used to

classify the 60,000 digits, 12,000 upper case letters, and 12,000 lower case letters used for the

Conference tests. This procedure allowed context bias to influence the classification of the

characters, but it also presented the most difficult characters to more than one human for

classification. Only in the case where there was agreement between the last two humans who

saw a character that had been flagged as having a problem was that character included in

the test materials. The classifications obtained by this procedure were used as the references

for the test.

During the First Conference, the author (JG) hand-classified the first 10,000 digits of the

test data in a few periods of roughly one hour duration separated by a day or more. Each

unknown digit was presented free of any external context on a computer terminal in the same

random order as on the test CD-ROM. One of the digit keys was pressed followed by the

Return key to indicate the classification, or the question-mark key was pressed followed by

the Return key to reject the unknown digit as unclassifiable. Rates of about one character

per second were sustained for anywhere from 10 minutes to over an hour. (The Report on

the First Conference incorrectly stated the rate as two characters per second.) The time

needed for the computer to display the image of each character took a substantial portion

of the classification time.

It is the author’s impression that the possibility of rejecting a digit was important to both

speed and job satisfaction in this task. In most cases the digits were recognized faster than

the keys could be punched. Usually, if a digit was not immediately recognized, it was not

perceived as being ambiguous between two or more characters, but as being completely

unknown. On the other hand, there were a few occasions where a possible ambiguity with

another digit was noticed just as a key was being punched. By then it was too late to hit

the question-mark key.

Whenever no digit was immediately recognized, pressing any key other than the question

mark vrould have required stopping an apparently reflexive recognition process and starting

some higher level cognitive process. Not only would this have been very frustrating, but it

would have slowed the classification process significantly.

For instance. Ref. [6] describes a human recognition procedure that required a great deal

of human cognitive effort to identify the 360 most difficult digits from a 17,000 sample of

isolated digits. Thinking about an unknown digit, assigning normalized confidences to each

of the ten digit classes, and then explaining the reasons for the choices that were made took

the human classifiers on the average of between two and three minutes per digit. Neither this

procedure, nor the reflexive recognition of a very large set of isolated digits, is particularly

frustrating, but mixing the two seems to be.

Following the First Conference, a technician used the same system that was used by JG
during that Conference to classify all of the characters of the Conference test data. For this

experiment a two-pass process was used. In the first pass, the technician w^as instructed that

accuracy rather than speed was the main goal, but that speed was desirable, and that he

was free to reject any characters that he couldn’t immediately classify. This task was carried
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human 1 (1st pass) human 1 (2nd pass) human 2 (JG)

rej. rate error rate rej. rate error rate rej. rate error rate

DIGIT TEST
0.0000 0.0361 0.0000 ^^071 0.0000 0.0157*

0.0334 0.0028 0.0056 0.0045 0.0122 0.0035*

UPPER CASE LETTER 1'EST

0.0000 0.0848 0.0000 0.0377 NA NA
0.0599 0.0316 0.0046 0.0354 NA NA

LOWER CASE LETTER 1DEST

0.0000 0.1388 0.0000 0.0862 NA NA
0.0855 0.0583 0.0317 0.0697 NA NA

Table 5: Results of human classification of all of the isolated characters in the digit, upper

case letter, and lower case letter tests used for the First Census OCR Systems Conference.

(* First 10,000 digits only; NA = Not Available)

out at a much slower rate than what was done by JG during the Conference. After the first

pass was completed, the results were scored to give two data points: one for zero rejection

and one for whatever fraction the classifier chose to reject during the first pass through the

data.

In the second pass, the characters that were rejected on the first pass were presented for

classification as in the first pass: one at a time, without context, and in the random order

in which they occurred in the test. For this pass, however, the technician was instructed

that he could spend as much time as needed thinking about each character that he had

rejected during the first pass before classifying it or rejecting it again. Thus, this pass was

carried out at an even slower (presumably more cognitive) pace. After the second pass, the

accepted character classifications produced during the first pass were combined with all of

the classification produced during the second pass, and the combination was scored, again

giving two data points.

The results of human classification of the First Conference tests are summarized in Table

5. At first glance, there seems to be a great deal of difference between the results produced

for the digit test by the two different human classifiers. However, most of this is explained

by the fact that the two humans chose to reject very different fractions of the data set on

the first pass. If the first-pass zero-rejection rate data point for each human is ignored as

too strongly affected by the subjective choice of which digits to accept and which to reject,

then the remaining data points appear roughly to fall on the same curve. Therefore they

were combined to give the composite curve for human digit recognition that is shown in Fig.

5. (It had been demonstrated previously that the first 10,000 digits were typical of the full

60,000 digit test. [7])

On the first pass of the digit test, human 1 rejected over twice the fraction of digits as

human 2. Recall that human 2 sometimes noticed possible two-character ambiguities during

classification of some of the imknown digits, but too late to reject them. Also, recall that

human 1 carried out the the first pass classification process at a much slower rate than human
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Character Error Rate (Digits)

Figure 5: Post-conference results for the First Conference digit test: BEST = lowest value at

each rejection rate from the First Conference; HUMAN = composite of two-pass data from

one human and one-pass data from another; CGK = data submitted by CGK; MITEK =
data submitted by Mitek.

2. Therefore, it is possible that the difference in rejection rate reflects the ability to notice

and reject more possible two-character ambiguities as the classification rate is decreased.

However, if this is a correct interpretation, it means that the first class that comes to mind

when viewing unknown images that are ambiguous between tvro characters is usually the

correct class. Otherwise the error rate for human 2 at the rejection rate of 0.0122 vrould

have to be much greater than 0.0035.

3.3 Machine Results Obtained Following the First Conference

About a year after the First Conference, two organizations that did not participate in that

conference sent unsolicited results obtained on one or more of the Conference tests. ^ Mitek

submitted results only for the digit test, while CGK submitted results for all three tests.

^The test data and references for the First Conference are on available on CD-ROM and DOS-format

floppy disk, respectively, as Special Database (SD) 7 for US $1000 from Joan Sauerwein, Standard Reference

Data, NIST 221/A320, G’burg, MD 20899, (301)975-2208 (voice), (301)926-0416 (FAX), srdata@enh.nist.gov

(e-mail). Note that some of the more basic utilities needed for handling the data formats on SD 7 are available

on SD 3, which sells for US $895.

25



Character Error Rate (Uppers)

Character Error Rate (Lowers)

Figure 6: Post-conference results for the First Conference upper case and lower case letter

tests: BEST = lowest value at each rejection rate from the First Conference; HUMAN =
two-pass data from one human; CGK = data submitted by CGK.

26



The lowest value at each rejection rate (BEST) of the results from the First Conference, the

human results, and the CGK results for the digit test are compared in Fig. 5 and for the

upper and lower case letter tests in Fig. 6. The Mitek results for the digit test are also

included in Fig. 5.

For very low rejection rates, the human error rate for digits that is shown in Fig. 5 is over

a factor of two lower than the lowest machine results. For upper case letters, the error

rates for two machines are less than or comparable to the human results for all rejection

rates. For lower case letters, the human results are marginally better at low rejection rates.

Even in the case of digits, the human results are not superior to the machine results in any

economically significant way. The human advantage in accuracy is more than compensated

by the machine’s ability to quickly generate both classifications and reasonably reliable

confidences. For instance, the Mitek test results were obtained at 15.5 characters per second.

Requiring humans to generate confidences as they classify the characters is far too slow a

process to be economically feasible. However, without confidences, the maximum rejection

rate is determined by the arbitrary number of unknown images that different human classi-

fiers choose to reject on the first pass through the images. Once the human has completed

the first pass, the maximum rejection rate has been set, and further rejection to obtain a

lower error rate is not possible. Also, the low human error rate at zero-rejection rate is not

even obtained until after the second human pass is complete. For example, comparison of

Table 5 and Fig. 5 shows that the first-pass error rate at zero-rejection rates for both human
1 and human 2 were significantly greater than that for Mitek.

The real advantage of human classification does not appear until after the second pass, so

there is actually no reason to have a human do the first pass. Machines can do it faster,

and machines can generate confidences as part of the classification process. This means

that a hybrid machine/human classification process should be better than either alone. For

instance, suppose a human reclassified the 10% of the unknown images having the lowest

confidence following the Mitek classification process, and these new classifications were added

to the other 90% produced by Mitek. It is hard to imagine that the error rate would be as

large at any rejection rate as that obtained by either Mitek or the human alone. Furthermore,

it should take significantly less time since the human needs to classify only 10% of the

unknown images, even though it is the most difficult 10%. Finally, any first-pass rejection

rates could be used just as easily as 10% in contrast to the case with human first-pass

classification, where this value is set by the human during classification in an uncontrollable

way.

3.4 Conclusions

The information presented in this Chapter suggests a number of conclusions about econom-

ically significant human classification (ESHC) compared to machine OCR of isolated hand-

print characters. However, all of these conclusions must be considered tentative because

they are based on the very limited and incomplete data reported in this Chapter.

1) ESHC of isolated handprint characters is a mostly reflexive process.
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2) The error rate at zero rejection rate for ESHC of isolated handprint characters is unreal-

istically high and variable due to the subjective choice of human classifiers to either reject

or think about the rare occurrences of characters that they cannot immediately (reflexively)

classify. The problem is that the action of stopping a fast reflexive process, initiating a

hierarchy of slow cognitive processes with an unknown end point, and then restarting the

reflexive process is not a comfortable way to work when under the least bit of time pressure.

3) The second pass of a two-pass classification process produces a more realistic estimate of

the zero-rejection rate error rate for ESHC. This process may also reduce human-to-human

variability in the error versus rejection rate data.

4) Two machine classifiers outperformed ESHC on a test consisting of about 12,000 handprint

letters consisting mostly of upper case letters but containing a significant fraction of lower

case letters.

5) One machine classifier produced comparable performance to ESHC on a test consisting

of about 12,000 lower case handprint letters.

6) Two machines produced error rates at rejection rates of 5 and 10%, respectively, that were

less than that produced by ESHC at a rejection rate of 3.5% on a test consisting of about

60,000 handprint digits. Extension of these ESHC results beyond a rejection rate of 3.5%

would require adoption of a forced cognitive process like that described in Ref. [6] ,
but such

a process would be far too slow to be economically significant. Therefore, processing a set of

isolated handprint digits by machine, and having humans reclassify a low confidence subset

should produce a lower error rate at less cost than conventional ESHC of the same set.

7) There is no reason to believe that ESHC capabilities are inherently superior to machine

capabilities in the classification of isolated handprint characters. Currently, machines appear

to be superior at some aspects of the task, humans at others. Machine performance will

improve within the next few years; human performance will not.
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4 Sample Selection, Image Capture and Reference

Data

Norman Larsen and Bob Hammond

4.1 Introduction

This section describes the selection of sample forms and the creation of the digital images

and reference data for the training and test materials for the Second Census OCR Systems

Conference. The primary objective was to create a reliable statistical sample of a large

number of different writers.

During the 1990 Census, over 100 milhon forms were collected from the American public.

Most households received a “short form” booklet that included seven questions about each

person and several questions about the housing and living arrangements; most of the ques-

tions were multiple choice. About 17 milhon households received a “long form” booklet that

included up to 33 questions about each person and up to 26 questions about the housing and

living arrangements. Many of these questions, such as those about ethnic origin, migration,

cost of utilities, and occupation required handprinted responses.

All of the images for this Conference came from the 1990 Census long form’s Industry and

Occupation questions. Initial plans included only images scanned from microfilm. The

average quality of these images was sufficiently poor to warrant midstream adjustments

to plans. A subsample of images were then created from the original paper documents.

The methods and techniques to capture these images, and the related reference data, are

described in separate sections below. The bulk of the dictionary data came from the 1980

Census, but it was augmented with training data from the 1990 Census as described in

Chapter 5. All census forms were processed in seven regional processing offices. In general,

after extensive handling and clerical edits, the forms were microfilmed and the mark sense

answers were captured from the film by FOSDIC scanners (Film Optical Sensing Devices for

Input to Computers). The long form booklets were then sent to key entry operators who
captured the handprinted answers.

The industry and occupation questions were the basis for the miniforms created for this

Conference. Questions 28b: “What kind of business or industry was this? Describe the

activity at location where employed.”, 29a: “What kind of work was this person doing?”,

and 29b: “What were this person’s most important activities or duties?” were the basis of

the training and test miniform. The answers to these questions along with question 28a,

“For whom did this person work?”, were keyed during the 1990 Census and used by a

semiautomatic process to determine a 3 digit industry and 3 digit occupation code for each

member of the labor force. These coding lists were derived from the Census Bureau Standard

Industrial Classification (SIC) and the Standard Occupational Classification (SOC) coding

schemes.

Question 28a was not included in the test to comply with the privacy provisions required by
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Title 13 of the U.S. Code. A manual check was also made on the other fields to ensure that

they did not contain information that might identify any individual.

Two templates were used to print the forms: one was mailed directly to the household and

the second was filled in by census enumerators who visited those households that did not

return a form by mail. These two form types had small differences in the layout that the

OCR systems had to recognize.

4.2 Images Digitized from Microfilm

In total, about 120,000 rolls of microfilm were created during the 1990 Census; approximately

53,000 rolls contained images of the long forms. After the census, the film was packed in boxes

(maximum 92 rolls per box) and shipped to the archives. The sample for this Conference

consisted of the 25th box of long form film from each of the seven processing centers (giving

644 rolls of microfilm). This arbitrary selection rule was selected to include a representative

mix of questionnaires that were completed by respondents and returned by mail and those

that were completed by census enumerators. Each roll of film had a control number for

census processing. By coin toss, the odd numbered rolls were used for the training images

and the even numbered rolls were used for the test images.

Each roll contained images from up to 400 forms. From this film, one image was created

from each long form questionnaire that met the following conditions: 1) the form was for

an occupied housing unit (not vacant), 2) the form was the Census “form of record” that

was used to generate the final population count for the census, and 3) the form contained

writing in the answer box for question 29a.

A Kodak Imagelink Digital Workstation was used to generate a TIFF image of each selected

form. The scanner was set at 200 dots per inch and conversion was set to transpose black

and white from the silver halide negative microfilm. The microfilm density was used to set

the scanner binarization parameters for the entire roll. This was not entirely successful as

there was considerable variance in the quality of the images obtained from a single roll. This

was partially caused by a shadow created during filming by a fold in the form that passed

through the questions.

A crude check was made on the number of pixels in a portion of the general area where the

response was expected. If the number of pixels was too high (too much noise) or too low (too

faint an image) the image was rejected. Each acceptable image was then cropped further

and converted into the NIST IHead format. [2]

A file containing the keyed data for each form was used to extract the reference data for

each image in the sample. These keying operations had some verification for quality control

purposes, but an unknown amount of error still remained in this reference data. See the

discussion of reference data for the paper subsample.
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4.3 Images Digitized from Paper

During the preparation of the images digitized from microfilm, the Conference Committee

concluded that the average quality of the images was sufficiently poor to cause substantial

problems for many OCR systems. Some committee members suggested that a test of im-

ages from microfilm only would be more a test of image enhancement tools than of OCR
techniques. Indeed, some participants dropped out of the conference after seeing only the

microfilm images. To avoid the risk of invalidating the entire study, a subsample of images

was created from the original paper forms (even though this decision delayed the original

conference schedule by several months).

The original paper booklets for those forms captured in the Jeffersonville Indiana processing

office had been retained for future OCR testing. These forms were collected from Indiana,

Illinois, Michigan, Ohio, and parts of Missouri. About 28,000 forms corresponding to the

previously chosen microfilm forms were pulled from storage. Census staff in Jeffersonville

located each form and page in the sample, attached a bar code label for future identification,

and cut the labeled page from the booklet. These pages were shipped to Census headquarters

and scanned on a Fujitsu 3096 scanner using dynamic thresholding at 200 dots per inch. Staff

at NIST made appropriate changes to the postprocessing software which was used to count

pixels, crop and convert the resulting TIFF image files to the NIST IHead format.

For some bar-code labels, the label paper was not opaque enough to prevent information

under the label from being captured by the scanner. This smudged a fraction of the labels

to the extent that the NIST software could not read the bar code. These bar codes were

keyed into the system manually.

The data for the microfilm sample was keyed and an 8% sample was verified during the

Census, and it was known that the results of the keying were not error free. To eliminate

this source of error in the scoring, the paper form data was keyed twice by different keyers

and discrepancies were resolved by a third keyer. The resulting transcriptions were used as

the reference data for the portion of the test scanned from paper. Both the machine OCR
results and the results keyed during 1990 Census were scored against this reference data.

4.4 Conclusions

The effort to produce images and reference data for this conference reiterate [or confirm]

the need to evaluate plans and equipment along many different dimensions before selecting

a method. An integrator should attempt to select the methods and equipment that produce

the “best” result for the intended application. Some of these considerations are described

below:

1) Many different CCD scanners (or components) are now available in the commercial market.

This equipment varies widely in cost, speed, resolution, fiexibility and transport capabilities.

2) The algorithm for converting the grayscale bit pattern to a binary image is critical if

binary images are going to be recognized. Lower cost binarization schemes do not provide

much fiexibility for source materials that have significant variability. Future algorithms
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that perform adaptive thresholding may solve this problem, but may add cost to the initial

equipment acquisition and to the system performance.

3) There are moderate differences in the performance of the various methods of lossless

compression of binary data that are commonly used today. However, this variable had

minimal impact on the production efforts for this conference.
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5 Dictionary Production for the Conference

Jon Geist and R. Allen Wilkinson

5.1 Introduction

The miniforms used as test and training material in the Second Conference were made from

a portion of the Industry and Occupation section of the 1990 Census Long form (D-2) that

contained questions 28b, 28c, 29a, and 29b. Each participant was asked to recognize the

handprint word and phrase answers on the test miniforms, remove all punctuation, convert

all lower case letters to upper case, and return the results to NIST for scoring.

As discussed in Chapter 3, humans do not usually recognize the characters within a word or

phase in isolation from the surrounding characters and then reconstruct the word or phrase.

Instead, they recognize the word or phrase as an entity using all sorts of context besides the

individual letters. Similarly, OCR systems need context to improve their performance. A
dictionary of allowed or expected words or phrases is one type of context that can be used

to improve the accuracy of current OCR systems.

Two types of data were used in the creation of the dictionaries for the Second Conference.

The first type was obtained from a sample of 132,247 of the forms containing the Industry

and Occupation answers obtained during the 1980 Census. The use of this sample simulates

the actual Census situation. Even though there is no way to predict exactly what words and

phrases will appear in any future census, the preceding census should be a good statistical

predictor of a large subset of the answers.

The second type of data used in dictionary creation were phrases from the training miniforms

used for the Conference. In fact, the dictionaries on the second training CD-ROM (SD 12)

and on the test CD-ROM (SD 13) had been augmented by inclusion of any new answers

from the CD-ROMs that had preceded them. Notice that these answers came from the

1990 Census, which was the sample from which the test data was drawn. Note also that the

dictionaries on any given CD-ROM were not augmented with answers appearing in the images

on that same CD-ROM, only with those from previously issued CD-ROMs. This simulates

the incremental extension of the dictionaries during a census by using data obtained earlier

in that census.

Within the above categories, three different types of dictionary were produced: word dictio-

naries, long phrase dictionaries, and short phrase dictionaries. One of each of these three

different types of dictionaries was made for each of the three answer fields on the miniforms.

The word dictionaries contained every unique word from a master list of phrase answ’ers

(after removing punctuation). The master list for each new CD-ROM was made from the

union of the 132,000 sample from the 1980 Census and the answers on every miniform that

had already been distributed to the participants on any earlier CD-ROM. The long phrase

dictionaries were similar to the word dictionaries except that they contained full phrases

instead of words. The short phrase dictionaries contained only those phrases that occurred

at least twice in the master list.
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There is a fundamental trade-off associated with dictionary size. Adding words or phrases

to a dictionary may improve the coverage of the dictionary over that application. Any

such increase in coverage will contribute to improved OCR accuracy. On the other hand,

every additional word or phrase in the dictionary increases the confusion among the different

words or phrases in the dictionary. This increase in confusion may contribute to reduced

OCR accuracy.

The coverage of the word dictionaries over the test answers was much greater than that of the

phrase dictionaries. On the other hand, there is no need to segment each phrase answer into

its constituent words, and there is less confusion among the entries in the phrase dictionaries.

This is particularly true of the short phrase dictionaries, which are much smaller than the

long phrase dictionaries with only slightly reduced coverage over the test answers. This fact

suggests that the Industry and Occupation answers come from a long-tailed distribution that

can be approximated as the union of two sets: a relatively small set containing commonly

occurring answers, and a very large set containing rarely occurring answers.

Obviously the addition of a word or phrase that does not actually appear in an application

can never improve coverage, only confusion. On the other hand, the addition of a word or

phrase that occurs a great number of times will almost certainly improve coverage more than

enough to compensate for any increase in confusion. The problem is that it is never possible

to know exactly which words or phrases will appear and which will not in any particular

application. Preliminary experiments that illustrate the competition between coverage and

confusion with increasing dictionary size are described in Section 5.3.

Because they carry little or no extra information, both punctuation and misspelhngs tend to

increase dictionary confusion. Furthermore, it seems unlikely that the Industry and Occupa-

tion codes assigned by the Census Bureau would be changed by removal of the punctuation

and correction of the misspelhngs. Therefore, punctuation was removed, not only from the

dictionaries, but from the reference data as well. This significantly reduced dictionary con-

fusion while at the same time increasing dictionary coverage. Unfortunately, the same sort

of gain was not possible with misspellings due to the presence of abbreviations.

Misspellings tend to be very similar to the word from which they are derived, and therefore

contribute very significantly to dictionary confusion. With but a few exceptions, the fact that

a misspelling is common means that the correctly spelled word is even more common. Since

the misspelled word and the correct word are easily confused, there are probably more cases

where the correctly spelled word is incorrectly recognized as the misspelled word and where

the misspelled word is incorrectly recognized as the correctly spelled word than there are of

the misspelled word being correctly recognized. Therefore, correcting misspelled words in

dictionaries should improve overall system accuracy in context-based correction of raw OCR.

Abbreviations, according to their purpose, tend to be much shorter than the words or phrases

from which they are derived, so there is very little similarity. Therefore, they do not con-

tribute strongly to dictionary confusion unless they happen to be similar to some other

entirely different word or phrase (which is, of course, sometimes the case). As a result they

are unlikely to be recognized as the word or phrase from which they are derived. In con-

trast to the case with misspellings, removing common abbreviations from dictionaries should
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reduce the usefulness of the dictionaries.

