
NAT L INST. OF STAND i TECH R.I.C

PU8UCATIONS

. DEPARTMENT OF COMMERCE
National Institute of Standards and Technoiogy

Computer
Systems

Laboratory

A Simple Scalability Test

for MIMD Code

Gordon Lyon
Raghu Kacker

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

June 1994

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

-QC— Partially sponsored by the

100
Advanced Research Projects Agency

.U56

N0.5A17

1993

A Simple Scalability Test for MIMD Code

Gordon Lyon, Advanced Systems Division

Raghu Kacker, Statistical Engineering Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by the Advanced Research Projects Agency.

June 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretary for Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

TABLE OF CONTENTS

Page

1. Background 2

1.1 Correlating Settings and Responses 3

2. Parallel Code Scalability 4

2.1 Simplifying Earlier Results 4

2.1.1 A Scaling Test 5

2.1.2 Test with Combined Tables 5

3. Scalability Assay for an Isolated Factor 7

3.1 An Example that Generalizes 7

3.1.1 A Short Scaling Test for cdQ 8

3.1.2 Example Interpreted 11

3.1.3 Remaining Circumstances 11

4. Conclusions 12

5. References 12

6. Design of Experiments (Appendix A) 13

7. Taylor’s Expansion and DEX (Appendix B) 14

-111-

A Simple Scalability Test for MIMD Code

Gordon Lyon, Advanced Systems Division

Raghu Kacker, Statistical Engineering Division

Code scalability, crucial on any parallel system, determines how
well parallel code avoids becoming a bottleneck as its host computer

is made larger. Scalability of computer code can be estimated by

statistically designed experiments that empirically approximate a

multivariate Taylor expansion of the code’s execution response

function. Each suspected code bottleneck corresponds to a first-order

term in the expansion, the coefficient for that term indicating how
sensitive execution is to changes in the suspect location. However, it is

the coefficients for second-order interactions between code segments

and the number of processors that are fundamental in discovering

which program elements limit parallel speedup. Extending an earlier

formulation, a new unified view via these second-order terms yields

an informal scaling test of high utility in code development.

Key words: designed experiments; MIMD scalability; parallel processing;

performance evaluation; sensitivity analysis.

NIST Task 40131 and ARPA Task 7066 provide major support for this work. Contributions of NIST are

not subject to U.S. copyright. To appear in the Proceedings, IEEE Second International Symposium on

Software Metrics, October 24-26, 1994, London, England.

- 1 -

1. Background

From earliest days, computing has employed various performance statistics to guide

the design, writing and tuning of code [7]. By far the most popular statistics are counts

and timings that profile computing demands of pieces of code within a program. These

pieces can be procedures, segments of straight-line code or even single statements

[3] [5]. On a uniprocessor—the classical von Neumann machine—gathered profiles reveal

clearly where a program consumes available computing cycles.

Profiles become more confused on multiple-instruction, multiple-data {MIMD)
stream parallel systems. For one thing, the straightforward linear thread of serial

computation is replaced by many concurrent threads. A consequence of this is a

computation state space that grows combinatorially with the size of the host. Whereas a

single executing thread clearly defines a program state, this is now only part of a product

state space defined over all processors. To see the problem, imagine a serial program

with six major states. Suppose a parallel version of this code is replicated on each

processor node of a MIMD system. This^^arallel program running on 16 processors now
has a (naive) state space of 6 = 2.8x10 states! Now if the system is symmetric in its

nodes, it may not matter whether node 5 is substate 3 and node 6 is substate 4 or vice

versa. This will merge states that are only different orderings of the same (macro)state.

Nonetheless, as the scalable host system grows to 256 or more nodes, state-based

execution categories become awkward and problematic.

Yet another profiling problem arises with the parallel version; some substates are

dependent upon actions in neighboring nodes. Since parallel copies of the program are

cooperating together, this is not unexpected. A substate may wait for a message.

