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COMBINED BUOYANCY- AND PRESSURE-DRIVEN FLOW THROUGH A
SHALLOW, HORIZONTAL, CIRCULAR VENT

by

Leonard Y. Cooper
Center for Fire Research

National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

Combined buoyancy- and pressure-driven (i.e., forced) flowthrough a horizontal vent is considered where

the vent-connected spaces near the elevation of the vent are filled with fluids of different density in an

unstable configuration, with the density of the top space larger than that of the bottom space. With zero-

to-moderate cross-vent pressure difference, Ap, the instability leads to a bi-directional exchange flow

between the two spaces. For relatively large Ap, the flow through the vent is unidirectional, from the high-

to the low-pressure space.

An anomaly of a standard vent flow model, which uses Ap to predict stable unidirectional flow according

to Bernoulli’s equation (i.e., flow-rate is proportional to C^Ap^^, where is an orifice coefficient), is

discussed. Such a model does not predict the expected bi-directional flow at small-to-moderate Ap or

non-zero flow at Ap = 0. Even when Ap exceeds the critical value, AppLooc which defines the onset of

unidirectional or flooding' flow, it has been determined experimentally that until Ap exceeds many times

AppLooD there is a significant dependence of on the relative buoyancy of the upper and lower fluids.

Also, it has been shown theoretically that the location of the high-pressure side of the vent, i.e., the top

or bottom, can be expected to Influence vent flow characteristics.

Previously published experimental data and results of an analysis of the relevant boundary value problems

are used to develop a flow model which takes all of these effects into account. The result is a uniformly

valid algorithm to calculate flow through shallow (small depth-to-span ratio), horizontal, circular vents

under high-Grashof number conditions. This is suitable for general use in zone-type compartment fire

models (e.g., an ambient temperature environment above the vent and a hot smokey environment below).

The algorithm is used in example applications where steady rate-of-burning in a ceiling-vented room is

estimated as a function of room temperature, vent area, and oxygen concentration. Results of the

analysis are seen to be consistent with previously-published data involving ceiling-vented fire scenarios.

Keywords: building fires; compartment fires; computer modeis; fire models; mathematical

models; vents; zone models



INTRODUCTION

Consider the flow through a horizontal vent where the fluids which fill the vent-connected spaces near the

elevation of the vent are of arbitrary density. Assume that in each space, away from the vent, the

environment is relatively quiescent with pressure well-approximated by the hydrostatic pressure field.

As in Figure 1, designate the spaces connected by the vent as top and bottom. Subscripts TOP and

BOT, respectively, will always refer to conditions in these spaces near the vent elevation, but removed far

enough laterally so that variations to the quiescent far-field environment of vent flows that may exist are

negligible. Vj^p and are the volume flow rates through the vent from top to the bottom side of the

vent and from the bottom to the top side of the vent, respectively. Flow through the vent is determined

by: the design of the vent, its shape and Its depth, L; the densities, pjop and and the cross-vent

pressure difference

- Phigh Plow - ^ (
1 )

where

Phigh ” ^^(Ptop* Pbot)* Plow ” rn****(PTOP' Pbot)

Subscripts HIGH and LOW will always refer to the conditions on the high- and low-pressure sides of the

vent, respectively. When Ap = 0, the HIGH/LOW designations are arbitrary. In cases where gas flows

are involved, Ap is assumed to be small compared to pgQ^ and PjQp.

Ap/p << 1; p = (Phigh Plow)/^ “ (Pbot Ptop)/^

The objective of this work is to develop a mathematical model for predicting for arbitrary specified values

of PjQp and PgQj the rates of flow though the vent under conditions involving unstable configurations

where a relatively dense fluid in the upper space overlays a less dense fluid in the lower space.

— Ptop Pbot ^ ^ (4)

With zero-to-moderate Ap, the Instability leads to a bi-directional exchange flow between the two spaces.

As the flows enter the upper and lower spaces they are upward- and downward-buoyant, respectively,

and they rise and fall as plumes to the far field. For relatively large Ap, the flow through the vent is

unidirectional, from high to low pressure, with a single upward- or downward-buoyant plume.

Only quasi-steady features of the flows being studied will be discussed and analyzed. Thus, even when
the flows are fluctuating it is assumed that time scales which characterize their fluctuations are relatively

small i.e., It is assumed that meaningful average flow characteristics could be established, in principle,

with integrals over time intervals which are relatively small compared to characteristic times of interest.
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THE STANDARD VENT-FLOW MODEL AND ITS SHORTCOMINGS

There exists a simple, effective model for estimating the flow through both horizontal and vertical vents

which is nearly always used In practical applications, e.g., in the modeling of compartment fire phenom-

ena. The model, referred to here as the standard model, uses Bernoulli’s equation and an orifice flow

coefficient, Cq, to compute the rate of flow through the vent. For horizontal vents, Ap and, therefore,

velocity are estimated to be uniform across the vent. For vertical vents, Ap varies with elevation and

calculation of the flow-rate requires integration of the mass flux which varies from the top to the bottom

of the vent. For vertical vents, calculation for an arbitrary vent-area shape poses no practical problem.

For a rectangular vertical vent the calculation has been obtained in closed form (see, e.g., Emmons [1]).

Previous use of this In room fire models is discussed by Cooper [2] and Peacock et al [3].

Anomaly of the Standard Model for Horizontal Vents Near Ap = 0; the Mixed Flow Regime

There is a basic problem with the standard model in the case of horizontal vents. According to this

model, the flow through the vent is always unidirectional, i.e., for any Ap

^HIGH
“

'*^HIGH.ST
“ ^dAv(2Ap/phigh) '^LOW

“ ^LOW.ST “ ^ (5)

where: 3hd are the volume flow rates through the vent from high- to the low-pressure side of

the vent and from the low- to the high-pressure side of the vent, respectively: is the area of the vent;

and Eq. (5) provides the values of these flow rates for the standard model (indicated by the ST in the

subscript).

The above flow description seems reasonable, except for one problem; namely, the prediction of a zero

flow when Ap = 0. In general the prediction is wrong. To illustrate this, consider a condition of "near-

zero" Ap, and assume that pjQp > pqqj, e.g., the vent joins a relatively high-temperature, small-density

environment below from a relatively low-temperature, high-density environment above. This condition is

one involving a state of hydrodynamic instability, where a two-directional exchange flow develops and a

unidirectional description of the flow is always Invalid.

The above phenomenon is illustrated by the following "bottle-emptying" experiment:

Consider a paper-capped narrow-necked bottle filled with liquid. The bottle is carefully turned upside-

down and the paper is removed quickly. For this situation the standard vent-flow model predicts a zero-

flow solution with the bottle remaining filled with the liquid, with a low-to-zero (vacuum) state at the top

of the column of liquid in the bottle, and with Ap = 0 across the free-boundary at the vent-like mouth of

the bottle. It is evident that the bottle will empty and that the zero-flow solution is not valid for this or any

other unstable Figure 1 configuration.

The relevant fluid-dynamic Instability for an unbounded Interface has been studied by Taylor [4]. For the

unstable configuration and for Ap = 0, Epstein [5] established a correlation for exchange flow rate data

from salt-water/fresh-water exchange-flow experiments and Brown [6] established heat transfer

correlations for analogous hot-air/cold-air exchange-flow experiments.

For any unstable arrangement of densities, if |Ap| is small enough there will be a bi-directional or

exchange flow though the vent. (This Is the situation in the above bottle-emptying experiment, where
there is an exchange of liquid flowing out and air flowing into the bottle at its vent-like mouth.) However,

if |Ap| is large enough the vent flow will be uni-directional. Indeed, there will always be a value Ap =

AppLooD’ denoted as the critical or flooding value of Ap, which separates a uni-directional or "flooding* flow
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regime (for Ap > AppLooo) where Vlqw = ^ "mixed* flow regime (0 < Ap < AppLooo) where V^qw
= Vgx > 0. is the above-mentioned "exchange flow." Also, associated with any particular AppLooo
value is a corresponding volumetric flooding flow rate, denoted by VpLooo-

Epstein and Kenton [7] extended the work of Epstein [5] to non-zero Ap conditions. They studied the

mixed flow regime with salt-water/freshwater experiments, measuring flow rates, but not Ap. They also

acquired measurements of VpLooD- thereby characterizing the onset of the flooding regime. Tan and

Jaluria [8] carried out similar experiments, measuring Ap directly. However, the major focus of this work

will be on turbulent, large Grashof number flows, and, as will be shown below, it seems that their data,

acquired with relatively small-diameter (D < 0.0127m) vents, were in the laminar- or transition-flow range.

