
Distributed Supercomputing
Software:
Experiences with the Paraiiei

Virtuai Machine - PVM

Richard D. Schneeman

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Systems and Software Technology Division

Computer Systems Laboratory

Gaithersburg, MD 20899

—QC

100

.U56

1994

#5381

NIST





Distributed Supercomputing
Software:
Experiences with the Paraliel

Virtuai Machine - PVM

Richard D. Schneeman

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Systems and Software Technology Division

Computer Systems Laboratory

Gaithersburg, MD 20899

March 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATiON
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





Abstract

The Parallel Virtual Machine (PVM) is a general purpose distributed system developed

by researchers at the Oak Ridge National Laboratory and Emory University. The PVM
system consist of a portable suite of software specifically designed for use by parallel and

supercomputing application engineers. NIST researchers are studying PVM to assist them

in defining the system service requirements needed to support parallel programming and

supercomputing activities in the general purpose distributed setting. The requirements gen-

erated from this and other application domain studies will form the basis for a profile being

developed at NIST that addresses these service requirements in the distributed environment.

Based on the collective requirements from a variety of application areas, the NIST distributed

system profile seeks to define the set of standards and specifications that all application

platforms must support in order to participate in the distributed environment. This report

focuses on defining the profile requirements culminating from our PVM assessment; therefore,

this document will also provide reference material for those involved in evaluating distributed

system software for the supercomputing domain.

Keywords. Application domain; application programming interfaces; distributed systems;

graphical user interfaces; heterogeneous systems; parallel processing; portability; require-

ments; supercomputing.

Ill



IV



Contents

1 Introduction 1

1.1 Research Objectives 1

1.2 OSE Reference Model Applicability 1

2 Parallel Processing Background 2

3 An Overview of PVM 3

3.1 Client-Server Distributed System Model 4

3.2 Multiple Parallel Programming Models Supported 5

3.3 Graphical Tool Provides Distributed Program Support 7

3.4 Application Heterogeneity and Portability 9

3.5 Benefits of a General Purpose Environment 10

4 Capturing the Requirements 11

4.1 Lessons Learned 11

4.2 Core Requirements Defined 15

5 Conclusion 17

References 17

Acknowledgements 18

V



List of Figures

1 PVM System Architecture 6

2 The HeNCE Graphical Environment 8

VI



1 Introduction

Distributed systems designed to support a general purpose environment must account for

the wide variety of application domains they will accommodate. Accounting for this variety

will inevitably shape what underlying distributed system services are required in order

to support each of these domains. By characterizing the different application domains

and generalizing their requirements to an Open System Environment^ (OSE), National

Institute of Standards and Technology (NIST) researchers can obtain valuable insight when

defining OSE-based specifications for use in the distributed environment. By studying the

systems in use by supercomputing application engineers, NIST researchers are able to discern

how massively parallel applications use distributed computing techniques in the general

purpose environment. Analyzing how distributed computing activities are affected by the

parallel processing environment allows NIST researchers to readily differentiate between the

infrastructure requirements needed to support massively parallel programming and those

developed for the more traditional general purpose execution environments.

1.1 Research Objectives

The Distributed Systems Engineering (DSE) group within NIST has been researching ap-

plication domain design issues that affect an OSE-based distributed system definition pro-

cess. This process involves developing a Distributed Platform Profile (DPP). The DPP
defines the core requirements and technology specifications needed to support a minimal

OSE-based distributed computing environment. The DPP can become a citable document

that procurement officials can use to facilitate purchasing decisions. The document also

can provide technologists with a list of specifications that describe a technically credible

engineering baseline for a generic distributed system. This research provides the partial

requirements framework needed to initiate the DPP activity by NIST. Clearly, the parallel

and supercomputing areas are only a small segment of the many application domains that

need to be addressed in order for NIST to completely describe a full set of requirements for

the DPP. This report focuses on the immediate requirements uncovered during this study.

1.2 OSE Reference Model Applicability

The NIST DPP process will use the service areas defined by the OSE Reference Model

(OSE-RM) as a template in which to position the core requirement issues found. All aspects

of the system under study that are relevant to a distributed system are placed into one of

the following four service areas of the OSE-RM: human/computer interface, communication

^The Open System Environment (OSE) is an emerging framework that provides a common reference

model and terminology for describing portable application software interfaces.