However, profiling information on these latencies (waiting periods) is not always a

reliable hint on the true causes of the waitings. In many cases, latencies are like slack

variables. They indicate waste, but fail to supply a true indication of problem source;

e.g . , which node was too slow in sending which message, and at what point? In contrast,

the serial program’s states often identify a certain amount of computing that must be

done. A high profile indication for a state then indicates (i) a heavy computation load in

the state, or (ii) poor quality code. A parallel substate with a latency, which is a

dependency, lacks such a clear indication.

-2-

Thus, applied to scalable parallel programs, conventional execution profiles and

their interpretation schemes are often stressed badly. Nonetheless, successful code

improvement depends upon identifying the more sensitive segments within a program, so

that severe bottlenecks can be corrected. It is fortunate that execution profilings are not

the only avenue to performance improvement.

1.1 Correlating Settings and Responses

Another approach to code tuning employs the statistically designed experiment

(DEX), which handles program and system together as an amorphous entity that has

controllable input settings to factors [6]. Factors are code segments suspected of being

bottlenecks; these factors are set (or tested) via benign changes to their code. System

size is another factor; it is determined by the number of processors assigned to a

program. A statistically designed experiment then correlates runs of the variously-

treated program/system entity (each run setup is a treatment) against a response

measured for each run {e.g., overall program run time). This powerful macromodeling

or curve fitting perspective predicts how factor settings and interactions among settings

influence performance [1][2][4]. For instance, designed experiments are very good at

characterizing factor interactions, which as mentioned are not unusual among

cooperating processes. State in the DEX approach is shifted from the executing program,

where the state space is huge and time is an element, to a setting in source code. Smaller

and static, this input-defined space draws upon a large body of DEX methods to simplify

its handling and interpretation [1][2]. Appendix A provides a glimpse of the breadth of

DEX methods. DEX is highly adaptable to parallel computing investigations, for its

approach is flexible and scalable.

-3 -

2. Parallel Code Scalability

Code scalability, always crucial on any parallel system, determines how well a

section of code avoids becoming a bottleneck as its host computer is made larger. A
recent note by Snelick, et al., presents an interesting method of determining the

scalability prospects of parallel code [8]. Their approach employs DEX and synthetic

perturbation (SP) [6], the latter arising because applying DEX to test software

performance requires economical ways of modifying code efficiencies. Naturally

occurring, adjustable parameters are unlikely in arbitrarily chosen code segments.

Segments lacking natural parameters can be recoded, but these recodings must be

checked for correctness, an impracticality when the set of segments is large. Synthetic

perturbation, SP, is an alternate method of code modification that employs artificial

means [6]. The attractive SP simulates local, easily adjusted efficiency changes, which in

turn drive DEX sensitivity analyses. Each SP, typically extra code that causes delay, can

be inserted or removed smoothly without interfering with actual computations. The new

test uses the high setup efficiencies inherent in SP.

DEX yields an approximate multivariate Taylor expansion of the overall

program/system execution response. Details of this correspondence between DEX and

the Taylor expansion are shown in Appendix B. Each suspected code bottleneck in the

code will correspond to a first-order term in the expansion, the coefficient for that term

(called a main effect) indicating how sensitive execution is to changes in the suspect

factor. However, it is the coefficients for second-order interactions between code

segments and the number of processors that express which segment improvements best

promote parallel speedup. A new, unified view of the second-order terms yields a simple

scaling test. The test has high utility in focusing parallel code improvement efforts.

2.1 Simplifying Earlier Results

Snelick, et al . , base their scalability test for parallel code upon orderings of main

effects [8]. In their approach, system scale, s (the number of processors), is handled

differently from other factors. There is a separate preliminary stage for each of two

distinct settings of j . A second stage then compares the two DEX-developed first stage

-4-

sensitivities. This comparison is not as simple as it might be, involving as it does

orderings in two distinct tables. Promoting s into regular factor status yields one

common view of the sensitivities: Interpretation is straightforward.