Let denote the net volume flow rate through the vent from the high to the low-pressure side of the

vent.

^NET " ^HIGH ‘ ^LOW “ ^HIGH
‘

''^EX
- ^

(
6)

This is defined as the forced or pressure-driven part of the vent flow. At the two extremes of the mixed

flow regime, = Vp^oo^ at Ap = AppLooo ^net = 0 at Ap = 0. Similarly, S/^ is the buoyancy-

driven part of the flow which is zero at Ap = AppLooo which reachs its maximum value, as

Ap and the forced part of the flow go to zero.

In view of the above, the standard model vent flow description of Eq. (5) must be modified as follows:

There is a mixed flow regime defined by 0 < Ap < AppLooo' where V^ovv = ^ex - regime

''^HIGh(^P - 0) ~
'^EX.MAX ~ ^HIGH “ ^HIGh(^P “ ^PfLOOd)

“
'^FLOOD

^LOw(^P “ ^PfLOOd) = 0 - ''^LOW ~ '^LOw(^P = 0) = (®)

The Uni-directionai Flow Regime and the Significant Dependence of on Relative Buoyancy

In addition to the difficulties of using the standard flow model in the mixed flow regime, there is also a

problem in the unidirectional flow regime. Use of a fixed value for C^, denoted here as „ and
associated with the orifice coefficient for high Reynolds number flows through an orifice which joins two

regions of like fluids is, in general, not valid. As determined by Perry [9], = 0.60 for low-mach-

number flows or for incompressible fluids.

Using fire-generated hot-air/cold-air experiments and unstable horizontal vent configurations with the high

pressure region on the top, it has been shown by Heskastad and Spaulding [10] that, until Ap is many
times larger than AppLooo* there is a significant dependence of Cq on the relative buoyancy of the cross-

vent environments, where Cq plqqq, the value of Cq at the flooding condition, was measured to only be

of the order of a few tenths.

The fact that there is a difference between Cq for stable and unstable configurations should be no suprise.

Consider the expected differences In characteristics of the entrance flow near the vent and their effects

on Cq for flows with less-dense fluids below penetrating more-dense-fluids above (unstable) to that for

flows with more-dense fluid below penetrating less-dense fluid above (stable). In the former case, the
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entering fluid will tend to rise from the vent to the upper space in a buoyant plume, whereas in the latter

case the entering fluid will rise to a maximum elevation, move outward and downward to the bottom of

the upper space, and continue its outward movement there, away from the vent opening, as a radial “floor

jet.'

For 'shallow' (i.e., small L/D) circular vents of length L, the data of Heskestad and Spaulding [10] (UD =

0.011 in [10]) indicate a smooth dependence of on the relative buoyancy as expressed through use

of the Froude number. (In the following, the subscript HS always refers to the names of the authors of

[1 0]) The orifice coefficients measured in [1 0], and other data and theoretical considerations indicate that

under unidirectional flow conditions

^D.HS “ ^D.Hs(^^HS’ ^D.HS ~ ^D.« (9)

where g is the acceleration of gravity, „ is the large Reynolds number value of typically used in the

standard model, and Fr and Gr are the Froude and Grashof numbers

~ 0^higk/^)/[^9^(^top /^bot)//^top1 ^*’hs “ 9Ptop(/^top /’bot)^

In Eq. (10), is dynamic viscosity and

M ~ A* “ mCDI ~ O'top "^bot)/^ (
11

)

where T is temperature. Although Eq. (9) indicates a general dependence of C^hs
noteworthy that for the range of Gr^s values (of the order of 1 0^) of the shallow circular-vent data acquired

by Heskestad and Spaulding [10] Cp^s was Insensitive to changes in Gr^s and no systematic variation

of Cp on Gr^s was observed.

Beside determinations of the Fr^g dependence of Cp ^g. the work of Heskestad and Spaulding [10]

focused on determination of the flooding Froude number FrpLooD- associated with measured values of

VpLooD- shallow circular vents, these results will be seen below to augment the previously mentioned

analogous results of Epstein [5].

The results of Heskestad and Spaulding [1 0] include limited data on each of several vent designs other

than shallow circular vents. These data indicate that orifice coefficient representations analogous to Eqs.

(9) and (10) can likely be established for vent designs other then shallow circular vents. In this regard,

reliable results will require additional testing.

As mentioned, Heskestad and Spaulding [1 0] provide data in the unidirectional flow regime for unstable

configurations where the high pressure is at the top of the vent. It Is a major objective of this work to

extend these results and to use results from Epstein [5], Epstein and Kenton [7], and Tan and Jaluria [8]

to obtain a generalized model for the unidirectional and mixed flow regimes in unstable configurations

where the high pressure is either at the top or the bottom.
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Representating Flow Rates as Explicit Function of Ap

This paper will develop a fully-general horizontal-vent flow model for unstable configurations which

removes the small-Ap anomaly of the standard model. The paper will extend a preliminary version of the

model, presented and used by Cooper [2, 10] and Peacock era/ [3], which was developed without the

benefit of the results of Epstein and Kenton [7] and Heskestad and Spaulding [10]. The new model will

also account for the Froude number dependence of C^.

The objective here is to predict vent flow ratds as a function of Ap. As mentioned, flow rates, but not Ap
were measured in the experiments of Epstein and Kenton [7]. Therefore, in the mixed flow regime it will

be necessary to use the correlated flow rate measurements of Epstein and Kenton [7] to establish the

desired dependence of flow on Ap.

Similarly, for the unidirectional flow regime, a result like Eq. (9) does not provide the desired explicit

dependence of flow rate on Ap. This is because the desired dependent variable, Vhiqh = Vhigh.st-

embedded on the right side of the first of Eq. (5) through the Fr- or VniQH-dependence of C^.

In developing a uniformly valid flow model, theoretical considerations of the general problem will be

presented first. This will be followed by: 1) establishing an estimate for V^loodI 2) developing the model

for the unidirectional flow regime and the value for AppLooo corresponding to VpLQQ^; and 3) developing

the model for the mixed flow regime.

THEORETICAL CONSIDERATIONS OF THE FLOW DYNAMICS FOR UNSTABLE CONFIGURATIONS

An unstable configuration with Pj^p = Phigh > Pbot = Plow '•®*' ^op bottom, will be

designated as configuration 1. Similarly, an unstable configuration, but with pgQ-p = Ph,qh > p-p^p = p^ow-

1.

e., net flow from bottom to top, will be designated as configuration 2. The two configurations are

sketched in Figures 2a and 2b.

The Boundary Value Problems

The boundary value problems associated with configurations 1 and 2 are identified as Problems 1 and

2, respectively. Assume that the fluid media in the top and bottom spaces are the same ideal gas. Then,

in view of Eq. (3) and for the purpose of establishing the dependence of p on T, the equation of state for

the gas can be approximated by

pT — constant — Pxop*^top — /^bot'^bot “ P/^ (12)

where R is the gas constant and where the temperatures Tj^p and TgQ-^ correspond to specified pj^p and

Pbot through Eq (12). With the constraint of Eq. (4), Eq. (12) leads to the expected result that the

temperature of the gas in the bottom space, Tgoj. associated with the gas of relatively low density, is a

relatively high temperature, etc..

(
13

)

Eq. (12) will be a good approximation if
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ApgIXgl/p << 1 throughout the region of interest (14)

where Eq. (14) is always satisfied in practical problems, e.g., associated with ventilation of enclosed,

heated/cooled spaces and with the spread of smoke (i.e., fire-heated and -contaminated air) during fires

in multi-room facilities.

Designate the dependent variables velocity, pressure, density, and temperature for Problem N, N = 1 or

2, as p^^\ and respectively. Then, through the equations of conservation of mass,

momentum (i.e., the Navier Stokes equations), energy, and the modified equation of state, Eq. (12), and
for the specified parameters (which determine the boundary conditions), all of these variables are

functions of the co-ordinates, and the temperature-dependent material properties: Cp(T), specific heat

at constant pressure; k(T), thermal conductivity; and /z(T).

