
NISTIR 5412

An Overview of NASREM:
The NASA/NBS Standard
Reference Model for Telerobot
Control System Architecture

James S. Albus
Richard Quintero

and
Ronald Lumia

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

arxJ Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

—QG

100 NIST
.U56

;

NO.5/112

1994

NISTIR 5412

An Overview of NASREM:
The NASA/NBS Standard
Reference Model for Telerobot
Control System Architecture

James S. Albus
Richard Quintero
and
Ronald Lumia

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

April 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Linder Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
AratJ Prabhakai, Director

AN OVERVIEW OF NASREM:
THE NASA/NBS STANDARD REFERENCE MODEL

FOR TELEROBOT CONTROL SYSTEM ARCHITECTURE

James S. Albus*
Richard Quintero**

Ronald Lumia***

Robot Systems Division

Bldg. 220, Room B-124
National Institute of Standards and Technology - NIST
(Formerly the National Bureau of Standards - NBS)

Gaithersburg, Maryland 20899

Abstract

The NASA/NBS Standard Reference Model for

Telerobot Control System Architecture (NASREM) was

developed by the National Institute of Standards and

Technology (NIST) for the National Aeronautics and

Space Administration (NASA) to provide a software

control system architecture guideline for use by

development contractors charged with building the Right

Telerobot Servicer (FTS) control system as part of the

Freedom Space Station project. The original NASREM
document describes a conceptual or domain-independent

architecture, and suggests the outline of a functional or

domain-specific architecture for FTS. This paper presents

an overview of the NASREM conceptual architecture and

reviews subsequent work at NIST in defining a functional

architecture for the servo and primitive levels. This work

suggests outlines for software and hardware architecture

specifications, and software development environments to

complement the NASREM conceptual and functional

architectures.

Background

One of the more well known National Institute of

Standards and Technology (NIST) architecture definition

efforts was the development of the NASA/NBS Standard

Reference Model for Telerobot Control System

Architecture (NASREM).^ NASREM was developed by

NIST for the National Aeronautics and Space

Administration (NASA) to provide a software control

system architecture guideline for use by development

contractors charged with building the Flight Telerobot

Servicer (FTS) control system as part of the Freedom
Space Station project.

NASREM represents the culmination of more than a

decade of research at NIST on Real-time Control Systems

(RCS) for robots and intelligent machines. The first

version of RCS was developed for laboratory robotics and

adapted for manufacturing control in the NIST Automated
Manufacturing Research Facility (AMRF) during the

early 1980's.^’^’^’^’^ Since 1986, RCS has been

implemented for a number of additional applications,

including the Defense Advanced Research Projects Agency
(DARPA) Multiple Autonomous Undersea Vehicle

(MAUV) project,^ the Army Field Material Handling

Robot (FMR),^ and the Army TEAM (Technology

Enhancement for Autonomous Vehicles)^ semi-

autonomous land vehicle project. In 1987, RCS was
adapted for use on the space station Flight Telerobotic

Servicer, becoming the NASA/NBS Standard Reference

Model Telerobot Control System Architecture

(NASREM). 1

What is a Control System
Architecture?

The Random House College Dictionary^® defines

architecture as "the character or style of building; the

structure of anything." NASREM outlines a style of

building real-time control systems for intelligent

machines. These systems generally include software,

hardware, machines, people, communications,
information repositories, information/knowledge models

and real-time execution models as shown in Figure 1.

NASREM defines a highly structured, modular
organization of these control system components which

can serve as a standard reference model for an op)en-system

architecture. These properties are discussed in detail by

(^ntero and Barbera. ^ ^
*

* Division Chief, Robot Systems Division
**• Group Leader, Unmanned Systems Group, Member
AIAA
** Group Leader, Intelligent Controls Group

This paper is a work of the U.S. Government and is not subject to copyright protection in the United States.

1

Spatial & Temporal

Object Taxonomy

Software

Hardware

Databases

s

<»Jeet 1

AMwtel

ABrituteS

<H>Ject2
Atbtxjiel

AMxrte2

Agents/Controllers

Plans/Algorithms

OCKK)

Tasks

Machines
Sensors/Actuators

«

Computers
Human l/F

People

t

Data
Links

Communications Network

Figure 1. Architecture Components

The Problem Domain

The NASREM conceptual architecture addresses the

broad domain of intelligent machine control systems

problems. We define intelligent machines to be

machines designed to perform useful physical work while

employing in situ knowledge (sensory input data), and a

priori knowledge, tactics and strategy. Intelligent

machines use feedback from the physical environment to

manifest "intelligent behavior" in real-time via

computerized real-time control of the machine's electro-

mechanical actuators and sensors. In addition, we believe

that practical intelligent machines almost always require

some level of human interaction. The definition given

above is intended to include: automation systems,

embedded systems, and robotic systems ranging

from factory floor robots to space vehicles and planetary

exploration robots.

