
A Certainty Grid to Object
Boundary Aigorithm

NISTIR 5447

John Albert Horst

Huhr*/^in Huang
Tsung-Ming Tsai

Systems Division

u.s. ol-partment of commerce
Tecrj.i;hOg;v Administration

NatirnH' Institute of Standards

ano Vscrsnology

BIdH .;?20 Rm. B124
Gaiil ; jrg, MD 20899

L NIST
.U56

N0.5W
1994

A Certainty Grid to Object
Boundary Aigorithm

John Albert Horst
Hui-Min Huang
Tsung-Ming Tsai

Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

June 1994

U^. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

A CERTAINTY GRID TO OBJECT BOUNDARY
ALGORITHM

By John Albert Horst^ Hui-Min Huang^, and Tsung-Ming TsaP

ABSTRACT
An edge linking algorithm [Nevada 80] is modified for a mobile robot map representation

application. Certainty grid ‘images’ are transformed to an appropriate set of object boundary
curves. The latter are expressed as oriented piecewise linear segments. Image processing

techniques, such as edge detection, thinning, curve tracing, and linear approximation are employed
with various modifications. The most significant modification is a new method for linear curve

approximation that is simple, accurate, and efficient. This method monitors chord and arc length

and its excellent performance is demonstrated against similar algorithms. The certainty grid to

object boundary algorithm is tested against simulated noisy certainty grid maps.

1 . INTRODUCTION AND
MOTIVATION
Various robotic tasks require a variety

of map representations. Intelligent systems

are well served by as many representations

as possible without suffering unacceptable

cost or degradation in performance. With
processor and memory costs continuing to

plummet and with the increasing availability

of parallel bus architectures, maintaining
multiple representations in real-time
intelligent systems is becoming more and
more practically feasible. Two useful and
complementary map representations are

certainty grids [Moravec 88] and object

boundary curves. They are particularly

useful for mobile robot control. For
example, vectors normal to an object

boundary would be difficult to get from a

certainty grid, but relatively easy to obtain

from an object boundary curve. Spatial

occupancy information is gotten easily from
certainty grids but not so easily from object

boundary curves. Additionally, representing

spatial occupancy in the form of object

boundary curves is important for the

^Electronics engineer.

^Mechanical engineer.

^Mechanical engineer.

Robot Systems Division, The National Institute of Standards

and Technology (NIST), U.S. Department of Commerce

detection of higher level features such as

comers, curves, and lines. As a result, high
level geometric features can be more easily

computed, perceived, and updated and, for

example, can be used by the mobile robot to

reorient itself. This is particularly important
when hierarchical control architectures are

used [Albus 91]. It is relatively easy to build

and maintain a certainty grid which makes it

a good local map. However, a certainty grid

representation for a global map may require

a forbidding amount of storage space,
whereas, an object boundary curve is more
compact without sacrificing accuracy or

utility.

We describe an algorithm that receives

a certainty grid and outputs a set of oriented

contiguous line segments that approximate
the object boundary curves in the certainty

grid. The certainty grid to object boundary
(CGOB) algorithm we describe uses edge
operators obtained from [Jain 89] where they

are demonstrated to have good performance
with noisy images. This reduces the

importance of the noise thresholding
parameter in Nevada and Babu’s algorithm
[Nevada 80].

The CGOB algorithm concludes with a

piecewise linear curve approximation
algorithm. The popular split and merge
approach [Chen 79, Duda 73, Jain 89,

Grimson 90] is known to be inefficient and
several attempts to improve its efficiency

1

come with an increase in complexity

[Nevada 80, So 93]. We have developed a

new approach that is accurate, simple, and

efficient. We compare this new approach to

others in the literature. We compare the

chord and arc length algorithm to other

approaches in the literature and its efficient

and accurate performance argues for its

inclusion in the CGOB algorithm we
describe.

The CGOB algorithm has been tested

against certainty grids of various types

corrupted by two types of noise (see figure

9). The points that represent the object

boundary are also ordered so that occupied

area is always to the right if proceeding in

the direction of this list of points.