Problems 1 and 2 can be put in dimensionless form by introducing the dimensionless variables

Problem 1 :

x''” = Xi''VD

U‘<'> = Ui<’V(2gD£)''^

p"('> = (p - p + gpX^/{2g^pD)

/<’' = {p/p ^)le

T”'” = (1 - T/T)/e

Problem 2 :

x;® = Xi®/D

U'® = Ui®/(2gD£)’'^

(15)

p"® = (p - p - gpX3)/(2gApD)

p”® = (1 - p/p)/£

T”® = (T/t - 1)/£

where

£ = Ap/p = AT/T <2; p = {pj^p + pqqj)/2 (16)

Neglecting pdV work and viscous dissipation in the energy equation it has been shown by Cooper [12]

that the dimensionless dependent variables of Eq. (15) are functions only of X-^^^ £, n, Gr, and Pr where^

n = Ap/(4gApD); Gr = 2gD"|£|/[M(T)/p]2; Pr = Cp{T)MCT)/k(t) (
17)

^Since £ > 0, the absolute value designation fore is unnecessary here. However it will be useful in latter

applications of this equation. A similar note Is relevant below in the presentation of Eqs. (47) and (51).
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Thus, for example,

U-(N) ^ n, £, Gr, Pr) (18)

In addition, it has been shown by Cooper [12] that if the parameter e is replaced by - e in Problem 1 ,
then

that problem becomes identical to Problem 2 and if the parameter e is replaced by - e in Problem 2, then

that problem becomes identical to Problem 1

.

Now assume that solutions to Problems 1 and 2 exist for both negative and positive e. Note that there

is no a priori reason to suspect that solutions for e < 0 for either problem are physically meaningful.

However, because of the above-stated relationship between the N = 1 and 2 boundary value problems,

it is evident that a general solution to one of these, including results for both positive and negative c,

provides the general solution to the physical problem of the other, i.e., for e > 0. Thus, for example.

n, t £. Gr. Pr) = n, ; £, Gr, Pr) (19)

Equations similar to Eq. (19) can also be written for the p* and Eq. (19) will used below
as the basis for to determining and extending the relationships between results of configuration 1 - and
2-type experiments.

THE DIMENSIONLESS VOLUME FLOW RATES

For N = 1 or 2, and would be calculated from

0(N) f ^(N) ^''HIGH ' ^HIGHV-^l
Ay

Xj****, = 0)dAv; Xa'"' = 0)clAv (20)

- Uj""* where U3"'>(X,''«, X^"", = 0) < 0

0 where U3‘^(X,<^, Xj'^’, = 0) > 0

03'^ where U3''’(X/'^, X3"^ = 0) > 0

0 where U3<'^>(X,''’, X^^^, X^^^ = 0) < 0

For example, for unidirectional flow conditions, when n > lIpLooD corresponding to Ap > AppLooo’
(20) become

''high
= - / U

3
'^(X,'^, Xj*"** = 0)dAv = - ^^03"^; = 0

Av
(21 )

8



where the integral is over the entire area of the vent and 03
^^^

is the average value of 1)

3
^'^^ at X

3
^^^ = 0 .

Using Eqs. (17), the dimensionless version of Eq. (20) leads to the definition of the Froude number Fr^iQH-

which is a dimensionless value of V^iqh o'" ^3 ,

Fri'/L = (Vi?^H/Av)/(2gD£)
1/2

= - [/ = 0
; n, e, Gr)d(Av/D^)l/(AyD2) = - 0;<”'

(22 )

Carrying out the above proceedure on Eqs. (20) in a similar way for the mixed flow regime leads to

F'-i'I'L
= = Fr<';^H(n. £. Sr, Pr)

FriS^ = (V<S>v)/(2gD£)’« = FrlSi(n, £, Gr, Pr)

(23)

Also, using the result of Eq. (1 9) leads to

^'Low(n. '!i
e, Gr, Pr) = Fr[gJl/(n,

“
e, Gr, Pr)

(24)

UNI-DIRECTIONAL FLOW

The Flow Coefficient and the Large Grashof Number Assumption

The Eq. (5) definition of Cq remains useful for the uni-directional flow regime. Using Eqs. (17) and (23)

in Eq. (5) leads to

~ [(phigh

/

p)/(4n)]^^^Frji|^QH; lim C^^) =

Phigh/p ""

1 + e/2 for N = 1

1 - e/2 for N = 2

From Eqs. (23) - (25) it follows that

(25)

= C^^(n, £, Gr, Pr) (26)

c^’'(n, ! £, Gr, Pr) = C|<=>(n, ; £, Gr, Pr) (27)

9



Note that Cq is for a particular vent design and would generally vary from one design to another, e.g., for

shallow circular vents vs shallow square vents. UNLESS NOTED OTHERWISE, THE REMAINDER OF
THIS WORK FOCUSES ONLY ON TURBULENT, LARGE-GRASHOF-NUMBER FLOW THROUGH
SMALL-L/D CIRCULAR VENTS, where ‘small-L/D“ means, approximately, L/D < 0.10, and where the

"large Grashoff number* terminology will be clarified below.

The Flooding Condition

The region of turbulent. larae-Gr flow . For fixed values of e, Gr, and Pr there is a specific value of n,

associated with AppLooo depending on N, that leads to the flooding condition. This is designated

as where

<L00D = n^t!ioD(s. Gr. Pr) = Ap^^ioD/(4gApD) (28)

^flood(— s* Pr) = npLooD(+ Pr) (29)

and where the corresponding values Fr^'I'^H.FLooD' '^h'igh.flood' and are

PrnfQH.FLOOD “ P^h^okflood^Si ®r, Pr) — Pr,, 13^(11^1.000’ Gr. Pr) — {'^high,flooc/^v)^(29I^s)
1/2

r(N)
'^D. FLOOD = e. Gr. Pr) = Gr. Pr)

(30)

(31)

Also, from Eq, (25)

Gq. flood “ [(^ ^/2)/(4npL00D)] ploOD (^^)

Gd^FLOOD “ [("^ " ^/2)/(4npL00D)l^^^^rH^GH.FL00D (^^)

and from Eqs. (29) - (31)

^rHiGH.FLooD(- Gr, Pr) - Pr,^^^H.FL00D(+ Gr, Pr) (34)

Gd.flood(~ Gr, Pr) = Gq^pi_qqq(^ e, Gr, Pr) (35)

In Heskestad and Spaulding [1 0], configuration-1 experiments with air (Pr ~ 0.7) in the uni-directional flow

regime resulted in 13 sets of steady-state data. The data for each set were used to calculate Fr, n, e, and
Gr. These are presented in Table 1. As indicated, of the 13 data points, the first 6 are associated with

the flooding condition.
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The results of the above theoretical analysis is for perfect gas media and is valid for the entire range -

2 < e < 2. However, for |e| << 1, when the Bousinesque approximation is applicable, there is an

analogy between Figure-1 -type problems involving perfect gases and incompressible or nearly

incompressible liquids. In the case of small-e problems involving liquids, buoyancy effects which drive

the exchange flows can be the result of temperature differences or of concentration differences of a

solvent. This is the justification for use of the salt-water/fresh-water experimental data (where |£| < 0.2)

of Epstein and Kenton [7], Tan and Jaluria [8], and Heskestad and Spaulding [10] in the data analyses

to follow.

Flooding conditions were measured in the salt-water/fresh-water experiments (Pr == 7) of Epstein and

Kenton [7] and Tan and Jaluria [8]. All small-UD flooding data from Epstein and Kenton [7], Tan and

Jaluria [8], and Heskestad and Spaulding [10] are presented in Table 2. As indicated in the table, the

salt-water experiments involved both configurations 1 (referred to by Epstein and Kenton [7] as "draining"

experiments) and 2 (referred to in [7] as 'injection' experiments). Since Ap was not measured by Epstein

and Kenton [7], n and available for their data.

For aN the above data, Fr^^^n flood ^ function of Gr J^s plotted in Figure 3. As can be seen, for this

data FLOOD relatively insensitive to changes in Gr in the range 2.99(10^) < Gr < 2.91 (10®) (the

data of Epstein and Kenton [7] and Heskestad and Spaulding [10]). (As will be explained below, in this

range of Gr the observed variations in Fr,!!,^^H flood primarily a result of the dependence of

E'*h iGH.FLooD However, there is a significant increase in Fr^^^^ flood* larger-Gr values, for

Gr < 1.42(10^) (the data of Tan and Jaluria [8]). Using flooding data for square, rectangular, and circular

vents, acquired over a large range of Grashof number. Figure 10 of Heskestad and_Spaulding [10]

indicates a similar insensitivity in flooding Froude number for the a£bitrarily-large range Gr > 2(10^) and
a similar, relatively-abrupt increase in flooding Froude number as Gr drops below approximately 2(10^).

(In computing Gr here for the square- and rectangular-vent data of Heskestad and Spaulding [10], Ec|.

(17) is used where D is replaced by the width of the vent. Of these data, the one with the largest Gr

value, Gr = 1.54(10^°), is for flooding flow through a rectangular vent of dimension 2.03mx0.91m.)