Kramer and Senehi have defined several tiers of

architectural definition. A conceptual architecture

model is a high tier definition which is typically domain

and application independent. A conceptual architecture

can be applied to a broad range of application domains and

typically does not specify any particular hardware,

software, or communications mechanisms. A functional

architecture, as defined here, is a mid-level model which is

domain-specific. At the lowest tier of definition an

architecture is fully implemented for a particular

application with all elements completely specified

(domain, application, and implementation specific).

In order to actually develop an intelligent control

system implementation, systems engineers need a

software development environment with an embedded set

of methods or guidelines (and software libraries) to allow

them to easily evolve a control system design. The
process involves specifying at least four architectures:

1. Conceptual architecture

2. Functional architecture

3. Software architecture

4. Hardware architecture

The original NASREM document describes the

conceptual or domain-independent architecture, and

suggests the outline of a functional or domain-specific

architecture for FTS.

2

NASREMi THE CONCEPTUAL
ARCHTTECTURE

The NASREM conceptual architecture is founded on

the RCS view of intelligent machine architectures. The

elements of an intelligent machine are modeled as a

closed-loop control system as shown in Figure 2. A
closed-loop system is formed in the machine by inputting

sensory data to Sensory Processing (SP), passing

the processed information off to World Modeling

(WM), which maintains the machine's best estimate of

the state of its world, and finally closing the loop through

Behavior Generation (BG), also referred to as Task

Decomposition (TD), which plans and executes

actions to be performed through the machine's actuators.

An intelligent machine may also utilize a value system

in order to judge the "goodness" of the results of its

actions within the context of the tasks it is expected to

perform. The value system, or the Value Judgment

(VJ) function, is used in goal selection to direct Behavior

Generation in selecting alternative plans and actions.

Figure 2. An Intelligent Machine System

The terms. World Model or World View, are used

to describe the intelligent machine's collective capability

to perceive the world in which it functions (both external

and internal). When we use these terms we are referring

to algorithms for understanding the world, WM server

functions, and the information stored in the Global

Memory.
Global Memory (GM) is the complete collection

of globally defined variables in a NASREM application.

It may be thought of as the repository or knowledge base

where shared information is stored. In many applications

Global Memory is implemented in a distributed fashion.

GM can also be viewed as a combination of the

communications mechanisms and the repository (or

simply the interface buffers) necessary for implementing a

NASREM application.

The NASREM Hierarchy

NASREM extends the notion of an intelligent machine

model containing the basic SP, WM and BG by creating a

hierarchy (see Figure 3.). The basic SP, WM, and BG
functions are grouped as controller nodes and
distributed in a hierarchically organized, integrated set of

nodes. In a NASREM implementation a node is a

collection of one or more software modules. Each
controller node is assigned a set of tasks at an appropriate

level of abstraction and each has a limited range of

authority and responsibility within the chain-of-command

formed by the hierarchy (much like a human military

command structure would be organized). It should be

noted that only commands and status are constrained to

flow in a hierarchical fashion between supervisory and

subordinate modules in NASREM. Global memory data

transfers are triple buffered^ ^ and may be communicated
in any appropriate manner (e.g., point-to-point, multi-

cast, broadcast, etc.), as dictated by the design

requirements.

TELEROBOT

Figure 3. NASREM Hierarchy Tree

The Task Decomposition (TD) function is further

decomposed into Job Assignment (JA), Planner

(PL), and Executor (EX) functions. Job
Assignment involves commanding subordinates to

carry out concurrent tasks. Stored or generated plans

temporally decompose tasks into sequences of sub-goals

to be accomplished, to the limit of the appropriate

planning horizon for a level. Planners are responsible

for selecting pre-stored plans and/or generating new plans

to be instantiated by the Executors. Executors

3

instantiate the next step in the current plan based on the

current state of the world as viewed via the World Model.