1



services, system services, or information interchange services. Any required services falling

outside of these areas will be coalesced into a miscellaneous service area^. Final positioning of

the miscellaneous requirements will be determined later. The most significant features found

that place inherent requirement demands on a distributed system design will be qualified as

core requirements for our OSE-based DPP. Section §4.2 summarizes the core requirements

synthesized from this research.

2 Parallel Processing Background

Current research into the parallel and supercomputing areas have focused on describing

computational models, parallel algorithms, and various computer architectures [4]. Less

effort has been placed in the areas of software development and application support, or in

the development of software construction tools. The development of software tools for both

parallel and distributed computing environments is of paramount importance for successful

deployment and widespread acceptance of distributed systems. Because large distributed

systems are very complex, the proper tools to aid in all facets of their operation, maintenance,

and management have not been generated in sufficient quantity or quality. In addition, the

underlying distributed infrastructure must be flexible enough to accommodate these com-

plexities. As information technology frameworks continue to migrate towards a distributed

environment, complex software development tools and environments will be required for

application profiling, debugging, version control, maintenance, and visualization capabilities.

Distributed system implementations possessing these capabilities within portable frameworks

will play a significant role in bolstering smoother transitions to the distributed environment.

Parallel processing systems have grown larger and become more complex than originally

conceived. In addition, they require varying degrees of computer architecture and processing

element interaction to achieve their desired goals. Dedicated multiprocessing architectures

are not the only types of machine resources needed or available today for parallel application

systems. For many applications in the supercomputing area, a typical job may require fast

external input and output, high performance graphics workstation support, and traditional

vector and scalar machine resources. Connecting a heterogeneous mix of machines to form a

common processing pool can, on average, service most application requirements better than

the more traditional high-end based supercomputer configurations that are now prevalent. In

order to tap into these available resources, a software infrastructure is needed that can bridge

the different architectures together while also providing a unified programming view of the

computational resources. The infrastructure should provide support for the appropriate

parallel programming paradigms as well as general purpose concurrent facilities. More

^Services likely to fall out of the currently defined OSE Reference Model definition include the services

needed to support specific parallel and supercomputing activities.

2



importantly, the system should be capable of harnessing the power of large multicomputers

and pipeline or vector architectures using their native methods, while also allowing the

application to access all possible compute resources using portable techniques,

A popular system currently in widespread use that provides much of the required func-

tionality is the Parallel Virtual Machine (PVM) software package developed jointly at Oak

Ridge National Laboratory and Emory University. PVM is becoming a de facto development

system for distributed parallel applications in the heterogeneous computing environment.

PVM has similar commercially available counterparts; however, we chose to study PVM
because it is available as public domain software and because it has many features and

utilities similar to those available in commercial counterparts. Using the PVM system as the

representative distributed system software from the parallel and supercomputing domains

allows NIST researchers to readily determine the requirements that this domain places on

a general purpose distributed system infrastructure. By collecting the requirements from

this and other application domain studies, NIST researchers can better define a core set of

requirements that will serve as input into the NIST DPP activity.

3 An Overview of PVM
From the user’s perspective, the PVM system consists of a suite of user interface primitives

or application program interface (API) functions. Applications use these primitives from

within a familiar host language to access the underlying distributed system support software.

Currently, the C and FORTRAN host languages are supported by an associated PVM-based

API. The support software provides concurrent execution capabilities across networks of

loosely coupled computers.

Single CPU systems as well as large multiprocessing machines are viewed as general

purpose (virtual) parallel processing nodes or computing elements. Computing elements are

physical nodes representing hardware execution facilities. Processing elements, are instances

of intra-application modules spread out over a network of computing elements. Process-

ing elements are further decomposed into components, which are subtasks or procedures

representing a high-level of parallel application granularity. Components within processing

elements are synonymous with procedures found in traditional programming languages.

The PVM heterogeneous environment includes design features to support heterogeneity,

scalability, multi-language support, and fault tolerance of application software. Communi-

cation and synchronization constructs for exchanging data structures between application

instances are provided by way of a specific portable support library. The PVM system

includes a library specifically tuned for portable software development across a variety of

multiprocessor architectures.