Consistent with the above observation, it is assumed that in the present problem Gr > 2(10^) defines a

range of turbulent, buoyancy-driven, free-flow phenomena where the Gr-dependence of the governing

boundary value problem is generally negligible.

The above discussion ignores the Prandtl-number-, or Pr-dependence of Frj!,^^^ flood- consistant

with the reasonable assumption that in the large-Gr range of practical interest, rriojecuiar diffusion effects

of Pr variations are negligible, at least for the approximate range of, say, 0.7 < Pr < 7 (i.e., for air and
room temperature water).

In view of the above, it is assumed that for large enough Gr, Fr^^Jl/, and are functions of n
and e, and

i gh.flood> ^d. flood* ^flood only functions of c, i.e..

For Gr > 2(10^):

^^high.flood(^*
“

^'*high.flood(^)»

e. Gr, Pr) = e), etc.

(
36

)

The Eq.-(36) assumption will also be adopted below in the mixed flow regime.

11



Note that the above terminology, 'tree-flow,' refers to the fact that boundary shear flows with no-slip

conditions play no significant role, e.g., the flow phenomena mainly involve free jets and free plumes, and

approach and exit flow dynamics near the surfaces X3 = 0"^ or O’ are not significant.

In contrast to the above. It is assumed that thej;ange Gr < 2(10^) defines transition and laminar flow

regimes of the problem where Gr- and possible Pr-dependence is important.

Practical vent flow problems of the type considered here^ e.g., problems related to fire safety and building

ventilation, are typically confined to the large-Gr range Gr > 2(10^). THE REMAINDER OF THIS WORK
FOCUSES ONLY ON LARGE GRASHOF NUMBER PROBLEMS, AND, UNLESS NOTED OTHERWISE,
GRASHOF- AND PRANDTL-NUMBER-INDEPENDENCE OF ALL THE FLOW PHENOMENA IS ALWAYS
ASSUMED.

The functions EIh 1 cH.FLOoDi^ij —and Cp flqodI^- The f’l'niGH.FLOOD^^)' ^flood(^)’

^d^flood(^) Table 2 from Epstein and Kenton [7] and Heskestad and Spaulding [10] are plotted

in Figures 4, 5, and 6, respectively. [The data from Tan and Jaluria [8] are not included since they do

not satisfy the large-Gr criterion of Eq. (36).] In the plots, the reciprocal properties of Eqs. (29), (34), and

(35) are implemented. Thus, the data and solution are plotted in terms of the configuration 1 problem with

configuration 2 results presented on the e < 0 side of the plot.

A least squares method was used to fit to the data of Figure 4 in the following convenient analytic form

P^HlGaaocD = 0.1754exp(0.5536£) (37)

and this is also plotted in Figure 4.

As seen in Figure 6, the available 0^]1^_qqq{£) data are very sparse with no entries for small |e| or e <
0, Also, the scatter of the available data does not provide qualitative insight on the 'shape' of the desired

function. Under the circumstances and until more flooding data becomes available, it is reasonable to

simply approximate
J:lood(^) ^ constant value. One reasonable choice for this is the average value,

which is found to be 0.1830. However, since C^js a derived property, i.e., from Eq. (5), and since the

^d!flood(^) entries of Table 2 are derived from the plood(®) ^nd nfLooD(^) according to Eo (32),

it seems more appropriate that the criterion for selecting a 'best,' constant, representive value for Cf^';JrLooD

is that It provides a least squares fit of the n^LooD(^)

From Eq. (32)

^FLOOd(^) — ^/^)I^^HIGH.FLOOd(^)/^D, flood!

Using Eq. (37) in Eq. (38) It is found that the constant value for ^^at provides the least squares

fit to the six n^J^oD(^) points of Table 2 is

^D.kooDi.^) = 0-1780 (39)

Eq. (28) and Eqs. (37) and (39) in (38) leads to

12



HfloodCs) = Ap^iioo/HgApD) = 0.2427(1 + £/2)exp(1.1072£) (38-)

Eq. (38'
)

is plotted in Figure 5 and Eq. (39) is plotted in Figure 6.

In Figure 6, the sparseness of the the available n^i'AoQ(s) data, especially with the absence of entries for

small |e| or £ < 0, and the predicted significant e-range of interest,

is problematic. Nevertheless, the results of Eqs. (37) - (39) are plausible, and they fill a gap where

alternative choices are not available. These results will be used thoughout the remainder of this work.

An Estimate for Cp

It is convenient to normalize Eq. (25) as follows

Cq ^(n, S)/Cq
j„
— [Cq p:|_qqq(£)/Cq „] [Fr^lQ,^(n, ^)/Frj^|GH,FLOOD(^)]/[^/^FLOOD(^)]

^

For uni-directional flow n/n^LooD(^) - where, independent of e, the limit n/nf LooQ(e) -»• oo leads to the

standard Bernoulli orifice flow condition, i.e..

lim Ci’'(n, e)/C^, = 1C<'>lood(«)/Cd„J = 1/a,(£)

lim Cq \n, c)/Cq
3^,
= 1

(41)

and where Cq „ is taken to be the value associated with sharp-edged orifices and slots (Perry [9])

Cq.„ = 0.60 (42)

In terms of reaching the objective of an estimate for vent flow rate as a function of Ap, it is convenient to

choose the functional form

^’’hIGh/^^HIGH.FLOOD “ Kn/HpLooD’ (43)

and to approximate C[^^^(n, £)/Cq „ of Eq. (40) as

Cq ^(n, £)/Cq — c(n/npLooD’
(1)

(44)

“ (^'’hIGh/^^HIGH.FLOOd)/{[(^^HIGh/^'^HIGH.FLOOd) ^ <^2 ]

"* ‘ ^2 y
.(1) /Er(1) 2i2 . ^ 2 ^ 4i 1/2

where = 02 {e) would be determined from a good fit of available C(^^^(n, c)/Cq ^ data. Note that Eq. (44)

satisfies the limits of Eqs. (41).
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As can be seen from Table 1, except for e = 0.521, data for non-flooding conditions are limited

to single data points for each of e = 0.282 and 0.559. Until further data are available it is therefore

reasonable to approximate a2(e) as a constant.

Using Eqs. (41) and (42), and the constant-C(^^JrLooD approximation of Eq. (39), and then choosing O
2
as

the constant value that provides a least squares fit to all of flooding and non-flooding data of Table 1

leads to

G^{e) = constant = 0.60/0.1780 = 3.370; 02 {s) ~ constant = 1.045 (45)

A plot of Eq. (44) and (45) and the data of Table 1 for C[^^^(n, £)/Oq ^ vs p^ooD presented

in Figure 7.

The Model for the Vent Flow in the Uni-directional Flow Regime

Replacing the left-hand-side of Eq. (40) by Eq. (44) and solving for leads to the desired result

for predicting the vent flow rate in the uni-directional flow regime

for Ap/App|_QQQ n/n ( 1 )

FLOOD > 1 :

0(1) A7(1)
''high/''high,flood

FrU) /Cri( 1 )

IGH.FLOOD 02^ + [oJ" + O FLOOD 1 )]

1/2

(46)

^LOw/'^H IGH.FLOOD
~

^^LOW^^^’h I GH.FLOOD
“ ^

where and 03 are given in Eq. (45); Ap^lood )> ^high flood ^ound from Eqs. (30) and

(37) to be

ViU^FLooD = 0.1754(2gD|£|)^%exp(0.5536e) (47)

From Eq. (46) it can now be seen that the functional form of Eq. (44) guarantees satisfaction of the

requirement that for Ap/Ap^LooD - ^high/^high flood ^ monotonically increasing function of

Ap/Ap^L^QQ. It can also be shown that Eq. (46) satisfies the large-Ap limit which is equivalent to the

standard Bernoulli orifice flow condition, i.e..

I GH^^H IGH.FLOOD “ (^D.«/^D.FLOOd)(^P/^PfLOOd)
Ap/Api^L^OD - ”

(48)

Eqs. (46) are the recommended mode! equations for the uni-directional flow regime. A plot of

plood ^P/^Pflood according to Eqs. (46) is presented in Figure 8. Included in the figure

is a plot of the data of Table 1 and a plot of the Bernoulli flow limit of Eq. (48). From the figure it can be
seen that at the flooding condition the standard Bernoulli flow equation would over-estimate the expected
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flow rate by a factor in excess of 3, and that only after Ap/Ap^Looo exceeds 3 or 4 does the standard-

model provide flow-rate estimates which are correct to within a few tens of percent.

