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ABSTRACT

The object of this paper Is to show how to make highly accurate mass measurements
using an appropriate electronic balance without the use of external mass standards.

The method eliminates the need for a set of external mass standards and, therefore,

the need to have these mass standards calibrated periodically at a standards

laboratory. Traceability to NIST can be achieved by periodic calibration of the built-in

mass standard of the balance by a standards laboratory and by self-verification of

balance linearity and function. This method benefits the user with lower cost and a

higher measurement rate. Presented here Is a detailed analysis of the method, a

determination of measurement uncertainty, and the traceability path. Lastly, the

method is illustrated by specific examples including the calculation of uncertainty.

INTRODUCTION

The usual method of determining the mass of an c' ect is by comparing the nominally

equal forces exerted on a balance pan by the object and by a mass standard (1 ). The
small difference in mass between the unknown object and the mass standard is then

expressed as the solution of two force equations which include terms for

displacement volumes (i.e., densities) of the objects, and the air density.



In this paper, we examine the concept‘^'^’ that the mass of an object can be
adequately determined (for most applications) by direct weighing on an electronic

balance without the use of external standards. The only requirements are that the

mass and density of the built-in weight of the balance be known adequately with

respect to the SI units, and that the balance be linear or corrected for nonlinearity.

THE FORCE DETECTOR

The electronic balance can be considered to be a highly-linear and precise force

detector. An overview of the electronic balance is given in (2,4). A short summary
of the principles of operation is given here. Detailed knowledge of the electronic

circuits is unnecessary. Figure 1 illustrates the basic principles of a force balance, and

a representative mechanical structure is shown In Figure 2.

When a downward force is applied to the balance pan (loaded with an object) it Is

opposed by a magnetic force generated by the interaction of two magnetic fields.

One field Is generated by a permanent magnet and the other by a controllable

electromagnet. Usually, the magnetic force Is applied through a multiplying lever and
not by direct levitation. Sufficient magnetic force is generated to restore the

mechanism (pan) to Its unloaded position or null point relative to the balance

structure. Obviously, the device Is electromechanical and we should expect errors

(both random and systematic) associated with both electrical and mechanical sources

to arise in the use of these instruments. It Is desirable in common weighing

applications to tie the magnetic force to the unit of mass through calibration of the

electronic circuit. The circuit is adjusted such that the algebraic sum of the

gravitational and buoyant forces produces a balance indication approximately equal

to the nominal value of the applied mass.

It is common practice for high-precision balances to be supplied with a built-in weight

whose density is about 8 g/cm® and with its mass adjusted to a nominal value. This

practice provides for a uniform response among balances to the given load at a given

location. When the built-in calibration weight is tied to the mass unit by a traceable

calibration, the electronic balance provides a convenient way to multiply and divide

the mass unit within the capacity of the instrument. This built-in weight and the high

degree of precision and linearity of the electronic force balance eliminates the need
for a calibrated set of mass standards (i.e.. a weight set).

In calibrating the balance, the manufacturer forces the no-load Indication to be zero

and, when the built-in calibration weight is engaged, adjusts its electronic circuit to

indicate the nominal value of the built-in weight. The ideal balance response is, of

course, a straight line connecting the no-load indication to the built-in weight

indication. For some balances, linearity is preserved with extrapolation beyond these

bounds. Usually, the response of balances is only approximately Ideal and therefore,

for some applications, observations not at calibrated points may require correction for



nonlinearity. In the following discussion, it is assumed that the correction for

nonlinearity has been applied to the balance observations for the unknown object.

The subject of balance linearity will be discussed In detail later. However, we note

that high-quality electronic balances are available for which linearity errors are less

than 1 ppm of the capacity of the balance.

DISCUSSION OF THE METHOD
The calibration function of the analytical-quality electronic balance is

totally or partially controlled by its microprocessor. In this calibration process, the

pan-empty balance indication is set equal to zero. Likewise, the balance indication is

adjusted to the nominal mass of the built-in weight when it is loaded on the balance.

Customarily, the balance manufacturer adjusts the balance response to indicate the

mass of the built-in weight (for the better balances) or the nominal mass of the built-in

weight. This adjustment procedure ignores the opposing buoyant force on the built-in

weight. In the latter case, the manufacturer adjusts the mass to be within one display

count of the nominal mass.

During the calibration using the built-in weight, the balance response (indication) is

proportional to the force Imposed on the balance mechanism by the built-in weight.