The Portable Instrumented Communication Library (PICL), works in conjunction with

3



the PVM system and provides portable multiprocessing facilities in a networked heteroge-

neous environment. Primitives from this library provide process spawning, message passing,

and shared memory capabilities that resemble the methods used in traditional multipro-

cessing based programming environments. With the incorporation of these methods into

PVM, a high degree of portability and backward compatibility with a familiar programming

paradigm is maintained. The PICL parallel programming library also includes support for

multiple parallel computational models and high-level communication routines that provide

broadcast, barrier synchronization, global extrema finding, and tracing capabilities. The

tracing functions provide facilities to log all communication and synchronization events

occurring in the system. Monitoring application performance gradients is also possible,

provided each processing element has been internally synchronized via a timing source. The

network time protocol (NTP) as well as internal PVM functions are currently used to provide

the timing source capabilities.

Computing elements are accessed through PVM by using three methods or modes of

interaction. Depending on the mode and type of application, the programmer has the

ability to choose the degree of transparency desired. Transparency refers to the methods

used by the software infrastructure to shield the programmer from the distribution details

in the system [7]. Traditionally, transparency issues have involved the following areas:

access, location, migration and concurrency of application entities. PVM views transparency

methods differently, offering a less constraining definition of transparency in order to facilitate

specific programmer interaction and intent. The transparency methods available to the

programmer are divided into three modes: a transparent mode, in which the PVM system

delegates placement of each processing element to any available node it deems appropriate;

an architecture-dependent mode, which allows the programmer to explicitly place elements

on architecture specific platforms; and lastly, a low-level mode, which provides an opaque

view of the system by allowing direct placement of an element to any particular type of

hardware. Locating processing elements on nodes using the low-level method of placement

requires considerable target environment knowledge in order to distribute the application.

It is this detailed information about the target architecture that enables the programmer to

exploit specific classes of machines available on the network.

3.1 Client-Server Distributed System Model

Many distributed system modeling techniques have been used to construct a variety of

software infrastructures. Distributed operating systems, transaction processing systems, and

highly specialized environments for multicomputers use some form of underlying distributed

modeling techniques. Hybrid approaches exist as well, leveraging specific distributed archi-

tectural design aspects and tradeoffs from a multitude of research areas. Modeling techniques

range from those based on the client-server style of application interaction to service requests

4



based on peer-to-peer messaging techniques familiar to object-oriented systems. The PVM
system addresses the former model and is described as being a general purpose client-

server programming environment requiring only standard operating system support. The

assumptions made by the PVM architecture provide the service framework needed to support

the client-server style of application interaction and the subsequent model for the inherent

distributed system. The standard operating system services PVM assumes include: (1)

using a programming paradigm based on an imperative, procedure- call method of requesting

services, (2) an operating system that inherently supports interprocess communication, (3)

an unreliable data delivery mechanism when using a network source. These assumptions

provide NIST researchers with important information as they begin the core requirements

definition process. As the essential requirements from the PVM study are encountered, they

will be catalogued and referenced as OSE related distributed system issues. For example,

the standard operating system services PVM requires can be positioned into the OSE
environment definition. The first two requirements belong in the internal system services

area, which includes support for procedurally defined programming languages and local

interprocess communication primitives, respectively. The third requirement clearly requires a

communication service framework in which a network medium takes part. Figure 1 illustrates

the client-server design of the PVM system as several PVM daemons^ execute across a trio

of heterogeneous machine architectures, identified in Figure 1 by the grey borders[5]. The

PVM daemons are the principal system servers in the PVM client-server architecture and are

responsible for all coordination, dispatch, and reception of messages to and from host nodes

in the system. PVM daemons are also responsible for initiation of all processing element

execution activities on each computing element. Network connectivity between PVM servers

and clients involves the use of several defacto protocol suites. These include the Transmission

Control Protocol (TCP), the Internet Protocol (IP), and the User Datagram Protocol (UDP)

suite for all its socket-based routing and messaging interactions.

3.2 Multiple Parallel Programming Models Supported

Several computational models exist for programming parallel systems. Two methods used

in the PVM system to represent methods of concurrency within applications are the tree

and the crowd structures [6j. Crowd computations are used when each process is identical.

These types of computations exhibit similar communication and synchronization patterns.

Tree computations are represented by applications in which sub-processes communicate and

synchronize with each other in order to coordinate and reach a desired goal. Both types

of dependency structures can be implemented using a combination of appropriate PVM

^Daemon refers to UNIX-based server components in a client-server architecture as defined in the BSD
UNIX networking parlance.

5



Figure 1; PVM System Architecture.