THE MIXED-FLOW REGIME

Boundary Conditions for the Flow Components

From Eqs. (6)-(8), HIGH.FLOOO’ '^LOW^HIGH.FLOOD- ^rgET^H I GH.FLOOD funCtiOFlS Of Ap/APp^Q^Q
< 1 in the mixed flow regime are sketched in Figure 9. As indicated in the figure, in addition to the

specifications of these equations it is reasonable to expect that the slopes of both V^J^^^A/hIgh flood
(1 ) orQ F^ontini I/-M to ^a/^rriee thcs fIrirvHinn limit Kni inHrarv/ Ar-r/Arrf^^ —

-j ThUS
''low' ''high, FLOOD are continuous across the flooding limit boundary, Ap/Ap^^^oQ

at Ap/App|_QQQ — 0.

w(i) A/fi) = V''high' ''high.flood ''low'''high.flood ''ex.max''' high, flood

= 0.055(4/Tr)(1/2^'2)/Fr(;)H.FLOoD(^)

^NEt/^HIGH.FLOOD “ ^HIGH^HIGH.FLOOD ^LOW'^HIGH.FLOOD
~ ^

at Ap/AppLQQQ = 1 ;

\/(i) /\/(^)
''high' ''high.flood

\/(i)/w(i) -I- 0(1
)
/v(i)

''net' ''high, FLOOD '•
'' LOW' '' H IGH.FLOOD

= 0

^O^low/^high.flood)/*^(^P/^Pflood) “ ®

*^O^high/^high.flood)/^(^P/^Pflood) I

~ ^O^net/^high,flood)'^^(^P/^Pflood)

“
*^0/high/''^high.flood)/^(^P/^Pflood) I

= n\,{e) = {o^/of/2 = 5.20

Ap/Apj^L^QQ - 1

(50)

where Eq. (45) was used in the last of Eq. (50), and in Eq. (49) the value of y^^Ax shallow circular

vents was obtained from Epstein [5]

'^EX.MAX
~ 0.055(4/7r)Ay(gD |£|) (51)

Analytic Approximations for the Fiow Components

The following representations of V^^A/hIgh.flood ^low/^high, flood which satisfy Eqs. (49) and (50)

are adopted
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'^n^/^hIgh.flood = {M - [1 + (M" - 1)(1 - Ap/Apl’ioD)l''"}/(M - 1) (52 )

or

Ap/Ap<’>oD = - l(M - 1)/(M + IGH.FLOOD + [2M/(M + ^ ) ] 0/NEj/^H I GH.FLOOD)
(52')

^LOW'^H I GH.FLOOD
~

^EX.MAx/^HIGH.FLOOD'fi^
*" ^2('^HIGH.FLOOcA^EX,MAx)/^] (^ * ^P/^PfLOOd) (^^)

- [2 + rn2(V^,^H.FLOOcA^EX.MAx)/^]('* ^P/^Pflood)}

or

^LOw/^EX.MAX ~ [{1 + m3/2)(1 - Ap/Ap^iioo)= - (2 + m3/2)(1 - Ap/Ap^^^oo)!' (53'

)

M = 2m^ - 1 = (a^/Og)^ - 1 = 9.400 (54)

where Eq. (45) was used to obtain Eq. (54), ^exmax/^high flood Qiven in Eq. (49), and the yet-

undetermined value for m3 and the associated mg are

•t^3(^) = ^(^low/^ex.max)/^(^P/^Pflood) I
(^^)

Ap/Ap^L^QD = 0

m2(£) = f^3(^)'^EX.MAx/^H I GH.FLOOD
“

^(^L0w/'^H1GH.FL00d)/^(^P/^PfL00d) I
(^®)

Ap/Ap^L^QQ = 0

Note that Eqs. (53) and (53'
)
also satisfy the requirement that Vlq^ is always positive.

The Eq. (52) or (52' ) representation of the Vn^/^high flood sketch of Figure 9 involves a parabola with

axis parallel to the Ap/Ap^LooD analytic form allows for the required monotonic increase of

^NET^FLOOD 2®’'° ^P/^PpLooD = 0 to 1 at Ap/Apj^LooD = "*
’ satisfies the large-slope

requirement of the last of Eqs. (50) at Ap/Ap^L^QQ = 1 . Finally, the representations of Eqs. (52) and (53)

are in a convenient form for the curve-fitting analysis of the data of Epstein and Kenton [7], to be

introduced below.

Epstein and Kenton [7] provide flow rate data for circular vents or disks (UD = 0.0190 and 0.1 13; 4 data

points) and tubes (0.39 < UD < 5.0; 16 data points) in a limited portion of the mixed-flow regime. These
are presented in Table 3. Difficulty in acquiring accurate data relatively close to the uni-directional flow

regime, where flood ^ (indicated by the data to correspond to the portion of the mixed-flow

regime where 0 < ^ precluded measurements of flow in this range. According to

Epstein and Kenton [7], the reported data have “experimental uncertainty ... between 10 and 30 percent."
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Note that all data of Table 3 are in the very narrow range 0.12 < e < 0.16. For this reason the data can

not be used to determine any significant c-dependence of m
3
that may exist. Accordingly, m

3
will be

approximated by a constant value.

Using Eqs. (52'
)

in (53'
)
leads to a solution of V[o^/V^x.max ^ function of flood-

constant value of m
3
that provides a least-squares fit of this function to the four small-L/D data pairs of

Table 3 has been found to be

m
3
= - 0.7070 (best fit for L/D = 0.0190 and 0.112 data of Epstein and Kenton [7]) (57)

From Eqs. (52), (53'), (54), and (57), Vfiw/VEx.MAX V^^A/i]^H.FL00D ^re plotted in Figure 10 as

functions of Ap/Ap^LooD-

Using Eqs. (6)
and (52)-(56), finally determined from

(58)

Additional Comments Regarding Mixed-Flow Data

^Low/^EXMAX ^ function of flood )- )> plotted in Figure

1 1 . Also included is a plot of all data of Table 3. It is interesting to note that these data, the bulk of which

involve flow through tube-like vents (i.e., moderate-to-large L/D) rather than shallow vents (i.e., small L/D),

are well correlated by the m
3
value that was established from just the few, available, shallow-vent data.

The value of m
3
providing the least-squares fit of all data of Table 3 has also been determined

m
3
= - 1.8077 (best fit for all data of Epstein and Kenton [7], 0.0190 < L/D < 5.0)

(57')

and ^ function of Vn^/VhIgh.flood (^2' ), (53' ), (54), and (57'
)

is also plotted

in Figure 1

1

.

It is of interest to define

^4 - d(V|^Q^/V0( ,^^^)/d(V^^/Vji,]^LOW' EX.MAX> NET' ''HIGH.FLOOD-,)l = [2m3M/(M -k 1)]

in.flood)
“

= - 1.2781 [using Eq. (54) and m
3
from Eq. (57)] (59)

= - 2.625 [using Eq. (54) and m
3
from Eq. (57' )]
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The latter value for can be compared to the = - 2.5 value associated with the correlating function

Eq. (24) of Epstein and Kenton [7] for all data, viz.^

EX.MAX v' ''net/''high.flood^ (60)

A plot Eq. (60) is included in Figure 1 1

.

VENTCL2 - AN ALGORITHM FOR BUOYANCY-DRIVEN FLOW THROUGH HORIZONTAL VENTS

For unstable cross-vent densities, all of the above leads to the following algorithm, called VENTCL2 (an

advanced version of VENTCL (Cooper [2 and 11]), for calculating V^qw, and through small-L/D

circular vents:

1. Verify that pj^p > pqqj, i.e., that the configuration is unstable, and calculate Ap from Eq.

(4); determine T from Eq. (11) and fi(j) from note {6} of Table 1; determine p and e >

0 from Eq. (16).

2. Determine p^iqh Plow ^P> P (1)-(3): according to Figure 1 designate

the problem type as either Problem 1 or 2, involving configuration 1 or 2, respectively: if

it is configuration 2, then replace e by - e < 0.

3. Determine Gr from Eq. (17) and verify that Gr satisfies the large-Gr criterion, Gr > 2(10^).

4. Calculate flood ^^d then V^J^h flood (37) and (47), Ap^^^oD ^^om Eq.

(38' ), and Ap/Ap^JioD-

5. If Ap/Ap^L^oD - ^ '
©xpect uni-directional flow. Estimate Vlqw =

^lovj
-

^high
=

^HiGH ^P- (^5)

6. If Ap/AppLooD < expect mixed flow. Estimate: V^^j = from Eqs. (52) and (54);

^EXMAX and then Vlqw = from Eqs. (51), (53' ). and (57); and Vhiqh = from

Eq. (58).