Hierarchical control (such as RCS
[Albus 91]) specifies a real-time, multi-level

interaction of prediction and error formation.

The certainty grid representation allows

prediction of points (low level), whereas the

object boundary representation allows

prediction of lines and shapes (higher level).

The current algorithm will allow both

representations to simultaneously exist and
be updated in a real-time intelligent system.

2. THE ALGORITHM
Here is the CGOB algorithm (based on

Nevada & Babu):

1) Create a raw edge grid using two orthogonal

5x5 gradient operators on a noisy certainty

grid.

2) Threshold and thin the raw edge grid and use

this result to compute arrays of 'predecessors'

and 'successors'

.

3) Group contiguous cells in the thinned edge

grid, constituting contiguous edge cells.

4) Do local Gaussian smoothing on each group of

points (to filter out quantization noise).

5) Approximate the smoothed boundary points

with contiguous line segments by monitoring

change in chord length and path length.

A two dimensional view of the world is

sufficient for many navigation tasks of a

mobile robot. However, we suggest that the

algorithm can be extended into three

dimensions. This will be discussed further in

the conclusion.

When using connected line segments
(as the object boundaries) to represent spatial

occupancy, we are particularly interested in

specifying the ordering of each object
boundary curve so that it encodes which side

of the curve is occupied.

Certain aspects of the algorithm are

simplified and standardized because we are

always in unitary (or ‘grid’) coordinates.
Distances will always be 1 or V2 in grid
units.

2.1 EDGE DETECTION
Nevada & Babu used six 5x5 masks as

‘compass’ operators [Jain 89] (Le., choose
the signed gradient orientation associated
with the maximum value as the gradient).

Therefore, the output orientation at each cell

is one of twelve discrete values. We used
two orthogonal masks for computing the

gradient. This gave a smoother gradient
Unction with less computational cost.

We used 5x5 stochastic gradient
operators [Jain 89]. These operators have
the advantage of performance tailored to the

expected signal to noise characteristics of the

raw certainty grid. This signal to noise ratio

(SNR) needs to be computed from a

representative noisy certainty grid in order to

be accurate. We performed our simulations

with a somewhat low SNR of one.

3x3 operators didn’t produce smooth
thinned edges, so 5x5 operators were
required. In addition to requiring more
computation (about three times more), 5x5
gradient operators caused the loss of fine

detail. However, for our purposes, assurance

of smooth thinned edges is more important

than either higher computational cost or loss

of detail. The presence of ‘forks’ in the edge
grid are an example of such detail. Even
though the Nevada & Babu algorithm is

capable of handling forks, we were unable to

create a simulated certainty grid that

produced anything other than spurious forks

when using 5x5 gradient operators.

2

2.2 THRESHOLDING AND
THINNING
After edge detection, a thresholding

operation is used to eliminate spurious edges.

Our choice of the stochastic gradient

operator made the choice of this threshold

value less critical, since the stochastic

gradient eliminates much of the noise.

The thinning step seeks to find the cells

associated with the true edge and eliminate

all others. The orientation and magnitude of

each cell is examined. We classify the edge

orientation as lying within one of four like-

shaded regions in figure 1. The non-

maximum suppression algorithm is

employed for thinning and requires the

following for a cell to be an edge:

1) the cell magnitude is a local maxima with

respect to its two neighbors orthogonal to the

edge orientation (see figure 1).

2) the difference in edge orientation of this cell

with its two neighbors is less than threshold

(7t/3 worked well with our simulations)

e = 7D2 + tan-'(l/2)

0 = 7t/2 + tan

6 = tan‘'(2)

e = tan-'(l/2)

) = 71 + tan

6 = 7t + tan''(2)

0 = 371/2 + tan-(2)

= 371/2 + tan-'(1/2)

Figure 1 : Regions of edge orientation in the

neighborhood of a cell.

If the cell passes both the threshold and the

thinning test, it is stored in the thinned edge

grid and the two neighbors are excluded

from consideration as potential edge cells.