2.1.1 A Scaling Test. This example from Snelick, et aL, involves comparing sensitivities

of code segments from a 35(X)-line image understanding benchmark (lUB) against the

size of the host system [8]. Tables 1 and 2 show rankings of the lUB software

sensitivities for 5=8 and 5=24 processors, respectively. Main effects (what

mathematical statisticians call half effects [2]) in the third columns are sensitivities—slope

coefficients—of lUB ’s response to changes in individual factors. The benchmark is most

sensitive to changes in factors with larger effects. By comparing rank-orderings of

effects in the two tables, estimates can be made about scalabilities of various segments of

code. As a factor gains relative importance, it is increasingly worth inspecting. For

instance, factors F2, FI, and F4 migrate to higher rankings in Table 2, drawing

attention to their parent routine. Connected Components .

2.1.2 Test with Combined Tables. The comparison between ordered effects of Tables 1

and 2 does not fully exploit available information. To see this, imagine a new midpoint

Table 3 for 5 = (8+24)/2 =16 processors. For Table 3 effects, linearly interpolate main

effects from Table 1, column A and Table 2, column B effect-by-effect as {A+B)I2.

Similarly, incorporate second-order interaction effects (A -B)/2 that predict changes in

main effects vis-'a~vis scaling factor 5. Linear interpolation is compatible with the

(linear) response expansion in Tables 1 and 2. (Assumptions behind the expansion are

discussed shortly.) The interaction effects p- ^
in Table 3 predict scaling success

explicitly and quantitatively. For instance, the scaling interaction P;72 ^
= 0-09 for factor

F2 is greater than zero; factor F2 therefore does not scale, since its main effect grows

larger as processors are added. A more negative interaction
^

in Table 3 implies a

more scalable factor.

-5 -

Rank Factor (/

)

Main Effect ({3^.) §

A

Routine Construct

1 F17 6.03 Grad Magn for

2 F26 5.46 Med Fill while

3 •F2 5.26 Conn Comp for

4 •FI 3.94 Conn Comp function

5 •F4 3.84 Conn Comp while

6 F25 2.01 Med Fill for

7 F20 1.67 Match function

8 F29 1.36 Probe for

Source: R. Snelick

§ Standard Error (Uncertainty): ±0.04

Table 1: lUB Main Effects with Eight Processors.

Rank Factor (/

)

Main Effect ((3^-) §

B

Routine Construct

1 •F2 5.43 Conn Comp for

2 •FI 33>5 Conn Comp function

3 •F4 3.93 Conn Comp while

4 F17 2.14 Grad Magn for

5 F26 2.03 Med Filt while

6 F20 1.55 Match function

7 F29 0.95 Probe for

8 F25 0.75 Med Filt for

Source: R. Snelick

§ Standard Error (Uncertainty): ±0.12

Table 2: lUB Main Effects with 24 Processors.

Factor (i

)

Main Effect (p .) §

(A+B)/2

Interaction Effect (6.)§
1 $ s

(A-B)/2

Scaling Implication

F2 5.35 +0.09 not scaling at all

F17 4.09 -1.95 good--dropping fast
FI 3.95 +0.01 poor (not scaling)

F4 3.89 +0.05 poor
F26 3.75 -1.72 another goodfactor
F20 1.61 -0.06 poor
F25 1.37 -0.64 will drop below F29
F29 1.16 -0.21 ? not clear

Source: Tables 1 & 2

§ Standard Error: ±0.07

Estimations for s=16processors.

Table 3: Scalabilities Estimated via Second-Order Terms

-6-

3. Scalability Assay for an Isolated Factor

While Table 3 is a definite improvement over Tables 1 and 2, it still tests numerous

code segments together. In the next refinement, the scaling test is simplified to work on a

single code segment.

3.1 An Example that Generalizes

Imagine a scaling assessment for a routine cd (), which is a major parallel phase of a

hypothetical parallel program. By obvious substitution of subject code or measured

response, steps and formulae for this exercise generalize to other specimen programs and

systems. The evaluation employs DEX to establish how changes in cd() and s affect

system performance (here with overall program run time as the measured response).