The algorithm is suitable for general use in zone-type compartment fire models.

APPLICATIONS OF VENTCL2: STEADY BURNING IN A CEILING-VENTED ROOM

Direct flow rate data to validate the VENTCL2 model/algorithm are not available. However, there are data

from full-scale ceiling-vented fire scenarios which can be used to validate the model indirectly. These

scenarios are special cases of the important class of problem involving steady burning in a ceiling-vented

room. In this section VENTCL2 will first be used to obtain a general solution to this problem. Then, the

solution will be compared to aspects of previously published data from two full-scale experimental studies

involving the purely ceiling-vented fire scenario.

^The 2.5 exponent in Eq. (59) is different from that of Eq. (23) of [6] which seems to be printed incorrectly.

Eq. (59) corresponds to the correlating function plotted in Figure 5 of [6].
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The Problem

Consider a room with a fire, fully-enclosed except for a shallow circular ceiling vent. Refer to Figure 12.

The outside air above the vent has ambient density, temperature, and oxygen mass concentration, T^^g,

Pamb> V'amb* respectively. Assume steady conditions where the room environment immediately below

the vent has density, temperature, and Og mass concentration p, T > T^^g, and < V'amb- respectively.

V’low’ ^2 rnass concentration in the lower part of the room at the elevation of the fire, must exceed

the minimum, extinction value, Vext* associated with the particular fuel. For example, for the combustion

of CH^ diffusion flames from round burners with diameters D in the range 0.50 m < D < 0.089 m, t/'ext

was measured by Morehart, Zukoski, and Kubota [14, 15] as ranging from 0.140 (D = 0.50m, T = 1765

K) to 0.161 (D = 0.089 m, T = 1765 K). Note that under the conjectured steady state condition, the 0^
that supplies the lower part of the room and maintains it at a t/jlqw > comes from the cool and relatively

02-rich ambient air that enters the ceiling vent and drops toward the floor of the room in a negatively

buoyant plume.

In this section the VENTCL2 algorithm will be used to estimate the exchange flow through the vent and

the burning rate that can be supported by the net rate of oxygen inflow.

The Relationship Between Ap and T

Assume: the mass-flow-rate of fuel Introduced by the fire is negligible compared to the mass-flow-rate of

the exchange-flow; the environment inside and outside the room can be modeled as a perfect-gas

approximation to air; and there is no mixing in the vent, i.e., all inflow is at the ambient condition and all

outflow is at the upper room environment. Using the approximation of Eq. (3), it follows from Eq. (12) that

"^^AMB “ Pm^^P ~
Pjop/^BOT ^ (61)

From Eqs. (4) and (61) it is evident that the present problem involves an unstable configuration, and that

the VENTCL2 flow algorithm is applicable.

Conservation of mass across the vent requires

^'^BOT “ PaMb'^TOP (62)

where VgQj and Vy^p are the volume flow rates from the bottom to the top of the vent and from the top

to the bottom of the vent, respectively. Using Eq. (61), it follows from Eq. (62) that the high and low

pressure sides of the vent are at the bottom and top, respectively, i.e., the problem involves a Problem

2 scenario in the mixed-flow regime.

^HIGH
~

''^BOT> ^LOW “ WoP* ^HIGH ~ P'' /’lOW “ PMAB

According to the VENTCL2 algorithm, replace e by e' = - e in the Problem 1 solution to obtain the

desired Problem 2 solution. From the Eq. (13) and (16) definition of e

£' = - a = - 2(T*- 1)/(T* -h 1) < 0; T* = TAT^^^g = (2 - e' )/(2 -h e' ) (64)
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Also, define

5p — Ap/App|_Q0Q (65)

where, from Eq. (38'

)

-^Pflood = 0.2427(4gA/)D)(1 + e' /2)exp(1.1072£'
) (66)

VENTCL2 and Eq. (62) require the following functional dependence of 5p* on e'

0(5p*) = A(e') (67)

where

A(e' )
= - 2(0.282)e' exp(- 0.5536£' )/(2 + e'

)

(
68

)

<^.(5p') = {M - [1 + (M^ - 1)(1 - 5p')]’'2}/{(M . 1)[(1 + - Spf - (2 + m,/2W - 5p‘)]^}

and where M and m
3
are given in Eqs. (54) and (57), respectively.

Using the numerical root-finder RTSAFE listed by Press [16], the solution of Eq. (67) for 5p* as a function

of e' or TfT^^Q was found for a wide range of e' < 0 (T > plotted in Figure 13.

The Energy Release Rate of the Fire as a Function of T and Its Maximum Possible Value

The energy-release rate, 0, of the fire is related to the net rate of oxygen inflow which is consumed
entirely by the combustion.

Eqs. (51), (62), and (63) lead to

net rate of Og consumed = V>amb^

A

lyls'^low " ^/^high'^high

= 0.055D^^^g^'^^l£'
j

'
’/'/V'amb)'^low/^ex.max

(69)

where, VlqwA'ex.max = ^low/Vex.max> ^ function of 5p*, is given in Eq. (53' ).

From Huggett [17]

C02 = 0/(net rate of Og consumed) = 1 3.2(1 0^)kW/(kgQ2/s) (70)
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Using Eq. (69) in Eq. (70) and defining a dimensionless Q

0 - 0/[(1 - V’/V’amb)^ambV’amb^02^v^^ 9
'

] (
71

)

leads to

0
*

0.074 1
£' rXow/VLOW' ''EX.MAX (72)

The previously determined 5p* vs e solutions were used in Eqs. (72), (53'), and (64) to obtain Q* vs

7/Tamb plotted in Figure 13. From this it is seen that 0* is predicted to rise rapidly from 0, at

TTFamb = 1, to a maximum value, 0^^ = 0.037, at 177^^6 = 1-65, and to monotonically decrease with

further increases of T/T^^g. Associated with 0^^, let 0,^^ be the maximum possible 0 for a given y;.

Taking T^^g = 300 K, p^mb = kg/m^ ^^^^g = (0.23 kg 02)/kg, and g = 9.8 m/s^ Eqs. (70) and (71)

lead to

CImax = 0.41 (1 0'>){1 - V'/[0.23(kg kW (73)

The scenario, leading to the largest value of 0,^^, is one where tj} is negligible. This would likely be

associated with Vi^ow ~ V'ext- Thus, from Eq. (73)

^MAX < 0.41(10^)(A^/m2)^^^ kW = 0.41(10^) kW, 1.3 kW, and 0.23 kW for A^ = (74)

1.0 m^ 1.0(10'^) m^ and 25.0(1 0'"^) m^, respectively

The results of Figure 13 are now related to data acquired in “full-scale" experiments reported by Steward,

Morrison, and Mehaffey [18] and Jansson, Onnermark, and Halvarsson [19]. In this it is assumed that

the present circular-vent results can be used to provide estimates for the square- and rectangular-vented

enclosures used in the experiments.

Experimental Validation of the Figure 13 Solution

Fire in Ceiling-Vented Ship Quarters . Steward, Morrison, and Mehaffey [18] report on a fire in a mock-

up of a fully-furnished three-person ship accomodation quarter (3.84 m by 2.82 m by 2.38 m high), fully

enclosed except for a single square vent, A^ = 1.00 m^, in a corner of the ceiling, away from the

furnishings. The fire involved an initial interval of intense burning which rapidly decayed to smoldering

(10 minutes): an interval of smoldering (20 minutes), and a final interval of intense burning (30 minutes).

The final interval involved a 1 9-20 minute sub-interval in which the heat release rate was relatively constant

at 0 = (0.25 ^ 0.05)10^ kW. It is reasonable to expect that the latter sub-interval was a time of steady

state during which the present example analysis of ventilation conditions is relevant. Indeed, the

measured burn rate does satisfy the criterion of Eq. (74), i.e., 0 = (0.25 ^ 0.05)10^ kW < =

0.41(10^) kW. Also, = 0.09 (kg 02)/kg was estimated from Eq. (73). There is no reported measured

value to validate the latter result. However, the result is plausible since, as required, it is clearly less than

the likely value of ~
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Note that because of the original assumption of no mixing in the vent, the 0,^^ = 0.41 (10^) kW and tj) =
0.09 (kg 02)/kg estimates must be regarded as upper and lower bounds, respectively, to the actual

expected values. Thus, the actual rate of Og inflow would be less than V’amb^amb^top ^2
outflow would be greater than

Wood Fires in a Ceiling-Vented 27 Cubic Enclosure . Jansson, Onnermark, and Halvarsson [19]

report on 5 experiments involving wood fires located at the center of the floor of a cubic room (6.00 m by

6.00 m by 6.00 m), fully enclosed except for a single, centrally-located, ceiling vent. Three different vents

were used: = 4.00 m^ (square), 2.00 m^ (1.00 m by 2.00 m), and 1.00 m^ (square). The burn times

were 30 min. Measured and reported variables included: dM/dt, where M is the mass of the fuel;

the average of the upper-enclosure temperatures; and ^low.co2- nnolal fractions of Og and

COg in the lower part of the enclosure, 1 m from the floor and 1 m from the combustion zone. The data

were studied to identify intervals that could be reasonably construed to represent quasi-steady-state

conditions for which the present example calculation would be relevent. The selected criterion for this was
that all measured variables reported by Jansson, Onnermark, and Halvarsson [19] were relatively constant

over an interval of at least 5 min.