In any case, neither the misspellings nor the abbreviations were removed. There were two

reasons for this. The first is that neither NIST nor Census could come up with a foolproof

procedure to automatically remove the misspellings in the time allotted without also remov-

ing the abbreviations. The second is that the Census key entry operators were instructed

to preserve misspellings and abbreviations, rather than correct them in their work. So in a

certain sense, this made the test more realistic.

5.2 Producing the Dictionaries

Figures 7, 8, and 9 in this section illustrate some of the steps in the dictionary creation

process, and Figs. 10, and 11 present small samples of the actual dictionaries at various

stages in the process.

0 0 4 1 412 354

ZNT-OPERATOR

OPEATOR

OPERATOR

0 0 1 1 250 259

GLASS MARUF

MANUFACTURING GLASS

MANUFACTURING GLASS

0041 11 274

FFED LOOT

SELLING CATTLE

SUPERVISOR

0 0 0 1 391 674

LAMPSHADE MARV

MAKING LAMPSHADE

GIVING

0 0 4 2 910 179

BRING JUDGE

JUDICAL

JUDGE

Figure 7: Sample entries used to illustrate the dictionary creation process.

A list containing the keyed responses to three of the Industry and Occupation questions

from a sample of 132,247 1980 Census Long Forms was used to make the dictionaries. The
list has four lines of Industry and Occupation data for each Census form in the sample.

The first line. Line 0, is the Census-Bureau assigned Industry and Occupation code for the

information that follows on the next three lines as shown in Fig. 7. Line 1 is the response

to question 28b: “What kind of business or industry was this? Describe the activity at
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BKING JUDGE

FEED LOOT

GLASS MARUF

LAMPSHADE MARV

ZNT OPERATOR

Figure 8: Examples of phrases extracted from Line 1 entries of the sample list after removal

of punctuation and alphabetic sorting.

BKING

FFED

GLASS

JUDGE

LAMPSHADE

LOOT

MARUF

MARV

OPERATOR

ZNT

Figure 9: Examples of words extracted from phrases in the sample list.

location where employed.” Line 2 is the response to question 29a: “What kind of work was

this person doing?” . Line 3 is the response to question 29b “What were this person’s most

important activities or duties?”.

Line 0 of the 1980 sample of Industry and Occupation answers was not used for dictionary

production. The other three lines, Line 1, Line 2 and Line 3 were treated as phrases, and

processed to produce separate phrase and word dictionaries for each line.

The very small (short sample) list in Fig. 7 will be used to demonstrate the process of

dictionary creation. The phrase lists are generated by removing the same line of each field

from each record in the 1980 answer sample. For instance, one phrase list contains all the

Line 1 responses. All characters other than digits and upper case letters were replaced with

spaces in these phrases. Fig. 8 lists all the Line 1 phrases for the short sample list with

punctuation removed. Notice, for example, that the hyphen in ZNT-OPERATOR has been

removed.

Even though not shown in Fig. 8, the master lists created from the original Census data have

many entries with multiple consecutive spaces. Most of these were caused by the previously

mentioned replacement of punctuation with spaces. Multiple spaces were converted into one

space to clean up each phrase list. Each phrase list was then sorted in alphabetical order

and all duplicate entries removed. The sorted lists were then visually edited by humans to
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ACADEMIC INSTUTUTION

ACADEMIC LIBRARY BOOK JOBBER

ACADEMIC PEDIATRIC PRACTICE

ACADEMIC PHYSICS

ACADEMIC RESEARCH

ACADEMIC RESEARCH CENTER

ACADEMIC SCIENCE DEPTS

ACADEMIC TEACHING

ACADEMIC UNIVERSITY

ACADEMIC ZOOLOGY RESEARCH TEACHING

ACCESS CONTROL MFG

ACCESS FLOOR SERVICE CENTER

ACCESSIBILITY SURVEYOR ANALYST

ACCESSORIES FOR KNITTING HILLS

ACCIDENT INSURANCE FIRM

ACCOOPIONAL TABLES

ACCOUNBEE HEATING

ACCOUNT

ACCOUNT PAYABLE DIVISION

ACCOUNT REP

Figure 10; Examples of real phrases found as entries in the 1980 Census sample.

remove any sensitive information such as addresses, personal names, small-company names

that might reveal the identity of the person filling out the form, and small town names. As a

final check the new list was sorted and all remaining duplicates were removed. The resulting

lists were very large. For Line 1 there were 46,593 unique entries, while Line 2 had 46,813

and Line 3 had 61,384. A small subset of real Line 1 phrases from the original 1980 Census

sample is shown in Fig. 10.

The dictionaries described so far are called long phrase dictionaries. This means every unique

phrase from the original list is represented in one of the dictionaries. Shorter dictionaries

were made from the long phrase dictionaries. Word dictionaries that contain only the unique

words in the long phrase dictionaries are shorter, as are dictionairies made by keeping only

phrases which occur more than once in the long phrase dictionaries. For instance, the short

phrase dictionaries for Line 1 had 8,216 entries; for Line 2, 8,516 entries; for Line 3, 7,831

entries. This is an excellent example of reduction in dictionary size, while still maintaining

good coverage over the original list of answers. The short phrase dictionaries are 15% to

20% of the size of the long phrase dictionaries, but contain 60% to 70% of the phrases in the

latter. It turns out that the coverage of the short phrase dictionaries was almost as large over

the test data, while the long phrase dictionaries provided only a few percent more coverage.

The conversion of phrase lists into word lists is rather simple. Using UNIX utilities, it is

possible to replace all spaces with newlines. This puts each word on a line of its own. The
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ADVICORY

ADVISEMENT

ADVISING

ADVISMENT

ADVISOR

ADVISORS

ADVISORY

ADVOCACY

ADVOCATE

ADVRTISING

AENCY

AEOROSPACE

AERATOR

AERESOL

AERIAL

AERO

AEROBIC

AEROCPACE

AERONAUTICAL

AEROPLANE

Figure 11: Examples of words extracted from phrases in the 1980 Census sample.

word lists are sorted in alphabetical order and duplicate entries removed. The word list for

Line 1 had 13,745 words, Line 2 had 13,879 words, and Line 3 had 16,333 words. Again

there is a significant reduction in dictionary size compared to the long phrase dictionaries.

This can be attributed to the redundancy of words within the phrase lists.

Fig. 9 shows the words produced from the phrases in the short sample shown in Fig. 8. Fig.

11 shows a small sampling of the words from the real Line 1 Census data. Notice that both

of these examples contain misspelled words, some of which are misspellings, some of which

are abbreviations, and a few of which might be either.

5.3 Dictionary Coverage versus Confusion

During the Conference test period, Wolfgang Lehman of CGK used one set of on-time and

one set of late entries to carry out an experiment on dictionary coverage. He had all of the

images on the test CD-ROM hand-keyed and added the phrases and words to the dictionaries

provided on the test CD-ROM to make augmented dictionaries. The net effect was to

substantially increase the coverage of dictionaries over the test data to nearly 100% with

only a little increase in dictionary size. It is important to understand that this approach

cannot be used in a real Census. This is the reason that CGK_1 and CGK_3 were not included

among the submissions listed in Chapter 2. Nevertheless, the results of this experiment are
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Figure 12: Field distance and error rates versus field rejection rate for two late CGK systems

that differ only in dictionary coverage.
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SYSTEM FIELD ERROR RATE FIELD DISTANCE RATE

CGK^ 0.5050 0.2459

CGK_3 0.3812 0.2066

NIST/CGK.3 0.2100 0.1542

Table 6: Comparison of effects of competition between dictionary coverage and confusion.

Tbe dictionaries used to create CGK_2 had moderate coverage over the test data set and

moderate confusion. Those used to create CGK_3 had high coverage and moderate confusion.

Those used to create NIST/CGK_3 had 100% coverage and the minimum confusion consistent

with this level of coverage.

interesting as discussed below.

CGK_0 (on-time) and CGK„2 (late) were obtained from raw OCR results corrected with

word and phrase dictionaries that contained between about 16,000 and 19,000 words and

phrases, respectively, per field type. These dictionaries were made from the dictionaries

provided on the test CD-ROM. CGK_1 (on-time) and CGK_3 (late) were obtained from the

same raw OCR results corrected with the augmented dictionaries created as described above,

and having nearly 100% coverage over the test miniforms. The augmented word and phrase

dictionaries were about 300 words and 2000 phrases larger than the original word and phrase

dictionaries, respectively. The results for CGK_2 and CGK^3 are compared in Fig. 12. It is

important to understand that the only difference between CGK_2 and CGK..3 is the content

of the dictionaries used in correcting the raw OCR. The additional confusion among the

entries in the augmented dictionaries due to the addition of about 2% more words and 11%

more phrases was more than offset by the improved coverage obtained with the additional

size. This was assured because only those entries needed to achieve nearly 100% coverage

were added to the dictionaries.

On the other hand, Thomas Breuel of IDIAP built a phrase dictionary with significantly

greater coverage in a way that could be used in a real Census application. In essence, he

combined all of the unique words in the three different word dictionaries in different plausible

combinations to create different phrases. The resulting phrase dictionary, which consisted

of about 150,000 phrases, had about 87% coverage over all three fields of the test miniform.

This is to be compared with about 66% for a dictionary of 20,000 phrases made from the

unique phrases in the short phrase dictionaries. The 20,000 phrase dictionary resulted in a

significantly lower error rate than the 150,000 phrase dictionary. In this case, the additional

confusion among the entries in the larger dictionary due to its greatly increased size was not

offset by the improved coverage. The problem was the following: For every additional entry

that improved the coverage over the set of test images, there were roughly 20 additional

entries that did not. Therefore, the increase in error caused by increased confusion was

greater than the decrease in error caused by increased coverage.

After the Conference test period, Patrick Grother of NIST carried out a related experiment.

He passed the CGK results through the NIST dictionary-based correction algorithm using

the minimum-size long phrase dictionaries needed to get 100% coverage over the test images,

namely the reference data for the test. These dictionaries had only about 2,000 phrases per
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field. The zero-rejection rate field-error and distance rates are compared with those for

CGK_2 and CGK_3 in Table 6. Notice that there is a significant improvement over CGK_3,

and that this improvement is associated entirely with decreasing the dictionary confusion to

the minimum level consistent with 100% coverage.

5.4 Conclusions

A few tentative conclusions can be drawn from the material presented in this chapter.

1) The US Census Industry and Occupation answers, including misspellings and abbrevia-

tions, appear to come from a long tailed distribution that can be approximated as the union

of a rather small set of commonly occurring words and phrases and a very large set of rarely

occurring words and phrases.

2) Increasing dictionary coverage will not improve OCR accuracy if the increased coverage

is purchased at the price of too large an increase in dictionary confusion.

3) The removal of punctuation from the Second Conference test removed confusion from the

dictionaries and contributed to lower error rates than would otherwise have been obtained.

4) Misspelled words tend to contribute more strongly to dictionary confusion than to dictio-

nary coverage, and the failure to remove them from the dictionaries probably contributed to

higher error rates than would otherwise have been obtained.

5) Language models should help overcome the trade-off between dictionary size and confu-

sion.
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6 Scoring Procedures and Issues

Jon Geist

6.1 Introduction

Scoring the OCR of words and phrases is not as straightforward as scoring that of isolated,

properly segmented characters. An isolated character is either correct or incorrect, and even

though some character images are truly ambiguous, the problems caused by this fact are

readily handled by a statistical analysis. [5] [8]

Each field containing a word or phrase is also either correct or incorrect, and the field error

rate for fields of words and phrases is analogous to the error rate for isolated characters.

Unfortunately, systems can achieve the same field error rate in very different ways that can

have profoundly different effects on any given application. For instance, fields with only one

incorrect character make the same contribution to the field error rate as fields in which every

character is incorrect. Yet the former are probably useful in most applications, at least in

the case of long phrase fields, while the latter are clearly useless in all applications.

One solution to the above problem is to perfectly simulate an application when testing

OCR systems for that application, and to score according to the performance achieved in

that simulation. Another solution would be to use a generic scoring method that could

be tailored for use with any given application. These represent the opposite ends of the

spectrum of possible solutions to the scoring problem.

The disadvantage of the first solution is that it requires creative effort every time a new ap-

plication is considered or even when some aspect of an application is changed in a significant

way. The difficulty with the second solution is that it does not currently exist, and short of

developing and testing it, there is no way to be sure that it is even possible.

A second accuracy measure, the field distance rate, was defined and used in scoring the test

results of the Second Conference to partially compensate for the problem with the field error

rate that was mentioned above. This chapter defines both of these accuracy measures. It

also discusses limitations of the field distance rate with respect to the Census use of the

Industry and Occupation data, and possible extensions in the direction of a generic scoring

method.

The next section of this chapter defines the field error and distance rates. One problem with

the field distance rate is that it cannot be calculated until the characters in the hypothesis

and reference phrases are aligned making allowances for characters being deleted from the

reference and characters being inserted into the hypothesis by the OCR process. Therefore,

the section defining the field error and distance rates is followed by a section discussing string

alignment and related problems, then by a section discussing problems with the field distance

rate and their possible solution through generalization, and then by a concluding section.

Before starting the next section it is, however, important to give more precise definitions of

some terms used in this report.
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A classification or recognition process assigns an ASCII character to an image of a character,

or a set of ASCII characters to an image of a word, phrase or some other similar string of

characters. A classification may be obtained from human key-entry or from some machine

process, and it may be correct or incorrect. If a classification is defined to be correct, then

it is a reference, otherwise it is a hypothesis.

A rejection process divides a set of classifications into rejected classifications and accepted

classifications. Only the accepted classifications are considered valid. It was the classification

of isolated characters that was of interest in the First Conference, so rejection and acceptance

were carried out character by character. It is the classification of complete phrases that is

the task of interest for this Conference, so rejection and acceptance are carried out field

(word or phrase) by field rather than character by character.

All submissions to the Second Conference provided a single confidence value for each answer

field. This is a number (between zero and one for this Conference) that orders the classifi-

cations according to expected reliability. Example 1 of Appendix B shows a representative

hypotheses file and its related confidence file.

6.2 The Field Error and Distance Rates

Two different measures of classification error were calculated for this Conference: the field

error rate and the field distance rate. The field error rate Rfe(rf) as a function of field

rejection rate r/ is defined as

Urj)
F,(r^) + F,(ry)’

where the field rejection rate Vf for a set of field classifications is defined as the ratio of the

number of fields rejected by the rejection process to the total number of fields presented for

classification. In eq. (1), Fc(rf) is the number of accepted fields that are correctly classified

and Feivf) is the number of accepted fields that are in error, that is to say differ in any

way from the corresponding reference fields. For the Second-Conference test, all characters

except digits, letters, and single spaces were filtered out of hand-keyed classifications to make
the references. Therefore, the filtered out characters did not contribute to the field error or

distance rates.

If a confidence is associated with each field hypothesis, any desired field rejection rate rf

can be approximated by choosing a confidence threshold and rejecting any field hypotheses

having confidences less than or equal to the threshold and accepting any having confidences

greater than the threshold.

As an example of the field error rate, suppose that an OCR test requires reading two images,

image 1 and image 2, and that each image contains a single answer field. Further suppose,

that the references for images 1 and 2 are DRIVES TRUCKS and WAITS ON TABLES, respec-

tively, and that four different OCR systems, SYSTEM A, SYSTEM B, SYSTEM C, and

SYSTEM D produce the hypotheses shown in Table 7 for those images. The number of field

errors and the field error rates for these systems are as shown in Table 8.
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image

SYSTEM A
hypothesis

SYSTEM B
hypothesis

SYSTEM C
hypothesis

SYSTEM D
hypothesis

1 DRIVES TRUCKS DRIVES TRUCKS DRIVES TRUCK DROP FORGING

2 WAITS ON TABLES WAITS TABLES WAITS TABLES WRITES TABLOIDS

Table 7: Hypotheses from four OCR systems for two images having DRIVES TRUCKS and

WAITS ON TABLES as references.

Contribution to field error Fe(r/)

image

SYSTEM A
hypotheses

SYSTEM B
hypotheses

SYSTEM C
hypotheses

SYSTEM D
hypotheses

1 0 0 1 1

2 0 1 1 1

field error rate 0.0 0.5 1.0 1.0

Table 8: Contribution to the field error Rfe{rf) for hypotheses of the preceding table, and

resulting field error rates.

Notice that the field error rate for SYSTEM C, which is almost correct, is the same as that

for SYSTEM D, which is completely wrong. Clearly, the field error rate cannot distinguish

between hypotheses that will have no adverse effect on an application and those that will,

even in the absence of fine distinctions. This is the reason for introducing the field distance

rate as an alternative accuracy measure that complements the field error rate. In fact, the

only reason for reporting the field error rate at all is that it is the most intuitive error measure

and is, therefore, of general interest.

For this Conference, the field distance Rfd{rf) as a function of the field rejection rate ry was

defined as

Rjd{rf) =
CAr,)

CAr,) + CArfy
(
2

)

where Cc(rf) is the number of characters in the field that are correctly classified when the

hypothesis and reference fields are aligned as described in Section 6.3, and where

CeiTf) = C,{rf) + Q{rf) + Csivf), (3)

with Cd{rf), Ci{rf), and Cs{rf) representing the respective number of character deletion, in-

sertion, and substitution transformations needed to convert each reference into the associated

hypothesis according to some particular alignment of the two strings.

Therefore, before calculating the field distance between a hypothesis and its reference, it is

necessary to align the hypothesis and reference to identify the characters that have been
deleted from the reference and the characters that have been inserted into the hypothesis.

This step is also a prerequisite for identifying the characters in the hypothesis that are correct

and those have been substituted for characters occurring in the reference. String alignment
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reference WAITS ON TABLES

hypothesis WRITES TABLOIDS

aligned ref. WAITS ON TABLiiES

alignment WsITddss TABLiisS

aligned hyp. WRITddES TABLOIDS

Table 9: Example of an alignment of a hypothesis with its reference.

reference WAITS ON TABLES

h\’pothesis WRITES TABLOIDS

aligned ref. WAITiS ON TABLiiES

alignment WsITiSddd TABLiisS

aligned hyp. WRITESddd TABLOIDS

Table 10: Example of an alternate alignment of a hypothesis with its reference,

is discussed in the next section.

6.3 String Alignment

This section discusses how the Levenstein distance is used to align to field hypotheses and

references prior to scoring, and some of the problems with using the Levenstein distance for

string alignment. The fact that many different strings alignments, some intuitively satisfying

and some clearly wrong, can have the same Levenstein distance, is a problem. This problem

is further complicated by the fact that is is often impossible to choose between equally

intuitive alignments except by statistical arguments.

Tables 9 and 10 show alternative alignments of WRITES TABLOID, which is the SYSTEM D
hypothesis for image 2 of Table 7, with WAITS ON TABLES, which is the reference for that

image. Each lower case d, i, or s that appears in the alignments, aligned references, and

aligned hypotheses represents a deletion, insertion, or substitution error, respectively.

Notice that there are 2 deletion errors, 2 insertion errors, and 4 substitution errors in the

alignment of Table 9, but that there are 3 deletion errors, 3 insertion errors, and 2 substitution

errors in the alignment of TABLE 10. Therefore, the contribution of WRITES TABLOIDS to

Ce{rf) in eq. (3)is2 + 2 + 4 = 3H-3 + 2 = 8, for either alignment. Notice also that the

alignment of Table 10 has one more correct character (the S in WAITS).

The first step in obtaining both alignments was to calculate the Levenstein distance matrix

[9] [10] [11] wuth 5, 3, and 1 set as the penalties for deletion, insertion, and substitution

transformations from the reference WAITS ON TABLES to the hypothesis WRITES TABLOIDS.

The second step was to trace a minimum penalty path backwards through the Levenstein

matrix (backtracking). For Table 9, the path corresponding to a substitution was chosen

instead of the path corresponding to either an insertion or a deletion whenever choosing to

move in the direction of a substitution during backtracking would give an equal penalty path

(a tie) through the matrix. For Table 10, a substitution was chosen instead of an insertion.
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WsITddss TABLiisS

WsITdsds TABLiisS

WsITdssd TABLiisS

WsITsdsd TABLiisS

WsITssdd TABLiisS

WsITddss TABLisiS

WsITddss TABLsiiS

Table 11: Some of the equal penalty alignments of WRITES TABLOIDS with WAITS ON
TABLES when the deletion, insertion, and substitution penalties are 5, 1, and 3, respectively.

reference SOLD OLD YELLOW RUSTED STEEL

hypothesis SOLD STEEL

alignment 1 SOLDdddddddddddddddddd STEEL

alignment 1 SddddOddddddLddddddddD STEEL

Table 12: Example of two equal penalty alignments that are not equally intuitive.

but a deletion was chosen instead of a substitution, whenever these choices occurred.

For any given set of deletion, insertion, and substitution penalties, the Levenstein algorithm

allows creation of a matrix from which all of the equal penalty alignments may be obtained

by backtracking. Table 11 gives some of the other equal penalty alignments for the d = 5, i

= 1, s = 3 case discussed above. The total penalty for all of these alignments is 24. Notice

however, that if the penalty for substitutions were changed from s — 3 to s = 4, then the

total penalty for the alignment in TABLE 9 would be increased to 28, while the total penalty

for the alignment in Table 10 would be increased to only to 26, despite the fact that both of

these alignments make the same contribution to Ce(r/).

Even though the alignments of Tables 9 and 10 make equal contributions to Ce(r//), they do

not make equal contributions to the field distance rate Rfd{rf) because they have different

numbers of correct characters Cc(r/). If the sum of the penalties for deletion and insertion

is equal to twice the penalty for substitution, different alignments with the same Levenstein

distance may have different numbers of correct characters. For each extra correct character,

the longer alignment has one more deletion, one more insertion, and two less substitution

errors. The net effect is that the alignment of Table 9 has a field distance rate of 0.4706,

while that of Table 10 has a field distance rate of 0.4444. In some cases this produces a

more plausible alignment, but in other cases it produces a much less plausible alignment.

This problem is illustrated in Table 12, which compares two alternative alignments of SOLD

OLD YELLOW RUSTED STEEL and SOLD STEEL. As far as the Levenstein distance is concerned,

each of these alignments is equally good, and whichever one is chosen for scoring will depend

upon the choices made during backtracking.