Factor cd() is represented with setting = -1 for the original cdQ and = +1

for another modified copy cd'i) with an added delay. These variants offer performance

differences needed for the investigation. As mentioned earlier, the SP delay simulates

efficiency changes in cd (). This delay is much easier to insert and adjust than are actual

modifications to the computational code. The added SP must be large enough to have an

effect above background experiment noise, but not be so large as to slow or distort

experiments significantly (c/. discussion in [6]). X^ = -1 denotes a host system

configuration of p processors, while = + 1 indicates a larger configuration of p' > p
processors. Notice that settings for code {original !delayed) and host scale

{smaller /larger) both correspond to input domains of [-1,+ 1]. Statistical experiment

designs and analyses are always expressed via such normalized input and must be

interpreted within this context. Continuing with input settings, the designed experiment

(DEX) is a collection of trials . Each trial designates a distinct combination of settings

(treatment) for X^^ and X^ for which a response R is measured and recorded.

Replications are repeated trials. Two settings for each of cd () and scale generate 2^ = 4

distinct experiment trials.

-7 -

3.1.1 A Short Scaling Test for cd(). Each row of Table 4 records treatments and their

corresponding measured system responses (program run times), which are labeled a—d.

Xcd Xs R, seconds

-1 -1
1

40 (a

+1 -1
1

44 (b

-1 +1
1

24 (c

+1 +1
1

29 (d

Table 4. Scaling Experiment

The above data are now applied to a response surface model that is linear in coefficients

of terms and This linear model is adequate. Since code is being changed

constantly during improvement, highly accurate predictions may actually waste effort.

However, a nonlinear response model can be employed (see [1]). This might, for

example, capture the hyperbola-like curvature in the response that would be expected

from scaling with ideal load balancing and low levels of inter-process communication.

As it is, the linear (coefficients) model includes an important interaction term

hd.s=^cd*^s- Whenever andX^ agree in sign, = +1. Otherwise

^

=-l.

Thus, the response model is:

^d^cd + ^ ^cd. Jed. s
+ (^cd . (0

In Table 4, and (and by extension, j) are each individually fixed at -1 or +1

for each of four trials. Responses R are then measured (labels a-d). This leaves four

unknowns—three effect coefficients {p) and a constant term, p. Inserting values for

^cd, Jed. ^
and/? into equation (0 yields four simple equations:

~^cd
-

P. + ^cd,s
+ = 40

- P. ^cd, s
+ 1^ = 44

~^cd + P. ^cd, s
+ = 24

-8 -

Because the experiment design is orthogonal, these equations are solved easily [2].

The pattern of signs for each unknown in the above equations is crucial. For example,

unknown |i is the mean response over all trials and is obtained by averaging the column

R of observed responses. Note that in all four equations above, [i is added. Using this

pattern:

+a + b + c + d 40 + 44 + 24 + 29
[L = = = 34.25 (rl)

4 4

Other coefficients similarly employ columns of values from Table 4. For (3^^ ,
multiply

the column term-by-term with column R and average:

-a + b - c + d -40 + 44-24 + 29
P,, = = = 2.25 (r2)

4 4

AR
P^^ is a slope, the rate of change of R as varies, . Imagine the average

^cd
response when is set +1 minus the average response when X^^ is set -1; the net

result is then divided by two because the input domain is 1 - (-1), a distance of two.

Rewriting rl shows this:

’ 44+29
'

' 40+24
'

, 2 , , 2 ,

Coefficient P^^ is the overall change in response per additional processor. Following the

computation template with column settings forX^ and values foiR yields:

-a -b -¥ c d -40 -44 + 24 + 29
P, = = = -7.75 (r3)

4 4

-9-

Discovery and evaluation of the coefficient (3^^ ^
for interaction term lc<t. ^

is the

keystone to the scalability test,
^
expresses the sensitivity of a sensitivity; it is the

difference per unit of the difference in R per unit :

p

iH-R

d - c b - a

. 2 . j

cd,s

The simplified formulation again uses Table 4. Multiply column X^^ term-by-term with

X^ to derive then multiply
^
term-by-term with R:

p

-\-a - b - c + d +40-44-24 + 29

cci,s
= 0.25 (r4)

With rl-r4, the four unknowns have been solved. The solution is centered at point

{X^^ ,X^) = (0, 0), the average input setting over all trials.

Interpretation of the results depends upon further information on experimental error.