Executors pass instantiated task commands to the next

lower level JA, where this pattern is repeated, down the

hierarchy, in a pipelined refinement of task detail. In

general, subordinate levels deal with less abstract task

details, at faster sub-goal completion rates.

Temporal decomposition in a NASREM design deals

with planning horizons, memory spans and goal

completion rates which are subdivided by roughly an order

of magnitude in time between levels. Planning horizons

and memory spans increase as we move to higher levels

of the architecture while sub-goal accomplishment rates

increase as we traverse the hierarchy towards the lower

levels.

In NASREM, there is a notion of decomposing the

control system design into layers or levels of abstraction.

NASREM specifies the types of tasks carried out at each

level of abstraction, starting at the bottom of the

hierarchy. ^ ^ For the Flight Telerobot Servicer (FTS)

application these levels have been labeled as follows:

Level 1 - Servo, Level 2 - Primitive or Prim,

Level 3 - Elementary Move or E-Move, Level

4 - Task, Level 5 - Service Bay, and Level 6 -

Service Mission.

There is no upper limit on the number of levels in a

NASREM hierarchy. The number of levels of

coordination and abstraction are strictly a function of the

demands of the application (i.e., the organization of

people, machines, communications links and tasks to be

coordinated).

The Three Legs of NASREM

Another view of the NASREM architecture is shown in

Figure 4. The control system is represented as a

hierarchy of computing modules in sets of three, forming

nodes in the hierarchy. These nodes are serviced by a

communications system and a global memory. The task

decomposition modules perform real-time planning and

task monitoring functions; they decompose task goals

both spatially and temporally. The sensory processing

modules filter, correlate, detect, and integrate sensory

information over both space and time in order to

recognize and measure patterns, features, objects, events,

and relationships in the external world. The world

modeling modules answer queries, make predictions, and

compute evaluation functions on the state space defined

by the information stored in global memory. Global

memory is the repository which contains the system's

best estimate of the state of the external world. The
world modeling modules keep the global memory
interface buffers current and consistent

Task Decomposition . The first leg of the

hierarchy (in Figure 4) consists of task decomposition

modules which plan and execute the decomposition of

high level goals into low level actions. Task
decomposition involves both a temporal decomposition

(into sequential actions along the time line) and a spatial

decomposition (into concurrent actions by different

subsystems). Each task decomposition module at each

level of the hierarchy consists of a job assignment

manager, a set of planners, and a set of executors.

GLOBAL
DATA

SENSORY WORLD TASK
PROCESSING MODELING DECOMPOSITION

OPERATOR

WM
6

TD
6

SERVICE

MISSION
I 1

r
WM^ TD^ SERVICE

BAY
1 T

1

SF4 WM .

4
TD .

4 TASK

i

WM3 TDj E-MOVE

L

‘>'2 WM2 TD
2 PRIM

\r~

’•'•i

WM
j

TD SERVO

SENSE ACTION

Figure 4. Layers of NASREM Nodes
formed by Modules in Sets-of-Three

World Modeling . The second leg of the

hierarchy consists of world modeling modules which

model and evaluate the state of the world. The "world

model" is the system's best estimate and evaluation of the

history, current state, and possible future states of the

world, including the states of the system being controlled.

The "world model" includes both the world modeling
modules and a knowledge base stored in global memory
where state variables, maps, lists of objects and events,

and attributes of objects and events are maintained. The
world model maintains the global memory knowledge
base by accepting information from the sensory system;

it provides predictions of expected sensory input to the

corresponding sensory system modules; based on the

state of the task and estimates of the external world,

answers "What is?" questions asked by the executors in

the corresponding task decomposition modules; and

answers "What if?" questions asked by the planners in

the corresponding task decomposition modules.

Sensory Processing . The third leg of the

hierarchy consists of sensory processing modules. These

recognize patterns, detect events, and filter and integrate

sensory information over space and time. The sensory

processing modules at each level compare world model
predictions with sensory observations and compute
correlation and difference functions. These are integrated

over time and space so as to fuse sensory information

from multiple sources over extended time intervals.

4

Newly detected or recognized events, objects, and

relationships are entered by the world modeling modules

into the global memory, and objects or relationships

perceived to no longer exist are removed. The sensory

processing modules also contain functions which can

compute confidence factors and probabilities of recognized

events, and statistical estimates of stochastic state

variable values.