The "best“ steady state interval was found and analyzed for experiments 2, 3, and 4. No steady state

intervals were identified in experiments 1 and 5.

For the experiments the heat of combustion of the wood fuel was taken from Drysdale [20] to be 1 9.5 kJ/g

and it was assumed that the smoke yield was negligible. Then, for the intervals of steady state burning

the Figure 13 results and Eqs. (70) and (71) were used to estimate t/» from measured values

of Q as deduced from the measured values of dM/dt) and from T (estimated to be identical to Typ^^^).

The results of the analyses are summarized in Table 4. In the table, was estimated from Cy^^Qg

according to V’low
~

0-23(Clqvv.o2/0-21)-

Note that the low values of Experiments 2 and 3, approximately 0.15, indicate that the fire in both

cases was close to extinction. The measured values of Cyo^^Qg in these two cases were 0.137 ^ 0.004

and 0. 1 41 0.002 for experiments 2 and 3, respectively: these are the lowest Og concentrations measured
throughout the entire test series of Jansson, Onnermark, and Halvarsson [19].

As in the analysis of [19], there are no reported measured values of i/) to directly confirm the calculated

results of Table 4. However, once again the calculated results are plausible, since, as required, they are

always less than V’low- with the previous example, the results are also consistent with the original

assumption of no mixing in the vent in that it is reasonable to anticipate that actual values of 0, expected

to be greater than the presently predicted values of Table 4, would, as required, also be less than the

corresponding values of y^yow- Thus, in experiment 2, for example, it is expected that the experimental

value of was somewhat greater than 0.08, while still being less than V’low
~
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NOMENCLATURE

vent area

r • r(N).

^D.HS' ^D.ool

C.
'D, FLOOD

'02

'LOW, 02’

'LOW, 002

vent flow coefficient, Eq. (5); Cp for Problem N; Cp of [10]; Cp at large Reynolds number;

Cp at onset of flooding

Eq. (70)

specific heat at constant pressure

molal fractions of O
2 ,
CO

2
in lower part of enclosure

characteristic span of vent opening

FrHS

Pr(N)

eW?"'
eW
^'h IGH,FLOOD

g

k

L

M

Eq, (10), Froude number of [10]

Froude numbers for Problem N, Eqs. (22) and (23); Fr^^^^ onset of flooding

Eq. (10), Grashof number of [10]; Grashof number, Eq. (17)

acceleration of gravity

thermal conductivity

depth of vent

Eqs. (52) and (54), also, mass of fuel [19]

m^ Eqs. (50) for N = 1; (53) and (56) for N = 2; (53'
)
and (55) for N = 3; (59) for N = 4

p; p* pressure; p for Problem N; dimensionless p^'^\ Eq. (15); far-field p on high-, low-pressure

Phigh’ Plow ^ide of vent, near the vent elevation

P (Phigh Plow)/2

Pr Prandtl number, Eq. (17)

^MEAS'

^MAX

Q*

burning rate; Q measured in [19]; maximum of Q

dimensionless Q, Eq, (71)

R gas constant

T; absolute temperature; T for problem N; dimensionless Eq. (15); far field T in top,

Tjop. Top-p; bottom space; T of ambient; average of upper-enclosure T measured in [19]

T •
I

• T
' AMB’ ‘ ’ ‘ URAVE
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T 0"top '^bot)/2

U.(N) u*(N);

0^<N,
velocity for Problem N; dimensionless Eq. (15); average 113^^^ at vent, Eq. (21)

^EX' '^EX.MAX exchange flow rate, VlowI maximum i.e., at Ap = 0

'^FLOOD Vrigh onset of flooding

'^HIGH.ST

volumetric flow rate from high- to low-pressure side of vent; Vriqr for standard flow model;

^LOW> ^LOW.ST volumetric flow rate from low- to high-pressure side of vent; V^ovv standard flow model

V(N)

''h IGH, FLOOD

Vrigh ^01' Problem N, Eq. (21); V^^^r at onset of flooding

''NET' ''net ^HiGH ^Low' '^NET Problem N

X (N); x*(N) cartesian coordinates for Problem N, Figure 2; dimensionless Xj, Eq. (15)

^P’,.^PfLOOD'

^Hflood

Phigh * Plow! Ap at onset of flooding; AppLooo Problem N

AT "^BOT "^TOP

Ap ^TOP /^BOT

5p‘ Ap/AppLooD

£\ £' dimensionless Ap, AT, Eq. (16); Eq. (64)

X Eq. (68)

dynamic viscosity; Eq. (11)

V kinematic viscosity, Table 1

TT-
^^FLOOD dimensionless Ap, Eq. (17); dimensionless Ap^lood> (^8)

. (N). •'(N).
p, p , p ,

PJOP' PQOT

density; p for Problem N; dimensionless p^^\ Eq. (15); far-field p in top, bottom space

P (Ptop Pbot)/^

^(N) ^(N)
'^HIGH' '^LOW Eq. (20)

Qi, O
2

Eqs. (44) and (45)

0 Eqs. (67) and (68)

0AMB’ 0LOW mass concentration of Og in enclosure, of ambient, in lower part of enclosure
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Test^^^ e Prd) n c(i)
'-D Gr<«> Prd) /Prd) {5}

'^rHlGH^'^rHiQH ,flood
c(‘')/r' {5}

^^/“flood

54^^^ 0.521 0.216 0.601 0.156 2.99(10^) 0.924 0.261 1.10

55^^^ 0.559 0.243 0.532 0.188 3.49(10^) 1.02 0.314 0.923

0.282 0.186 0.467 0.146 4.64(10^) 0.910 0.243 1.24

59^2} 0.373 0.227 0.392 0.198 4.74(10^) 1.05 0.329 0.901

60^^^ 0.474 0.238 0.456 0.196 4.06(10^) 1.04 0.326 0.900

61^2^ 0.260 0.248 0.382 0.214 4.66(10^) 1.23 0.356 1.04

53^^^ 0.521 0.257 0.657 0.178 2.99(10^) 1.10 0.296 1.21

0.521 0.474 0.708 0.316 2.99(10^) 2.03 0.527 1.30

0.521 0.661 0.848 0.403 2.99(10^) 2.83 0.671 1.56

0.521 0.814 0.111 0.434 2.99(10^) 3.48 0.723 2.04

in 0.521 0.461 0.631 0.326 2.99(10^) 1.97 0.543 1.16

55^"'^ 0.559 0.262 0.455 0.219 3.49(10^) 1.10 0.366 0.790

56^^^ 0.282 0.342 0.603 0.235 4.64(10^) 1.67 0.392 1.59

{ 1 }

{2}

{3}

{4}

{5}

{ 6}

See TABLES III and VI of Heskestad and Spaulding [10].

Identified in Heskestad and Spaulding [10] as the flooding condition, i.e., the FI, and values

for this datum point are Fr^I^H.FLOOO* ^^lood’ and respectively.

Same fuel and fuel flow rate as Test Condition 54.

Tjqp and Tqqj are not presented by Heskestad and Spaulding [10]; it is assumed here that the values

of these were the same as the values measured in the same test, i.e., the same fuel and fuel flow rate,

but at flooding conditions.

^D,oo taken to be 0.60; Fr|l|||^(^ p|_qqq = ^rj!^]Qpj plqqq(£, Gr - ») and np|_QQQ = ^flood^^! ^r ») are

calculated from Eqs. (37) - (39).