Standard error, SE, is a. measure of experiment noise (uncertainty). Noise-generated

effects (worthless coefficients) are samples from a normal disdibution centered at zero

with standard deviation estimated by SE [2]. Any coefficient (effect) can be real or it can

be from noise. By setting the noise range as 0±2SE, an approximate 95% confidence

interval is established (assuming that errors are normally distributed).

If is known for effects from previous experience, it can be used. (The example

for cd 0 assumes this circumstance.) Otherwise replications of trials should be run. Let

these duplicates be a',b',c' and d'. The standard deviation of effect (or coefficient)

noise is then estimated as:

1

SEn = -
^ 4

{a-a'f + {b-b'f + (c-c'f + (d-d'f

*/2

Standard error for the mean performance, p., is SE^ = SE^I 2 (see reference [2]). Effects

are calculated as before, only substitute response averages, e.g., a={a+a')l2, in

formulae r 1 through r4 where now single measurements a-d appear.

- 10-

3.1.2 Example Interpreted. The cd () terms from r l-r4 (above) are:

p =34.25

P. =-7-75

Pc. =2.25

Pc. c
=0.25

5E
p

= ±0. 10 (from prior experience)

SE^ =±0.05

All three effects (the p terms) are significant at an approximate 95% confidence interval

of 2SE^ = 0±0.20. This interval is a noise band around zero. Quantity p = 34.25, the

average of response R across all four trials, establishes a context for evaluating

magnitudes of the sensitivities, (Pj). Scaling sensitivity of the overall system is

expressed by p^
= -7.75. Had p^

> -0.20 = -2
1 5E I , there would be little point in

adding further processors; at best, they would not slow computation. In this example,

good scaling yields are still available. Next, consider term P^^ = 2.25, which expresses

the sensitivity of the system response to changes in cd (). Since p^^ is well outside the

2SEp noise band, efficiency changes to cd from delays are significant. But the main

question is whether p^^ grows or diminishes with s , the scaling factor. The interaction

term, p^^ ^
= 0.25 > 0.20 = 2 1 SEp I

, indicates a failure in scaling for p^^ ,
the latter term

growing mildly with increasing scale s . R is thus increasingly sensitive to changes in

cd 0 as processors are added.

3.1.3 Remaining Circumstances. Whenever both P^ < -2
1 5Ep I and p^^ ^ < -2

1 5Ep 1

,

the scalability assessment of cdQ is not immediately obvious through inspection. A
scaling proportionality is one useful criterion that can be applied. For the criterion to

make sense, all terms p, P^ p^^ and p^^ ^
must be significant.

The idea is to restrict the estimated sensitivity of cd () under scaling to at most its

current relative importance P^^/p. Thus, if through speedup p becomes half of its

present value, then the corresponding p^^ must be at most half of its current value. The

scaled value of p^^ is predicted via slope p^^ so this slope must descend at least in

proportion to p^, which predicts scaling change in p. Expressing this in terms of the

known values:

pcd,s ^
^cd

P < 0 cdO scales.

- 11 -

4. Conclusions

Strong, general mathematical formulations from DEX serve excellently in designing

a scalability test for parallel code. Inserted synthetic delays further rid any need to

modify original coding; this expedites DEX setups and avoids recoding errors. Methods

and calculations for the scalability test apply to any segment of parallel code. The test

requires neither special instrumentation nor custom, detailed models. Independent of

system, programming language, and software specimen, the scalability test provides a

portable, quick and easy assay that can guide deeper investigations into causes.

Acknowledgment. Thanks to R. Snelick for sharing additional data on the Image

Understanding Benchmark and to T. Wheatley for helpful comments.

5. References

[1] T.B. Barker. Quality by Experimental Design, (Marcel Dekker, Inc., New York,

1985).

[2] B.E.P. Box, W.G. Hunter and J.S. Hunter. Statistics for Experimenters, (John Wiley

& Sons, New York, 1978).

[3] S. Graham, P. Kessler, and M. McKusick, Gprof: A caU graph execution profiler,

Proc.yACM SIGPLAN Symp. on Compiler Construction, June, 1982.

[4] R. Jain. The Art of Computer Systems Performance Analysis, (J. Wiley & Sons, New
York, 1991).