Operator Interface . The control architecture

allows an opierator interface at each level in the hierarchy.

For the FTS functional architecture, operator interface

provides a means by which human operators, either in the

space station or on the ground, can observe and supervise

the telerobot. Each level of the task decomposition

hierarchy may provide an interface where the human

ojierator can assume control. The task commands into

any level can be derived either from the higher level task

decomposition module, from the operator interface, or

from some combination of the two. Using a variety of

input devices, a human operator can enter the control

hierarchy at any level, at any time of his choosing (if so

designed), to monitor a process, to insert information to

interrupt automatic operation and take control of the task

being performed, or to apply human intelligence to

sensory processing or world modeling functions.

The sharing of command input between human and

autonomous control need not be all or none. It is

possible in many cases for the human and the automatic

controllers to simultaneously share control of a telerobot

system. For example, in an assembly operation, a

human might control the position of an end effector while

the robot automatically controls its orientation.

Timing . For the control hierarchy shown in Figure

4 we can construct a timing diagram as shown in Figure

5. The range of the time scale, and hence the planning

horizon and event summary interval, increases

exponentially by an order of magnitude at each higher

level. The loop bandwidth and frequency of sub-goal

events decreases exponentially at each higher level.

The origin of the time axis is the present, i.e. t=0.

Future plans lie to the right of t=0, past history to the

left. The open triangles in the right half-plane represent

task goals in a future plan. The filled triangles in the left

half-plane represent task completion events in a past

history. At each level there is a planning horizon and a

historical event summary interval.

This timing diagram suggests a duality between the

task decomposition and the sensory processing

hierarchies. At each hierarchical level, planner modules

decompose task commands into strings of planned sub-

tasks for execution. At each level, strings of sensed

events are summarized, integrated, and "chunked" into

single events at the next higher level. At each level,

planning horizons extend into the future about as far, and

with about the same level of detail, as historical traces

reach into the past.

At each level, plans consist of at least two, and an

average ten sub-tasks. The planners have a planning

horizon that extends about one average input command

interval into the future.

boraoo

Figure 5. NASREM Timing Diagram

Replanning may be done at cyclic intervals, or

whenever necessary. Emergency replanning begins

immediately upon the detection of an emergency

condition. Under full alert status, the cyclic replanning

interval should be about an order of magnitude less than

the planning horizon (or about equal to the expected

output sub-task time duration). This requires that real-

time planners search to the planning horizon about an

order of magnitude faster than real time.

Plan executors at each level have the task of reacting to

feedback every control cycle interval. If the feedback

indicates the failure of a planned sub-task, the executor

branches immediately to a preplanned emergency sub-

task. The planner simultaneously selects or generates an

error recovery sequence which then can be substituted for

the former plan which failed.

When a task goal is achieved at time t=0, it becomes a

task completion event in the historical trace. To the

extent that a historical trace is an exact duplicate of a

former future plan, the plan was followed, and every task

was accomplished as planned. To the extent that a

historical trace is different from the former plan, there

were surprises.

At each level in the control hierarchy, the difference

vector between planned and observed events is an error

signal, that can be used by executor sub-modules for

servo feedback control.

The FTS Functional Architecture

In order to implement a functional architecture,

especially one like NASREM which allows evolution

5

with technology, the interfaces must be carefully defined.

Although the NASREM conceptual architecture specifies

the purpose of each module in the control system

hierarchy, it does not completely specify the interfaces

between modules. This section will describe the method

by which the interfaces for the SERVO level of the FTS
hierarchy have been defined. The method involves

gathering all of the algorithms available for SERVO level

control, dividing each algorithm into the parts which

inherently belong to task decomposition, world modeling,

and sensory processing, and then deriving the interfaces

which will support these algorithms.

The NASREM architecture, as presented in,l defines

the basic architecture for a robot control system capable

of teleoperation and autonomy in one system. Recently,

efforts have been directed at specifying in detail the

architecture requirements for robotic manipulation. An
important criterion for the design is that it support the

algorithms for manipulator control found in the literature.

This assures that the control system can serve as a vehicle

for evaluating algorithms and comparing approaches. Any
design, however, must constrain the problem sufficiently

so that detailed interfaces can be devised.