23 CURVE LINKING
Now that the thinned edge grid is

formed, we must order these cells into sets of

ordered lists which describe the curves

(closed, open, and forks) that we expect to

see. We followed Nevada & Babu by
forming successor and predecessor grids that

contain the chosen successor and predecessor

for each cell. These predecessors and
successors are then used to get linked lists of

curves representing the object boundaries.

2.3.1 PREDECESSORS AND SUCCESSORS
The predecessors and successors for

each edge cell in the thinned edge grid are

chosen as follows.

1) Determine within which of the eight regions
(as in figure 1) the edge orientation lies (edge
direction is defined nil counterclockwise from
the edge gradient direction).

2) With this information, define potential
successors and predecessors (three each
maximum) based on whether those potential
cells are in the thinned edge grid.

3) If there are predecessors, record that fact. Any
more information on predecessors is not
necessary.

4) If there is only one successor (defined in the

edge direction), just choose it.

5) If there are exactly two successors, and

a) if the potential successor cells are not 4-

neighbors, choose one with the greatest
magnitude as the successor and store other
as a fork.

b) if the potential successor cells are not 4-

neighbors, choose one as a potential fork
only if its edge orientation differs by more
than threshold (we used 7C/3). Otherwise,
choose the nearest of the two as successor
(Euclidean distance).

5) If there are exactly three successors,

a) the one with maximum difference in edge
orientation is chosen as a potential fork.

b) successor is the closest one by Euclidean
distance.

Optimum paths are not sought after as

in dynamic programming techniques
[Bellman 62, Jain 89], because of the

increase of computation required.

The edge direction is defined as nil

counterclockwise from the edge gradient

direction and the edge direction defines the

successor direction. Therefore, occupied

space is on the right if one follows

successors.

Using a 5x5 edge approximator,
features that size or smaller (depending on
noise levels) will be missed or

misinterpreted. This is probably why we
were never able to create forks in our

simulations. Nonetheless, we retained the

code to detect forks from Nevada & Babu.

2.3.2 CURVE GENERATION
Now that we have grids of successors,

predecessors, and forks, we need to exploit

these grids to obtain the ordered lists that

constitute the object boundary curves in the

3

certainty grid. Curve generation requires

two serial passes through the grid.

1) Look for cells with a successor and no
predecessor and store them starter of open
curves. At the same time, look for fork cells.

2) Start tracing at each starter cell (excluding fork

cells). Eliminate the starter cell from further

consideration. If the current cell has a

successor and this potential successor cell has

not been eliminated, store the successor into

the ordered list. Delete each traced edge cell in

the thinned edge map.

3) Start tracing at each fork only if the successor

of the fork point successor has not been
eliminated. Eliminate cells in fork curves.

4) Trace closed curves starting at the first cell

encountered that is ‘alive’. Eliminate cells

from thinned edge grid as they are traced.

Continue cycling through the entire thinned

edge map.

2.4 PIECEWISE LINEAR CURVE
APPROXIMATION
The map is now represented as sets of

contiguous grid cells. Each set defines an

object boundary curve. This is already a

significant reduction in data storage from the

certainty grid. However, further reductions

can usually be made by approximating these

curves with even fewer points. These points

then represent the approximation to the

object boundary.

One can, of course, use more
sophisticated methods of fitting a curve to

the set of obstacle boundary points such as

splines and higher order polynomials, but

line segments have the advantage of
simplicity. We avoided optimal linear

approximations as in [Pavlidis 77] since they

are computationally much more expensive

[Ramer 72]. The trade-off of optim^ity for

simplicity and speed we felt was reasonable.

2.4.1 MOTIVATION
Each object boundary is a list of

contiguous cells constituting a curve in two
dimensions. We wish to obtain a set of

points that approximate that curve according

to some criterion of fitness. One algorithm

that does this is called 'split and merge'
[Chen 79, Duda 73, Jain 89, Crimson 90]. It

uses a minimum mean squared error

criterion. However, it is Imown to be
inefficient [Nevada 80, So 93]. This is

because the size of the curve and the

tightness of fit required greatly effect the

computational cost. Several attempts have

been made to make it more efficient but at

the cost of higher complexity [Nevada 80,

So 93]. The split and merge method has
some essential weaknesses,

1) It is inefficient because it may require forming
approximation errors from the same points on
the curve up to {n-l){n-\)j2 times for an
n point curve (during the ‘split’ portion of the
algorithm).