This force is expressed by the following equation:

Fs = S{-i-^)g = kOc
Ps

( 1 )

The force is F,, S is the mass of the built-in weight and is its density, Is the

density of air, g is the local acceleration due to gravity, k is a constant of

proportionality, and 0^, is the balance response in balance units.

Similarly, the force imposed on the balance pan by an object of unknown mass is

expressed as:

F, = -^)g = k{0,-0,)
Px

(2 )

The force is F^; is the unknown mass of the object and p^ is its density; k is

unchanged; Ol is the balance response under load; and is the empty-pan balance

indication. Usually, but not necessarily, is adjusted to zero at the beginning of the

weighing process. It is imperative that the proportionality constant, k, remain

unchanged for both the calibration cycle and the weighing cycle. The modern
e Tronic balance maintains its calibration, provided that the balance Is left

undisturbed and the environmental conditions are stable.



Solution of Equations (1) and (2) for yields

1 -^

1

o0

1

1118»
(0,-0^)

1
!
1

(3 )

We note that the quantity. rO^/IQ, - 0 ^ )1. is the ratio of the force imposed on the

balance bv S to the force imposed bv M .,. Normally, Pg and p^ are known at some
reference temperature, t,. To obtain densities at the test temperature, t, corrections

must be made for the expansion or contraction of the built-in weight and object using

the following equation:

Pt = P,/[1+3a(f “ f,)]

(4)

where a is the coefficient of linear thermal expansion of the material of which the

built-in weight or object is constructed. We have used p^ to represent either Pg or p^

at the test temperature. Likewise, p, represents either density at the reference

temperature. Either Pg or p^ can be determined using the balance by performing a

hydrostatic weighings (3).

LINEARITY TEST AND CORRECTION

Ideally, the response of the balance would be linear; that is, observations would fall

on the straight line between zero and the calibration point. For example, if an object

of the same density as that of the calibration weight and 1 /2 its mass were placed on
the pan of the balance, the balance would indicate 1/2 the mass of the calibration

weight. Failure to do this would indicate that the balance response is nonlinear. A
linearity test should be performed to determine whether nonlinearity requires

correction.

The linearity test Involves dividing the mass range between zero and the calibration

mass into four equal segments. This test requires four test weights, two at

approximately 50% of the range and two at approximately 25% of the range. The
test weights should be fabricated of the same material of which the built-in weight is



fabricated in order to insure nearly equal densities. This effectively eliminates

buoyancy terms in the following test.

We now assign mass values to the test weights relative to the mass of the built-in

weight by sum and difference weighings. These weighings can be performed on the

balance under test or on another balance. If the built-in weight can not be directly

manipulated by the operator, it must be removed from the balance for this test.

We begin by comparing the sum of the two 50% weights with the built-in weight,

after the balance has been calibrated. The comparison is performed by the method
of substitution weighing*®’. Sum and difference weighings between the built-in

weight, S, and the two 50% weights, designated D and E, result in two equations:

S - (D -h E) = Ai

D - E = A 2 ,

where A^ and A 2 are mass differences derived from balance indications. The solution

of these two equations for D Is

D = (S 4- A 2 - Ai)/2.

The quantity, A^, is the difference between the balance indication with S on the

balance pan and the balance indication with D and E on the balance pan. Similarly,

A 2 , is the difference between the balance indication with D on the pan and the

balance indication with E on the pan. The differences are small; therefore they are

unaffected by reasonable balance nonlinearity. It is not necessary to solve for E.

This procedure is repeated for the two 25% weights, F and G, where D or E serves

the function of S above. As above, the following two equations are solved for the

25% weight, F:

D - (F -H G) = A3

F - G = A4 .

Solving these two equations for F yields

F = (D 4- A4
- A3)/2.

The uncertainties in the determinations of D and F relative to the built-in weight, S,

can be reduced to trivial amounts by repeating the sequence of balance observations,

Oi through O 9 . For example, if the sequence Is repeated 15 additional times, the

uncertainty in D or F is reduced by dividing each by the square root of 16.

The linearity measurement sequence, where the weight on the pan is expressed as a

percentage of the built-in weight, is:



0 25% 50% 75% 100% 75% 50% 25% 0

The 100% weight corresponds to both 50% weights being on the pan.

The observations, in mass units, corresponding to the above sequence are;

0i O2 O3 O4 O5 Oq O7 Og O9

This measurement sequence minimizes the effects of drift and hysteresis, if any.