Servo Level

With this in mind, the Servo Level design was based

on a fundamental control approach which computes a

motor command as a function of feedback system state y,

desired state (attractor) yd, and control gains. In this

approach, the gains are coefficients of a linear

combination of state errors (y-yd). The system state and

its attractor are composed from the physical quantities to

be controlled, (i.e. position, force, etc.,) and can be

expressed in an arbitrary coordinate system. This type of

algorithm is the basis for almost all manipulator control

schemes. However, this basic algorithm is inadequate

for controlling the gross aspects of manipulator

motion. The servo algorithm can provide "small"

motions so that the algorithm's transient dynamics are

not significant in shaping the gross motion. This means
that the Primitive Level must generate the gross motion

through a sequence of inputs to the Servo Level. This

can be achieved through an appropriate sequence of either

attractor points or gain values.

Figure 6 depicts the detailed Servo Level design. The
task decomposition module at the Servo Level receives

input from Primitive in the form of the command

Primitive/Servo

TD Interface

Coordinator Process

Teleoperation

Process

,J

^3. Zq , Zq , fe

Avoidance

__torgucs__
_jMobians__
^e.z.z.fz

Dynamic terms

t
act

^ (f Algoridim

Job Assignment

JA(1)

JL

Plan

PL
ining

(M)

Exec

EX
.ution

(U)

motor commands

Co

Ro

K’s

S. S’

Op_algorithni

Op_status

Operator

Interface

Figure 6. Servo Level Design

6

specification parameters. The command parameters

include a coordinate system specification Cz which

indicates the coordinate system in which the current

command is to be executed. Cz can specify joint, end-

effector, or Cartesian (world) coordinates. Given with

respect to this coordinate system are desired position,

velocity, and acceleration vectors (z^

,

z^) for the

manipulator, and the desired force and rate of change of

force vectors (f^ , f^). These command vectors form the

attractor set for the manipulator. The K's are the gain

coefficient matrices for error terms in the control

equations. The selection matrices (S,S') apply to certain

hybrid force/position control algorithms. Finally, the

"Algorithm" specifier selects the control algorithm to be

executed by the Servo Level.

When the Servo Level planner receives a new command

specification, the planner transmits certain information to

world modeling. This information includes an attention

function which tells world modeling where to concentrate

its efforts, i.e. what information to compute for the

executor. The executor simply executes the algorithm

indicated in the command specification, using data

supplied by world modeling as needed.

The world modeling module at the Servo Level

computes model-based quantities for the executor, such as

Jacobians, inertia matrices, gravity compensations,

Coriolis and centrifugal force compensations, and

potential field (obstacle) compensations. In addition,

world modeling provides its best guess of the state of the

manipulator in terms of positions, velocities, end-effector

forces and joint torques. To do this, the module may
have to resolve conflicts between sensor data, such as

between joint position and Cartesian position sensors.

Sensory processing, as shown in Figure 6, reads

sensors relevant to Servo and provides the filtered sensor

readings to world modeling. In addition, certain

information is transmitted up to the Primitive Level of

the sensory processing hierarchy. Primitive uses this

information, as well as information from Servo Level

world modeling, to monitor execution of its trajectory.

Based on this data. Primitive computes the stiffness

(gains) of the control, or switches control algorithms

altogether. For example, when Primitive detects a

contact with a surface, it may switch Servo to a control

algorithm that accommodates contact forces.

A more complete description of the Servo Level is

available in^^ where the vast majority of the existing

algorithms in the literature are described. The same

process for developing the interfaces based on the

literature has also been performed for the Primitive level

and is available in.^^ While the procedure is planned for

each level in the hierarchy, the amount of literature

support tends to decrease as one moves up the hierarchy.

Hardware and Software
Architectures

Once the interfaces are defined, it is possible to choose

a computer architecture and begin to realize the system.

This section will describe a specific implementation under

construction at NIST. While every effort was made to do
the job properly, there is no reason to assume that this

implementation is optimal in any way. It simply

illustrates one realistic method to implement the

NASREM architecture.

While a functional architecture is technology

independent, its implementation obviously depends

entirely on the state-of-the-art of technology. The
designer must choose existing computers, buses,

languages, etc., and, from these tools, produce a computer

architecture capable of performing the functions of the

functional architecture. The system must adequately meet

the real-time aspects of the controller so that adequate

performance is achieved through careful consideration of

computer choice, multiple processor real-time operating

system, inter-processor communication requirements,

tasking within certain processors, etc. For a more

detailed description of this methodology see reference.