[5] D. Knuth, An empirical study of FORTRAN programs. Software—Practice and

Experience 1, (1971) 105-133.

[6] G. Lyon, R. Snelick, and R. Kacker, Synthetic-perturbation tuning of MIMD
programs. The Journal ofSupercomputing 8, (1994) 5-27.

[7] J. von Neumann and H.H. Goldstine, Planning and Coding of Problems for an

Electronic Computing Instrument, (Institute for Advanced Study, Princeton, N.J. [3

vols.], 1947-1948). Reprinted in von Neumann’s Collected Works (A. Taub, ed.), Vol.

5, (Pergamon Press, Oxford, 1963).

[8] R. Snelick, J. Ja'Ja', R. Kacker, and G. Lyon, Synthetic perturbation techniques for

screening shared-memory programs, Software—Practice and Experience, (to appear).

- 12-

6. Design of Experiments (Appendix A)

Statistically designed experiments (DEX) are strategies to maximize learning at

minimum cost. A typical DEX involves a number of input variables called factors and

one or more output variables called responses. The possible settings of the input

variables delineate a multi-dimensional experimental region. This region is usually quite

large. In its simplest form, a DEX specifies the test points in the experimental region at

which the response is evaluated. Combinatorial mathematics is used in determining the

test points, thereby ensuring a geometrically balanced coverage of the experimental

region. A map of the response, thus obtained, provides an estimate of relationships

between factors and responses. Certain tactics, called randomization, blocking, and

replication, are used in DEX to enhance the validity of the response map. Although DEX
are usually used in physical science experimentation, their use in computer experiments

is gaining momentum. The key difference is that, in computer experiments, the responses

arise from execution of a computer program.

Objectives of a designed experiment include the following:

1. Isolate important factors from many other candidates

2. Identify better, more promising, operating conditions for each factor

3. Identify better combinations for test settings

4. Map the relation between input factors and output response

5. Identify significant interactions and curvature effects of the factors

6. Find factors which affect variability and settings which minimize variation.

The DEX approach is an empirical alternative to analytical approaches that are based on

thorough understanding of the system. Many analytical approaches tend to lose

effectiveness as the complexity of the system increases. This scaling property is

important for parallel systems and their study. The statistical strategy can be applied to

almost any system; it has been found to be effective even in the most complex multi-

variable systems. Further, DEX is an inexpensive approach. Cost alone is enough reason

to try DEX as an initial strategy.

- 13 -

The basic DEX approach is simple to describe, although in practice it can become

complicated. Imagine a section of code, E ,
in a program. This factor E has two levels of

treatment. The first is the original E , and the second a modified version of E (slightly

different code). A given setting of E will occur in several trial runs in which other

factors change. For analysis, all the runs with E in the second setting are averaged in

response, and all runs with E in its original setting also are averaged. The difference

between these two average responses is called a contrast for main factor E . (Note that in

the main text, "effect" denotes a half-contrast or slope, i.e., the response difference

divided by the input change of two.) A standard error (estimate of standard deviation) is

used to keep or discard factors. Thus, if £”s contrast is less than the standard error

(noise, so to speak), there is a good chance that E is not very important; E is removed

from further (refining) experiments. But note that this does not preclude E having an

influence in conjunction with another code segment, say F. However, DEX analysis can

also account for interactions of EF and a contrast can be obtained. Certain send-receive

or lock-unlock code pairs in parallel programs may have such interactions. Software

scaling discussed in the main exposition is a two-way interaction between (i) a piece of

code and (ii) the size of the host system. These two-way scaling interactions may
determine whether a parallel software package succeeds or fails.

7. Taylor’s Expansion and DEX (Appendix B)

i thA Taylor series expansion of a function / () is a power series [Bl]. If/ () is the z

derivative of /() =/ (), then f(x) can be expressed in terms of / and its derivatives

evaluated at some other point, say a . Given (x-a

)

as the displacement from point a ,

/(Ac)= E
i=0

f\a)

a

A more complex but essentially identical expansion holds for cases when / has

multiple arguments. Thus for the multivariate response functions in DEX, Box, Hunter

and Hunter remark that "the main effects and interactions can be associated with the

terms of a Taylor series expansion of a response function. Ignoring, say, three-factor

interactions corresponds to ignoring terms of third-order in the Taylor expansion" ([2],

p.374). It is revealing to examine this remark in closer detail.