The linearity correction is derived relative to the sum of the 50% weights, that is, at

the 100% calibration point. The linearity correction at the 50% point, is

iCso* = o - [(O5 - O3) + (O5 - 0,)]/2 (5 )

The linearity correction at the 25% point is

= F - [(Os - O,) + (Os - Os)]/2 <6)

The linearity correction at the 75% point is

Z.C7s% = (O + F ) - [(Os - Oj) + (Os - 0 8)]/2 (7)

With the linearity correction determined at 5 points (it is zero at the 0% and 100%
points), the shape of the linearity correction-mass curve is revealed by plotting the 5

points against mass. Intermediate points can be determined graphically or by
mathematically fitting a curve to the points. In all cases, the linearity corrections (if

significant) are subsequently added to or subtracted from the mass calculated from

the balance Indication. For those balances that extrapolate beyond the calibration

point the same technique can be applied to the extrapolated region. One only needs
to load the balance pan with a weight of known mass nominally equal to S and then

perform the linearity test as described above. There are hybrid balances that use a

series of tare weights (built-in weights) in conjunction with the electronic force

balance to increase the capacity. These weights require calibration by the method
described in (6) to assure linearity.

UNCERTAINTIES

The measurement uncertainties are propagated by the method described by Ku‘^’. The
general propagation equation for the uncertainty of M,, is:



(8 ){sd„_)=[5:
i=^

9^
9K/

(SD,)1

1

2i‘2

where is the partial derivative of the equation for the unknown mass, M^, with

respect to the parameter, Vj. SDj is the estimate of standard deviation for each
parameter, yj. SD's in this paper are u^, u^ or u^ as defined in NIST Technical Note
1 297‘®’. The parameters are S, p^, p^, 0^, Ol, and Og. The parameter uncertainties

for S, p, and p^ are Type B uncertainties; the remaining are Type A. Equation (8) is

consistent with NIST TECHNICAL NOTE 1297. Second-order effects such as the

thermal expansion or contraction of the weights, and the covariance terms in the Ku
equation are considered negligible,

derivatives are:
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( 13 )
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(14)

Vi Value SD
dM, Idy,. r 1

L J

s 100 g 0.000050 g 2.00073 0.00010 g

Ps 8 g/cm® 0.00032
g/cm^

0.00375
cm^

0.0000012 g

Px 2.329 g/cm" 0.000004
g/cm^

0.04426
cm^

0.00000018 g

Oc 100 g 0.000049 g 2.00073 0.000098 g

LUO1o 200 g 0.0001 38/\/6 1 .000366 0.000056 g

p. 0.0012
g/cm^

0.00000086
g/cm^

- 60.87659
cm’^

0.000052 g

RSS = 0.00016 g
(0.8 ppm)

TABLE 1

For a typical weighing, the weighing of a 200-g silicon crystal, Table 1 lists the values

for the estimates of standard deviation (SD), the partial derivatives, and their

products. The root-sum-square (RSS) of the products is the estimate of the

uncertainty in the determination of with a coverage factor of 1 . The SD of S is the



calibration uncertainty (provided by a standards laboratory, for example) with a

coverage factor of 1. The SD's of p, and are similarly provided or determined,

again with a coverage factor of 1 . The value of (Ol - 0^) in the table is the mean of

repeated determinations performed at one sitting. The SD of the mean value is the

SD determined from the repeated determinations divided by the square root of the

number, n, of repeated determinations, 6 in this case. The SD of Oc is the SD of the

balance with a 1 00-g load; this cannot be reduced by repeating the automatic balance

calibration process. The SD of a single determination of (Ol - 0^) is the same as the

SD of Oc, that is, the same as the SD of the balance.

In the example above, the SD of the lower half of the balance range is constant. In

the better balances, this is in general not true; the SD is smaller at the lower end of

the range of the balance and the user might wish to take advantage of this fact. We
determined the balance SD and linearity correction for the 200 g load from a set of

6 weighings. The mean SD of the balance was combined with the mean SD of the

linearity correction by the RSS method for an estimate of the effective SD. The
linearity correction measurements were also performed 6 times.