Both alignments in the example of Table 12 result in the same Levenstein distance and the

same contribution to the field distance rate as defined in eq. (2). However, this need not be

the case when words are torn apart like SOLD to acheive an alignment. This is illustrated
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reference COLD ROLLED STEEL PLATE

hypothesis 1 COLD ROLLED STEEL

hypothesis 2 COLD ROAST EEL PLATE

ahgned ref. 1 COLD ROLLED STEEL PLATE

alignment 2 COLD ROLLED STEELdddddd

aligned hyp. 2 COLD ROLLED STEELdddddd

ahgned ref. 2 COLD ROLLED STiEEL PLATE

ahgnment 2 COLD ROsddd STiEEL PLATE

ahgned hyp. 2 COLD ROAddd STiEEL PLATE

Table 13: Example of a very incorrect alignment having a lower Levenstein and field distance

that a more correct alignment.

in Table 13. Despite the fact that COLD ROLLED STEEL gets three of the four words of COLD

ROLLED STEEL PLATE correct while COLD ROAST EEL PLATE gets only two words correct, it

is the latter that has the lowest Levenstein penalty and the most correct letters.

In summary, the problem with all of the ambiguities associated with using the Levenstein

distance and backtracking as an alignment algorithm is the following. Suppose that two OCR
systems have comparable accuracy, but tend to make different types of errors. It is possible

under these conditions that one system will score higher than the other for some choices of

Levenstein distance penalties and backtracking strategies, but lower for other choices. Since

these choices are quite arbitrary, there is no objective way to choose one choice over another,

and there are far too many combinations (proportional to the square of the number of letters

in the alignment) to allow scoring all possible choices and averaging the results.

More complex (and time consuming) alignment algorithms that can be used to minimize the

field distance rate as defined in eq. (2) have been described. [12] Even these, however, do

not solve the problem illustrated in Table 13, which is associated with the actual definition

of the field distance rate. Possible solutions to this and other problems are discussed in the

next section.

In scoring the Second Conference tests the field distance rate was calculated from eqs. (2) and

(3) from the alignment of a hypothesis with its reference obtained by backtracking through

the associated Levenstein matrix. The penalties for deletion, insertion, and substitution

transformations of the reference into the hypothesis were 5, 1, and 3 for generation of the

Levenstein matrix, and the order of priority for breaking backtracking ties was correct,

followed by substitution, followed by insertion, followed by deletion.

6.4 Field Distance Rate: Problems and Generalizations

The preceding section discussed some some of the problems associated with the use of the

backtracking through the Levenstein matrix to obtain an alignment for use in calculating

the field distance rate. Even with these problems, and others mentioned in this section, the

field distance rate appears to be superior to the field error rate as an OCR error measure.
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Contribution to field distance Ce(r/)

image SYSTEM A SYSTEM B SYSTEM C SYSTEM D
transformation hypotheses hypotheses hypotheses hypotheses

1

deletions 0 0 1 1

insertions 0 0 0 0

substitutions 0 0 0 9

correct 13 13 12 3

2

deletions 0 3 3 2

insertions 0 0 0 2

substitutions 0 0 0 4

correct 15 12 12 9

field distance rate 0.0000 0.1017 0.1429 0.6000

Table 14: Contribution to the field distance Rfd{rf) for hypotheses being used as examples

in this Chapter, and resulting field distance rates.

This is illustrated in Table 14, which fists the contributions to the field distance and the

field distance rates for SYSTEMS A, B, C, and D of Table 7. Comparison of the data of

this table with that of Table 8 for the field error rate shows that the field distance rate gives

much more intuitively satisfying rankings of the results from different OCR systems.

Even so, the field distance rate, as defined in eq. (3), still suffers from the problem illustrated

in Table 13 that was mentioned in the last section. It also suffers, but with much less severe

effects, from the same type of problem affecting the field error rate that prompted the

introduction of the field distance rate in the first place. While it is able to distinguish gross

differences between the suitability of different hypotheses for a given reference, the field

distance rate as defined in eq. (3) is not able to distinguish finer distinctions. For example,

the hypotheses WRITER and WAITOR are equally good approximations to the reference WAITER

as far as the field distance rate is concerned, but not as far as most applications are concerned.

For most applications, a WAITER is something completely different from a WRITER, whereas

WAITOR is easily understood as a misspelling of WAITER.

Various generalizations of the field distance rate can be defined to solve these problems in

principle, but problems with the details of the implementation remain. For example,

rA = (4)
C,{rf) + C,{rfy

^ >

where

m,n[i]

Cg{rf)= Y, +

is a generalized version of the field distance defined in eq. (3).

(
5

)
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j h[j] w[j]

1 (W.W) WAITS

2 (A,R) WAITS

3 (1,1) WAITS

4 (T.T) WAITS

5 (,E) WAITS

6 (S,S) WAITS

7 ( ,)

8 (0.) ON

9 (M,) ON

10 ( , )

Table 15: First ten members of the ordered set of transformations t[j] of the reference WAITS
ON TABLES into the hypothesis WRITES TABLOIDS, and first ten members of the current

word w[j]^ both as a function of the alignment position j.

In eq. (5), P{ai) represents a generalized penalty that depends upon the alignment ai =
Gj[l]ai[2]...aj[n[i]] of the hypothesis for the ith field, i = 1,2, with its reference, and

Q{ti[j],Wi[j]) represents a generalized penalty that depends upon the transformation ti[j]

and current reference word Wi[j] at position j = 1,2, ...,n[i] of the alignment Gj-. The trans-

formation ti[j] is the ordered pair {x[j],y[j])i, where x[j] is the reference character that is

converted into the hypothesis character y[j] at alignment position j of alignment g^. Table

15 gives examples of t 2 [j] and W2 [j] for alignment positions i = 1, ..., 10 of the transformation

of the reference WAITS ON TABLES into the hypothesis WRITES TABLOIDS.

The generalized penalty Q{ti[j],Wi[j]) allows each character transformation at each location

in every different word of a test to be scored differently depending upon the impact on the

application of that particular transformation at that particular location. The generalized

penalty P(gj) allows alignments that tear words apart, as illustrated in Tables 12 and 13,

to be penalized more than alignments that preserve words. Ref. [12] and references therein

describe a generalization of the Levenstein algorithm that can be used to minimize the

generalized field distance rate of eq. 4 over all possible alignments.

Suppose that P{ai) = 0 for all fields indexed by z, and Q(ti[j],Wi[j]) = 1—S[x^ y], where 8[x^ y]

is the Kronecker delta (equal to 1 when character x = character z/, but zero otherwise). Then,

Cg{rf) = Ce{Tf). Therefore, the generalized field distance is identical to the field distance of

eq. 3 in this case.

Unfortunately, just because we are able to propose definitions of a generalized field distance

does not mean that we actually know how to tailor the generalized penalties Q(ti[j]^'Wi[j])

and P{ai) to any given application. It is clear that lower penalties will be associated with

transformations involving character strings hke S, ES, and ING at the end of nouns than with

the A in WAITER. It is also clear that the penalties associated with all transformations of

words like ON, A, and THE will be relatively low. Finally, it appears that a language model

for a given application will be necessary to tailor the penalty matrices to that application,

but the details how to do it are not obvious.
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6.5 Conclusions

Some conclusions can be drawn from the material presented in this Chapter.

1) The field error rate is not a good measure of OCR performance on words and phrases

because it cannot distinguish hypotheses that are almost correct from hypotheses that are

completely wrong.

2) The field distance rate as defined in eq. (2) in this Chapter is a better measure of OCR
performance on words and phrases because it can usually distinguish between hypotheses

that are almost correct and those that are completely wrong. Occasionally, however, coin-

cidental similarities between a completely wrong hypothesis and its reference will produce a

misleadingly low error rate.

3) The field distance rate is not an optimum measure of OCR performance on words and

phrases because it cannot make fine distinctions between different hypotheses, and cannot

be tuned to capture the requirements of different applications.

4) It is probably possible to generalize the field distance rate so that it can make fine

distinctions between different hypotheses and be tuned to capture the requirements of any

particular application, but a fairly sophisticated language model will probably be required,

and the details of how to carry out this project are not obvious at the time of the writing of

this report.
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7 Voting Systems

Patrick J. Grother

Described elsewhere in this report are performance results for all the entrants in the Second

Census OCR Conference. Three particpants submitted classifications markedly superior to

the average, though such systems still fail to classify almost two out of five fields correctly at

zero rejection rate. A frequently asked question in pattern recognition is whether competing

recognition systems fail to classify the same examples. Given the large error rates here, the

apparent complexity or the problem and the diversity of algorithms used, there seems to

be some suggestion that recognition failure between systems may be different and therefore

exploitable. However for a given image, recognition failure may not be systemic; rather it

could be a property of the imaged writing itself. In the systemic case it is possible that

different algorithms will not universally fail on a given field, and complementarity of the

classifiers will help. If however the handwriting is unreadable then no gain can be expected.

Generally both types of error are present.

The systems used to form the voting systems given below are ERIM.O, IDIAP_2, and CGK_2,

and only those fields imaged from paper are considered. An earlier effort, presented at the

conference is not discussed here since one of its voting members, CGK_3, was found to have

used dictionaries augmented by the real reference phrases, which are generally unavailable a

‘priori^ at least for the Census application.

This Chapter describes elementary voting systems using both the hypotheses and the confi-

dences of the contributing systems. However the use of confidence values is problematical;

each voting system generally derives confidence values on anbitrary and utterly disparate cri-

teria obtained from the recognition and dictionary retrieval algorithms. This inconsistency

makes sensible voting schemes more difficult to realize. Although the regulations for par-

ticipation in this conference stipulated that confidences must lie on the range [0.0, 1.0] there

was certainly no specification of the distribution of the supplied confidences. The relevant

procedure here is to transform confidences to yield values with some fixed distribution.

7.1 Normalization of Confidences

Figure 13 shows the very different confidence distributions of the three voting systems. A
simple transformation is applied to realize uniformly distributed confidences on the range

[0.0, 1.0]. If a deviate x has some arbitrary distribution p(x) then by applying some function

y = y(x) a distribution p(y) is obtained. If we further specify that y should be uniformly

distributed

p{y)dy =
0 < y < 1

otherwise
(6)

then by transforming x according to the fundamental transformation law of probabilities

p{y)dy = p{x)dx
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Figure 13: Comparison of distribution of confidence values generated by three OCR systems.
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3 Voters ERIM.O IDIAP_2 CGK_2 RAW NORM
Field Error 39.7 42.1 50.5 36.4 34.5

Field Distance 18.7 22.0 24.6 18.5 17.0

Table 16: Performance of three systems and two voting systems based on them.

2 Voters Reject % ERIM_0 IDIAP_2 RAW NORM
Field Error 0 39.7 42.1 39.3 34.4

Field Distance 0 18.7 22.0 20.6 17.3

Table 17: Performance of two systems and two voting systems based on them.

quickly yields the solution for y as being just the indefinite integral of the original distribu-

tion.

y = J
P(^) dx

Thus a confidence x is transformed to a value y which is just the area to the left of x under

the original distribution. This area is the value of the cumulative relative distribution.

The normalization transformation was applied to the confidences of the three systems. In

the cases of ERIM.O and IDIAP_2, approximately uniform confidence distributions were

sucessfully obtained. However the CGK_2 system supplied confidences obtained from com-

mercial hardware representing values in 4 bits, meaning that mostly only 16 discrete values

were submitted for the confidences of the 9000 fields. This is shown in Figure 13. One

consequence of this is that rejection is random over the examples hypothesized with iden-

tical confidences. Another consequence is that confidence normalization is not numerically

possible. One solution is to order the confidences around the fixed value, by adding small

unique amounts of noise correlated to the hypothesis string lengths. The only constraint

being that the maximum perturbation of the confidences should be much less than 2“"^.

7.2 Voter Systems

With three contributing systems the decision rules are simple. If all voters agree on the

hypothesis then there is no other choice. If two of three agree then the majority’s hypothesis

is used. In both of those cases the scalar confidence value is taken as the largest of the

majority’s confidences. If all three disagree, then that hypothesis with the largest confidence

is used. Table 16 shows the performances of the three contributing systems as reported

elsewhere, and of the raw and normalized confidence voting systems.

If the weakest of the three voting systems, CGK_2, is discarded an even simpler two voter

system is obtained. The decision is to use the output of the system that asserts its hypothesis

most confidently whether the two systems agree or not. The use of unnormalized confidences

is clearly futile for a two voting system: Table 17 shows that field distance deteriorates toward

the level of the inferior system’s (IDIAP_2) because it happens to have the higher distribution

of raw confidences.

When the normalized confidences of the ERIM_0 and IDIAP_2 entrants are used, the voting
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ERIM.O IDIAP_2 CGK_2 NORM GAIN

Reject for Field Distance <1% 55 74 84 66 -11

Reject for Field Distance < 3% 45 50 61 38 7

Reject for Field Error <10% 44 48 67 36 8

Table 18; Rejection percentages required to attain given field distance and field error rates.

system with best performance is obtained. The same large improvement in zero rejection

performance is obtained using two voters rather than three, as shown in Figs. 14 and 15.

The gains in performance at realistic rejection rates are more relevant to a real classification

system.

The graphs in Figs. 16 and 17 show the additive (VOTER-ERIM_0) and the multiplicative

(ERIM.O/VOTER) increases in the performance of the voting system compared to the better

lone system as a function of rejection rate. On both field error and distance measures the

voting system increasingly outperforms the ERIM_0 system until 43% of the hypotheses are

rejected. The improvement in the field distance remains superior until a higher rejection

rate than field error improvement because hypothesis strings can still be improved by voting

even when neither system is classifying the field entirely correctly.

However the gain statistics can be deceptive. A more economically pertinent question for

the Census application is what additional percentage of the hypotheses can be accepted

using a voting system while maintaining a constant tolerable error level. If one accepts

that the human-key-data-entry field distance rate of the dicennial census is 1.6% then what

percentage of ERIM.O’s and the voting system’s hypotheses must be rejected to achieve some

nominally lower rate like 1%? What are the reject rates for a 3% tolerable field distance,

or for a 10% field error rate? Table 18 gives the required rejection rates to achieve various

recognition criteria. The “NORM” column refers to the normalized ERIM_0 and IDIAP_2

voting system and “GAIN” is the improvement of that system over ERIM_0.

Although performance gains are available at low rejection levels, the first line of the table is

noteworthy. The best voting system is worse than the ERIM_0 system at realistic rejection

levels; 11% more hypotheses must be given to human key-data-entry personnel to achieve a

1% field distance rate on the accepted classifications.

The implication of this negative result is that the method used for combination of hypothe-

ses, including their confidence normalization, is partially retrograde. The ordering of the

confidences according to the indefinite integral of the confidence distribution takes no ac-

count of the value of that confidence, in terms of its relation to the probability of correct

classification of a field. This can only be determined if the by-field performance statistics

are available. For a fair voting system to be created, the confidences and hypotheses of con-

tributing systems would have to be available from some training set. Aside from partitioning

the testing materials used for the conference, such data is not available.
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7.3 Conclusions

The voting system offers both improvement and degradation of recognition depending on

the performance criteria used. These criteria are likely to be economically determined. The

voting systems described here are not sophisticated, and more research into trainable voting

systems is necessary. It should be possible to develop a confidence-normalizing method that

can be optimized on the training data. If so, it should produce results that are no worse

than the best individual system at all rejection rates, with greater improvement at targeted

rejection rates.

EFtlM_0 VOTir««Ol SV^STTEIWI

Figure 14: Comparison of field distance rates for VOTER system and ERIM_0 system.

EFtlM^O VERSUS VOmr^GI SVST-EM

Figure 15: Comparison of field error rates for VOTER system and ERIM.O system.
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Figure 16: Difference between field error and distance rates for VOTER system and for

ERIM-O system.

MUL.‘nF»LJCJVT1VE VOTINGI IMV^ROV'EMENTs ERIM O / VOTItSKBl

cn
mast

&

Figure 17: Ratio of field error and distance rates for VOTER system and for ERIM_0 system.
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8 Dictionary-based correction of raw OCR results

Jon Geist

8.1 Introduction

Some of the OCR systems in the Second Census OCR Systems Conference did not produce

field hypotheses before attempting dictionary-based corrections, and others did. Some of

the latter were submitted to NIST for scoring. Such hypotheses will be referred to as raw

OCR results to distinguish them from results that have been obtained after language-model

or dictionary-based context correction.

It is interesting to compare the raw OCR results obtained at the Second Conference with

the results obtained at the First Conference to assess the relative importance and difficulty

of different OCR tasks. It is also interesting to compare the raw OCR results from the

Second Conference with the results obtained after dictionary-based correction to focus on

the importance of the correction. This chapter describes these comparisons, and briefly

describes the method used by NIST for dictionary-based correction of raw OCR.

8.2 Raw OCR Results for the Second Conference Test

IBM, NIST and the University of Bologna submitted raw OCR results as well as the results

obtained after dictionary-based correction. Figures 18, 19, and 20 at the end of this Chapter

compare the on-time raw OCR results with the on-time dictionary-corrected results for

these three organizations, respectively. Neither NIST’s nor the University of Bologna’s late

submissions showed significant improvement over their on-time submissions, so they are not

shown here. On the other hand, the IBM late submission was a significant improvement,

and it is compared in Fig. 21 with the raw results from which it was obtained (the same

on-time raw results shown in Fig. 20).

The raw OCR results submitted by IBM and the University of Bologna were also run through

the NIST dictionary-based correction methods to compare the NIST methods with those of

the other two organizations. Those results are also shown in the figures mentioned above.

Perhaps the most significant results in Figs. 18 through 21 are the very high error rates for

the raw OCR. IBM, NIST and the University of Bologna all participated in the First OCR
Systems Conference. Table 19 compares the field distance rates for the raw OCR results

obtained on words and phrases at the Second Conference with the character error rates

obtained on isolated lower case letters at the First Conference for these three organizations.

The comparisons are shown for zero and fifty percent field rejection rates.

The field distance rate is the appropriate generalization of the character error rate for use

with words and phrases. If the only errors made in the Second Conference were substitution

errors, then the field distance rate would be equal to the character error rate, but the field

distance rate is more general in that it also accounts for deletion and insertion errors.
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ORGANIZATION
50% Rejec

2nd Conf.

tion Rate

1st Conf.

0% Rejec'

2nd Conf.

:ion Rate

1st Conf.

IBM 0.45 0.0183 0.50 0.1542

NIST 0.47 0.0458 0.54 0.2029

U. Bologna 0.52 0.0287 0.55 0.1548

Table 19: Comparisons of field distance rate for raw OCR results submitted by three organi-

zations in the Second OCR Systems Conference with lower-case letter error rates for isolated

character OCR results submitted by the same three organizations in the First Conference.

50% Rejection Rate 0% Rej, ection Rate

ORGANIZATION Before After Before After

IBM (ON TIME) 0.45 0.38 0.50 0.45

NIST 0.47 0.23 0.54 0.46

U. Bologna 0.52 0.40 0.55 0.43

IBM (LATE) 0.45 0.16 0.50 0.40

Table 20: Comparisons of field distance rates of raw (Before) and dictionary-corrected (After)

OCR results submitted by three organizations in the Second OCR Systems Conference.

The field distance rates at zero rejection rate for the Second Conference are roughly a factor

of three greater than the character error rates for the First Conference. These differences

are striking, and the differences at 50% rejection rate are even larger. This strongly suggests

that the OCR of isolated (properly segmented characters) is not the accuracy limiting step

in the recognition of the handprint words and phrases from the 1990 Census.

There was probably more cursive writing in the Second Conference test than in the First.

This, however, does not explain the differences shown in Table 19. Only 6% of the characters

in the Second Conference test were cursive. Even if there was no cursive in the First Con-

ference test and all of the cursive in the Second Conference test was recognized incorrectly,

the error rate would grow by less than a factor of 1.5, not by a factor of 3.

It is likely that the error limiting step in the Second Conference was associated with the

proper segmentation of words and phrases into characters or character fragments. This is

almost certainly true for the systems that carried out segmentation separately from recogni-

tion, but it is also likely for the other systems as well. Poor segmentation precludes accurate

recognition unless special measures are taken to compensate for under and oversegmenta-

tion. Most of the participants described special measures that they used to compensate for

these problems, and most of these involved intentional avoidance of under-segmentation, and

means for dealing with the resulting oversegmented character fragments.

Table 20 compares the field distance rate for the raw OCR (before dictionary-based correc-

tion) with field distance rate after dictionary-based correction for the same three organiza-

tions. The improvements at zero rejection rate are very modest. The improvements at 50%
rejection rate for two of the systems are somewhat better. Note that the top scoring systems

in the Second Conference had substantially lower field distances at zero rejection rate as well

58



as greater improvements with increasing rejection rate than the “After” results in Table 19.

Also, note that the late IBM “After” results, which are substantially improved over the on-

time IBM “After” results, were obtained from the same raw OCR data. The only difference is

the dictionary-based correction method. This level of improvement illustrates that many of

the participants were still making substantial changes to their systems after the completion

of the on-time test period. Chapter 3 showed that there is still room for improvement in the

state of the art in the recognition of isolated characters beyond that demonstrated in the

First Conference. For both of the reasons just mentioned, and for other reasons mentioned

elsewhere in this report, it seems likely that substantial improvements beyond those obtained

in the Second Conference are also possible.

8.3 Future Availability of Test Materials

It was decided at the Conference to allow the participants to submit new results on the

Second Conference test by anonymous ftp to NIST for scoring. By the time that this re-

port is available, the NIST Office of Standard Reference Data should be selling the Second

Conference training and test materials as Standard Database 11 (SD 11, training: references

and microfilm images on a CD-ROM); Standard Database 12 (SD 12, training: references,

paper images, and microfilm images on a CD-ROM); and Standard Database 13 (SD 13,

test: paper and microfilm images on a CD-ROM, reference on a separate disk). Anyone who
purchases the test data is free to submit the results to NIST for scoring. Submissions can

be made as follows in the format described in Appendix B. First, call Stan Janet at (301)

975-2916 to get a system (tar file) name. Then,

ftp sequoyah.ncsl.nist.gov or ftp 129.6.61.25

cd incoming

put /etc/motd filename

Sample images are available at the same ftp site to help interested parties to decide whether

or not they want to purchase one or more of the Special Databases. Sample images from

paper and their associated references can be found in

ind_occ/data3/d00

Sample images from microfilm and their associated references can be found in

ind_occ2/data/d00

More sample images from microfilm can be found in

ind_occ/data/dOO or ind_occ/data/d01

but only one of the mis files in these directories has an associated reference file.