- 14-

Let (;c p j:
2 » ^ 3 »

‘ ‘
‘ ^ multivariate response function with k input variables

corresponding to k factors of interest. The Taylor expansion of R is chosen about (3=0,

so that {x-a)=x. Such a choice centers the expansion amid settings of {Xj = ±1), in

correspondence to DEX convention:

R{x) =

j=k

Ri6)+ ^xj

J=i

r dR 1

j-k
9

[1

[3^; J

J

0 > = 1
.^Xj^ .

k-lj=k

+ E
0 ' <JJ =2

d^R

dx-dxj

+ (0

For screening experiments (including the scaling test), a two-level setting of factors is

usually adequate; this implies that any second or higher order derivatives in the same

variable are insignificant relative to the first-order derivatives. Here, they are thus

assumed to be identically zero, e.g. d^R/dXj^ = 0 in equation (/) above. The term

R(6) in (/) corresponds in the DEX formulation to p., the average response over all

settings. Also note that the average DEX setting of the inputs X. is zero; this stems from

a deliberate design in DEX treatment patterns. The change of variable X. <—x- is

consequently straightforward. Derivatives that are not identically zero correspond to

DEX p coefficients. Thus dRldXj = and similarly dR^I dx-dXj =
p- j. The product

(/) should look familiar, for it is the second-order interaction

Applying all these substitutions in

X - Xj in equation

/.
j
= X. Xj as defined in the DEX formulation

equation (i) produces a result that matches a standard DEX formulation:

j=k k-lj=k

/?(•••)= 4 + EP;^y+ EEP/./i,;+ •••

;=1 i<jj=2

(ii)

Equation (ii) demonstrates that DEX analysis does capture expansion terms of a system’s

response function, as asserted by Box, Hunter and Hunter.

[Bl] G. James and R.C. James. Mathematics Dictionary, (Van Nostrand Reinhold

Company, 1976), 383-384.

- 15 -

J

•^S,' "W

«' '^Qd 'k ^Vifk -- ‘

IT t. 'u. I II iriifglTff Tt C'OI*.. -fvuc’.xJvff «J1 JBi ;i«^

. . w^m. .. * t M -.Ii <M »' ^ L W AkrfMVci^V

•

"

./•TV'.., imritpri
>

'

i

___ ^ Iliili* ? . ^ 4'V‘':-rn£<€i'ir>

f y«i«* <
'T ''flSi’ 'i'*'

- ,^t.

f

f3^

4iV ti» t%' 4|

'.sw_

f"'-:

,v^'

itejii^o. i ’*) >,'.»>.(); ''^ijaj; ^.aytflOQ»gig»i4^ '.‘k

®
S^ptods-OfiJ#<<l!oor'P^

t-jt.:
.' i^J . .«» thiiwta>«* « ^ .enalafflMo q /3cl

„oitj«T^!Jni »:’iiw<iw»9* 9«« ai 1U haillTWl AiftI isiaoi^ (V> iwtoips ni ,t

ni w-vili-IJfe goj^qfl'V .noUi'JtniwJ ’X?i''."itii li &anH«^ 55

‘;a.,h*lttsni)l y ;icr t^ulimuft** <i'>iOj>ir’, nrjim-e-tsot^bfyiti ('.) nosiaapa

-
• v.-ij.ifts -I ,

r

W

-•'
-.||

'•

. l.,!;H^.(^ig;.- .it .-/.S' %; -k*^

*

a;h.ujSMwnc.r;i(!

f:

llMiK'i'. '•(»f,i! '.rtK npv ' '(;l^»<^lO^<i• v».ifc'.T,|ijj>»UtI R ?Jf b«s »^iE A? tiS]^ ’it

^r>.:..tf:/'0 ''Vari"'

qijial

/ t;f Box* Karfitor

i!:^u <ioth !^.c

!

;

,','1