BALANCE SELECTION

The parameters in Table 1 which contribute the dominant uncertainties for a mass
determination within the capacity of the balance are the SD of the balance (Oc) and

S. The uncertainty of S can be reduced significantly by a rigorous calibration.

Depending on the desired accuracy for mass determinations, a balance with a lesser

or greater SD might be chosen. After the SD on S and Oc, the limiting parameter

becomes Pg. In selecting a balance, the error propagation table. Table 1, is useful In

determining the desired SD of a balance. Having determined the desired SD, one then

depends on the specified SD's provided by manufacturers to select an appropriate

balance.

Determining the Estimate of Standard Deviation. SD. of the Balance

Having acquired an appropriate balance, one then should determine, and use, the SD
of the balance in calculating weighing uncertainties. The SD can be determined by

multiple weighings of the object to be weighed, or of any stable weight within the

range of the balance capacity. It is preferred that the mass of the stable weight be

near that of the ob]ect(s) to weighed. The SD Is determined in the usual manner from

the values from the multiple weighings. Returning now to Table 1, the SD to be

assigned to Oc and to (Ol - 0^) is that determined above. The SD assigned to Oc
cannot be reduced by n repeated calibrations, that is. Is cannot be divided by the

square root of n. However, the SD assigned to (Ol - O^) can be so reduced.

DATA



Five independent determinations of the mass of a 200-g silicon crystal were made
using an electronic force balance and the method described here. The five

determinations of the mass of the crystal, in grams, are listed below:

199.4266, 199.4264, 199.4267, 199.4266, 199.4273

The mean of these values is 199.42672 g, and the estimate of standard deviation

(SD) is 0.00034 g. The relative standard deviation is 1.7 parts per million. The SD
is about two times as large as our predicted uncertainty (Table 1). The lack of

thermal equilibrium of the object and the surrounding air is the major cause of this

small difference.

The quantitative success of the above measurements can be misleading in the

conventional use of the electronic balance since in the example the densities of the

objects are very well known. If the densities of S and were only known to 1 part

per thousand (a crude density determination), a table similar to Table 1 would yield

a predicted uncertainty of 1 part per million rather than 0.8 part per million.

DISCUSSION

We have shown that very accurate measurements of mass can be achieved by the

proper use of an appropriate electronic balance. In this treatment, the need for

calibrated laboratory weight sets is eliminated . Traceability to NIST is attained

through calibration of the built-in calibration weight of the electronic balance by NIST
or by other standards laboratories. Both the mass and density of the built-in weight

should be provided by the standards laboratory. In most cases, a balance

manufacturer can supply limits on the nonlinearity and the estimate of standard

deviation (SD) of the balance, and the density and the mass and uncertainty of the

calibration built-in weight. If one accepts the values of the nonlinearity and SD
provided by the manufacturer, the uncertainties in these two quantities must be

combined by root sum square to calculate the estimated effective balance SD.

We have shown how to make determinations of nonlinearity and of the SD of the

balance. In the latter case, either an object to be weighed or another object of stable

mass Is used; a standard of mass is not required. We have shown In detail how to

estimate and propagate uncertainties. The calculation and propagation of

uncertainties have been demonstrated using data from weighings of an object of

density 2.329 g/cm^.

Direction of Future Developments in Electronic Balances and Uses

One of the present shortcomings of electronics balances is the fact that repeated

calibrations of the balance using the built-in weight cannot be averaged. As presently

configured, 0^ is the result of only one calibration. Therefore, the uncertainty In 0^.

cannot be reduced by the square root of the number of repeated calibrations.



Balance manufacturers have the opportunity of making a great step forward by
incorporating a hollow (or low-density) weight*®’ in the balance so that air density

might be determined automatically by weighings of the built-in weight and the hollow

(or low-density) weight. This would eliminate the inconvenient and expensive practice

of measuring pressure, temperature, and relative humidity to calculate air density.

The algorithm for determining air density using the two weights and incorporating the

air density to make an automatic buoyancy correction could be incorporated in the

microprocessor of the balance. The balance would then query the user for the density

of the object, the mass of which is being determined. And thus, the balance would
indicate mass directly, rather than an approximate mass uncorrected for air buoyancy
in case the densities of the weighed object and built-in weight are not equal.
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APPENDIX

Air Density

The air density equation for moist air used in state-of-the-art mass determinations is

the CIPM 1981/91 recommendation*^®’. This equation ties its predecessor, CIPM-81

,

to the International Temperature Scale of 1990 (ITS-90) and utilizes better estimates

for the values of some of the constants and other parameters. The equation is

tedious to use and its use is unnecessary for accurate mass measurements where the

desired uncertainty is less stringent than 0.001 part per million. A much easier to use

formula, based on the work of Jones*® ”'^’,
is given here:

p, = (
0-00^836

_

o.0037960t/e,)

where Pa is in mg/cm® and is converted to g/cm® by dividing by 1000. The parameters

are the barometric pressure, P, in pascals, air temperature, T, in kelvins, relative

humidity, U, in percent, the saturation vapor pressure of moist air, e^, in pascals, and

the compressibility factor for moist air, Z.