It was also decided at the Second Conference meeting to provide the references for the test

data on SD13 at the same ftp site so that the participants could examine the types of errors

their systems had made. The references for the test can be found in

ocr_conf_2 /refs_paper . tax .Z
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ocr.conf_2/refs_microfilni.tar.Z

Since the references for the test are being distributed on the ftp site, the significance of

future submissions of test results will not be the same as for the original test. The only

reason for NIST to score these submissions is to assure uniformity of scoring and to keep

NIST apprised of the improving state of the art. If significant improvements in the state of

the art are observed, NIST may run a new test with materials that were reserved for this

purpose. Anyone who receives this report as a result of a direct mailing from the Image

Recognition Group at NIST will also receive a notice by letter of such a test, if and when

one is planned.

8.4 Dictionary-based Correction Methods

The character-recognition methods used by NIST in the Second Conference have been de-

scribed previously [7] [13], but the dictionary-based correction methods have not. Since the

latter may not be described elsewhere in the future, and since they are not very different

from many of the other methods used in the Conference, they will be briefly described here.

The NIST dictionary-based correction system is not too different from the ERIM system,

even though the NIST system was designed to work with raw OCR and the ERIM system was

not. The ERIM OCR system intentionally over-segments words and phrases into character

fragments, and does not produce a string of hypothetical characters for each field as an output

from the character recognition process. Instead, it produces a string of confidence vectors

for a subset of the unions (combinations) of the character fragments (including isolated

characters) that were obtained from the intentional oversegmentation of each field. Each

confidence vector consists of an ordered set of confidences, one for each possible character

class. Clearly, this string of confidence vectors cannot serve as a hypothesis for the string of

characters in the field. On the other hand, it can be used very effectively in dictionary-based

correction as shown by the ERIM results.

The NIST method was designed to work on character hypotheses rather than character frag-

ments, and with only the highest confidence hypothesis rather than a vector of confidences

for all possible hypotheses. Nevertheless, it has enough in common with the ERIM method

and most of the other methods to give some insight into how they function.

The NIST method required two dictionary searches. The first search was carried out on a

bit-mapped, digraph-encoded version of a short phrase dictionary to pick out some likely

candidate phrases from which to construct a much smaller dictionary for the second pass.

This first-pass search was very fast due to the way it was implemented even though the

entire dictionary was searched.

The first-pass search was followed by a second search through the candidate phrases selected

on the first pass. The candidate phrase with the lowest Levenstein distance [9] [10] [11] was

chosen as the field hypothesis. The first-pass method, which is covered by a US Patent that

has been allowed but not yet issued, is similar to the method described in Ref. [14].

How the first-pass method works is illustrated in Table 21 for the phrase LINE RUNNER. This

example uses an eight-character alphabet consisting only of the letters E, H, I, L, N, R, and
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Alphabet QEHILNRU
Phrase (OLINEQRUNNERO

Letters @LINE@RUNNER
Digraphs @L LI IN NE E@ @R RU UN NN NE ER R@

Bit-Map Coding of Digraphs

Bit QEHILNRU
@-byte 00001010
E-byte 10000010
H-byte 00000000
I-byte 00000100
L-byte 00010000
N-byte 01000100
R-byte 10000001
U-byte 00000100

Table 21: Example of bit coding of the digraphs in the phrase LINE RUNNER into eight

bytes for rapid dictionary search.

U, and the symbol which is used to designate the beginning of the phrase, the end of

the phrase, or a space between words in the phrase. Table 21 illustrates the rewriting of the

phrase LINE RUNNER in terms of digraphs. The digraphs are mapped onto eight bytes (called

the bit map) that represent the phrase as a bit-mapped code. One byte of the bit map is

allocated for each possible first letter of a digraph, and one bit in each byte for each possible

second letter of a digraph. Thus a 1 in some location in the eight-byte bit map indicates the

presence of a particular digraph in the phrase, and a 0 indicates its absence.

AU of the phrases in the short-phrase dictionaries were coded as illustrated in Table 21 into

27, 32-bit machine words with a 27 letter alphabet consisting of the 26 English letters and

the @ symbol. Any other characters occurring in the phrases were deleted from the phrases

before coding. All of this was done off-line, and the resulting dictionary of bit maps was

stored for use during dictionary-based correction of the raw OCR.

During the correction process, each ASCII string that was obtained from the raw OCR
process was coded as described above. The resulting bit map was combined 32-bit word by

32-bit word with each dictionary bit-map with the logical AND operation, and separately

with the logical XOR operation. The 1 bits in all of the words in the bit map resulting from

the AND operation (hits) were summed to determine how many digraphs were common
between the raw OCR bit map and each dictionary bit map. The 1 bits in all of the bytes

in the bit map resulting from the XOR operation (misses) were summed to determine how
many digraphs were different between the raw OCR bit map and each dictionary bit map.

The confidence c for each dictionary phrase was calculated as c = 1 — m/(/i-|-m) where

h and m are the sums of the hits and misses for the phrase, respectively. A small number

(15 for example) of the dictionary phrases having the greatest c were selected for use in the

second search pass.

The second pass of the NIST dictionary-based correction uses the Levenstein distance method.

This method is quite robust, but it is too slow to be used on the entire dictionary. For this
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reason the digraph-based method is used first. Not only is the latter very fast when bit

mapped as described above, but it is also a very local method. It looks only at which let-

ters follow immediately after other letters, and has no global information except the phrase

start and end digraphs. This locality complements the Levenstein method very well because

the Levenstein distance, while using both global and local information, depends heavily on

global information and is very tolerant of local errors.

Use of only the top-ranked phrase from the digraph-based first pass produced field distances

that were worse than the raw OCR. Addition of the Levenstein distance-based second pass

produced results that were essentially as accurate as those obtained from use of the Lev-

enstein method on an entire phrase dictionary, but in a small fraction of the time. The

fractions of the time devoted to the digraph search and to the Levenstein distance are some-

what dependent upon details of implementation. As a rough approximation, it takes about

5% as long to calculate the digraph confidence for two strings as it takes for the Levenstein

distance. The digraph algorithm is also readily modified for IC chip implementation in a

highly parallel architecture as described in a pending NIST patent.

The Levenstein distance method has been discussed in connection with its use in determining

string alignments for scoring in Chapter 6, and is well documented in the references cited

earlier in this section. In short, it takes two strings of characters as input, an unknown string

and a string from a dictionary, and it uses user-assigned penalties to minimize the sum of

the penalties for the alignment of the two strings through dynamic programming. These

penalties are arbitrary, but they can be interpreted as negative logarithms of probabilities.

As pointed out in the viewgraphs in the Systems Summaries, the method used by ERIM
can be interpreted as a Levenstein distance method. In this interpretation, the probability

that a given union of character fragments represents a particular character in a dictionary

phrase is approximated by the confidence of the recognition of the union as that character

during the OCR process. It would be fairly straight forward to extend the NIST Levenstein

distance method in this direction. However, this would be of little use without also developing

satisfactory methods for oversegmentation and for selecting a reasonably small number of

unions of character fragments for use in the Levenstein-fike method.

The NIST method could also be extended to use different types of probabilities in a way
that would complement an ERIM-like method. The prior probability of occurrence will

be reasonably reliable for any raw OCR result that is encountered more than once during

training. A generalized Levenstein distance penalty formula can be devised to account for

insertions and deletions as well as substitutions. In essence it treats all such combinations

of these errors as general transformations of small groups of letters into other small groups

of letters. Given the existence of the prior probabilities mentioned above, all of the other

probabilities necessary to build a Bayes classifier could be obtained from the same training

data.

Such a classifier would be poor competition for an ERIM-like classifier on any raw OCR
string for which a reliable approximation to the prior probability was not available from the

training data. On the other hand, if a raw OCR string were represented a number of times

in the training data, and if the training data were representative of the application, then
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the estimate of the prior probability should be quite reliable with an uncertainty that can

be estimated by standard statistical procedures. In this case, a Bayes classifier, with its

statistical language model of the training data, could be more accurate than an ERIM-like

classifier.

Notice in this connection that an ERIM-like classifier has no more language model than

the dictionaries it uses. Its performance is ultimately limited by the relative accuracy of

the probability estimates (confidences) generated by the OCR classification of the unions

of character fragments. Actually it is quite tolerant of moderate errors in these confidences

due to the constraints imposed by the dictionary words. Since ERIM-like methods and

Bayes classifiers use very different types of information, their results should be somewhat

complementary instead of completely redundant. Thus, when combined properly with a

more sophisticated confidence normalization than that demonstrated in Chapter 7, they

might produce substantially better results than either one alone.

8.5 Conclusions

A few tentative conclusions can be drawn from the material in this chapter:

1) The recognition of isolated (properly segmented characters) is not the accuracy limiting

step at the current state of the art for OCR of handprint words and phrases.

2) Segmentation of fields into characters (or character fragments and the subsequent recom-

bining of the fragments) is probably the accuracy limiting step at the current state of the

art for OCR of handprint words and phrases.

3) One possible solution to this problem is to use sophisticated languages models or dictionary-

based methods to correct the output of the character recognition step.

4) Over the next few years, the state of the art in the OCR of words and phrases for Census-

like applications will probably be improved substantially beyond what was demonstrated at

the Second Conference.
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Field Distance Rate (Paper)

Figure 18: Comparison of on-time raw OCR results (NIST_9) with results of dictionary-based

correction by NIST system (NIST_0).
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Field Distance Rate (Paper)

Figure 19: Comparison of on-time raw OCR results (UB0L_9) with results of on-time

dictionary-based correction by UBOL system (UBOL.O) and by NIST dictionary-based cor-

rection system (UBOL_9g).
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Figure 20: Comparison of on-time raw OCR results (IBM_9) with results of on-time

dictionary-based correction by IBM system (IBM_0) and by NIST dictionary-based cor-

rection system (IBM_9g).



Field Distance Rate (Paper)

Figure 21: Comparison of on-time raw OCR results (IBM_9) with results of late dictionary-

based correction by IBM system (IBM_3) and on-time NIST dictionary-based correction

system (IBM_9g).
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A The Call For Participation

Jon Geist

225/B063/NIST

G’burg MD 20832

June 23, 1993

To whom it may concern:

Subject: 2nd Census OCR Systems Conference

In May of 1992, the U.S. Bureau of the Census and the National Institute

of Standards and Technology (NIST) held a conference on optical character

recognition (OCR) of hand-printed characters. Various tests focused on the

recognition of individual characters, and the results were encouraging.

However, most participants agreed that larger samples of handwriting were

needed to tackle the more realistic problem of processing images of forms

that contain unconstrained hand print

.

Census and NIST are now preparing for a 2nd OCR Systems Conference to

further advance this research. They are constructing a data base to

contain: images of handwriting from the 1990 Census forms; ASCII text

answers corresponding to each image; dictionaries with common words and

phrases found in the answers; and some generic image processing software.

Examples may be obtained from the ftp server at NIST (see enclosures for

details) ; larger samples for training and testing will be distributed on a

series of CD-ROMs.

The test will measure the ability of OCR systems to perform in a "worst

case scenario". The images are being digitized from microfilm and may have

lower quality than images created from the original paper questionnaires.

Also, the 1990 Census questionnaires were designed for key entry data

capture of handwriting, and therefore do not contain any design features

that might facilitate machine recognition. Other tests using smaller

samples of images lifted from the original paper will help to gauge the

effect of image quality on OCR performance.

This conference is being organized by the following Committee:

Bob Hammond, Robert Creecy, Norman W. Larsen, Randy M. Klear, and Mark J.

Matsko, US Bureau of the Census; Charles L. Wilson, Jon Geist, and

R. Allen Wilkinson, National Institute of Standards and Technology;

Jonathan J. Hull, Center of Excellence for Document Analysis and

Recognition; Thomas P. Vogl, Environmental Research Institute of

Michigan; and Christopher J. C. Burges, AT&T Bell Laboratories.

The Committee is chaired by Jon Geist, and the Conference and related
activities will be run by NIST for the Committee with R. Allen
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Wilkinson serving as the technical liaison for the Conference.

The approximate schedule for the research and Conference follows:

Sample data on ftp server

1st training data CD-ROM

2nd training data CD-ROM

Test data CD-ROM

Test results due from participants

Conference to announce/discuss results

Publish report

late June 1993

ecirly August 1993

early September 1993

November 1993

November 1993

February 1994

June 1994

Seven enclosures provide more information about this research and how

to participate in the conference; ENCLOSURE 0 provides an overview.

Sincerely,

Jon Geist

A.l Enclosure 0: General Information

Enclosure 1 shows five miniforms cropped from 1990 Census Long Forms. The

training CD-ROMs will contain between 10,000 and 50,000 of these images

and the corresponding ASCII answer (reference) files. The test CD-ROM will

be distributed in late October with between 10,000 and 50,000 more images

but no reference files. The Conference is scheduled for February of 1994.

The training and testing materials will be distributed as NIST Multiple

Image Set (MIS) files in a compressed IHEAD format on separate CDROMs.

Each MIS file will contain five images (like on the enclosure) . Notice

that there are two different form types that are being extracted as

miniforms. The most obvious difference between them is the relative

location of the large black boxes and the right-most vertical line.

However, the location of the answer field boxes relative to the large

black boxes is also different.

Participants will be expected to return their classification results

(hypothetical classifications) in a NIST MFS file format as illustrated by

the dOOfOO.hyp file shown in Enclosure 2. The hypothetical classifications

will be scored against references classifications like those in file

dOOfOO.ref of Enclosure 2. The reference files will be included with the

training materials, but not with the test materials. Participants may also

return field level rejection or confidence files as indicated by the files

named dOOfOO.rjx and dOOfOO.con in the SYSTEM.NAME subdirectory tree of

Enclosure 2. Character level confidence and reject files will not be used
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as discussed in Enclosure 3. More detailed file creation and naming

specifications for the h3rpothesis, rejection, and confidence files will be

included with the training materials. Finally, the training and test

materials will have identical directory formats to make the transition

from training to testing as smooth as possible.

Two measures of field accuracy will be used to score the hypothesis files

submitted by Participants. The first of these is the field error fraction,

that is, the fraction of the h3rpothetical fields that differ in any way

from the reference fields. The second is a measure of the distance between

the hypothetical and reference fields. Both will be plotted as a function

of rejection fraction if either confidence or rejection files are

submitted with the hypothesis files. Enclosure 3 provides more details

about the scoring.

Enclosure 3 also makes some points about the contents of the images in

Enclosure 1 that may affect participation and scoring. Beyond those

points, however, it should be mentioned that the images in Enclosure 1 are

among the best image quality in the hand-print region that have been

produced to date. The poorest quality images will be removed from the

training and test sets with an automated procedure, but there will be

poorer quality images in what remains than shown in Enclosure 1, and

poorer quality hand print as well. To get an idea of the range of image

and print quality, you may obtain by anonymous ftp a representative sample

of the types of images that will be sent for training and for testing from

sequoyah.ncsl.nist.gov, IP 129.6.61.25.

More details can be found in Enclosure 2. This site will also have a

whatsnew subdirectory in which important dates and other important

information will appear once they become available. Most conference

activities will be run using the anonymous ftp site.

Enclosure 4 is the format for an application to participate in the 2nd

Conference. Anyone who sends a signed copy of this letter to me before the

training data is sent out for writing on CDROM will receive the training

materials and test materials when they are sent out. The training data may
be ready for writing on the CDROM by July 15. As soon as a firm date is

set, it will be posted in the whatsnew subdirectory mentioned above.

The Committee reserves the right to distribute the training and test

materials to anyone who returns the form letter after the date specified

above, depending upon the availability of these materials. There may also

be restrictions on the number of participants and colleagues from a single

organization that can actually attend the meeting, and the Committee may

request that a single participant from a single organization represent the

entire organization and all of its systems.
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Notice that the enclosed application format requires the applicant to sign

a statement that he or she agrees to abide by the rules of participation

stated in Enclosure 5. Finally, Enclosure 6 is a draft of a form for

describing your system that will be sent with the test materials; it is to

be returned at the same time as your test results. If an applicant fails

to provide the information requested on this form (presumably because it

is proprietary), that applicant will still be allowed to submit results,

and attend the main meeting, but may not be allowed to attend sessions

where participants who have provided this type of information describe

their systems and their participation in the conference. The decision on

this matter will be made on the basis of how many participants provide the

requested information and how many do not. In case the number of

applicants exceeds the capacity of the meeting facilities, the Committee

reserves the right to limit attendance to those participants (and a number

of colleagues to be decided) submitting results that exceed a performance

threshold chosen to fill the meeting room. This decision will be made at

the discretion of the Conference Committee who may, nevertheless, poll the

participants for their feelings about this issue.

Comments or suggestions may be sent to me at

geist@magi.ncsl.nist
.
gov

or

Jon Geist, (301) 590-0932 (FAX).

Please do not suggest that we use any other format other than MIS and

IHEAD as changes from these formats are not practical. Also, if there is a

large volume of comments, you may not receive a personal reply to your

comments, but they will be taken into account in the final plans for the

Conference

.

Requests for technical information about the data and other information at

the FTP site should be addressed to

urtQmagi . ncsl . nist
.
gov

or

R. Allen Wilkinson, (301) 590-0932 (FAX).

A.2 Enclosure 1: Example of mis file contents
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Figure 22; This page contains the last two miniforms in the example of a typical mis file

having a total of five miniforms.
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A.3 Enclosure 2: Examples of File Contents and Structures

A sample of the type of images that will be used in the testing phase of

the Conference can be obtained by anon3rnious ftp from

sequoyah.ncsl.nist.gov, IP 129.6.61.25.

The images are in the files in the following directory structure:

ind_occ

I

data diets docs man sre

dOO ... dYY

dOOfOO.mis ... d00f99.mis

dOOfOO.ref ... d00f99.ref

The directory ind_occ is an exact mirroring of what the CD-ROM discs will

look like except that there may be more subdirectories dYY. The data

directory will contain the image (MIS) files and the reference (REF)

files. The diets directory will contain the dictionaries that are

discussed later. The sre directory will contain all the source code needed

to read the MIS files. This source code has been written and compiled on a

SUN workstation using SUN OS 4.1.1 and works on that platform. We can not

guarantee that this code will work on any other platform or operating

system. The man directory contains the manual pages for the programs and

routines supplied in the sre directory.

At the time of this mailing, no reference files for the sample directory

on the ftp site, except dOOfOO.ref, are available. The reference files

will definitely be supplied with the training MIS files.

The five sample images shown on Enclosure 1 are in mis/dOO/dOOf00 .mis

.

Examples of the MIS file and related hypothesis subdirectory structures

for the test CDROM and test results are shown below:

ind.occ
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SYSTEM.NAMEdata diets docs man sre

I

dOO ... dXX dOO ... dXX

dOOfOO.mis ... d00f99.mis dOOfOO.hyp ... d00d99.hyp

dOOfOO.con ... d00f99.con

dOOfOO.rjO ... d00f99.rj0

d00f00.rj9 ... d00f99.rj9

XX is a two-place digit that may be different for the training and test

data than for the sample data, as was mentioned above in connection with

the sample data at the anonymous ftp site.

The contents of dOOfOO.hyp (on left) and dOOfOO.ref (on right) are:

rOO.fOO MANAGER rOO.fOO

rOO.fOl MANAGER rOO.fOl

r00.f02 MHAGER r00_f02

rOl.fOO CONSTRUCTION rOl.fOO

rOl.fOl HHIHHIIH rOl.fOl

r01_f02 HIIHIRIII r01_f02

r02_f00 INSURANCE r02.f00

r02_f01 FINANUAL ANALYST r02_f01

r02.f02 PREMRIW REPDRD r02_f02

rOS.fOO BLANK r03_f00

rOS.fOl PHH r03.f01

r03.f02 THIH r03_f02

r04.f00 AERO SPME r04_f00

r04_f01 MANSGEC r04_f01

r04.f02 MAMALEWG r04_f02

MANAGER

MANAGER

MANAGER

CONSTRUCTION

ALL MASONRY WORK AND EQUIPMENT OPER

LAYING BLOCK FOUNDATIONS POURING CO

INSURANCE

FINANCIAL ANALYST

PREPARING REPORTS

BLANK

PERSONNEL RECEPTIONIST

TYPING FILING

AERO SPACE

MANAGER

MANAGERUG

There is no significance to the H and I above, except to represent what

some imaginary system produces as classifications when the hypothetical

character segments axe not isolated ch2Lracters.
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A.4 Enclosure 3: Comments about Enclosures 1 and 2

GOALS AND MATERIALS OF THE TEST

The digital images used in the Conference will contain most, if not all

ASCII characters, and other non-ASCII characters. The goal of the

recognition task will be to convert each image of an upper case or lower

case letter in the images into the corresponding upper case ASCII

character, to convert the image of each digit into the corresponding ASCII

digit, to covert all other characters into ASCII spaces, to replace

multiple spaces by a single space, and to report the result as the

hypothetical classification.

Refer now to Enclosures 1 and 2, and note that the top three miniforms

contain only hand print, but that the quality of the hand print is

variable both in character formation and in segmentation.

The bottom two miniforms show answer formats that key punch operators can

handle, even though most OCR systems will probably not be able to. This is

indicated by the hypotheses made up mostly of H^s and I’s to illustrate

the results of a made-up system that tends to classify anything that’s not

an ASCII character as either an H or an I. Presumably, the confidences for

these hypotheses would be very low or zero, so the adverse effect of these

aberrant answers on the OCR error rate (fraction) can be minimized by a

good rejection process.

Also, notice that the top field in the last form is empty. The key entry

operators were instructed to enter BLANK for the 1980 large sample as

shown in the reference file in the case of an empty field, but were not so

instructed for the 1990 Census. Instead they were to leave the field

empty. In fact, the procedure that we are using to remove the worst

quality images from the sample also removes images that have empty fields

as a side effect. Nevertheless, you will be instructed to enter BLANK into

any blank fields that you encounter as a precaution against a few sneaking

through. This is illustrated in the hypothesis file for the last form in

Enclosure 1

.