6



and host language statements. PVM can be programmed using either paradigm, while also

supporting the capability to intermix the models within each application component. Such

flexibility greatly enhances the programmers environment. In the PVM system, all models,

subtasks, and their interactions are described in procedural terms. Applications at some

point may require different control flow, communication, synchronization, and dependency

structures. Using the constructs provided by PVM in association with the programmers

host language, many different logic and control flow configurations can be used in order to

express the problem in terms of PVM. Multiple host languages can be used to implement

different parts of the same logical application. For example, using a component description

file^, a node has the ability to execute an application procedure implemented in FORTRAN
while spawning yet another logical procedure implemented in the C language.

3.3 Graphical Tool Provides Distributed Program Support

A graphical user interface (GUI) component called the Heterogeneous Networked Computing

Environment (HeNCE), provides capabilities that support application software generation,

profiling, tracing, visual analysis and management of the PVM distributed system. The

HeNCE tool internally uses the PVM system services of the infrastructure to provide the

ability to create, distribute, execute, visualize, and maintain application programs on behalf

of the user.

The HeNCE graphical tool shown in Figure 2 provides an X Window-based graphical

alternative to the procedurally described component interactions within the PVM system.

Shown in compost mode. Figure 2 illustrates how the HeNCE tool allows the programmer

to sketch the nodes representing the intra-application component procedures. Data flow

pathways among the computational components are provided by connected arcs drawn

between each processing element. This results in a visual processing graph that when

executed will animate the progress of the application’s computational state.

The HeNCE tool uses the graphical depiction of the algorithm to generate the skeletal

distributed software stub routines required to distribute the selected application across the

network of cooperating nodes. The programmer then fills in the resultant stub shells with

the application specific algorithms. The idea of using stub code comes from the use of the

remote procedure call paradigm [I]. Stubs refers to the software produced by wrapping

the local procedure calls and their actual parameters with network compatible code. The

subsequent software has been marshalled^ into a form that is architecture neutral and suitable

component description file (CDF) describes the application name, location, object file name, and

hardware architecture of each participating component. The CDF is read into PVM after the startup

process has been initiated, or manually using the X Window-based HeNCE tool environment.

^Marshalling refers to the process of translating the actual parameters in a procedure or function call to

the network specific data representation.

7



HeNCE bool vl,3
current directory is nou ”/hone/schnee/pvn/Hence/denos/deno5'
conpose node»
"deno5*gr" loaded.

directory: deno5 costs; tracefile; hence.trace language; C

conpose
II
config build trace

1 1

start pvn eKecube print legend quit

[load
1 1

store
1

1

clear critic cleanup redrau help

0 1 1 1—

1

LJ r\ V A ?
•

Figure 2: The HeNCE Graphical Environment.

8



for transmission over a network. On the remote side, the reverse process takes place and

the network-based function call and arguments are un-marshalled into the remote machines

particular call structure and executed. This process allows the familiar local procedure

call paradigm to naturally migrate into the network environment without modifying the

sequential application development paradigm that programmers have become accustomed

too. The stubs then become templates for the programmer to insert the specific algorithmic

requirements of the application software. Therefore, the network-based software needed to

implement the distributed portions of the currently defined application are automatically

generated for the programmer. This alleviates the need for time-consuming network-based

code development efforts and allows the programmer to focus completely on the specific

parallel activities of the application software. In addition to generating the distributed

infrastructure support code, the HeNCE tool combines facilities for software development,

deployment^, maintenance and versioning of the software code base. These capabilities

combined with a graphical environment render this an indispensable productivity tool for

distributed software development. An interesting facility provided by HeNCE is its ability to

visualize the computational state of the executing algorithm across the PVM topology. Each

node’s computational state is graphically depicted and displayed from within the HeNCE
environment. In addition to these visualization techniques, the tool also maintains logs of

all activities and events occurring within the system. The log files can later be used to

playback, analyze or provide demonstrative capabilities of the executing application. More

importantly, the ability to re-create the application’s execution path allows the programmer

to debug and profile the application in order to pinpoint semantic inconsistencies or to locate

possible bottlenecks during the application’s execution cycle.

3.4 Application Heterogeneity and Portability

Differences in application platforms require intervening techniques in order to provide a

portable bridge across the services they provide. Heterogeneity refers to the methods pro-

grammers use to develop software using these techniques in order to achieve application

portability across dissimilar platforms. The references to heterogeneity would normally be

considered methods for achieving application portability. However, in the PVM system,

heterogeneity is defined in a variety of ways. For example, application heterogeneity refers

to a way of describing applications comprised of logically related subtasks; however, the

processing portions of these subtasks are in fact executing completely unrelated activities.