2) It tends to inscribe curves, requiring more
approximating points for a tighter fit.

The strengths of the split and merge
algorithm are its simplicity, that it is

controlled by a single, physically meaningful
parameter, and that it generates a sparse set

of points that well approximate the original

curve (as in figure 5).

Teh and Chin [Teh 89] have also

created an algorithm for finding dominant
points on digital curves that has a reasonably
good error performance. However, their

method suffers from the following
weaknesses,

1) It is complex to describe and we found the
concept of ‘region of support’ to be somewhat
non-intuitive.

2) No parameters are supplied to control tightness
of fit.

3) We were able to achieve a better error
performance with the chord and arc length
algorithm (see figure 7).

4) The algorithm can be performed in parallel, but
is relatively slow if done serially.

5) It assumes closed, digital curves only.

We sought an expression that can be
computed in a single pass through the curve
but still minimizes mean squared error. Such
requirements are satisfied by monitoring the

relationship of chord length and arc length

along the curve.

2.4.2 CHORD AND ARC LENGTH
ALGORITHM

The chord and arc length algorithm we
now describe avoids all the stated

weaknesses of both the split and merge and
the Teh-Chin algorithms. It has the

following processing steps,

1) Determine whether the curve is open or closed.

2) Do local Gaussian smoothing on the raw data
to reduce quantization error.

3) Starting anywhere on the closed curve (at the

first TOint on the open curve), compute chord
length, C, and arc length. S. for each
successive point and if is greater

than the maximum deviation parameter,
declare the previous point to be dominant.

4

4) Merge points by testing if approximating
points can be eliminated without exceeding the

threshold on deviation.

5) Compute a (parameterized) least squares line to

the points on the curve between and including

the fast two dominant points.

6) Find the point on the previous and current least

squares fit lines that are closest to the previous

dominant point.

7) Choose the midpoint between these two closest

points as the latest approximating point.

Gaussian smoothing is required only because

the thinning algorithm often produces a

thinned edge pixel having one four-neighbor

and one eight-neighbor. Gaussian windows
of size five'^ were used in our simulations.

Closed curves do operations mod(«) for n

points on the curve. The start and end points

of open curves are automatically declared to

be dominant points. We are free to eliminate

least squares line computation (steps 4-6), in

which case, the chord and arc length

algorithm is very Spartan indeed, as well as

efficient, but would not ameliorate the

‘inscribing’ problem.

The algorithm has the following

characteristics,

1) It is efficient because the number of
computations increase only linearly with the

number of points in the curve.

2) It uses the same physically meaningful
parameter used by tne split and merge
algorithm, namely, maximum deviation.

3) It has excellent error performance against
several algorithms, namely, low error per
number of approximating points (as in figure

4) It provides a better fit to smoothly curving data
(e.g., circles) because it computes least squares
lines and uses them to compute the
approximating points.

5) The only additional complexities over the split

and merge method are the addition of the least

squares line computation and Gaussian
smoothing, neither of which are required. The
core part of the chord and arc length approach
is even simpler to describe and code than the

split and merge.

6) It is designed for both open and closed curves.

7) It seems to be insensitive to the particular

choice of starting point.

^Gaussian windows of size three, five, and seven were

{0.1586, 0.6827, 0.1586}, (0.0228, 0.22978, 0.4950,

0.2297, 0.0228}, {0.0062, 0.0606, 0.2417, 0.3829, 0.2417,

0.0606, 0.0062}.