Spelling errors by the people filling out the forms and by the key entry

operators introduce problems that complicate scoring. These are

illustrated by the last field in the last record of the reference file:

r04_f02 MANAGERUG. The key entry operators were instructed to type what

was printed without attempting to correct spelling or typographical

errors, and MANAGERUG is what’s in the reference file, even though we

might guess that MANAGING is what was meant. However, sometimes the key

entry operators will not notice the misspelling, but will just type the

word that they recognize. This is illustrated by r03_f02 TYPING FILING,
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where the actual writing on the image gives Tiping, Filing. This field

also illustrates the fact that all punctuation has been removed from the

reference file data in accordance with the goal stated at the beginning of

this enclosure.

Some of the incorrect words in -the made-up hypothesis file shown in

Enclosure 2 can be corrected by a sufficiently powerful dictionary look-up

algorithm. Therefore, we will be providing word and phrase dictionaries

for use in performing the recognition task. These axe available at the ftp

site mentioned above in the directory diets. There are nine dictionaries

there

:

phrase_0.1ng word_0.1ng phrase_0.sht

phrase_l.lng word_l.lng phrase_l.sht

phrase_2.1ng word_2.1ng phrase_2.sht

These were made from a 132,000 sample of the fields fOO, fOl, and f02

obtained from the 1980 Census. The dictionary phrase.Z.lng contains all of

the phrases (after removal of punctuation and double spaces) occurring in

field fOZ in the sample, and the dictionary word.Z.lng contains all of the

words occurring in that field, while phrase_Z.sht contains all of the

phrases that occur more than once. The coverage of the short dictionaries

is quite good. Each contains only about 8000 phrases, but covers 70*/,, 70'/,,

and 60'/,, respectively, of the fields fOO, fOl, and f02 in the 132,000

phrases samples for each field. It is expected that the short dictionaries

will provide nearly this level of coverage for the 1990 Census data being

used for the Conference sample, training, and testing data. The long

phrase dictionaries are of the order of 45,000 phrases, and it possible

that they will not cover the 1990 Census data much better than the short

phrase dictionaries do.

The word dictionaries are about 13,000 words long. About half of the words

are either misspellings or abbreviations. We have looked into the

possibility of mapping these into correct words or roots, but have not

found a fool-proof way of doing this so fax. This fact combined with the

fact that the key entry operators do not always key what they were

supposed to introduces some uncertainties into how to best to use the

dictionaries, and the resolution of this problem is left to the

paxticipants . Remember, the goal is to reproduce the letters and digits

contained in the image, and the dictionaries will contain common

misspellings and abbreviations.

A report describing our preliminary study of the problems associated with

dictionairies both for correcting the results of OCR and for scoring can be

found in /pub/NISTIR/ir_5180 .ps at the ftp site listed above. It is in

PostScript (C) format; copies can be obtained from Allen Wilkinson at the

e-mail and FAX addresses listed above if you don’t have access to
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Postscript printing capability.

New, improved dictionaries will be provided with the training material.

They will have all of the words and phrases in the sample dictionciries

,

but will also include extra words and phrases. We do not expect the short

dictionaries to be much larger, but would not be surprised if the long

dictionaries grew substantially.

Since some potential participants may not have dictionary-based correction

algorithms available for use with their OCR results, we tentatively plan

to allow each participant to request that we riin no more than one set of

his or her test results through a NIST-developed correction suite. We

would then score both sets of results with two different measures of field

level accuracy as described below. Typical results for synthesized data

designed to simulate NIST participation in the Conference are show below

to give an example of what such dictionary correction can do:

SCORING EXAMPLES AND DEFINITIONS

FIELD LEVEL ACCURACY MEASURES FOR SIMULATED OCR CLASSIFICATION DATA

BEFORE DICTIONARY AFTER DICTIONARY

BASED CORRECTION BASED CORRECTION

field distance fraction 33’/. 21X

field error fraction 92’/. 51'/.

field level

rej . fraction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

field level

error fraction

0.51

0.46

0.40

0.35

0.31

0.27

0.24

0.20

0.14

0.06

Now we describe what these scores, which are what we plan to use for the

Conference, actually mean, and we welcome your comments on this aspect of

the plan, which is still being perfected. You will receive the final plan
with the training materials, and the decision of the Committee in this

regard will become final at that time. Lets start with a few definitions.
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A hypothesis classification (h3rpothesis for short) is an ASCII phrase that

has been assigned by a system to an unknown digital image of a hand print

phrase. A reference classification (reference for short) is the phrase

that the hypothesis phrase will be scored against. Unfortunately, the

reference phrase will not always be what you or I would consider the

correct phrase. Many images contain misspelled words. The key entry

operators were instructed to key what was printed on the form without

correcting misspellings. However, since humans recognize words rather than

letters when they are reading, the key entry operators sometimes entered

the correct version of a word rather than the misspelled version, never

noticing the misspelling. Also, many images contain abbreviations.

Unfortunately, as mentioned above in connection with dictionaries, we have

not been able to devise an automated way to map abbreviations and

misspellings onto corrected or expanded words or roots.

Under these conditions, the field error fraction, by itself, might not

give a good comparison of the performance of two different systems.

Therefore, we will calculate not only the field fraction but also a

measure of the distance between the hypothesis and the reference field.

To calculate the field error fraction, we will just compare each

hypothesis field with the corresponding reference field, including spaces.

If they axe identical, we will increment a correct-field hypothesis

counter, cf . If not, we will increment a error-field hjrpothesis counter,

ef . We will sum the cf and ef counters over all accepted (not rejected)

fields and the field error rate will then be calculated as

field error rate = ef/(cf+ef).

To calculate the distance between a hypothesis and reference field, we

will compute an alignment between each hypothesis and the corresponding

reference phrase that minimizes the Levenstein distance [1-5] between the

two phrases. In calculating the Levenstein distance, we plan to use 3, 1,

and 5, as the penalties for letter substitution, insertion, and deletion

errors, respectively. Finally, we will use the alignment of the hypothesis

and reference phrase to calculate

error rate = (s+i+d)/ (c+s+i+d)

,

where

s = # of substitution errors

i = # of insertion errors

d = # of deletion errors

c = # of correct characters
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aire suimned over all accepted fields.

We will calculate both the field error fraction and the field distance

fraction as a function of the field level rejection fraction. We will not

use any character level rejection fractions. The latter do not seem to

be useful as final system outputs even though they might be very useful in

obtaining the final system output. This is illustrated below for an image

that says

TIPING FILING

Suppose the h3rpothesis were

TIPMG FILMQ

with a field level confidence of 0.72, and with the following confidences

for the individual letters:

T 0.853

I 0.573

P 0.993

M 0.678

G 0.921

F 0.950

I 0.976

L 0.892

M 0.734

Q 0.621

If character level rejection were used, then with a rejection fraction of

0.00, the hypothesis would be

TIPMG FILMQ

but with a rejection fraction of 0.40, the h3rpothesis might be

T P G FIL

This does not seem to be useful for any application.

On the other hand, with a field level rejection of 0.72, either the entire

hypothesis along with all of its letters is accepted and included in the

set of hypotheses to be scored for both field error and distance, or else

it is rejected and withheld from the set to be scored, depending upon the

rejection threshold.
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This example can also be used to illustrate a potential problem with the

field error fraction. Suppose the hypotheses from three different systems

for the image that said TIPING FILING were

ENCLOSURE 3, PAGE 5

TIPMG FILMQ

TYPING FILING

and

TIPING FILING

and suppose that the reference phrase were TYPING FILING because the key

entry operator did not notice the misspelling. Then the system giving the

correct classification TIPING FILING would get the same bad score, ef = ef

+ 1, for the correct phrase as did the system giving the almost unreadable

TIPMG FILMQ, while the system giving the incorrect phrase TYPING FILING

would get a good score of cf = cf +1 for what is actually an incorrect

classification. Since this type of error is rare, it may not be a

significant source of error, but correlation of the field error fraction

with the field distance fraction for the various systems should help to

point out potential problems if there are any, or show that there are

none

.

[1] H. G. Zwakenberg, Inexact Alphanumeric Comparisons, The C Users

Journal, 127 (May 1991).

[2] R. Valdes, Finding String Distance, Dr. Dobb’s Journal, 56 (April

1992), and references therein.

[3] R. A. Wagner and M. J. Fischer, The String-to-String Correction

Problem, J. ACM 21, 168 (1974), and reprinted in S. N. Srihari, Tutorial:

Computer Text Recognition and Error Correction, IEEE Computer Press

(1985)

.

[4] M. D. Garris and S. A. Janet, NIST Scoring Package User^s Guide

Release 1.0, NISTIR 4950 (October 1992).

[5] M. D. Garris, Methods for Evaluating the Performance of Systems

Intended to Recognize Characters from Image Data Scanned from Forms,

NISTIR 5129, (February 1993).
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A.5 Enclosure 4: Form of Letter to Request Participation

YOUR RETURN ADDRESS AND AFFILIATION IF ANY

Jon Geist

NIST/225/B063

Gaithersburg, MD 20899

Dear Dr. Geist,

I hereby request that you include me as a participant in the 2nd Census

OCR Systems Conference. My information pertinent to participation is given

below:

YOUR MAILING ADDRESS INCLUDING YOUR NAME

YOUR ACTUAL ADDRESS IF DIFFERENT OR IF MAILING ADDRESS IS A PO BOX

YOUR VOICE PHONE NUMBER

YOUR FAX PHONE NUMBER, IF ANY

YOUR E-MAIL ADDRESS, IF ANY

I have read, understood, and agree to abide by the rules of participation

dated 93/06/16.

Sincerely,

YOUR SIGNATURE

A.6 Enclosure 5: Rules of Participation in 2nd Census OCR
Systems Conference

1) Participants shall not human classify or human correct any results. If

Participants human check any results as a sanity or blunder check, they

shall report this fact and any resulting changes when returning their

results

.

2) Paxticipants shall return their classification results within two

weeks after receiving the test materials from NIST in the format and

media requested by NIST.
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3) Paxticipants shall return one filled out summary sheet per entry

with all obligatory responses completed.

4) Attendance at the Conference may be limited to Participants chosen

by the Committee based on the space available to accommodate Participants.

5) Attendance at Conference session(s) where Participants openly discuss

their procedures and results may be restricted to those Participants who

have agreed to participate openly as demonstrated by the answers that they

provide on the form illustrated in Enclosure 6 that is to be returned at

the same time as the test results.

6) The Committee will mahe the final decision if any unforeseen

questions arise, and the only recourse (other than continued

participation) that is open to Participants not satisfied with any of

these decisions is withdrawal from further participation.

7) All Participant’s summary scores (error vs. rejection data, etc.)

will be given to the Participants at the Conference and will be

published in the Conference results. Participant’s own scores or all

scores might be sent to the Participants in advance of the Conference

at the discretion of the Committee, but if they are sent to one

Participant, they will be sent to all Participants.

8) Anyone to whom NIST sends the training materials will be listed as

participating in the Conference, and if they fail to return their test

results, this fact will be stated in the Conference report.

9) The Conference report will contain a disclaimer that is similar, if

not identical to the following:

The U.S. Bureau of the Census (Census) and the National Institute of

Standards and Technology (NIST) sponsored this Conference as part of

ongoing research into machine recognition of hand-print. Participants
may have submitted the results of experimental or developmental

systems for scoring even if they have commercial products in the

mcirket place, and the efforts of the participants in conducting the

tests were not proctored in any way. While some test results from
this Conference may appear in marketing literature, potential buyers

must beware! Census and NIST can make only one recommendation to

potential buyers: use your own application- specific data to

thoroughly test the performance of any system or component in a

realistic setting.

85



A.7 Enclosure 6: Example of Questionnaire to be Filled Out and

Returned for each Result Submitted for Scoring

FORM TO BE RETURNED FOR EACH TEST RESULT SUBMITTED FOR SCORING

OBLIGATORY RESPONSES:

SYSTEM NAME:

PARTICIPANT NAME:

VOLUNTARY RESPONSES

:

1. CHARACTER SEGMENTATION (PLEASE CHECK APPROPRIATE BOXES.):

DONE BEFORE CHARACTER RECOGNITION [ ]

DONE ITERATIVELY WITH CHARACTER RECOGNITION [ ]

CHECKING DICTIONARY AS PART OF ITERATIVE PROCESS . [ ]

DONE SIMULTANEOUSLY WITH CHARACTER RECOGNITION [ ]

BLOB COLORING C ]

SPATIAL HISTOGRAMS [ ]

LOCAL MINIMA AND MAXIMA [ ]

INTENTIONAL OVER SEGMENTATION [ ]

STROKE RECONSTRUCTION [ ]

VARIABLE SCALE NETWORKS [ ]

CENTRAL OBJECT [ ]

TIME DOMAIN NEURAL NETWORK [ ]

OTHER: [ ]

2. CHARACTER RECOGNITION

2.1

PREPROCESSING (PLEASE CHECK APPROPRIATE BOXES.):

CONVERSION TO GREY SCALE [ ]

HEIGHT/WIDTH NORMALIZATION WHILE PRESERVING SHAPE [ ]

SEPARATE NORMALIZATIONS FOR HEIGHT AND WIDTH [ ]

SLANT NORMALIZATION [ ]

ROTATION [ ]

LOCAL SUPPORT (GABOR, WAVELET, ETC.) [ ]

FOURIER OR SIMILAR TRANSFORM [ ]

OTHER: [ ]

2.2 SEPARATE FEATURE EXTRACTION AND CLASSIFICATION: [ ] YES

IF YES GO TO QUESTION 2.3, ELSE GO TO QUESTION 2.5.

2.3 FEATURE EXTRACTION (PLEASE CHECK APPROPRIATE BOXES.):

ADAPTIVE LEARNING [ ]

+SUPERVISED [ ]
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TIME DOMAIN NEURAL NETWORK [ ]

RECEPTOR FIELDS [ ]

OTHER SUPERVISED: [ ]

+SELF-ORGANIZED [ ]

KOHONEN MAPS [ ]

NEO-COGNITRON [ ]

OTHER SELF-ORGANIZED: [ ]

+OTHER ADAPTIVE: [ ]

*RULE-BASED [ ]

+LINEARIZING TRANSFORMS [ ]

LINE FIT [ ]

POLYNOMIAL [ ]

OTHER LINEARIZING TRANSFORM: [ ]

+CONVOLUTION/CORRELATION [ ]

-TRANSFORMS [ ]

HAND CODED [ ]

GABOR [ ]

OTHER TRANSFORMS: [ ]___.

-TEMPLATES [ ]

-OTHER CONVOLUTION/ETC: [ ]

+MODEL [ ]

STROKES [ ]

SHAPES [ ]

HOLES [ ]

CAVITIES [ ]

MORPHOLOGICAL [ ]

OTHER MODEL: [ ]

+STATISTICAL [ ]

PRINCIPAL COMPONENT ANALYSIS (K-L TRANSFORM) . . . [ ]

HISTOGRAM [ ]

OTHER STATISTICAL: [ ]

+OTHER RULE-BASED: C ]

2.4 CLASSIFICATION (PLEASE CHECK APPROPRIATE BOXES)

ADAPTIVE LEARNING [ ]

+SUPERVISED [ ]

MULTI-LAYER PERCEPTRON [ ]

LEARNED VECTOR QUANTIZATION [ ]

REDUCED COULOMB ENERGY [ ]

AFFINE TRANSFORMATION [ ]

OTHER SUPERVISED: [ ]

+SELF-ORGANIZED [ ]

CASCADED NEURAL NETWORK [ ]

LOOK-UP TABLE [ ]

PROBABILITY NEURAL NETWORK [ ]

OTHER SELF-ORGANIZED: [ ]_„
+OTHER ADAPTIVE: [ ]

87



*RULE-BASED [ ]

+GEOMETRIC [ ]

NEAREST NEIGHBOR C ]

K-NEAREST NEIGHBOR [ ]

PNN [ ]

OTHER GEOMETRIC: [ ]

+STATISTICAL [ ]

PROBABILITY [ ]

QDF C ]

POLYNOMIAL [ ]

OTHER STATISTICAL: [ ]

+OTHER RULE-BASED: [ ]

2.5 HYBRID FEATURE EXTRACTION AND CLASSIFICATION: PLEASE GIVE A DESCRIPTIVE

NAME FOR YOUR APPROACH USING TERMS FROM QUESTIONS 2.3 AND 2.4 WHERE

APPROPRIATE.

2.6 TRAINING

CHARACTERS IN SPECIAL DATA BASE 1 [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]

LOWER CASE [ ]

DIGITS [ ]

CHARACTERS IN SPECIAL DATA BASE 3 [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]

LOWER CASE [ ]

DIGITS [ ]

CHARACTERS IN SPECIAL DATA BASE 7 [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]

LOWER CASE [ ]

DIGITS [ ]

CHARACTERS IN SPECIAL DATA BASE 11 [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]

LOWER CASE [ ]

DIGITS [ ]

CHARACTERS IN SPECIAL DATA BASE 12 [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]

LOWER CASE [ ]

DIGITS [ ]

OTHER CHARACTER SETS [ ]

+APPROXIMATE TOTAL NUMBER USED [ ]

UPPER CASE [ ]
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LOWER CASE [ ]

DIGITS [ ]

3. DICTIONARY-BASED CORRECTION (PLEASE CHECK APPROPRIATE BOXES.):

*NOT DONE (REQUEST NIST CORRECTION) [ ]

*NOT DONE (REQUEST NO FURTHER CORRECTION) [ ]

DONE AFTER CHARACTER RECOGNITION [ ]

+FIRST (OR ONLY) PASS THROUGH A DICTIONARY [ ]

-USED WORD DICTIONARIES [ ]

NIST SUPPLIED [ ]

OTHER [ ]

-USED PHRASE DICTIONARIES [ ]

NIST SUPPLIED [ ]

LONG [ ]

SHORT [ ]

OTHER [ ]

-OBJECTS IN DICTIONARY CODED AS LETTERS [ ]

-OBJECTS IN DICTIONARY CODED AS OTHER [ ]

-SEARCH ENTIRE DICTIONARY [ ]

-SEARCH SUBSET OF DICTIONARY [ ]

HASHED OR INDEXED SEARCH OF DICTIONARY [ ]

OTHER [ ]

-EXACT MATCH REQUIRED [ ]

-STATISTICAL DISTANCE MEASURE MINIMIZED [ ]

-OTHER DISTANCE MEASURE MINIMIZED [ ]

+SECOND PASS THROUGH A DICTIONARY [ ]

-USED WORD DICTIONARIES [ ]

NIST SUPPLIED [ ]

OTHER [ ]

-USED PHRASE DICTIONARIES [ ]

NIST SUPPLIED [ ]

LONG [ ]

SHORT [ ]

OTHER [ ]

-OBJECTS IN DICTIONARY CODED AS LETTERS [ ]

-OBJECTS IN DICTIONARY CODED AS OTHER [ ]

-SEARCH ENTIRE DICTIONARY [ ]

-SEARCH SUBSET OF DICTIONARY [ ]

HASHED OR INDEXED SEARCH OF DICTIONARY [ ]

OTHER [ ]

-EXACT MATCH REQUIRED [ ]

-STATISTICAL DISTANCE MEASURE MINIMIZED [ ]

-OTHER DISTANCE MEASURE MINIMIZED [ ]

+MORE THAN TWO PASSES THROUGH DICTIONARIES [ ]

DONE ITERATIVELY WITH CHARACTER RECOGNITION [ ]

OBJECTS IN DICTIONARY CODED AS LETTERS [ ]

OBJECTS IN DICTIONARY CODED AS OTHER [ ]
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SEARCH ENTIRE DICTIONARY C ]

SEARCH SUBSET OF DICTIONARY [ ]

HASHED OR INDEXED SEARCH OF DICTIONARY C ]

EXACT MATCH REQUIRED [ ]

STATISTICAL DISTANCE MEASURE MINIMIZED C ]

OTHER DISTANCE MEASURE MINIMIZED C ]

NOT EXACTLY A DICTIONARY SEARCH, BUT SAME PURPOSE . [ ]

HIDDEN MARKOV MODEL C ]

OTHER C

4. OTHER CONTEXT BASED CORRECTION C ]

LETTERS BY SAME WRITER C ]

WORDS OR PHRASES BY SAME WRITER C ]

OTHER: [

5. PLEASE ATTACH A LIST OF REFERENCES TO YOUR PERTINENT PUBLICATIONS.

6. PLEASE ATTACH A LIST OF REFERENCES TO YOUR GENERAL TECHNIQUES, IF NOT

ALREADY DESCRIBED IN AN ATTACHED LIST OF REFERENCES.

7. IF THE ABOVE QUESTIONS DO NOT CAPTURE THE ESSENCE OF YOUR SYSTEM,

PLEASE PROVIDE AN ATTACHMENT THAT DOES.

8. IF OTHER THAN THE DIGITS, THE UPPER CASE LETTERS, AND THE LOWER CASE

LETTERS, PLEASE STATE THE FULL CHARACTER SET THAT YOUR SYSTEM

RECOGNIZES.
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B The Instructions For Participants

Dear Paxticipant in the 2nd Census OCR Systems Conference

The following will be included with Special Database 13, which will

contain the test materials for the conference:

Deax PcLXticipant in the 2nd Census OCR Systems Conference

Please find enclosed Special Database 13, which constitutes the test

materials for the Conference, and a DOS formatted 3.5" disk with a revised

version of chkfiles.

Also, note that there are duplicate entries in the dictionaries on Special

Databases 12 and 13. This is not a major problem; its only effect is to

somewhat increases the time needed to search the dictionaries. Even so, we

apologize for this error. This error can be easily corrected, paxticularly

if you were intending to copy the dictionaxies to a haxd disk anyway to

shoxten the seaxch time. Fox instance, on a UNIX system, you can make a

subdirectoxy new.dicts on a writeable medium, xun

soxt -u /cd/dicts/phxase_l.lng > new.dicts/phxase.l .Ing

etc., fox each dictionary of interest, where /cd is the mount point for

the CD-ROM, and carry out all dictionary searches on the contents of

new.dicts

.

All of the key points of the instructions for retuxning results to NIST

are given below, including minor corrections from the version that was

sent to you on Thursday, November 25. These instructions are reviewed

using imaginary NIST entries as examples. You will use your system name

wherever the NIST system name is used.
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B.l Example 1:

The first example is NIST’s first entry for the images scanned from paper.