This occurs when applications spend large amounts of CPU time doing 2D and 3D graphics,

vector processing, and coarse-grained Single Instruction Multiple Data (SIMD) style parallel

^The term deployment refers to the ability of the HeNCE tool to generate and deploy object-code based

representations of specific application instances throughout the currently defined topology of participating

architectures.

9



processing from within the same application. Processing heterogeneity among processing el-

ements refers to an application’s ability to execute hard-coded program instructions destined

for a specific multiprocessing architecture while still retaining the capability to interact with

higher-level PVM modules in the system. Another form of processing heterogeneity allows

the application to clone several versions of a module suitable for a variety of architectures.

At runtime, PVM determines what machine to execute the module on based on a free node

and machine availability algorithm. Network heterogeneity refers to the ability of PVM to

operate over a variety of networking topologies. Section §4.1 refers to this topic in more detail

as this is an area of considerable interest and debate. In short, the network heterogeneity

issue needs to be addressed further by the PVM team to truly be considered heterogeneous.

The API concept is a portable one; however, the current PVM source code definition does

not allow for the use of an Open Systems Interconnection (OSI) based transport, as complete

network heterogeneity would imply.

Issues involving data representation and byte ordering have plagued heterogeneous dis-

tributed system designers for some time. In the PVM system, the strategy used to determine

the proper data representation uses a majority function. The predominant data represen-

tation that is used in the current topology of computing resources is designated as the

majority way to represent data across the network. This means that minority processors

must first locally convert their data to the corresponding majority representation prior to

any network-based compute resource interaction. An optimization technique that would

allow minority hosts to eliminate this conversion was not implemented due to an increase in

housekeeping overhead, which would not offset the net gain in performance as a result of the

decrease in marshalling activities. Other issues dealing with heterogeneity include handling

machine dependent constants and initialization procedures for the various multiprocessor

architectures. The PVM infrastructure considers these issues in a non-restraining status quo

fashion, thereby, minimizing portability risks.

3.5 Benefits of a General Purpose Environment

Several benefits arise from using the PVM general purpose distributed computing envi-

ronment for the parallel and supercomputing domains. The PVM software infrastructure

provides the ability to partition application subtasks into specific service requirement areas

in order to facilitate execution of processing elements on machines particularly well suited

for that task. In addition, large processor pools can be formed from high-end compute

workstations while using available high performance graphics workstations for the appli-

cations visualization and GUI requirements. High speed input and output connections

to fast striped or log structured filesystems can be used for large contiguous volumes of

data. General purpose workstation environments typically contain an extensive workbench

of stable and familiar software development tools. PVM allows that familiar set of devel-

10



opment tools to be incorporated as part of the HeNCE tool environment, providing for the

rapid prototyping, turnaround, and deployment of distributed software. User or program-

level fault tolerant mechanisms are also more conveniently supported in this environment.

Multiprocessing systems will typically halt or crash when programming errors are introduced.

However, a networked distributed set of compute nodes incorporating its own software-based

fault tolerant strategies has the ability to restart, migrate, or simply terminate the entire

application sequence if semantic errors are introduced. In the case where a computation

is either long running, input/output bound, or requires checkpointing, added flexibility is

introduced by allowing the job to continue using an alternative processing strategy based on

the participating PVM resource topology available at the time.

4 Capturing the Requirements

The process of collecting the OSE-based distributed system requirements for the NIST

DPP has been an ongoing and cumulative one, spanning the entire research, installation,

system build, system management, application development, and execution phases of the

PVM study. Subsection §4.1 highlights the issues and “lessons learned” during our multi-

phase study of PVM system. The core requirements presented in Subsection §4.2 have

been synthesized from the “lessons learned” Subsection §4.1. The requirements analysis

process provides the core requirements necessary to support parallel and supercomputing in

the general purpose distributed environment. In addition, peripheral issues relating to the

basic support of applications in the distributed environment have been raised as a result of

studying PVM.

4.1 Lessons Learned

After researching, developing applications, and working with both the PVM system and the

HeNCE GUI-based tool, we have compiled a number of “lessons learned” that we believe

will provide invaluable feedback into the NIST profiling activities. The lessons learned stem

from direct observations with using the PVM system, accessing the network-based software

from within applications, and by working with the window-based HeNCE tool. Several issues

remain open-ended and do not have a one-to-one mapping with the requirements generated.