Figure 7. NASREM Testbed for

Integrating a Robot Manipulator and an
Active Vision System called

"TRICLOPS”

System Development Environment

The NIST implementation considers two aspects of the

process: the development environment in which the code

is developed, debugged, and tested as well as possible, and

the target environment where the code for the real-time

robot control system is executed. Figure 7 shows the

equipment configuration we used in implementing a

NASREM testbed for a machine vision research project

7

called "TRJCLOPS." A network of SUN* workstations

running UNIX was used for the development

environment, sacrificing the execution speed of the code

for ease of development. Once the code was tested as well

as possible, it was downloaded to the target system,

reclaiming code execution speed. The target system

consisted of a VME backplane and six Motorola 68020

processors. For rapid iconic image processing, the PIPE

system is used. The target hardware drives a Robotics

Research Corporation robot arm.

From the software side, the multiprocessing operating

system used for the target environment should be as

simple as possible so that the operating system overhead

is minimized. The duties of the operating system are

limited to very simple actions such as downloading and

starting up the processors and inter-processor

communication. Software multi-tasking is not used at

the lower levels of the hierarchy because of the execution-

time overhead associated with operating system context

switching. For the FTS project NIST researchers

investigated three alternatives for software execution

scheduling; the tasking model provided by the native

compiler, the pSOS tasking model, and the ADA tasking

model. Inter-processor communications alternatives

including pRJSM, sockets, etc., were also evaluated

empirically. A shared memory mechanism was finally

selected because of real-time computing constraints. The

actual application code is written in ADA. Although

ADA compilers typically cannot produce code that is as

efficient as code produced in other languages such as C,

NIST researchers have shown that the gap is steadily

decreasing

The application code is developed by programming the

processes which achieve the functions associated with the

boxes in the functional architecture. The problem then

becomes one of assigning each of the processes to a

particular processor. There is a clear trade-off between the

cost of the solution and the performance of the system.

There are currently no software tools which automatically

perform this assignment based on an arbitrary index of

performance. The approach at NIST is step-wise

refinement of the performance of the system. Given the

particular hardware being used, a certain number of

processors is chosen arbitrarily. For that configuration,

the processes are assigned to the processors. Then, the

system is evaluated in terms of its performance. If the

performance is unacceptable, the designer has several

options. The first option is to add more processors. This

alternative is balanced against the possibility of additional

communication requirements between the processors.

Another alternative is to add faster processors or special

purpose processors, such as dynamics chips, which

optimize particularly compute intensive operations. This

trade-off clearly relates to cost. Another alternative is to

reassign the processes to the processors in order to

balance the workload of each processor. Each of the

* References to specific brand names, equipment, or trade

names in this paper are made to facilitate understanding

and do not imply endorsement by the National Institute of

Standards and Technology.

alternatives can be evaluated by the designer in order to

balance system costs against improved performance of the

system. This technique also allows a particular

configuration which implements the functional

architecture to change with time as improvements in

technology are realized.

Methodology Tenets

We use the word tenet, here, to mean guidelines and
engineering rules of thumb which characterize our
NASREM methodology approach. Together the

NASREM conceptual architecture and these tenets form a

basic set of rules or systems integration standards for

building real-time control systems. An in-depth

discussion of these tenets is presented in. ^ ^

1) Use task oriented decomposition (driven by
scenarios)

2) Use hierarchical organization and assign

responsibility and authority

3) Organize the control hierarchy around tasks top-

down and equipment bottom-up

4) Partition by an order of magnitude between levels

(spatial and temporal resolution) and roughly ten

decisions or less per plan

5) Use seven + or - two subordinates per supervisor

and only one supervisor at a time

6) SPAVM/BG functions are distributed throughout

the hierarchy and assumed to exist in each node

7) Allow human interface at any node

8) Controller modules are finite state machines

communicating through Global Memory
* Use a controller template as the basic building

block
* Use cyclic sampling rather than interrupts for

context switching

* Surround all modules with data buffers

* Use non-blocking input/output (I/O)

* Implement Global Memory using a One
Writer, Many Readers Paradigm

* Match the control cycle time to the demands of

the control application

9) Design for concurrent processing
* Measure execution time performance
* Allocate sufficient computing resources

10) Use synchronous control at the lowest levels,

transitioning to asynchronous control at the

highest levels

Conclusion

The NASREM functional architecture developed for the

Flight Telerobotic Servicer (FTS) can serve as a

technology independent paradigm foundation from which
any NASREM telerobot implementation can be derived.