In calculating Gr from Eq. (17), the kinematic viscosity, v(t) = ii{t)lp, determined from Hilsenrath [13]

v(T) = [0.04128(T/K)^^^(10’'^)/(T/K + 110.4)]m^/s

Table 1. Results derived from the configuration-1 experimental data of Heskestad and Spaulding [10]

for flow through a D = 0.153m, L/D = 0.011 circular vent, and from Eqs. (37) and (38') for

Pr O ) and ^

•^rHIGH.FLOOD ^^FLOOD*
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Reference

Number
e Configuration

Number
Prd)
'^'^HIGH.FLOOD Gr cd)

'^D, FLOOD
rrd )

FLOOD

[10] 0.521 1 0.216 2.99(10^) 0.156 0.601

[10] 0.559 1 0.243 3.49(10^) 0.188 0.532

[10] 0.282 1 0.186 4.64(10^) 0.146 0.467

[10] 0.373 1 0.227 4.74(10^) 0.198 0.392

[10] 0.474 1 0.238 4.06(10^) 0.196 0.456

[10] 0.260 1 0.248 4.66(10^) 0.214 0.382

[7] 0.1426 1 0.1917 5.31(10^) {1} {1}

[7] 0.1410 1 0.1755 5.25(10^) {1} {1}

[7] 0.1378 2 0.1632 5.13(10^) {1} {1}

[7] 0.1487 1 0.2057 5.54(10^) {1} {1}

[7] 0.1339 2 0.1783 4.98(10^) {1} {1}

[7] 0.1456 1 0.1826 2.91(10®) {1} {1}

[7] 0.1329 1 0.1709 2.66(10®) {1} {1}

[7] 0.1417 1 0.1618 2.84(10®) {1> {1}

[8] 0.0469 2 0.2534 4.28(10®) 0.0966 1.638

[8] 0.0658 2 0.4383 6.00(10®) 0.194 1.191

[8] 0.0898 2 0.3463 8.20(10®) 0.168 0.970

[8] 0.1208 2 0.4132 1.10(10^) 0.218 0.793

[8] 0.1550 2 0.3877 1.41(10^) 0.220 0.659

{1} This value is not available since Ap was not measured

Table 2. Small-L/D data on flooding conditions from Epstein and Kenton [7], Tan and Jaluria [8], and

Heskestad and Spaulding [10].
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Vent

Type

D UD HIGH.FLOOD V ( ^
) /V^LOW ^

1

disk 0.02540 0.01902 0.5331 0.1743

disk 0.02540 0.01902 0.4329 0.2729

disk 0.02540 0.01902 0.1068 0.7588

disk 0.02540 0.1130 0.2996 0.5270

tube 0.02540 0.5000 0.09279 0.6917

tube 0.02540 0.5000 0.2936 0.3108

tube 0.02540 1.000 0.1957 0.5045

tube 0.02540 1.000 0.5661 0.1180

tube 0.02540 1.000 0.4541 0.1504

tube 0.02540 1.000 0.2113 0.4741

tube 0.02540 2.000 0.4659 0.1728

tube 0.02540 2.000 0.5088 0.1362

tube 0.02540 2.000 0.2663 0.2920

tube 0.02540 5.000 0.1992 0.5693

tube 0.02540 5.000 0.4456 0.2213

tube 0.02540 5.000 0.2442 0.4428

tube 0.04450 0.3910 0.09980 0.7067

tube 0.04450 0.3910 0.4983 0.1472

tube 0.04450 0.3910 0.3049 0.3706

tube 0.04450 0.3910 0.2190 0.4821

{1} and are from Table 2 of Epstein and Kenton [7]; '^high flood
and (22) of Epstein and Kenton [7], respectively.

Table 3. ^net/^hIgh flood '^toi/^EX max ffisults from Epstein and Kenton [7] in the mixed flow regime

for flow through circular vents or disks and tubes.
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Exp’t. no., interval,

initial mass
^^2
l^]

'^'uRAVE
[K]

^MEAS
[kW] [(kg 02)/kg]

'/^LOW
[(kg 02)/kg]

2, 15-20 min,

100 kg

2 440 +/- 6 620. +/- 60 0.08 0.15 +/- 0.004

3, 15-20 min,

100 kg

1 386 +/. 1 250. +/- 10 0.07 0.15 +/- 0.002

4, 5-10 min,

25 kg

4 373 +/- 5 550. +/- 100 0.16 0.21 +/- 0.003

Table 4. Data on ceiling-vented wood fire scenarios of Jansson, Onnermark, and Halvarsson [19] and

application of Figure 13 and Eqs. (70) and (71).
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Figure 1. The basic horlzontal-vent configuration.
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Figure 2.

v,4'</"r<, <
'<r

'

- op

'I < W,,-rc'^^ i'}K.

:;P = p < p
LOW BOT TOP

BOt' BOT
BOJJOW^M

(a)

(b)

(a) Configuration 1 and (b) Configuration 2 illustrating conditions associated with boundary
value problems 1 and 2, respectively.
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HIGH,

FLOOD

Gr

Figure 3. Plot of FTh^gh flood as a function of Gr for all small-LVD data of Table 2 (O - Epstein and
Kenton [7]; A - Tan and Jaluria [8]; - Heskestad and Spaulding [10]).
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HIGH,

FLOOD

8

Figure 4. Plot of Pph]qh,flood (®)‘ of Table 2 (O - Ref. [6], - Ref. [9]); , least*squares curve
fit of Eq. (37).
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FLOOD

8

Figure 5. Plotofthen^’^Q(e);n.Ref.[9]
data of Table 2; least-squares curve fit of Eq. (38').
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D,

FLOOD

8

Figure 6. Plot of C^^^LOQp(£).- - Ref. [9] data of Table 2;
, curve fit of Eq. (39).
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oro

1

0.8

8_ 0.6

0.4

0.2967

0.2

0

HIGH/FrHiGH,FLOOD

FigurG 7. Plot of Cp VCq vs Pi’hiqh^P^high flood*
—— ’ ^^* (^) ^nd (45); I, non-flooding dsts of

Table 1; , flooding data of Table 1’.
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n/ripLooD

Figure 8. Plot of PLQQO -
^•’hIGh/P^HIGH,FLOOD ^P/^PpL^D = n/n^LOOD* "• "lOPel

equation for the uni-directional flow regime, Eqs. (45) and (46); - - -
,
Bernoulli flow limit of

Eq. (48); , non-flooding data of Table 1; , flooding data of Table 1.
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V/Vhigh

.FLOOD

0 0.2 0.4 0.6 0.8 1

Ap/ApFLOOD

Figure 9. Sketch of ^high^high.flood* » ^lowA^h]gh,fijoodi
as functions of Ap/App^oop in the mixed flow regime.

• and V

^

, aiiu V|geT/VuinNET' ’HIGH,FLOOD
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NEt/^HIGH,

FLOOD*

Vlow/Vex,MAX

1

Q I I ^ ^ . L. U I I ^

0 0.2 0.4 0.6 0.8 1

Ap/ApFLOOD

Figure 10. Plots of ^ioy/fy^xMAX (
) 3nd flood

according to Eqs. (52), (53'), (54), and (57).

( ) as functions of Ap/Ap^LooD
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X
<

X
LU

>

VnEj/v high,FLOOD

Figure 11. Plot of » function of flood 'fo™ E<1S- (52'). (53'), (54), and (57),

; Eqs. (52'), (53'), (54), and (57'), ; and Eq. (60),
• •

•. Plot of data of [6], i.e..

Table 3 (LVD = 0.0190 vent, •; L/D = 0.113 vent, O; and tubes with 0.39 ^ L/D < 5.0, ).
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Figure 12. Configuration of a ceiiing-vented room with a fire.
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0.05Ap/AppLooD

AMB

Figure 13. Plots of Ap/App^ooD ^nd Q* = Q/[(1 - V’/V'amb)^ambV'ambCo2Av®^^9^^^1 functions of T/T^^g
the configuration of Figure 13.
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Ap exceeds the critical value, APp,_qqq, which defines the onset of uni-directional or ‘flooding* flow, there is a significant

dependence of Cq on the relative buoyancy of the upper and lower fluids (i.e., Cq is not constant). Finally, the location of the

high-pressure side of the vent, i.e., top or bottom, can be expected to influence vent flow characteristics.

Experimental data and analysis of the relevant boundary value problems are used to develop a model which removes the anomaly
of the standard model and which takes all the above effects into account The result Is an algorithm, useable in zone-type fire

models, to calculate flow through shallow, horizontal, circular vents under high-Grashof number conditions. The algorithm is used

in example applications where steady rate-of-burning in a ceiling-vented room is estimated as a function of room temperature,

vent area, and oxygen concentration. Results are consistent with available data involving ceiling-vented fire scenarios.

BYWORDS (MAXIMUM OF 9; 28 CHARACTERS AND SPACES EACH; SEPARATE WITH SEMICOLONS; ALPHi
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