The issues listed include advantages, disadvantages, positive aspects, and limitations of the

PVM system. They are listed here for completeness and to assist NIST researchers in drafting

the DPP and other future distributed system requirements. The important lessons learned

derived from our PVM study include;

1. C and FORTRAN are used as the preferred application host languages. Support for

the C and FORTRAN API indicates that a majority of the code base for the parallel

11



and supercomputing domains has been written in these languages. Not unlike many
other domains, language portability is a major concern.

2. TCP/IP and UDP are used as the preferential networking transport medium. The BSD
UNIX socket abstraction is used as the underlying network model for PVM daemon

communication.

3. Standard assumptions include the use of operating system calls and interprocess com-

munication primitives that are inherently available across a multitude of platforms.

This points out the ubiquity of the TCP/IP protocol suite, POSIX style operating

sytem functionality, including local IPC constructs.

4. The network heterogeneity issue assumes that the underlying PVM system is portable

to a variety of network topologies. This is not the case as the PVM system software

uses the BSD UNIX socket abstraction to facilitate the network-based interprocess

communication between processing elements. Therefore, it is the case that the PVM
API would be portable over a variety of network implementations; however, the actual

PVM daemons as well as the network-based client support software would all need to

be re-engineered for each particular type of network transport API used. For example,

re-engineering the PVM system to the OSI stack at this time would entail using an OSI

compatible transport API based on the OSI ACSE/Presentation Application Program

Interfaces from the IEEE P1238 Working Group of POSIX. Alternatively, the system

software could use the remote procedure call standard that is currently in the standards

process at ISO. Both paradigms for re-engineering would clearly require modification

of the PVM infrastructure routines that provide the networking support for PVM. In

addition, the client-server daemon structure of the system software code base would

also need to be re-engineered for the new API. Due to the network heterogeneity issues,

the difficulty of scalability to alternative networking topologies such as OSI needs to

be considered.

5. There are considerable tradeoffs between the levels of application granularity and

system performance. When the level of granularity is too small (i.e., the component

size of intra-application procedures is small) then system degradation occurs because

of the increased overhead resulting from the emulation of multiprocessing style shared

memory and message passing primitives. Marshalling parameters combined with net-

work latency delays contribute to the consumption of inordinate amounts of resources,

eliminating the benefits of partitioning the application for general purpose parallel

activity in the first place. Therefore, a proper component size is needed to allow

the currently executing graph of processing elements to adjust accordingly. A large

12



component size decreases marshalling overhead yet simply reduces the computation to

that of the original application executing in a uniprocessor-based arrangement.

6. Another performance issue concerns the participation of hosts in the messaging of

events and occurrences. Hosts that are not responsible for specific mediation in certain

participating application topologies are still required to respond to all events; thereby,

degrading overall system performance. In this case, some low-level filtering of events

using small performance gradients are necessary in order to minimize the total network

traffic and daemon processing overhead.

7. Bare multiprocessing machines do not typically support debugging, fault tolerance,

input and output facilities, profiling, and monitoring of applications programs or intra-

application components. Therefore, by using a software infrastructure such as PVM,
all of these facilities can be supported by higher level software-based constructs.

8. PVM supports facilities for generating and distributing multiple copies of objects files

for a variety of architectures. Without such facilities in place these tasks are tedious and

in general compound the problems associated with distributed system configuration

management and maintenance issues. PVM addresses these management issues by

providing a software-based graphical distributed management tool.

9. All aspects of security, workstation intrusions, and data integrity have not been ad-

dressed adequately. A PVM daemon executing on each node alleviates some of the

addressing and security issues; however, the underlying security risks of the UNIX
environment are ever present. A security software layer would need to be placed around

the PVM architecture to encase the system software infrastructure and protect it from

malicious calls from the application and other vulnerabilities of the UNIX environment.

10. System administration, management, and housekeeping activities are extremely com-

plex in the distributed environment. Tools and utilities need to be supported in

order for administrators to be able to adequately manage and maintain the distributed

system, its tools, the object code, and the users’ software projects. Some connections

with existing software development environments have been made, with a large gap in

the management and deployment of software modules and user preferences profiles.

11. The HeNCE graphical tool minimizes many of the complexities involved in distributed

system management issues, such as starting individual PVM daemons on all partici-

pating machines, object code placement, and software development tool integration.

However, this still does not alleviate the important security and addressing concerns.