For the FTS project we developed interfaces for the

NASREM architecture modules which take into account

the research already published in the literature. When a

NASREM implementation is desired, the result is, by

necessity, a reflection of the current state-of-the-art.

8

However, when the interfaces are carefully specified,

alternative software and hardware solutions may easily be

tested and integrated. This will allow the FTS control

system we developed to evolve with technology, both for

space as well as for terrestrial applications.

References

[1] J.S. Albus, H.G. McCain, and R. Lumia,

"NASA/NBS Standard Reference Model for Telerobot

Control System Architecture (NASREM)," NIST

(formerly NBS) Technical Note 1235, April 1989

Edition, also as NASA document SS- GSFC-(X)27.

[2] J.S. Albus, A.J. Barbera, R.N. Nagel, "Theory and

Practice of Hierarchical Control," Proceedings of the

23rd IEEE Computer Society International

Conference, September 1981.

[3] A.J. Barbera, J.S. Albus, M.L. Fitzgerald, L.S.

Haynes, "RCS: The NBS Real-Time Control

System," Robots 8 Conference and Exposition,

Detroit, MI, June 1984.

[4] S. Leake, R.D. Kilmer, "The NBS Real-Time

Control System User's Reference Manual," NBS
Technical Note 1258, June 1988.

[5] M.O. Shneier, E.W. Kent, J.S. Albus, P. Mansbach,

M. Nashman, L. Palombo, W. Rutkowski,

T.E.Wheatley, "Robot Sensing for a Hierarchical

Control System, "Proceedings of the 13th

ISIR/Robots 7 Symposium, Chicago, IL, April

1983.

[6] E.W. Kent, J.S. Albus, "Servoed World Models as

Interfaces between Robot Control Systems and

Sensory Data," Robotica (1984) volume 2, pp. 17-

25.

[7] J.S. Albus, "System Description and Design

Architecture for Multiple Autonomous Undersea

Vehicles," NIST Technical Note 1251, September

1988.

[8] H.G. McCain, R.D. Kilmer, S. Szabo, A.

Abrishamian, "A Hierarchically Controlled

Autonomous Robot for Heavy Payload Military

Field Applications," Proceedings of the International

Congress on Intelligent Autonomous Systems,

Amsterdam, The Netherlands, December 8-11, 1986.

[9] S. Szabo, H. A. Scott, R. D. Kilmer, "Control

System Architecture for the TEAM Program,"

Proceedings of the Second International Symposium

on Robotics and Manufacturing Research. Education

and Applications . Albuquerque, NM, November 16-

18, 1988.

[10] Random House College Dictionary, 1982, Revised

Edition

[11] R. Quintero and A. J. Barbera, "An RCS
Methodology for Developing Intelligent Control

Systems," NISTIR 4936, October 1992.

[12] T. R. Kramer and M. K. Senehi, "Feasibility Study:

Reference Architecture for Machine Control Systems

Integration," NISTIR 5297, November 1993.

[13] J. Fiala, "Manipulator Servo Level Task

Decomposition," NIST Technical Note #1255, April

20, 1988.

[14] J. Fiala, "Generation of Smooth Trajectories without

Planning," NISTIR 4622, June 1991.

[15] A.J. Wavering, "Manipulator Primitive Level Task

Decomposition," NIST Technical Note #1256,

January 5, 1988.

[16] J.L. Michaloski, T.E. Wheatley, R. Lumia, R.,

"Analysis of Computational Parallelism with a

Concurrent Hierarchical Robot Control System,"

NIST Technical Report NISTIR 90- 4251, March
1990.

[17] E.W. Kent, M.O. Shneier, and R. Lumia, "PIPE,"

Journal of Parallel and Distributed Computing, Vol.

2, 1985, pp. 50-78.

[18] S. Leake, "A Comparison of Robot Kinematics in

ADA and C on Sun and microVAX," Robotics and

Automation Session, LASTED, Santa Barbara, CA.,

May 25-27,1988.

9

»*mm --•*‘*^A«lryM)tm«.»»ES®!:,Jfc^iWMWW
* **‘nix ^ll|lliilr.fMjg M IMiiiififMMLt J

‘^tt^ajFwTlgltTmlWEtVWti

fij^lKOT n««w«%<K« lMi««-lMni