2.4.3 ANALYSIS
We now describe the chord and arc

length algorithm more precisely. Let a(i),

/ = 1,2,...,/2, be a sequence of points in the

plane (if a(l) = a{n) we say the curve is

closed). We seek a subsequence of dominant
points, 7 = l,2,...,m < « such that, for

j = 1 , 2,...m and ij < i <
,

d > max|distance(ci'(/),line segment(a(/^.),a(/.^,))j|,

(1)

for a given maximum deviation value, d.
The distance function computes the shortest

distance from the points a{i), i. < i < to

points on the line segment between adjacent

dominant points and With ij

as the previously determined dominant point,

we form expressions for chord length and arc

length between the points,
)
and k,

= !«(<:) -a(i^.)||, (2)

and

(3)

i=ij

respectively, until

= (4)

Then we choose =k-l (the previous
point) as the new dominant point. Therefore,

since the function, d('), is monotonically
increasing,

(5)

If the curve is closed, all operations are mod
n; if open, choose a(l) and a{n) as the first

and last dominant points.

.We must show that (1) is true if

condition (4) is met throughout the sequence
of points a{i). This can most easily be
demonstrated by examination of figure 2.

The equation.

comes from noting that, if the curve were a

string attached at the chosen dominant points

a\ijj and and we pushed the string

upwards with a stick, we could always form
an isosceles triangle such as that in figure 2.

5

A illustrated in figure 2, it is true that for any

planar curve,

^max ’ ^j +])
— ’ ^j+\

)
’

where is the largest deviation from

points a{i), ij < i < 1^+,, to the line segment

between adjacent dominant points and

) . We prove (7) in the appendix.

Figure 2: The isosceles triangle is formed from the

chord length and arc length between the two points

and a(/^^,)on the curve.

Since (7) is true for all y = 1,2,. . .m and from

(5),

(8)

for all y = l,2,...m, and (1) must also be
true.

A lemma and a theorem (stated and
proved in the appendix) reveal that if we are

given a threshold value, d, the basic chord
and arc length algorithm we have described

will guarantee that the deviation of each
point on the curve from its appropriate

approximating line segment (i.e., the chord
line segment) will be less than or equal to d.

This provides a physically meaningful upper
bound on the approximation while
maintaining efficiency.

The merge process operates as in the

split and merge method [Crimson 90],

namely, if

d > max|distance^a(i),line segment(a(/^_,),a(/y^,)jj|,

(9)

for /y_j</</y+,, a{ij] is eliminated as a

dominant point. Wnat we have described

thus far is the basic chord and arc length

approach. Next we describe the extended

algorithm including Gaussian smoothing and
least squares fitting.

Gaussian smoothing is not a necessary
part of this approach, but can be useful with
digital curves when we wish to eliminate
quantization noise [Horst 94]. Let P(i),
/ = l,2,...,n, be the unsmoothed sequence of
points in the plane. We let

. w-I
IH

«(')= 'ZPU)G{j-i), (10)

. . *v-l

be the smoothed values for Gaussian window
size, w, an odd number. The values G(') are

integrations of appropriately chosen,
normalized one-dimensional Gaussian
functions.

We now describe a least squares fitting

technique to further reduce approximation
error. Like Gaussian smoothing, least

squares fitting is not a necessary part of this

approach, but may be useful if computing
time is available and analog points are
acceptable. Each subset of points {a(/A

+ lj, ..., is used to fit a
parameterized line^ 4 (O’- We find points,

p, and P2 ’ on the previous least squares line,

/,(r)„ and the current line, IMI, which are

the shortest distance from ol(iX The latest

approximating point is cliosen as the
midpoint between p, and P2

^.

We note that the upper bound used in

the chord and arc length method is not as

tight an upper bound as in the split and
merge approach, since it is an indirect

measure of error. However, the efficiency

and excellent error performance of the chord
and arc length approach argue for its utility.

2.4.4 ALGORITHM PERFORMANCE
It is essential to examine the error

between the approximating line segments
and the smoothed curve points as a function

of the number of approximating points for a

variety of types of curves. We find that the

chord and arc length algorithm performs
better than both the split and merge and the

^Parameterized fitting easily allows fitting to arbitrary

curves and minimizes perpendicular distance.