It includes both hypothesis files (.hyp) and confidence files (.con) in

the following directory structure:

SYSTEM NAME: NIST

TEST DATA SET: directory data4 of Special Database 13

NIST.O.P

dOO ... d05

I

dOOfOO.hyp ... d00f99.h3rp

dOOfOO.con ... d00f99.con

The hypothesis files should have been created by running the images in the

mis files in data4 of Special Database 13 through an OCR system and then

through a dictionary-based correction system or through an OCR system that

carries out dictionary-based correction during the OCR process. If your

system produces raw OCR results for individual characters, without any

dictionary-based correction either during or following the OCR process,

then go to EXAMPLE 4 before reading this example. EXAMPLE 4 should

probably be read by all pcirticipants for a small point about strategy,

even though many will want to skip EXAMPLE 2 and EXAMPLE 3.

The h
3
rpothesis files should have the same format as the reference files

(.ref) on Special Database 12 and as illustrated below:

dOOfOO.hyp dOOfOO.con

r00_f01 MANAGER

r00_f02 MANAGER

r00_f03 MANAGER

rOl.fOl CONSTRUCTON

r01_f02 INSURANCE SALES

r01_f03 INSURANCE SALES

r02_f01 INSURANCE

r02_f02 FINANCIAL ANALYST

r02_f03 PREPARED REPORT

r03_f01 BLANK

r03.f02 TYPING

rOO.fOl 0.937722

r00_f02 0.905212

r00_f03 1.123456e-2

rOl.fOl 0.734562

r01_f02 0.534900

r01_f03 0.994562

r02_f01 0.865297

r02_f02 0.369254

r02_f03 0.273099

r03_f01 1.000000

r03_f02 0.667345
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r03_f03 TYPING

r04_f01 AERO SPACE

r04_f02 MANAGEMENT

r04.f03 MANAGING

r03_f03 0.934121

r04_f01 0.485903

r04_f02 0.123963

r04_f03 0.528631

The LINE.IDs in the hypothesis and confidence files must be identical to

those on the corresponding lines of the .mis files in Special Database 13.

There must be one and only one space between a LINE.ID and the hypothesis

or confidence that follows it.

The hypothesis must consist only of the ASCII digits, upper case letters,

and spaces character, and may not start or end with a space character. The

hypotheses will be scored by aligning them, including spaces, with the

corresponding references using the Levenstein distance algorithm and

scoring each deletion, insertion, and substitution as an error, and all

aligned characters as correct.

Only one confidence that applies to each h3rpothesis is allowed on the

corresponding line of the confidence file. The confidence must be a number

between 0.0 and 1.0 that can be read by the c atof (more precisely, the

stdtod) function. The h3rpotheses will be ordered using the confidences and

scored as a function of rejected fraction, where the hypotheses with the

lowest confidences will be rejected first.

The new.line character (UNIX) or the ASCII carriage return and line feed

characters (DOS) must follow each hypothesis and confidence (without any

intervening spaces) to terminate each line.

The format of the hjrpothesis and confidence files in the directory tree

should be checked by running the program chkfiles that can be compiled

from chkfiles. c that is provided in the src subdirectory on Special

Database 13 or from the enclosed DOS formatted 3.5" disk. The two versions

have somewhat different user interfaces. A man page giving instructions

for use is provided in the man subdirectory on each medium.

Any format errors that are discovered the hypothesis and confidence files

should be corrected by modifying the program that generates them rather

than by hand.

The entire directory must be in either UNIX or DOS format.

A hypothesis file must be provided for each mis file in data4 on Special

Database 13. The use of confidence files is optional, but you must provide

either all of them or none of them. We strongly prefer confidence files to

reject files, so only consider the next example if your system cannot

produce confidence files.
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B.2 Example 2:

The second example is NIST’s second entry for the images scanned from

paper. It includes both hypothesis files (.hyp) and reject files (.rjX),

X=0, 1, ..., 9, in the following directory structure:

SYSTEM NAME: NIST

TEST DATA SET: directory data4 of Special Database 13

NIST.l.P

I

dOO ... d05

dOOfOO.hyp

dOOfOO.rjO

dOOfOO.rj

1

. d00f99.hyp

. d00f99.rj0

. d00f99.rjl

d00f00.rj9 dOOf99 .rj9

Everything is the same as in the first example, except the reject files
look like:

dOOfOO.rjO

rOO.fOl 0

r00_f02 0

r00_f03 1

rOl.fOl 0

r01_f02 0

r01.f03 0

r02_f01 0

r02_f02 0

r02_f03 0

r03_f01 1

r03_f02 0

r03_f03 0

r04_f01 0

r04_f02 0

r04_f03 0

Only one rejection code that applies to each hypothesis is allowed on the
corresponding line of the rejection file. The reject code must be an ASCII
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zero or an ASCII one. A zero means that the corresponding hypothesis is to

be accepted and scored; a one means that the corresponding hypothesis is

to be rejected and not scored. Be Ccireful: this is exactly the opposite

of the interpretation of zero and one as used with confidence files. (We

apologize for this poor choice of convention.) If you do provide rejection

files rather than confidences, please try to provide at least one in which

a little less than half of the rejection codes are 1 and a little more

than half are zero giving a rejected fraction or rejection rate of about

0.50.

You may provide as many as ten sets of rejection files, but the benefit of

having one rejection file giving something near to but less than 50*/,

rejection is much larger than that from having a lot of sets of rejection

files, none of which produce close to (and preferably, less than) 50*/,

rejection.

The new_line character (UNIX) or the ASCII carriage return and line feed

characters (DOS) must follow each rejection code (without any intervening

spaces) to terminate each line.

The format of at least one set of reject files in the directory tree

should be checked by running the program chkfiles described in connection

with the first example. If you compile it from Special Database 13, it

will be necessary to globally change the extension from .rjX, for one of X

= 0, 1, ..., or 9, to .rej . (We apologize for this mistake. This is why

we have included a corrected version on the enclosed 3.25" DOS format

disk. In any case, since we have made this error, you may leave the set

you check with the extension .rej after you have finished checking it.) On

the other hand, if you compile chkfiles from the source code on the

enclosed 3.5" disk, you will be able to put the extension names to be

checked on the comand line.

Any format errors that cire discovered should be corrected by modifying the

program that generates the h3rpothesis or reject files rather than by hand.

As pointed out above, confidence files are our first choice. Our second

choice is both confidence files and rejection files, but we will score

using only the confidence files unless you can give us a pretty good

reason to also score using the rejection data. Our third choice is a set

of rejection files, at least one of which produces a rejection fraction

approximately equal to, but less than to 0.5. Our fourth choice is a set

of rejection files that does not have this property. Our last choice is

neither confidence nor reject files, but we will use it as our next

example just so we can give one example of the directory structure for the

images scanned from microfilm that are in data3 on Special Database 13.
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B.3 Example 3:

The third example is NIST’s first entry for the images scanned from

microfilm. It includes only h3rpothesis (.hyp) files in the following

directory structure:

SYSTEM NAME: NIST

TEST DATA SET: directory dataS of Special Database 13

NIST.O.M

I

dOO ... d05

I

dOOfOO.hyp ... d00f99.hyp

Everything is the same as in the first example, except there are neither
confidence nor rejection files.
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B.4 Example 4:

This example is of interest if you wish to return raw OCR results that

have never been subjected to dictionary-based correction, but the short

comment on strategy might be of interest to all participants.

If you return results as described below, we will compare the field error

and distance for your raw OCR results with those for any other raw OCR

results that we receive, including those from NIST.

We will also pass your raw OCR results through our dictionary-based

correction algorithm and compcire the field error and distance rates with

those for the other dictionaxy-based results.

The fourth example is NIST^s third entry for the images scanned from

paper, but it differs from EXAMPLE 1 in that the h3
rpotheses were produced

with raw OCR that outputs isolated characters rather than a dictionary-

based correction program or a dictionary-assisted OCR system that outputs

words or phrases from a dictionary rather than isolated characters. This

example includes both hypothesis files (.hyp) and confidence files (.con)

in the following directory structure:

SYSTEM NAME: NIST

TEST DATA SET: directory data4 of Special Database 13

NIST_9.P

dOO ... d05

dOOfOO.hyp ... d00f99.hyp

dOOfOO.con ... d00f99.con

The formats are the same as in EXAMPLE 1, except that the 9 identifies the

directory as containing raw OCR results. An example of the files is shown

below:

dOOf00 .h37p

rOO.fOl MAXGER

r00_f02 MANAGER

rOO.fOS MANIIGER

rOl.fOl CDNSTRUCTON

dOOf00 . con

rOO.fOl 0.937722

r00_f02 0.905212

r00.f03 0.347631

rOl.fOl 0.734562
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r01.f02 IBSVANCESALES

rOl.fOS HSORAND FCES

r02_f01 INSUTANCE

r02.f02 FINAFIALHNALYST

r02_f03 FREFARDREURT

rOS.fOl BLANK

r03_f02 TYPING

r03_f03 TYPXG

r04_f01 AEROSPACE

r04.f02 MANAGEMENT

r04.f03 MAIIAGWG

r01_f02 0.534900

r01_f03 0.000000

r02_f01 0.865297

r02_f02 0.369254

r02_f03 0.000000

r03_f01 1.000000

r03_f02 0.667345

r03_f03 0.934121

r04_f01 1.000000

r04_f02 0.904562

r04_f03 0.528631

The hypotheses are shown without any spaces between the words. You may

submit them either way, but unless your system is quite good at locating

spaces correctly, it will probably hurt rather than help our dictionary-

based algorithm, although it may help rather than hurt your raw OCR score.

Our dictionary-based algorithm will ignore all confidence values except

those that are zero. These will be used as an indication that the raw OCR

results axe so bad that dictionary-based correction is hopeless and the

best strategy is to try to minimize the damage. A made up example of what

our dictionary-based algorithm might do with the above hypothesis and

confidence files is shown below:

dOOf00 . hyp dOOf00 . con

rOO.fOl MANAGER

r00_f02 MANAGER

r00_f03 MANIIGER

r01_f01 CONSTRUCTION

r01_f02 INSURANCE SALES

r01_f03

r02_f01 INSURANCE

r02_f02 FINANCIAL ANALYST

r02.f03

rOS.fOl BLANK

r03.f02 TYPING

r03_f03 TYPING

r04_f01 AEROSPACE

r04_f02 MANAGEMENT

r04_f03 MANAGING

r00_f01 0.873451

r00_f02 0.979342

r00_f03 0.883290

rOl.fOl 0.983289

r01_f02 0.673098

r01.f03 0.000000

r02_f01 0.763291

r02_f02 0.459827

r02_f03 0.000000

r03_f01 1.000000

r03_f02 0.964195

r03_f03 0.782458

r04_f01 1.000000

r04_f02 0.983245

r04_f03 0.423486

The important point is that the two raw OCR hypotheses having confidence

zero have been replaced by blank lines, while the remaining hypotheses

have been replaced by phrases taken from a dictionary of expected phrases.

A blank line consists of a new.line character (UNIX) or an ASCII carriage

return and line feed character (DOS) immediately following the ASCII space
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character that follows the LINE.ID.

Replacing the raw OCR by a blank is a near optimum strategy to minimize

the field distance when you haven’t a clue even to how many characters

were in the original image. Guessing one or two ASCII Es might be a little

better; I haven’t studied this issue.
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B.5 A Summary of the Instructions Sent Out November 16 in

Light of the Above

1) Generate from zero to five different sets of your best hypotheses (with

confidence or rejection data, if possible) for the test images in data4,

and label them NAME.O.P through NAME_4.P, where NAME is the name assigned

to your system on the notice of acceptance in the Conference. Test their

format with chkfiles.

1) Generate from zero to five different sets of your best hypotheses (with

confidence or rejection data, if possible) for the test images in dataS,

and label them NAME.O.M through NAME_4.M. Test their foimat with chkfiles,

and correct the program that generated them if incorrect formats are

found.

3) Generate at most one set of raw (no dictionary based correction) OCR

hypotheses for the images in data4, and label them NAME_9.P. Test its

format with chkfiles, and correct the program that generated it if

incorrect formats are found.

4) Generate at most one set of raw (no dictionary based correction) OCR

hypotheses for the images in dataS, and label them NAME_9.M. Test its

format with chkfiles, and correct the program that generated it if

incorrect formats are found.

5a) If your OCR system produces its results on a UNIX-based system, after

having created the NAME.X.Y file directories, type from the directory in

which each is located:

tar -cvf NAME.O.P.tar ./NAME.O.P

compress NAME.O.P.tar

and so forth for each set of results. Then copy the resulting files to

either a DOS or UNIX formatted 3.25" floppy disk as described in 5al), 5a2)

,

or 5a3) below.

5al) For instance, if you have a 3.25" drive mounted on your UNIX machine

as /pcfs and you have a DOS formatted disk in that drive, you just type

cp NAME.O.P. tar.Z /pcfs/NAMEOP.Z

The name change is required to accommodate the DOS name and extension

conventions. Actually, we prefer this format because we expect some

participants will have no choice but to provide us with DOS formatted

disks as described next.
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5a2) For instance, if you have no 3.25" drive mounted on your UNIX

machine, but can ftp (or kermit, etc.) ASCII files from your UNIX machine

to a DOS machine, then carry out the name change described in Sal) above,

and then copy the tarred and compressed file to a DOS formatted disk in

the usual way. For instance, if the 3.25" disk drive is b:, you type

copy NAMEOP.Z b:NAME0P.Z

5a3) For instance, if you have a 3.25" drive mounted on your UNIX machine

as /pcfs and you have a UNIX formatted disk in that drive, you just type

cp NAME_0_P .tar .Z /pcfs/NAME_0_P .tar .Z

5b) If your OCR system produces its results on a DOS-based system, and you

have no way to transfer them to a UNIX machine for tarring and compression

as in 5a) above, install the pkzip package that we provided to you at your

specific request, and after having created the NAME.X.Y file directories,

type from the directory in which each file is located:

pkzip -rP NAMEOP.zip . /NAME.O .P/* .

*

and so forth for each complete directory tree containing the results. Then

copy the resulting files to either a DOS or UNIX formatted 3.25" floppy

disk in the usual way. For instance, if the 3.25" disk drive is b:, you

type

copy NAMEOP.Z b: NAMEOP.Z

6) give floppy disks to FedEx on or before the 15th of December for

shipment to us at a FedEx address to be provided. It is OK to return

results on more than one disk, for instance to get a very early return

dates for one of your entries

.

Also, (again) if you plan to return results in pkzip format, please let me

know so that we can provide you with a copy of pkzip. If worse comes to

worse the data for one paper or microfilm test can each be separated into

three directories per disk and returned that way.
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C System Summaries For On-Time Submissions

Stanley Janet and Jon Geist

This appendix contains system summaries for aU results that were received on time. For each

organization that supphed them, copies of viewgraphs describing that organization’s system are

followed by graphs of the field distance rate, field error rate, field distance rejection efficiency, and

field error rejection efficiency for each system. Note that the same system name will apply to results

from microfilm and from paper whenever both were provided.

The viewgraphs contained in the system summaries were discussed by the participants at the Second

Conference meeting in February of 1994. The participants did not know that they would be asked

to submit their viewgraphs for publication, and were not instructed to produce the viewgraphs in

a format that would reproduce nicely for this document. Nevertheless, they most graciously agreed

to provide the viewgraphs when it became clear that reproduction of the completed questionnaires

from Appendix A.7 woidd create a number of misleading ideas about some systems.

Some participants turned in originals of their viewgraphs, others copies. Therefore, the starting

image quality was not always as good as might be desired. The images were scanned and some

crude image processing was carried out on some images where dot patterns (pseudo-gray scale) in

the images were not well captured by the scanning process. As a result of these circumstances,

which were beyond the participant’s control, some of the images are not of ideal quality. Also, some

are difficult to understand without the accompanying commentary. Nevertheless, they give a much
more accurate impression of the various systems than the questionnaires would have. Most of the

participants have published descriptions of their systems as they evolved, and some will publish

descriptions of their experiences and results in the Second Conference test. The viewgraphs are

not meant to replace these pubHcations, but to whet the readers’ appetite for them.

The format for the systems summaries used the first viewgraph as the introduction to the system

summary where possible, and used a made-up introductory page otherwise. The viewgraphs then

follow in an order approved by the participant (s) who developed the system. The graphs giving the

field error and distance rates and efficiencies for each system follow the viewgraphs for that system.

The field error and distance rates plotted in the system summaries were defined in Chapter 6. The
field error rejection efficiency is defined as

Fejrf) - Fe(rf + A/)

- Fc{Tf + A/) + F^{rj) - Fc(rf + A/) (
7
)

where Fe{rf) — Fe{rf-\-Af) is the number of incorrect fields that are rejected when the field rejection

rate is increased from Vf to Vf + Ay, and where Fc{rf) — Fc{rf -f Ay) is the number of correct fields

that are rejected when the rejection rate is increased from rytory-fAy.

The field distance rejection efficiency is defined as

^ \ + Ay)

Cc(ry) - Cc(ry -h Ay) + Ce(ry) - Ce(ry Ay)

where Ce(7’y) — Ce(ry -f Ay) is the number of incorrect characters (deletions, insertions, and sub-

stitutions) in the ahgnments that are rejected when the field rejection rate is increased from ry to

Tf + Ay, and where Cc{rf) — Cc(ry -f Ay) is the number of correct characters in the alignments
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that are rejected when the rejection rate is increased from r/tory + A/.

Both the field error and the field distance rejection efficiencies are bounded above by one and below

by zero. When they are one, all of the fields or characters being rejected are incorrect; when they

are zero, all of the fields or characters being rejected are correct. The quantity Ay was set to 0.02

in the graphs of the field distance and error rejection efficiencies to be consistent with the sampling

interval used in the graphs of the field distance and error rates. These efficiencies are a measure of

how efficiently the rejection process removes fields with errors while retaining fields without error

at any given rejection rate. It is desirable to have the highest efficiency possible at the lowest

rejection rates. This can be seen by comparing the NIST and University of Bologna field distance

rates and efficiencies. The NIST field distance is greater than that of the University of Bologna at

zero rejection rate, but falls below it at greater rejection rates. The difference is that the rejection

efficiency at low rejection rates is somewhat greater for the NIST system. This more than makes up

for the lower efficiency of the NIST system above 40% rejection rate. In fact, the average rejection

efficiency for the NIST system is somewhat less than that for the University of Bologna system.
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NIST Conference

2nd Census OCR Systems Conference

CEDAR methodology and results

Venu Govindaraju

Center of Excellence for Document Analysis and Recognition [CEDAR]

SUNY at Buffalo

Feb 15, 1994

Outline

Outline of Presentation

•Census/ NIST Task

•Methodology

• Field Extraction Algorithm

•Word Recognition Engine

•Lexicon Analysis

•Control Strategies: CEDAR_0,1 ,2

• Performance Analysis

•Future Improvements
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Census / NIST Task

• Images of handwriting from 1 990 census forms

> Digitized from original paper questionnaires ;

212 ppi, binary, Multiple Image Set files ( 5 forms / file

)

• Also supplied

:

> 12,500 ASCII text answers
> Dictionaries with common words / phrases

• Test

:

> 600 MIS files = 9,000 images of given page

{
Known form structure, 3 fields to be extracted and recognized )

Census / NIST Task

Task : Extract 3 fields and read their contents

as entered on questionnaire.

Some issues :

O Detection of fields, and extraction/recognition

of contents.

® Removal of pre-printed dashes.

® Reading handwriting (discrete, touching discrete,

cursive).

O Fragmented and poorly thresholded characters.

© Large and incomplete lexicons.

® Misspellings in entries.
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Methodology

• Global form removal was not used

> pages not registered uniformly

{ registration squares had touching material from other side

of questionnaire

)

• Local analysis of page to find boxes

> detect dashes to find fields

> remove dashes to find text

• Analyze lexicon to determine recognition strategy

• Apply methods developed for postal word recognition

Field Extraction Algorithm

1. Generate Connected Components U&- esr/irs mhH
2. Detect Connected Components that look like dashes

( Based on height and width information).

3. Cluster these dashes into horizontal lines.

4. Find location of each of box using horizontal lines.

5. Extract ail connected components that lie within

boxes.

6. Remove any remaining isolated dashes (horizontal

or vertical) near the border of each box.



Word recognizers

CEDAR Word Recognition Engine

•Combination of two algorithms

•Algorithm 1

Recognition driven segmentation

image based features for character recognition

Gradient features; Structural features; Concavity features

Lexicon Introduced at the postprocessing stage

•Algorithm 2

Hard segmentation based on non-OCR image processing

Boundary features for segment (character: 1 ...4 segments)

Curvature and histogram information

Lexicon driven grouping of segments into characters

Methodology

Word Recognition Engine Performance

on 2500 postal word images (212 ppi)

Lexicon: io 100 1000

r
Top

Choice

Error Top

Choice

Error Top

Choice

Error

I

No threshold
|

97%
I

Threshold
I

92%
I

3%

0.5%

92%

79%

8%

0.6%

80%

62%

20%

1.8%

Speed 2.5 seconds 5 seconds 8 seconds

(Sparc 10/30)
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Methodology

Comparison of USPS Address Reading & Census Questionnaire Reading

I r
i

USPS Address Reading
|
Census Form Reading

"• r
Formstaucture I Synt^ loosely constrained | Known

I I

I

Lexicon completene^ 1 90% !
60-75%

I I

Lexicon size I 1...1000 (avg; 20} I upto 60,000
I I

Word types ! Unconstrained (mostly cursive) S Discrete printing

I I

Noise
I

<5% have underfines I Boxes always present

•CEDAR Word recognition engine developed for Address Reading Task

•No “special” tuning done to the tools for the purpose of this test

Lexicon Analysis

Census / NIST lexicon characteristics

O field specific

• large (10,000 - 60,000 entries)

• incomplete

O Each field has corresponding LONG and SHORT lexicons

Lexicon

:

LONG SHORT

Size - 60,000 - 10,000

Nature of Entry Verbatim responses

from 1990
Entries occurring

twice in LONG

Misspellings present ? Yes Yes

© Word-lexicon := words that constitute the entries in the phrase lexicon.
(
- 6000 entries

)
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Lexicon Analysis

Tradeoffs between long and short lexicons

LEXICON : LONG SHORT

Hit Rate High Low

Confusion Rate More Less

Computational

Speed Low High

Lexicon Analysis

Preprocessing :

We chose to work with SHORT lexicons.