Providing these types of tools is of paramount importance to successfully deploy future

distributed systems on a large scale. The lack of sufficient tools becomes a critical one.

13



leading to the explanation of why de facto distributed systems have not been deployed

on a large scale; the tools and software development environments for these systems

are just not available, or are extremely proprietary.

12. The Portable Instrumented Communication Library (PICL) provides a portable li-

brary for allowing access to parallel programming systems. Ported to PVM, this

library provides a portable interface to multiprocessing machines in the networked

environment. A PICL type of library should be included as part of all general purpose

distributed computing library frameworks. This will allow an even greater portability

of application code to multiprocessor machine architectures.

13. Naming conflicts and possible global knowledge among daemon processes used to

identify components with symbolic names and instance numbers can occur, rendering

the system in an unknown or dangerous state of execution. This relates to the issue of

scalability to other networks, larger cells, and global environments.

14. Detection and recovery from failures is provided by PVM, but not so with native

multiprocessing systems. Software-based fault tolerance strategies not provided by

native multiprocessing systems can be implemented using PVM constructs. Provisions

for software fault tolerance in PVM include:

• failure of an application instance will not affect any other executing node,

• fault tolerant procedures are available to multiprocessing machines that partici-

pate and use the PVM infrastructure, and

• restarts and migration of failed instances are possible by the application software.

15. Deadlock pre-emption techniques can be applied by: (1) aborting blocked messages

using timers or message limits, (2) using barrier synchronization techniques, or (3)

distributed locks can be used to prevent or handle deadlock situations. All these

provide an appropriate level of fault tolerance to the application.

16. PVM provides support for a variety of computational models and programming paradigms.

This provides the programmer with enough flexibility to express virtually any problem

using a mix of appropriate parallel and computational models inherently provided by

PVM’s associated support libraries.

17. It is important to have a standard windowing environment that will support graphical

tools that are capable of:

• Creating applications without indepth programmer knowledge of the required

distributed infrastructure support code.

14



• Provisions for distributed system stub code generation.

• Automatic placement of application instances on a pre-defined node topology.

• Automatic initiation of the PVM daemons and other requisite system software.

• Automatic object-code placement on the designated node topology.

4.2 Core Requirements Defined

The core requirements that have been synthesized from the “lessons learned” Section §4.1 are

discussed here. The requirements uncovered from the parallel and supercomputing domains

have been brought forth from this study and will form one of several threads that provide

input into the NIST DPP profiling activity. Using the OSE-RM defined service areas as

placeholders, we begin to position the core requirements into each respective service area

that most accurately reflects the distributed system attributes found during our study. Four

interface service areas from the OSE-RM are used to “collectively” represent the minimal

set of requirements for distributed services. These requirements have been cultivated from

the “lessons learned” Subsection §4.1 include:

1. Human/Computer Interface Services

Human-computer interface (HCI) services define the methods by which people may

interact with the application and the environment. Some of these requirements include:

(a) A method that allows humans to interact with the application platform using

command language and/or graphical user interface capabilities.

(b) A common representation for specific graphical user interface appearance and

behavior.

(c) A common representation for specific command line user interface appearance and

behavior.

(d) Common methods and protocols for applications that utilize graphical user inter-

faces to interact between application platforms.

(e) A full-featured programming language binding to the graphics portions of the

application programming interface of the graphical user interface routines.

(f) A full-featured programming language binding to graphical user interface services

made available to the application.

2. Communication services

Communication services provide the capabilities and mechanisms to support distributed

applications requiring data access and applications interoperability in heterogeneous,

networked environments. Some of these requirements include:

15



(a) A protocol stack that will allow communication interoperability across distributed

application platforms.

(b) An application programming interface that will allow portable access to the

networking services provided by the underlying communication infrastructure.

(c) Protocol independent application program access to the network.

(d) Facilities that provide some form of global naming services to cross-platform

application software entities.

3. System Services

System services are the core services needed to operate and administer the application

platform and provide an interface between application software and the platform. This

interface may be divided into two types of specifications; i.e., Language Service and

System Services API specifications. That is, the programming language support on the

platform is represented here and the system service specific API calls are all together

in this area. Some of these requirements include:

(a) A fully featured programming language binding at the application programming

interface to enable many key services and to provide the application framework.

(b) A language binding allowing application programs to interact with core system

services using portable techniques.

(c) Facilities that provide some form of local interprocess communication (IPC) and

data sharing for intra-platform application software entities.