%ome minor changes to this general process are required at

the beginning and end of each curve and whether they are

open or closed.

6

Teh-Chin algorithm. We demonstrate the

errors of the different algorithms for the

digital closed curve of a chromosome as

shown in figures 3 through 6. Figure 7

shows maximum actual deviation for the

various algorithms for the digital curve as a

function of number of approximating points.

Results on total deviation and standard

deviation errors give similar results. We
expect that the split and merge method
would do a little better when the starting

point of a closed curve is chosen carefully

[So 93], however, as we mentioned above,

this comes at a cost of greater complexity.

Figure 8 illustrates the superior efficiency of

the chord and arc length approach over the

split and merge algorithm and its

insensitivity to the number of approximating

points (i.e., ‘tightness’ of fit).

Note that the maximum deviation

threshold used in the split and merge
algorithm fulfills the same role in the chord

and arc length algorithm we describe.

Threshold values will be chosen based on the

application (with its unique sensors and
geometric shapes and required precision).

Operating times for the chord and arc

length ^gorithm are linearly proportional to

the number of data points processed.

Because split and merge operating times are

proportional to the square of the number of

data points, curves with many points will

take forbiddingly long times to compute.
Additionally, compute time of the split and
merge method varies with the size of the

deviation threshold (as in figure 8).

Alternatively, performance times of the

chord and arc length algorithm are constant

with respect to the deviation threshold.

Another advantage of the chord and arc

length algorithm is that it seems to be
insensitive to the choice of the initial

breakpoint, unlike split and merge [So 93].

A disadvantage of the chord and arc length

algorithm is that the difference between the

maximum error (resulting from the

approximation) and the input deviation

threshold is greater than with split and merge
because the former computes error

indirectly.

Figure 3: A digital closed curve of a chromosome
with fitting by chord and arc length with least squares

fitting.

Figure 4: A digital closed curve with fitting by chord

and arc length without least squares fitting.

7

25

20

15

10

5

0

0 5 10 15 20 25

Figure 5: A digital closed curve with fitting by split

and merge.

Figure 6: A Gaussian smoothed (window size = 5)

closed curve with fitting by chord and arc length with

least squares fitting.

number of approximating points

Figure 7: Maximum errors as a function of the

number of approximating points for the digital curve

in figure 3.

Figure 8: Relative execution time as a function of the

number of approximating points for the chord and arc

length algorithm and the split and merge method
using the curve in figure 3.

2.5 SIMULATION
For testing the algorithm, we used

simulated grid maps with Gaussian blurring

and speckle noise added. Figure 9 shows an

example of a noisy grid. Note that the final

approximating line segments are

superimposed. Here we see that open or

closed curves can be detected and that data

reduction from the certainty grid to the

obstacle boundary points is about 145 in this

example. Figures 10 and 11 show the raw
edge grid and the thinned edge grid. The
entire CGOB algorithm has been tested and
exists in both Mathematica® and 'C.

8

c:

o

Ul

40

35

30

25

20

15
bl)

10

5

0

5 10 15 20 25 30 35 40

X grid location

Figure 9: A noisy certainty grid with final

approximating points superimposed.

0 10 20 30 40

X grid location

Figure 10: The raw edge grid for noisy certainty grid

of figure 9.

40

Figure 11: The thinned edge grid for noisy edge grid

of figure 10.

3 . CONCLUSION
We have made application to mapping

(with appropriate changes) of an image
processing algorithm by Nevada and Babu
that converts an intensity image into sets of

connected line segments representing the

edges in the image. It is robust in the

presence of blurring and 'speckle' noise as

long as the gradient operator is chosen
carefully. Its use in a real-time system can
enhance that system's efficient performance
of a variety of tasks. In summary, here are

some of the uses and advantages of having

the CGOB algorithm in a real-time system:

1) It allows simultaneous use and dynamic
availability of two forms of spatial occupancy
representation, namely, certainty grids and
object boundary curves.

2) Certainty grids provide a fast response to some
queries that would take longer to get with
object boundary curves (e.g.. Is there an object
at (x,y)?). The latter would have faster
response to other types of queries (What is the

normal vector to the boundary at (x,y)?).