•• Lexicon Reduction ;

O entries that contain misspellings (deliberately present)

© duplicate entries

Lexicon Expansion;

# training truths were appended to lexicons.

Lexicons after preprocessing ;

lexicon approx size (entries) approx hit rate (for training truths)

phrase_short.[/] 8,000 63 %
phrase_short.comb 20,000 66 %
phraseJong.[/] 40,000 73 %

/= 1,2,3
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Lexicon Analysis

Reid and lengthnwise analysis of hit rate in short phrase lexicon

FIELDS FIELD 1 FIELD 2 FIELDS OVERALL

ONE WORD 90 93 96 93 (36)

TWO WORD 63 65 55 61 (44)

THREE + WORDS 23 20 8 15 (20)

OVERALL 64 71 56

OBSERVATIONS

O Single word phrases constitute 36 % of all

responses and have a high hit rate (> 90 %).

e Long phrases constitute 20% of all

responses and have a low hit rate (< 23 %).

CONCLUSIONS

(D Lexicon-driven approach will fail

for "long” phrases, owing to low hit rate.

® Long phrases are relatively rare.

<D Lexicon-driven recognition strategy is viable if

long phrases can be rejected.

® Alternative : break phrases into words;

identify each word separately.

NIST Strategies

Strategy

:

Whole Phrase

Recognition

Segment-
then-recognize

Recognize-

then-segment

Segmentation Treat entire image
as single word

Split image into

"words"

Use raw OCR of

entire image

Recognition Identify nearest

phrase in phrase

lexicon

Recognize each word
individually using

word lexicon

Rnd best sequence
of words from

word lexicon

Lexicon used Phrase lexicon Word lexicon Word lexicon

Speed Fast Fast Slow

Performance Limited by phrase

hit rate

Limited by word

break determination

accuracy and word
hit rate

Limited by word
hit rate

Postprocessing Not called for Essential Essential
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Reid Recognition

Field Recognition Algorithm

Reid Image

• Phrase Recognition:

Algorithm 1

Algorithm 2

[•Lexicon r^uction

I

•Decision combination

• Word Separation

Phrase lexicon (short)

-8,000

Recognized field

(Top choice with
' •
confidence)

Word lexicon

~a,ooo

•Word Recognition

Algorithm 1

Algorithm 2

CEDAR_0 Control Flow

"i

[PflOC^lNG
i
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CEDAR_0 Reject Processing

<RESULT>, <CONF>

Decision Tree - 0

TOP 5 (WORD_REC_1 ) TOP 5 (WORD_REC_2)
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CEDAR_1 Control Flow

TOP 5%
(-400)

TOP1

Decision Tree_1
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CEDAR_2 Reject Processing

<RESULT>. <CONF>

Performance Analysis

Paper
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Future Work

O improve field extraction and preprocessing

© Improve word extraction

® Train classifiers on discrete / touching characters from census forms

O Apply word collocation postprocessing

® Apply "recognize-then-segment" approach

0 Improve recognition algorithm combination
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NIST 2
Read Performance Test

CGK Computer Gesellschaft Konstanz mbH
Department Product Development

Max-Stromeyer-Str. 116

78467 Konstanz
Germany
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CGK NIST -

Forms - Processing

Line Extraction Process

Character Segmentation and Recognition

1

Contextual Postprocessing

based on new Allfont Forms Reader

recognition process

Line Extraction Process

TIFF-Irwges

I

findng pebs of reftrsnes

points (a) tar panlal fomu

1

aaigmilnalton of slant of parti(l forms

1

tindng ragtan of Intarset ter •aenine

1

dash box removal

1
dirtrsmovai

1

tne axjrscttan

CGK NIST

-

Forms - Processing

Lioe ExzzBCtttQ Process

1

Cbincier SegaentgiOD md Recognidop

based GB D0W AUfool Fonos Reader

recogxutiCD ^luxu
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example of line finding and extraction

(Porej(amiil»:pitia|t.cm,~

lA 'u£.rAi^ •

B ma aji-Ta».i«/i>w2e.i»w mi—

i

~~EE
[^RRInvpIHORl

£Ai*iTitS6' PlL£isje^

(Forexttiiple: patentjcaiw, dire^igtaiiinopoides,

supenMngordercklfcs, assemfaBr^ tngjbMs,

idnscake^

TUF^EMi . taUintft.fai
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^ M9 0,k"230S,1 040/ size-39,7112) scale-1 IBE

J>A»>JTf#JG- J5fc£Si«
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Character Recognition

Process

Line Slant Normalization

I

Algorithm to split the line into segments

Character count estimation of the

word segments

I

Finding segmentation column candidates by
searching minima and maxima in upper and

lower contour of the line segments

Finding split pathes along the segmentation

columns for the extraction of overlapping and
connected character candidates

\

Statistical classification of the

character candidates

Graph search algorithm to find the result string

with the best character candidates
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example of slant normalization and separation proposals

Zd>« 2305 1048,100 5

Wort 2290 1760,100 572

12328 2046,33 31 ^ 23262046^~^ 2326 2048,35 81

or xn OrV
207833 ifT
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FIRST STEP IN GLOBAL FEATURE EXTRACTION:
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RRST STEP IN GLOBAL FEATURE EXTRACTION:
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Contextual Postprocessing

geometrical context

1

statistical context

I

dictionary based context (phrase)

1

dictionary based context (word)

1

dictionary based context (phrase)

1

confidence value estimation

1

generation of NIST format output data
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Nist 2 - Read Performance Test

What else could be done:

1 . Enhancements In line extraction

2. Enhancements In character seg-
mentation by using more Intelligent

seperation candidate detection

3. most Important; interaction bet-

ween character recognition and se-

peration and dictionary based post-

processing

4. processing of multiple line fields

5. Enhancements in confidence value
generation

Nist 2 - Read Performance Test

Problems:

1 . Scan and Image Quality

2. Page design (5 not aligned forms)

3. Forms design not suitable

4. Dictionary quality: How to deal with
misspellings and abbreviations
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2nd Census
OCR Systems
Conference

Census Form Recognition System

Environmental Research Institute of Michigan

ERIM

Andy Gillies

Dan Hepp
Rich Rovner

Peggy Ganzberger
Mark Hamilton

''

2nd Censusii
Background

OCR Systems
Conference

May 1992 - 1st Census OCR Systems Conference

• Isolated character recognition

•Training data

•2100 writers (fuli-tkne census workers)

-223,125 digits / 44,951 uppercase / 45,313 lowtercase

•Test data

•500 writers (hl£^ school students)

•58,646 digits / 1 1,941 uppercase / 12,000 lowercase

• Results per character 96% digits / 95% uppercase / 86% lowercase

February 1994 - 2nd Census OCR Systems Conference

• RekJ extraction and recognition

•Training data - occupation fields from 1990 Census Form

• Microfilm 50 X 100 X 5 X 3 = 75,000 fields

•Paper 12 x 100 x5x 3 > 16,000 fields

• Test data

- Microfilm 6x100x5x3 = 9,000 fields

- Paper 6 X 100 X 5 X 3 - 9,000 fields

• Results per field: 34% accept with 8% error microfilm / 42% accept with 3.5% error paper
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r

2nd Census
^>ERIM

Form Image Preprocessing
OCR S3rstems

Conference

Registration of form image to known coordinates

•form type classification

• cue detection

• image resampling

• region of interest extraction

Extraction of field contents

• background removal

• stroke repair
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Overview of ERIM
A

2nd Census

^ERIM Experimental System
OCR Systems
Conference
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2nd Census
OCR Systems

Cue Detection Confmmice

morphological processing detects:

•rotation

•scale

•translation

2nd Census

Image Resampling
OCR Systems
Conference

3x3

homogeneous
matrix

Known Template Original Form Image

resample from known template to form image

region of interest only
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Overview
A

2nd Census

^ERIM Segmentation
CXIR Systems
Conference

J
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Field Segmentation

2nd Census
OCR Systems
Conference

Goal is oversegmentation of characters

Based on outer contours of word images

Uses local minima and maxima as segmentation points

Result is primitive segments

Field Segmentation

2nd Census
OCR Systems
Conference

Contours of

Feld Image

Segmentation
Points

Resulting

Primitive Segments

&
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2nd Census

5>erim OCR S)r5tems

Unions Conference

A union is a character hypothesis

Formed by joining from 1 to 4 primitive segments

Rule-based sanity checks

Character Recognition is performed for each union
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2nd Census

^ERIM Unions OCR Systems
Conference

Primitive

Segments

Union Size

(Number of Primitive Segments)
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Overview
A

2nd Census

^ERIM Recognition
CXIR S3rstems

Conference
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2nd Census
(^ERIM

Character Recognition
OCR Systems
Conference

Neural networks

• multi-layer perceptron with backpropagation training

• uppercase, lowercase, digits

• 2 feature sets

Network training (~2.9M presentations)

• uppercase transition 83%
• lowercase transition 78%
• upper-case bar 86%

• lower-case bar 80%

Training Data

upper

case

lower

case
digits

Census
Forms

21,076 18,203 0

USPS 13,414 18,731 -8,000

Total 34,490 36,934 -8,000
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A, ^

A
Overview 2nd Census

OCR Systems
Conference<^ERIM Dictionary Pruning
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r
2nd Census

^ERIM
agaa " •

Phrase Dictionary Pruning
OCR Systems
Conference

Extract n-grams from recognition results

Use short phrs^ dictionary

• ~8,000 phrases (depending on field)

• coverage of paper Gaining fields ~€2%

Prune phrase dictionary

• >1,000 phrase

• correct phrase removed small fraction of the time

^RIM Phrase Lexicons
Coverage Analysis

2nd Census
OCR Systems
Conference

field 1 field 2 fields overall

short

(ftp site)

size 8,173 0,475 7,786 N/A

coverage

(%)

62 70 SS 62

short

(CD-ROM)
size 8,340 8,633 7,956 N/A

coverage

(%)

63 72 55 63

long

(CD-ROM)
size 50,224 49,853 66.318 N/A

coverage

(%)

74 80 68 74
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as Word Lexicons

Coverage Analysis

Short Word Dictionaries (from FTP site)

2nd Census
OCR Systems
Conference

field 1 field 2 field 3 overall

lexicon size 4,744 4,777 5,902 N/A

1 word phrases 30 37 27 31

2 word phrases 41 41 41 41

3 word phrases 13 9 14 12

1 U 2 71 79 67 72

1 U 2 U 3 84 88 82 85

word * 87 90 87 88

Long Word Dictionaries (from CD-ROM)

field 1 field 2 field 3 overall

lexicon size 14,545 14,503 17,239 N/A

1 word phrases 31 39 27 32

2 word phrases 45 45 44 45

3 word phrases 15 11 17 14

1 U 2 76 83 72 77

1 U 2 U 3 92 94 89 92

word *
96 97 96 96

J
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A
^RIM

Overview 2nd Census
OCR Systems

Lexicon Matching Conference
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Lexicon Matching
(for words and phrases)

2nd Census
OCR Systems
Conference

Inputs: recognition results for unions + lexicon

Use Viterbi match (dynamic programming) to find best match
for each lexicon word

Confidence is sum of recognition results of characters used in

match
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®>ERIM
Word and Phrase

Matching

2nd Census
OCR Systems
Conference

vvvvvvvv
^ ^ AV W i

Original Image

Primitive Segments

Unions of two
Primitive Segments

'? J^®-@ -

1

(^) fA Q) Jt *i ** gj

Best Match
to Word

-BAKERY"

^ ^ii\

^ j j
\ /

D6Sl iviolun

to Word
“POACHING-
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A
Overview 2nd Census

^ERIM Result Combination
OCR Systems
Conference

J
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2nd Census
OCR Systems

Result Combination Conference

Word match scores decremented to compare with phrase

match scores

• Constant p chosen heuristlcally

Divide results Into three nonniverlapping groups

• 1 ) Two-wwd top choice phrase = two-word top rtioice word match

•2) Three-word top choice phrase = three-word top choice word match

• 3) All other cases

Reassign confidence values so that all of group 1 have higher

confidence than group 2 which In turn have higher confidence

than group 3

Within groups, old confidence value determines order

2nd Census
^RIM OCR Systems

Processing Times Conference

Preprocessing Recxignition

ERIM.O
Recognition

ERIM_1
Total

ERIM.O
Total

ERIM_1

Paper 4.6 27.1 17.9 31.6 22.5

Microfilm 26.6 20.5 16.4 47.1 43.0

All times in seconds per field on a SUN Sparcstation2
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ERIM System Results

1

2nd Census
OCR Systems

(Paper) Conference

Reid Rejection Rate (%)

SndCezisus
OCR Systems

Conclusions Confermee

The technology for OCR assisted census forms procei^ing is

available today

Solution can be made using off-the-shelf hardware

Immediate cost savings are substantial

Q Future cost savings will become available as technology

improve
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NISrS SECOND CENSUS
OCR SYSTEMS CONFERENCE

1&-16 FEBRUARY 1994

HUGHES

HUGHES PLAYERS
HUGHES

CONTEXTUAL PROCESSIN_G„AND SYSTEM INTEGRATION

TONY BARAGHiMIAN - HUGHES INFORMATION
TECHNOLOGY CO.

(703) 759-1392

gab@mitchelLhitc.com

PREPROCESSING AND RECOGNITION

SUSAN CHURCH - HUGHES RECOGNITION SYSTEMS

(818) 702-1455

schurch@ipld01 .hac.com
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AGENDA
HUGHES

• DESCRIPTION OF HUGHES' SUBMISSIONS

• RESULTS

• COMMENTS

HUGHES SUBMITTED
FOUR SETS OF RESULTS

r— 7

HUGHES

• HUGHES FOCUSSED ON PAPER-BASED IMAGES

• HUGHES TUNED FOR TOTAL RELD CORRECTNESS
(I.E., RELD ERROR RATE)

HUGHES 0 -v.- ^ DIFFERENT RECOGNITION SYSTEMS
HUGHES_1 /
HUGHES_2 — FUSION OF HUGHES_0 AND HUGHESJ

HUGHES 9 — RAW OCR READS FROM HUGHES 1

158



CHARACTERISTICS OF HUGHES

• RELD REGISTRATION BASED ON DOTTED BOX FINDING

• TEXT LINE(S) DETECTION AND DESKEW

• CHARACTER (OVER-) SEGMENTATION USING LOCAL
CONTOUR MINIMA AND MAXIMA

• CHARACTER NORMALIZATION

• STROKE FEATURE EXTRACTION

• THREE MLP/BACKPROP CLASSIRERS: UPPERCASE,
LOWERCASE, NUMERIC

- TRAINED ON 7800/7800/1 0,000 HANDPRINT SAMPLES
FROM NIST SPECIAL DATABASE 3

• DICTIONARY CORRECTION USED LONG WORDS AND SHORT
PHRASES SUPPLIED BY NIST CDROM

CHARACTERISTICS OF HUGHES 1

HUGHES

• SAME AS HUGHES_0 EXCEPT:

- CAVITY FEATURE EXTRACTION
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HUGHES
CHARACTERISTICS OF HUGHES_2

• COMBINATION OF HUGHES.O AND HUGHES_1
USING A SET OF FUSION RULES, TAKING
ADVANTAGE OF INFORMATION SUCH AS:

- MULTIPLE CANDIDATE TEXT STRINGS WITH
ASSOCIATED CONFIDENCES

- INDEPENDENT UPPERCASE/LOWERCASE
BELIEFS

- INTERRELATIONAL STRENGTHS/WEAKNESSES
BETWEEN RECOGNITION PARADIGMS

RESULTS
HUGHES

• LESSONS LEARNED FROM THIS CONFERENCE:

- BETTER RESULTS ARE OBTAINED BY TRAINING THE
CLASSIRERS USING VERY LARGE DATA SETS,
PREFERABLY THE NIST-1 2 DATA

- MULTIPLE SEGMENTATION HYPOTHESES SEEM TO
GIVE BETTER RESULTS, POSSIBLY AT A THE EXPENSE
OF ADDITIONAL PROCESSING TIME

- DICTIONARY AUGMENTATION, SUCH AS SPELL
CHECKING AND PROVIDING 100% COVERAGE, BOOST
PERFORMANCE
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HUGHES
COMMENT 1: PARTICIPATION

• CONTINUED PAFmCIPATION IN THIS EVENT IS A STRONG
INDICATION OF AN ORGANIZATION'S COMMITMENT TO
SUCCEEDING IN THE DOCUMENT PROCESSING BUSINESS
MARKET

. COMPLETE PARTICIPATION DEMONSTRATES AN
ORGANIZATION'S ABILITY TO:

- QUICKLY ADAPT TO CUSTOMER REQUIREMENTS

- PROPERLY FUND AND STAFF UNPLANNED EFFORTS

COMMENT 2: FUTURE NIST OCR TESTS
HUGHES

• HUGHES LOOKS FORWARD TO FURTHER
PARICIPATION IN THIS SERIES OF OCR TESTS

. SUGGESTIONS FOR FUTURE TESTS INCLUDE:

- SPEED/THRUPUT TESTING

- CONTINUED ACCURACY TESTING

- LARGER SET OF ZONES; ESPECIALLY
CONTAINING INTER-ZONE CONTEXT
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HUGHES
COMMENTS: FORM REDESIGN

• HUGHES DOESNT TELL CUSTOMERS TO
REDESIGN THEIR FORMS

• PATRON MENTALITY: ’TVE NEVER MET A FORM I

COULDNT FIX”
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IBM Entries

IBM 1 - Unconstrained Handprint OCR (HOCR)

IBM 2 - Experimental Cursive OCR (COCR)

IBM 0 - Combination of IBM 1 and IBM 2

IBM 3 - IBM 1 with improved dictionary correction

(late entry)

IBM 9 - IBM 1 without dictionary lookup (raw OCR)
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Comments on the IBM Entries

The IBM entries were submitted from the IBM Almaden Research Center in San Jose,

CA. Although we had 4 on-time entries and 1 late entry, there were essentially only 2 basic

systems: a handprint OCR (HOCR) system, and an experimental Cursive OCR (COCR)
system. IBM 1 was based on HOCR, IBM 2 on COCR, IBM 0 a combination of IBM 1 and

IBM 2, and IBM 9 the raw OCR results of IBM 1 (prior to dictionairy based correction).

IBM 9 was submitted for dictionary correction using software developed by NIST. IBM 3,

which was a late entry, is the same as IBM 1 with improved contextual processing.

HOCR is designed to handle unconstrained handprinted characters. It separates touching

characters by oversegmenting such patterns and selecting the best segmentation points by

dynamic programming. This is a recognition driven segmentation as recognition confidences

are made use of in choosing the best path. Due to prior commitments and time pressures, we

could not train HOCR using the training data provided for the 2nd Census OCR testing. In

fact, it had been trained only using discrete samples collected from the training data (SD 3)

and test data (SD 7) of the 1st Census OCR testing, and additional samples collected from a

pen based computer. After the 2nd OCR conference, we have trained HOCR using training

data provided for this test, and significantly improved our recognition results. These results

are being submitted to NIST for evaluation.

COCR is a highly experimental system for recognizing cursive writing. It is in an early

stage of development, as demonstrated by the experimental results. It is based on Hidden

Markov Models (HMM), and does not use any explicit segmentation. A sliding window is

passed over the text field, and features of the image segment in the window are extracted.

These features are then used to cluster and classify the patterns. The greatest drawback of

the system was that it was trained only on discrete characters collected from SD 3 and SD 7.

It is now being trained using data from the training set provided for the 2nd OCR testing.

Some additional details on the 2 systems as well as contextual processing are provided

in the accompanying viewgraphs.
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Field Image Extraction

Sequence of Operations

• Smoothing and Filtering

• Registration

• Reference Marks

• Key Lines

• Box Boundaries

• Form Type

• Deskewing

• Data Tracking and Extraction

• Dotted Lines

• Clipping at Form Text

• Output to Image
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Handprint OCR (HOCR)

• Character Segmentation

• Recognition based segmentation

• Oversegmentation

• Select best segmentation by dynamic pro-

gramming

• Feature Set

• Contour Direction Features (88-dimensional)

• Histograms of directions of contour pixels

• Bending-point Features (96-dimensional)

• Classifier

• Neural-net classifier to narrow choice of

hypotheses to 3

• Feed-forward BP network

• Template matching classifier to reorder the 3
choices based on distance

• Training Set: Discrete Characters only

• SD 3: 42,000 each for Upper Case and Lower
Case

• SD7: 12, OOOeachforUCandLC
• Pen Input Database: 29,000 each for UC and

LC
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Cursive OCR
• Basis of IBM 2

• Early prototype - highly experimental stage

• Based on Hidden Markov Model (HMM)
• No explicit segmentation

• Sliding overlapped window of fixed size

• Features

• Contour direction features (88-dimensional)

• 27-dimensional after data reduction to 90% of

energy

• Training set

• Trained on discrete characters only

• Approx. 42,000 samples from SD 3, and
12,000 samples from SD 7 each for Upper
Case and Lower Case

• Language Model

• Unigrams modified from NIST-supplied ascii

files, separate dictionaries for each field
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Language modeling

Two databases, with 32,000 matched tiff+ascii

examples for each field (approx. 250k words).

Only ascii available for another 880k words

now, up to 20m words later?

# of field tokens

# of word types

# wty in rep. fields

words per field

w/f in rep. fields

# of field tokens

# of word types

# wty in rep. fields

words per field

w/f in rep. fields

fieldO field 1 field2

46901 47005 61399
15179 15573 18050
8209 8502 7822
2.618 2.527 2.876

2.037 1.993 2.077

field0 field 1 field2

53005 52484 68939
14545 14503 17239
9310 9575 8757
2.590 2.495 2.841

2.018 1.967 2.054
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Actual dictionary sizes

# of rep. words

# of words
w/f in rep. fields

field0 field 1

6290 6263
7449 7082

2.01805 1.9671

field2

7935
9588

2.05379

(False hapaxes were added)
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Using dictionaries to improve recognition

Problem:

Assuming 60% character recognition rate,

the probability of recognizing a field correctly

is extremely low;

60 60 60 60 60 60 60.

36 22 13 7 4 2.... %

Use of dictionaries (context) is a MUST.

8000 words

I

1 23 words

*

50.000 sentences
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The method

1. Try to match word

hyp: abcdefg...

\
diet: X y a b d e k g...

2. Since letter separation is a problem, try all

alternatives returned by OCR.