The parameter e^ Is dependent on air temperature and can be calculated from the

formula given here

e, = 1.7526 X i
('16)

or determined from Table 1A. The compressibility factor Z depends on the air

temperature, pressure and relative humidity and can be easily determined from Table

2A. The user can estimate the uncertainty associated with the use of the above air

density equation from estimates of uncertainty in the measurements of temperature,

pressure and relative humidity by evaluating partial derivatives. The partial derivatives

of the air density with respect to the above parameters are:

^p. . _p. (17)

ar T

3/0. _ P. (18)

dP P

0.034970 (19)

dU T

In deriving the air density equation the mole fraction of CO 2 in the air has been

assigned a constant value of 0.00043. A set of partial derivatives that Include the

partial with respect to CO 2 is given in (9). An example of error propagation is given

in Table 3A. The parameter SD's are our uncertainty estimates for measurements of

T, P and U in the balance weighing chamber during the weighing of the 200-g silicon

crystal. The RSS value is used in Table 1 of the text as the SD for the parameter p^.



In Table 3A, we give our estimates of the uncertainties that can be achieved for these

parameters and have evaluated the partial derivatives. The covariances are assumed
to be negligible and are therefore not given. The root sum square (RSS) uncertainty

is carried forward as the air density uncertainty (type A). The type B uncertainty

arising from the constant parameters in the air density equation is insignificant.



Temperature, °C, and e., pascals

20 21 22 23 24 25

.00 2338 2487 2644 2810 2985 3169

.05 2346 2495 2652 2818 2994 3178

.10 2353 2503 2660 2827 3003 3188

.15 2360 2510 2669 2836 3012 3197

.20 2367 2518 2677 2844 3021 3207

.25 2375 2526 2685 2853 3030 3216

.30 2382 2533 2693 2861 3039 3226

.35 2390 2541 2701 2870 3048 3235

.40 2397 2549 2709 2879 3057 3245

.45 2404 2557 2718 2887 3066 3255

.50 2412 2565 2726 2896 3075 3264

.55 2419 2573 2734 2905 3085 3274

.60 2427 2580 2743 2914 3094 3284

.65 2434 2588 2751 2922 3103 3294

.70 2442 2596 2759 2931 3112 3303

.75 2449 2604 2768 2940 3122 3313

.80 2457 2612 2776 2949 3131 3323

.85 2464 2620 2785 2958 3140 3333

.90 2472 2628 2793 2967 3150 3343

.95 2480 2636 2801 2976 3159 3353

Table lA



COMPRESSIBILITY FACTOR, Z

Temperature Pressure Relative Humidity

Celsius pascals mm
Hg

25% 50% 75%

20 80000 600 0.99969 0.99967 0.99965

- 100000 750 0.99962 0.99960 0.99958

21 80000 600 0.99970 0.99968 0.99966

- 100000 750 0.99963 0.99961 0.99959

22 80000 600 0.99971 0.99969 0.99966

- 100000 750 0.99964 0.99962 0.99960

23 80000 600 0.99971 0.99969 0.99966

-
' 100000 750 0.99964 0.99962 0.99960

24 80000 600 0.99972 0.99970 0.99967

- 100000 750 0.99965 0.99963 0.99961

25 80000 600 0.99972 0.99970 0.99967

- 100000 750 0.99966 0.99964 0.99961

Table 2A.

Variable Value SD(yJ Partial

Derivative

SD(p.),

g/cm^

Temp.
(T)

296 K
(23 °C)

0.02 K
(0.02 °C)

0.0000041 0.082
X 10®

Press.

(P)

100258 Pa

(752 mm
Hg)

65 Pa

(0.5 mm
Hg)

0.000000012 0.78 X
10®

Rel.

Hum.
(U)

41% 3% -0.00000012 0.36 X
10®

RSS = 0.86 X
10®

Table 3A.
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