3) Certainty grids require much more storage
space than object boundaiy curves. This fact

might suggest the former for local, egocentric
maps and the latter for global maps.

4) Object boundary curves can be considered a

'higher level' representation in an intelligent

hierarchical system, since, for example, it is

easy to detect geometric shapes using object
boundary curves.

The CGOB algorithm is described for

two dimensional maps only, but the move to

three dimensions should be straightforward

and is a topic for further research.

Particularly so, the extension of the chord
and arc length algorithm to three dimensions

is worthy of further pursuit. Edge detection

and linking could logically be extended to

three dimensions and approximation by line

segments in 7?^ would become approximation

by flat planes perhaps described by three

points. Edge detection would be done with

three block matrices that would approximate

partial derivatives of the occupancy function

in 3-space in the x, y, and z directions.

Linking in 3D would not be line linking but

surface linking. Some clever modification of

the successor and predecessor file idea

would be needed.

If CGOB continues to show promise as

we test it within real-time robotic systems,

we would probably want to develop an

algorithm that works in the reverse direction.

9

namely, to generate a certainty grid from an

object boundary map. For example, we may
be confident that at the object level, we have

sensed object A (precise model stored in

memory) and can use this information now
to improve the certainty grid. How hard is it

to go in the reverse direction? This may
depend on the complexity of the map.

In order to capture lines, one might

want to have a separate step using line

detection operators to catch line edges that

the edge detection operators might have

missed, since the latter should miss objects

of size less than 5x5.

Finally, we have shown that the chord

and arc length algorithm used for linear

approximation has superior error

performance, simplicity, and efficiency

compared to other approaches in the

literature.

Figure 12: The triangle formed by the point on the

curve producing the maximum deviation from the

chord line segment.

Figure 13: The isoceles triangle ‘equivalent’ to the

triangle of figure 12. The two triangles are equivalent

in that the lengths of base and perimeter, are equal

4 . APPENDIX
We now prove (7), but first we state

some definitions.

Definitions: Let a{i), i = l,2,...,n, be a

sequence of distinct points in the plane. Let

S = s(^ij,ij^^y the arc length function (3),

C = the chord length function (2),

^max = thc maximum distance

from points «(/), i = ijJj

+

to the

line segment formed by the points a{ij) and

let Cf(/n,ax) t>e the point on the curve

where the deviation from the chord line

segment is at a maximum (illustrated in

figures 12 and 14), is the distance from

a(/niax) chord line formed by the

points a(f.) and and let D =

ll2{S^-Cy\

Lemma: < D.

Proof: Construct a triangle formed by the

points, (x(i^), and «(/;+,) with base

of length C and sides of lengths A and B

.

is illustrated in figures 12 and 14. Let

b be the angle opposite the side of length B
and let a be the angle opposite the side of

length A. Note that only when

a and b are less than or equal to tU2. In

figures 12 and 14, is the height of the

triangle. Construct an isoceles triangle, as in

figures 13 and 15, with base length and

perimeter equal to those of the triangle in

figures 12 and 14, respectively. Let h be the

height of the isoceles triangle. Let R =

A-\-B. Since the shortest distance between

two points is a line, R < S, where S is the

arc length. From elementary geometry,

I™. = (9)

which implies that < h . Since R < S

and /i = y2{R^-C^f\ h < D. Since

< h < D, £ < D. I

10

Figure 14: The triangle formed by the point on the

curve producing the maximum deviation from the

chord line segment where angle b is greater than njl .

Figure 15: The isoceles triangle ‘equivalent’ to the

triangle of figure 14. The two triangles are equivalent

in that the lengths of base and perimeter, are equal

The lemma shows that the distance

from (x(i^)
to the chord line is always less

than D = 1/2 (5^ - (the monotonically

increasing function of chord and arc length

that is the basis of the algorithm). However,

li a > nil, = B and if b > k/2, =

A ; and in both these cases, E^ > (see

figure 14). Therefore, the lemma alone is

not sufficient to support the claim of (7). In

other words, we need to prove that the

distance from a(/nax) chord line

segment is always less than D which is

stated in the following theorem.