4. Information Interchange Services

The Information Interchange Services defines the services across which external, per-

sistent storage media is provided, where only format and syntax is required to be

specified for data portability and interoperability. As previously mentioned, there are

no specifications associated with this profile from this section because at this time there

has been no specific instances for using them. Some of these requirements include:

(a) Filesystem access to persistent storage using portable methods and techniques.

5. Miscellaneous Services

The Miscellaneous Services as defined in this report do not map directly into the

OSE-RM model. They are outside the scope of the OSE-RM and further define the

requirements needed to support parallel and supercomputing aspects in a distributed

setting. In the future, these issues will need to be addressed in order to provide

16



these services to the general purpose distributed system framework. Some of these

requirements include:

(a) Library support for differences in supercomputing architectures.

(b) Common ways for applications to express a particular parallel programming paradigm

and a means to interject multiple types of paradigms into the application.

(c) Distributed shared memory in order to emulate the shared memory multiprocess-

ing architecture paradigm.

(d) Message passing capabilities in order to emulate the multiprocessing architecture

paradigm.

(e) Support for multiple parallel computational models, high-level communication

routines that provide broadcast, barrier synchronization, global extrema finding,

and tracing capabilities.

(f) Fault tolerant mechanisms, providing restart, migration and checkpointing of

application instances.

(g) Provisions for security services throughout all aspects of the distributed system.

(h) Tools that provide distributed system management and administration.

5 Conclusion

In the parallel and supercomputing areas, PVM represents a powerful distributed system

infrastructure for achieving coarse-grained, loosely coupled heterogeneous computing. It is

especially attractive due to its availability in the public domain. Our goal for using PVM was

to extract as many requirements issues from the parallel and supercomputing application

domains as we could and apply those to the OSE-based distributed environment. The

requirements gathering process was based on researching, installing, building, developing

and executing application programs for the PVM system. By initiating hands-on activities

with PVM, an adequate requirements framework needed to support the parallel and super-

computing domains have been captured. The results of our study include a collection of core

requirements that assist in the definition of the NIST DPP. The core requirements have been

partitioned into service areas representing distributed system aspects from the OSE reference

model definition. Mapping available standards and specifications to the core requirements

found from this and other application domain studies will be initiated as part of a final DPP
activity. As a research by-product, this report represents an appropriate reference point for

users’ who are examining these types of software packages for use in their specific domain.

17



References

[1] Birrell, D. A., Nelson, B. J., Implementing Remote Procedure Calls ACM Transactions

on Computer Systems, Vol. 2, No. 1, February 1984, Pages 39-59.

[2] Geist, G. A., Sunderam, V. S., Network Based Concurrent Computing on the PVM
System Technical Report, Oak Ridge National Laboratory, 1990.

[3] Geist, G. A., Sunderam, V. S., et. ah, PVM User’s Guide and Reference Manual

Technical Manual 12187, Oak Ridge National Laboratory, May 1993.

[4] Hwang, K., Briggs, F. A., Computer Architecture and Parallel Processing^ McGraw-Hill,

New York, 1984.

[5] Leffler, H., et al. The Design and Implementation of the J^.S BSD UNIX Operating

System., Addison Wesley, New York, 1988.

[6] Sunderam, V., PVM: A Framework for Parallel Distributed Computing, Concurrency:

Practice and Experience Vol. 2 No. 4, Dec. 1990.

[7] Marshak, David, S., ANSA: A Model for Distributed Computing, Network Monitor:

Guide to Distributed Computing, Vol. 6 No. 11, Nov. 1991.

Acknowledgements

Thanks to Christine Piatko and David Su for their important comments during the manuscript

review process. The author greatly acknowledges the researchers at the Oak Ridge National

Laboratory and Emory University for developing PVM, and subsequently placing it in the

public domain. The PVM architecture image was collected from the Internet site that

maintains the PVM source online. The HeNCE GUI image was generated internally here

at NIST. Portions of this research were funded by NIST Scientific and Technical Research

Services (STRS) and in part by the Department of Defense (DoD), Defense Information

Systems Agency (DISA) Heterogeneous Distributed Systems Environment (HDSE) program

of the Office of the Secretary of Defense. The PVM source code, documentation, and research

articles can be obtained from the University of Tennessee Internet site netlib2.cs.utk.edu,

corresponding to the Internet address 128.169.92.17, for non-naming sites. A

18



f.

it

in