3. How to score "similarity"

- match character

- match on 2d choice

• match with skip, 2 skips

- increase score for "sure" chars

- increase score for successive matching chars

- increase score for frequent words

4. Keep reasonable alternatives

5 . Consider all combinations for first three words,

and look up dictionary

- use 1st word as index if high confidence,

- else, scan full dictionary
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phrase - template: sEcRETARy

enter SECRETARY E6EFZRHEV

enter SECRETIARY EGEFZZOHEV

enter SECREFRARY EGEFZSTHEV

i

best set 17

best set 14

best set 14

best set 25

best set 32

best set 49
best set 17

best set 15

best set 17

best set 30

RECREATION 43

SCREENER 6

CREATIVE 7

SECONDARY 24

SECRETARIAL 66

SECRETARY 256

SECURITY 155

DECORATOR 21

CARETAKER 17

SECRATARY 6

T~t9 Rff

Scor'i.

SECRETARY (49)

best set 71

best set 71

best set 70

best set 70

best set 71

best set 74

best set 71

best set 71

best set 70

best set 71

SECRETARY

SECRATARY

SECRTARY

SECRETRY

SECRETARTY

SECRETARY

SECREETARY

SECRETARYU

SECRETAY

SECRETERY

)

solution: SECRETARY

174



phrase - template: NImVfmiuanG

enter NIMVFMIUANG XLWUINJVMXS

enter NIMVMIUANG XLWUAJVMXS

enter NIMVIMIUANG XLWUJTJVMXS

enter KMVFMIUANG MWUINJVMXS

enter KMVMIUANG MWUAJVMXS

enter KMVIMIUANG MWUJTJVMXS

enter IKMVFMIUANG LUWUINJVMXS

enter IKMVMIUANG LUWUAJVMXS

enter IKMVIMIUANG LUWUJTJVMXS

best set 20

best set 17

best set 13

best set 17

best set 14

best set 15

best set 12

best set 16

best set 16

best set 21

MAINTAINING 11

MANUFATURING 13

MONITORING 5

SMELTING 8

MANUFACTRING 7

MACHINING 16

CONTINUING 5

MANUFACTUING 6

MANUFACURING 5

MANUFACTING 31

best set 42

best set 43

best set 42

best set 46
best set 42
best set 42
best set 42
best spt 41

best set 43
best set 42

MANUFACTURING

MANUFACTRING

MANUFACTERING

MANUFACTING

SMELTING

MANUFACTURING

MANUFACTRUING

MANUFACURING

MANUFARTING

MANUFATURING

Solution; MANUFACTING
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Januafj 1994

IDIAP

A Sjrstem for the
Off-Line Recognition of Handwritten Text

Thomas M. Breudl

IDIAP, C.P. 609, 1920 Martigay Switz^laad

Td: +41 (26) 22 76 64, FAX* +41 (26) 22 78 18

tabSaiaya. idiap . ch

ABSTRACT

A new system for the recognition of handwritten text is described.

The system goes from raw, binary scanned images of census forms

to ASCII transcripUons of the fidds contained toithin the forms.

The first step is to locate and extract the handwritten input from

the forms. Then, a large number of character subimages are ex-

tracted and individually classified using a MLP (Multi-Layer Per-

ceptron). A Viterbi-like algorithm is used to assemble the individ-

ual dassifi^ character svhimages into optimal interpretations of

an input string, taking into account botit the quality of the overall

segmentation and the degree to which each character subimage of

the segmentation matches a character model. The system uses

two different statistical language modds, one based on a phrase

dictionary and the other based on a simple word grammar. Hy-

potheses from recognition based on each language modd are inte-

grated using a decision tree classifier. Resultsfrom the application

of the system to the recognition of handwritten responses on U.S.

census forms are repoHed.
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Postprocessing

Recognition

Segmentation

Preprocessing

181



Writing Styles

Noteworthy Features

• complete forms-to-ASai system

• strictly bottom-up processing

• box/underline removal

• sophisticated character segmentation

• Bayesian, segmental recognizer

• MLP-based character classification

• dictionary backoff using decision trees

• error

NISI CEDAR

printed, segm., upper 22% 8%
printed, linked, upper 18% 9%
printed, segm., mixed 21% 3%
printed, linked, mixed 28% 9%
cursive 6% 67%

Notes
• very different composition
• cursive segmenter works poorly for

printed styles

• need different segmentation algorithm

Results

• intrinsic errors:

- not-in-language-model: 34%
- poor quality: 12%

• evaluation:

- letter-accurate field transcriptions

- spaces are not counted

(about 1 .6%)

Results

All inputs (n=1500)

0% 25% 50% 75%

Both 37% 21% 6.1% 1.9%

Phrases 42% 27% 8.9% 1.9%

Words 50% 36% 20% 5.1%

Inputs in the language model

0% 25% 50% 75%

Phrases 12% 2.6% 1.4% 0%
Words 37% 21% 11% 3.7%
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Sources of Errors Submitted Systems

At 50% rejection (6.1% total): IDIAP_0 phrase-based, no kerning

2.0% poor estimate of P(Wj|x) IDIAP_1 phrase-based, kerning

1.6% minor emendation
IDIAP_2 phrase-based and word-based

1.3% truncation yielding good phrase
ID1AP_3 corrects clerical error in IDIAP_2

0.3% transcription error

0.3% non-character accepted

0.5% other

Throughput

field extraction: 6 sec

cleanup: 20 sec

segmentation/recognition 60 sec

Notes

• running on diskless SPARCstation ELC
• expensive intermediate results are

recomputed multiple times (e.g.,

Gaussian convolutions, dilations)

• implemented as UNIX processes

communicating via temporary files;

significant file I/O overhead
• dictionary reloaded from disk for every

field

Further Improvements

• better character subimage classification

[2 .0%]

• task-specific pre-processing (writing

outside box, two-line input) [1.3%]

• better language models

• integrate cursive segmentation and
cursive models

• better forms removal

• apply to other tasks
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The NIST System

Connected Component Segmentation

For each 4-way connected region, “blob”

use two NNs and rules to determine if more

than one character is present

If lone character recognize it, else

attempt segmentation using “snake” to find

white space minima between strokes.

Recognition: Size, Translation, Orientation

normalization, KL transform, PNN
classification to 26 classes.

Post processing: reject or alter improbable

hypotheses using digraph probabilities.

Spell Correction: Digraph and Levenstein

retrieval from whole phrase dictionaries.
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The NIST System

Binary Minipages

Blob positioning. Fix orientation by skew

Cut 64 X 512 Fields from fixed coordinates

Morphological Prcossessing: Dilate and Erode

KiU unconnected components on criteria of

Size, Aspect ratio, Location, Proximity

to neighbors. Shape

Identify word spaces from smoothed

minima of the column summations
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Writer Dependency

3000 writers.

Number of writers with all three fields correct.

CGK_3 ERIM_0 IDIAP_2 PLUR_0

950 841 766 1283

Number of writers with any two out of three fields correct.

CGK_3 ERIM.O IDIAP_2 PLUR_0

1018 1073 1084 1040

Number of writers with all three fields incorrect.

CGK_3 ERIM.0 IDIAP_2 PLUR_0

349 330 403 179

No rejection.

PLUR_0 correctly classifies all fields of 43% of the writers.
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Separation of Recog nition Performance

and Spell Correction Performance?

Performance as submitted to NIST.

CGK.3.P
• field error = 0.381 ® 40% reject 0.141

• field distance = 0.207 @ 40% reject 0.037

ERIM_0.P

. field error = 0.397 @ 40% reject 0.212

. field distance = 0.187 @ 40% reject 0.109

IDIAP^.P
. field error = 0.421 ® 40% reject 0.149

. field distance = 0.220 @ 40% reject 0.050

Apply NIST SpeU correction Algorithm to real submission.

CGK_3.P

. field error = 0.210 @ 40% reject 0.080

. field distance = 0.154 ® 40% reject 0.056

ERIM_0.P

. field error = 0.190 ® 40% reject 0.091

. field distance = 0.141 ® 40% reject 0.048

IDIAP_2.P

. field error = 0.247 ® 40% reject 0.086

. field distance = 0.190 ® 40% reject 0.052
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Possible solutions to the Coverage Problem

Augment the SD13 “phrase_123.sht” dictionaries.

Number of unique phrases used.
i

CGK_3.P ERIM_0.P IDIAP_2.P

5929 5326 5226

Number of phrases that axe NOT in the SD13 phrase_123.sht
dictionaries, including multiple occurences.

CGK_3.P ERIM_0.P IDIAP_2.P

3869 2708 1998

Do not force spell correction. Use raw hypotheses or
partial words. Number of phrases that fail UNIX spell.

CGK_3.P ERIM_0.P IDIAP_2.P

2261 660 171

Number of phrases that are NOT in the reference files,

including multiple occurences.

CGK_3.P ERIM_0.P IDIAP_2.P

2886 2963 3033

Cheat! Use the concatenated reference files as dictionaries!
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How well do they SD13 dictionaries

cover the actual references?

Number of reference answers unavailable to systems
which used only the “phrase_?.sht” dictionaries of SD13
is 3105 out of 5378.

and counting multiple occurences in the reference files

number rises to 3206 out of 9000.

The number of reference answers unavailable to systems
which used only the “phrase.?.sht” dictionaries of SD13
for their intended field is 3375 out of 9000.

Field error rate cannot be below 37.5%.

That assumes phrases are not split into words. Coverage is

extended greatly if they are.

Number of reference words unavailable to systems
which used oidy the “word_123” dictionaries of
SD13 is 1789 out of 3186.

and counting multiple occurences in the reference files the
number rises to 10309 out of 17770.
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Are Fields Different?

Number of unique entries in SD13 phrase_123.sht
and word_123.sh.t dictionaries.

Phrase Word

. Field 1 8340 14447

. Field 2 8633 14432

. Field 3 7956 17110

Number of unique phrases in the reference files.

Phrases broken into words and sorted uniquely.

Phrase Word

. Field 1 1910 1502

. Field 2 1784 1379

. Field 3 2125 1847

Number of phrases in the reference files occuring only once.
Also as a percentage of the total number of phrases = 3000.

Number %age

. Field 1 1628 54.3

. Field 2 1494 49.8

. Field 3 1895 63.1
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Are Fields Different?

FIELD ERROR
CGK_3.P ERIM.O.P IDIAP_2.P

. Field 1 0.372 0.375 0.413

. Field 2 0.345 0.355 0.370

. Field 3 0.426 0.462 0.479

FIELD DISTANCE
CGK_3.P ERIM.O.P IDIAP_2.P

. Field 1 0.196 0.172 0.217

. Field 2 0.173 0.153 0.181

. Field 3 0.245 0.230 0.256

IDIAP have a 10.9% more success in field 2 than field 3.

Is this Significant?
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Complementary Systems

Superior Performance from a Majority System

Plurality PLUR_0 system from CGK.3 ERIM_0 IDIAP.2.

• If all three concur use that hypothesis with highest confidence.

• If only any two concur use that hypothesis with highest confidence of the
majority pair.

• If all three differ use the hypothesis with highest confidence,

PLUR.0.P

. field error = 0.286 @ 40% reject 0.079

. field distance = 0.158 @ 40% reject 0.029

CGK.3.P

. field error = 0.381 @ 40% reject 0.141

. field distance = 0.207 @ 40% reject 0.037

ERIM.0.P

• field error = 0.397 @ 40% reject 0.212

. field distance = 0.187 @ 40% reject 0.109

IDIAPJ2.P

. field error = 0.421 @ 40% reject 0.149

. field distance = 0.220 @ 40% reject 0.050

Improvements on this Majority.

• Use more voting systems, if available, and a plurality.

• Coherent generation or use of confidences.

• Normalization Scheme.
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Are the best systems failing on the same fields?

Number of fields where both systems wrong = W

CGK_3 ERIM_0 IDIAP-3

CGK_3 W = 3431

ERIM_0 W = 2161 W = 3575

IDIAP_3 W = 2332 W = 2709 W = 3787

CGK fail on 1270 fields that ERIM succeed on

ERIM fail on 1414 fields that CGK succeed on

IDIAP fail on 1078 fields that ERIM succeed on

The systems fail on different fields.

Can this be exploited?
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UNIVERSriA* DEGU STUDI D1 BOLOGNA

DlPARnMENTO DI ELETIRONICA

INFORMATICA E SISTEMISTICA

Viak Risocginiento 2 • 40136 Bologna - ITALY

COCR2

UBOL

1994

System overview

c

IMAGE LOADING
t_

FORM IDENTIFICATION

I
J

FIELD ISOLATION

BOUNDING BOX REMOVAL
1

BLOB EXTRACTION

FIELD DESKEW

*

COARSE SEGMENTATION

2-WAY SEGMBJTATION

3-WAY SEGMENTATION

T
ISOLATED CHARACTER RECOGNITION

I
WORD CONSTRUCTION

I
DICTIONARY BASED CORRECTION

1

RAW DATA
OUTPUT

HYPOTHESIS GENERATION
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1994

Form identification

isfirtl. ^

OBRiplc bMpM,
ulttdiriioifli

wnflbAwi^

# ItomiihfftMtng O Ottatjiptetaitt.

O ooMBiidta^ MxvIeiL

I «

Target area

Reference box
search areas

Reference box

Reject rate: 1/4000
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Form isolation
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Bounding box removal
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Blob extraction
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Coarse segmentation

irs-

OUTPUT IMAGES

( \
SEGMENT
CLASSIFIER

V J
"

3
"
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r

COCR2
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k

Background region based
segmentation

SEGMENT
CLASSIFIER

2
'

SEPARATING PATH
COST FUNCTION

SCORING MATRIX COMPUTATION

SEPARATING PATH COMPUTATION

c

1 I
SEGMENT EXTRACTION

“1
OUTPUT IMAGES o ^
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Metablob construction

METABLOB CONSTRUCTION
ALGORITHM

J
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Isolated character recognition
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UNIVERSITA* DEGU STUDI DI BOLOGNA

DlPARnMENTO DI ELETTRONIGA

INFORMATICA E SISTEMISnCA

Viale Ris(Msiineiiu> 2 - 40136 Bologna • ITALY

Word building

1 2345 6 78 9 10

1 . 3. 4. 7. 10

2.4.7.9.10
3. 5.9.10
4.7.9.10
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UNIVERSITA' DEGU STUDl DI BOLOGNA

DIPARTIMENTO DI ELETTRONICA

INFORMATICA E SISTEMISTICA

A^ale RisofgiineDto 2 • 40136 Bologna - ITALY

COCR2

UBOL

1994

>

Dictionary based Correction

AGRER package

Developed by

Sun Wu UcH Monber

at the University Of Arizona

Department Of Camputer Science

Three level Dictionary Check:

1 - Top choice match

2 - Multiple choice match

3 - Inexact match
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Correction step 2

MULTIPLE CHOICE MATCH
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D Summaries For Late Submissions

Stanley Janet and Jon Geist

This appendix contains summaries for all system results that were received late for the test but

early enough to be scored for the Conference. All organizations submitting results on time except

ERIM also submitted late results. Comparison of the on-time and late results shows that many

late submission were significantly more accurate than the on-time submissions from the same orga-

nization. In some cases this reflected a continuation of planned improvements to the OCR system

that were not finished in time for the on-time submissions. In other cases, it reflected the discov-

ery of a bug in the OCR system upon examination of graphs of the on-time scores. These were

circulated among the on-time participants following scoring of the on-time submissions to help the

participants prepare for the meeting portion of the Conference.

For instance, a number of the curves show regions of decreasing field error and distance rates

followed by regions where these quantities increase with increasing rejection rate. This means that

the confidences are not properly correlated with the actual OCR errors in some regions of rejection

rate. This can happen at high rejection rates with a number of algorithms. However, in at least

one case, a large effect of this nature was caused by the programming error described below. This

description gives some insight into what causes the field error rate to increase instead of decrease

with increasing rejection rate.

In the Second Conference tests, empty fields were to be classified with BLANK to distinguish them

from fields that were left empty because the OCR was hopeless. (The latter was a good strategy

for minimizing the field distance rate.) In its on-time submissions, CGK also assigned BLANK
with a confidence of 1.0 to fields that were not even extracted. Since their confidence was 1.0,

these fields were never rejected as the rejection rate was increased. At some rejection rate, the only

fields left were the correct fields and incorrectly assigned BLANK fields. As the rejection rate "was

increased, correct fields with confidences less than 1.0 were rejected and the number of accepted

(unrejected) fields decreased accordingly. On the other hand, no fields that had been incorrectly

assigned BLANK were rejected, so the ratio of the fields with errors to the accepted fields increased

with increasing rejection rate. A search by the CGK participant for the cause of the significant

rise in the field error and distance rates in his on-time results uncovered this programming error,

and made it clear that this was not the correct assignment for fields that were not extracted, only

for fields that were empty. The CGK late submissions corrected this programming error, and as a

result, were greatly improved over the on-time submissions at intermediate to high rejection rates.

Graphs of field distance rate, field error rate, field distance rejection efficiency, and field error

rejection efiiciency are presented for the results obtained for the images scanned from paper. The
same graphs are also presented for the results obtained from the images scanned from microfilm,

if these were submitted. Note that the same system name will apply to results from microfilm and

from paper when both were provided. The field distance and error rates are defined in Chapter 6,

and fhe field distance and error rejection efficiencies are defined in Appendix C.

Two organizations, AT&T and MCC, submitted only late results for scoring. Viewgraphs describing

their systems are presented here along with the graphs. The viewgraphs for the other systems are

presented in Appendix C.
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AT&T Global Information Soiutions

—AT&T BeU Labs & AT&T Global Infonnatioii Solntions Q^bfirative Biqieriment

Imaging Systems Division - Waterioo Febuary 1994

AT&T Global Information Solutions

Imase Preprocessiiig System

Imaging Systems Division - Waterioo Febuary 14th, 1994



AT&T Global Information Solutions

• Form ID, Image QA, Registration & Skew Correction

Imaging Systems Division - Waterloo Febuary 14th, 1994

AT&T Global Information Solutions

• Zone Exta'actian

Imaging Systems Division - Waterloo Febuary 14th, 1994
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AT&T Global Information Solutions
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• Field Extraction
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CEDAR

Late Submissions

See also: Summary for On-Time Siobmissions
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CGK

Late Submissions

See also: Sxixnmary for On-Time Submissions

232



FIELD

ERROR

RATE

(%)

FIELD

DISTANCE

RATE

(%)

Paper (Late)

Paper (Late)

FIELD REJECTION RATE (%)

233



FIELD

ERROR

REJECTION

EFFICIENCY

(%)

FIELD

DISTANCE

REJECTION

EFFICIENCY

(%)

Paper (Late)

0.00 20.00 40.00 60.00 80.00 100.00
FIELD REJECTION RATE (%)

Paper (Late)

0.00 20.00 40.00 60.00 80.00 100.00
FIELD REJECTION RATE (%)

234



FIELD

ERROR

RATE

(%)

FIELD

DISTANCE

RATE

(%)

Microfilm (Late)

FIELD REJECTION RATE (%)

Microfilm (Late)

FIELD REJECTION RATE (%)

235



FIELD

ERROR

REJECTION

EFFICIENCY

(%)

FIELD

DISTANCE

REJECTION

EFFICIENCY

(%)

Microfilm (Late)

0.00 20.00 40.00 60.00 80.00 100.00
FIELD REJECTION RATE (%)

Microfilm (Late)

236



HUGHES

Late Siibmlssions

See also: Siiinmary for On-Time Siabmissions
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IBM

Late Sxibmissions

See also: Siommary for On-Time Sxibmissions
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IDIAP

Late Sxibmissions

See also: Siommary for On-Time Submissions
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MCC Experiments

Gale Martin
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Comments on the MCC Entries

The scoring for the MCC entry was considerably below what we were achieving on the

test on the test set that we had specified from the original training materials (66% field error

rate as compared to the 86% reported at the Conference). After the Conference, an analysis

of the source of the drop led to the discovery that we had a bug in the field extraction

code. The bug was introduced when we made relatively minor changes to enable the field

extraction code to operate in the test mode, without the presence of reference files. The

bug had the effect of capturing completely wrong portions of the mini-forms, and because it

was not present on our training and internal testing operations, we didn’t discover it prior

to the NIST testing. When we corrected the bug, and reran the prior system, which was

unchanged otherwise, on the Conference test files and scored it against the reference files

subsequently sent out by NIST, we achieved considerably better results( i.e., 71% field error

rate). Since that time, we have also been able to improve performance further, through some

relatively minor changes in the neural network architecture, and in the integration of word-

segmentation and word-level dictionary lookup. Our current field-level error rate stands at

58% on the Conference test set.

We are grateful to NIST and the U.S. Census Bureau for giving us the opportunity to

test and extend our technology to handwritten phrases.
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Field Extraction & Cleanup

• Locate dashed line box around field and de-skew

• Include multiple lines below field for descenders

• Remove image noise

• Remove blank lines and columns surrounding text

ScKop ( s
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Integrated Segmentation & Recognition

• Saccade System

• Multi-Classifier Experiments

jam

TRIICKMANTENANCE

Confidence values

Locations of Characters

Saccade System

• Trained to navigate a field of text

—

center input window on characters,

and then recognize them

No Centered Character

Current character

Distance to current character

Distance to next character

I 4Pan

HEHMII f
Output

J
Vector

Developed for digit recognition
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Multi-Classifier Experiments

• Boosting Algorithm (Drucker, Schapire & Simard, ATT)

Automatically generates multiple classifiers

1 . Train first net on sample A
2. Train second net on sample B

Sample B: half come from new samples the first net got right

half come from new samples the first net got wrong

Hurt rather than helped

• Instead used 2 classifiers

Original integrated segmentation & recognition net

Additional recognition net (used on centered chm-actcrs only).

Word Segmentation

• Density histogram

• Estimated character locations

+

Estimated character

locations

TRUCK MANTENANCE
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Dictionary Cleanup

• First Pass:

Word-level Dynamic Programming

Frequent words (occurred 6 times or more

in .ref files from database12 & database 13

Dictionary sizes 800-1000 words

• Second Pass:

Long Phrase Dictionaries

Reject if not in the dictionary

TRUCK MANTENANCE

+
confidence values

TRUCK MAINTENANCE
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NIST

Late Siibmissions

See also: Sxjmmary for On-Tlme Submissions
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UBOL

Late Siibmissions

See also: Summary for On-Time Siibmissions
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