Theorem: < D.max

There are only three cases to consider. We
will now show that the theorem is

established for each case.

Case \: b < Till and a < Till,

Case 1: b > Till, and

Case 3: a > nil.

Proof of Case 1: As in figure 12, if b < nil

and a < nil, since E^^^ = the lemma
implies that E^^ < D.

Proof of Case 2:li b > nil, as illustrated in

figure 14, E^^ = A. Construct an isoceles

triangle as in figure 15. Let h be the height

of this isoceles triangle. From the proof of

the lemma, h < D. By the Pythagorean

relation,

2h^ =A^+B^+2AB-C\ (10)

and by the law of cosines (from figure 5),

0 = A^-B^-2ACcosb + C\ (11)

Adding (10) and (1 1), we get that

2h^ = 2A‘ + {2AB -2ACcosb). (12)

The term in parentheses in (12) > 0, since

cosb < 0. Therefore, A < h and, since h

< D, A = E < D.

Proof of Case 3: The exact same process

followed in the proof for Case 2 is required

to show that if a > Till, B = E^ < D.

5. REFERENCES
[Albus91] Albus, J. S., “A Theory of

Intelligent Machine Systems”, Proc. of
IEEE Intelligent Robots & Systems 1991
— Intelligence for Mechanical Systems,
November 1991.

[Bellman 62] Bellman , R. E. and Dreyfus,
S., Applied Dynamic Programming,
Princeton, N.J..: Princeton University
Press, 1962.

[Chen 79] Chen, P. C., and Pavlidis, T.,

“Segmentation by texture using a co-
occurrence matrix and a split-an-merge
algorithm,” Computer Graphics, Image
Processing, 10 (1979): 172-182.

[Duda 73] Duda, R. O. and Hart, P. E.,

Pattern Recognition and Scene Analysis,

New York: John Wiley, 1973.

11

[Freeman 74] Freeman
,
H., “Computer

Processing of Line Drawing Images,”
Computer Surveys 6, (March l974): 57-98.

[Gray 94] Gray, A, Curves and Surfaces, in

progress.

[Grimson 90] Grimson, W. E. F., Object
Recognition by Computer: The Role of
Geometric Constraints, Cambridge,
Massachusetts: The MIT Press, 1990.

[Jain 89] Jain , A. K., Fundamentals of
Digital Image Processing, Englewood
Cliffs, N.J.: Prentice Hall, 1989.

[Martelli 72] Martelli, A., “Edge Detection

Using Heuristic Search Methods,”
Computer Graphics and Image Processing

1, (August 1972): 169-182.

[Moravec 88] Moravec, Hans P., “Sensor
fusion in certainty grids for mobile
robots”, AI Magazine, Summer 1988, 61-

74.

[Rosenfeld 82] Rosenfeld, A. and Kak, A.
C., Digital Picture Processing, New York:
Academic Press, 1982.

[Nevada 80] Nevada, R. and Babu, K. R.,

“Linear Feature Extraction and
Description,” Computer Graphics and
Image Processing 13, 257-269.

[Pavlidis 77] Pavlidis, Theodosios,
“Polygonal approximations by Newton’s
metnod”, IEEE Transactions on
Computers C-26, No. 8, August 1977.

[Ramer 72] Ramer, Urs, “An iterative

procedure for the polygonal approximation
of plane curves”. Computer Graphics and
Image Processing 1, 1972, 244-256.

[So 93] So, W. C. and Lee, C. K., “Invariant

line segmentation for object recognition”.

Proceedings oflECON *93, Maui, Hawaii,
Nov. 15-19, 1993, 1352-1356.

[Teh 89] Teh, Cho-Huak and Chin, Roland
T., “On the detection of dominant points
on digital curves”, IEEE Transactions on
Pattern Analysis and Machine
Intelligence, Vol. U No. 8, 1989, 859-872.

I

I

>

E

I

r

t

;

i

