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ABSTRACT

In recent years the electronic force balance has been perfected to a degree that it can replace the

mechanical balance in both precision and capacity. Hence, the mechanical balance is rapidly

disappearing from the scene. The work reported here describes the use of the electronic balance in

some high precision gravimetric applications. The balance has been examined from the user’s viewpoint

and its use is illustrated in measuring solid and liquid densities and mass. The density assigned to a

silicon crystal is in good agreement with its accepted value to within 2.4 ppm. Likewise, the water

density measurements substantiate Kell’s equation for the density of water near 23 degrees Celsius.

INTRODUCTION

Beginning in 1965 Bowman and Schoonover published a series of papers [1,2, 3,4, 5] that described the

use of the mechanical one-pan two-knife balance in the high precision determination of the density of

a solid object. That work culminated in a silicon crystal density standard accurate to two parts per

million (ppm). In recent years the electronic force balaiKe [6] has been perfected to a degree that it

can replace most mechanical balances in both precision and capacity. Hence the mechanical balance

is rapidly disappearing from the scene. Contacts with the metrology community have convinced the

authors of the need to revisit the high-precision density measurement and to extend the scope to include

other applications. This work examines the electronic balance application from the user’s viewpoint

and discusses its use in measuring both solid and liquid density, pycnometer volume, glassware
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calibration and mass. We present measurement results of the mass and density of a 200 g silicon crystal

and the density determination of water once distilled from a continuous flow.

PRINCIPLES AND APPLICATION

The gravimetric applications mentioned above are not disparate topics and we begin with the

examination of the hydrostatic weighing principles. In particular the density determination of a solid

object is discussed in simple form and later extended to a more general form. The following discussion

is appropriate to all of the above applications.

The Density of a Solid bv Hydrostatic Weighing.

It was shown in the 1967 work [2] that one does not need to appeal directly to a mass standard to

measure the density of a solid object by hydrostatic weighing. The only requirements are knowledge

of the density of air, the density of water and a linear gravimetric force scale. For completeness we
present the development of the equation required for a solid object density determination when the

object is suspended from a gravimetric force detector, first in air and then in water. We have chosen

a simple but perfectly linear spring scale (force-balance) as our detector. To make this concept clear

we begin with a special case where the temperature of the air, the water and the object are in

equilibrium with each other. Furthermore, the air density and spring constant remain unchanged

throughout the measurement and the detector scale reads zero when the pan is empty. Figure 1

illustrates the four detector observations required to weigh an object in air and then in water. The

following two equations are expressed in terms of the observables, the known and unknown

components:

P ^

Px
KO^ (air weighing) ( 1 )

( P

Pxj
(water weighing) (2 )

where Af, is the mass of object X, Pg is the air density, is the water density, K is the spring constant,

g is the local acceleration of gravity and and are the detector observations when loaded in air

and water respectively.

Solving the above equations for the density of object X, p, , one obtains the following equation:

^wL Pa ~ ^AL Pw
(3)

‘ °
- o,.

The reader should note that the mass of X, Af,, does not appear in the solution.

The caveat associated with the use of eq. (3) is the required thermal equilibrium and the constant air

density during the weighing cycles, ^uilibrium is nearly impossible to achieve in practice and
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AIR WEIGHING

WATER WEIGHING

t

i

Figure 1. The spring balance is used to illustrate the principal of hydrostatic

weighing.
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therefore it is desirable to have the water temperature cooler (by about TC) than the surrounding air

Otherwise water vapor is driven to the cooler balance mechanism where it condenses causing a loss or

measurement precision. However, equilibrium can be closely approximated in a stable laboratory

environment. Air density changes are related to temperamre, barometric pressure, relative humiditv

and carbon dioxide content (CO2 ). Normal CO. variations and humidity excursions have a slight effect

on air density and nature limits pressure variations to about 4%. Climatic control systems readily

maintain air temperature within 0.5 °C or better. Therefore, air density variations are limited to about

10% and may be much less on a daily basis. Although the equilibrium constraint is violated, the

resultant error may be acceptable to some users.

If one examines the investment of time and equipment required to implement the use of this method he

may find it more expedient to determine density by measuring the dimensions of an ideal geometry and

then weigh the specinlen to determine its mass. If the dimensions are 25 mm or larger we should

achieve an accuracy of about 0.1% with a good micrometer and a student scale. If more accuracy is

desired, then the gravimetric technique described above can provide results to as good as 0.0005% but

could be worse. For predictable performance at the part per million level a more general formulation

will be required and is discussed later.

The preceding discussion demonstrates that the requirements for determining the density of a solid

object are a force detector, a means to determine both the density of air and the density of water,

thermal equilibrium of the constituents and a constant air density during the measurement. Before

proceeding further a more detailed examination of these requirements is presented.

The Force Detector

Although not perfect like the spring-balance force detector described above, the modem electronic foice

balance is a very good analogy. An overview of these instruments is given in [6]. A short summaiy

of the principles of operation is given here. Detailed knowledge of the electronic circuits are

unnecessary and may vary considerably between models. Figure 2 illustrates the basic principles of a

force balance, and a representative mechanical structure is shown in Fig. 3. When a downward force

is applied to the balance pan (loaded with an object) it is opposed by a magnetic force generated by the

interaction of two magnetic fields. One field is generated by a permanent magnet and the other a

controllable electromagnet. Usually, the magnetic force is applied through a multiplying lever and not

by direct levitation. Sufficient magnetic force is generat^ to restore the mechanism (pan) to its

unloaded position, or null point, relative to its structure as determined by a position sensor. Obviously,

the device is electromechanical and we should expect errors of both types to arise in the use of these

instruments. It is desirable in common weighing applications to tie the magnetic force to the unit of

mass via calibration of the electronic circuit. The circuit is adjusted such that the algebraic sum of the

gravitational and buoyant forces produces a balance indication approximately equal to the nominal value

of the applied mass. It is common practice for high precision balances to be supplied with a mass

standard whose density is about 8 g/cm^ and with the mass adjusted close to the nominal value. This

practice provides for a uniform response among balances to a given load at a given location. The

usefulness of this mass is that it eliminates the need for a calibrated set of mass standards (weight set).

In pursuing the application of eq. (3) it is unnecessary to quantify the mass in terms of any unit

definition nor do we care about its density; it is merely a convenient method to restore the spring
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constant if shifted from the initial value. However, when the calibration weight is tied to the mass unit

the electronic balance provides a convenient way to multiply and divide the mass unit.

Choosing the Balance.

A rigorous error analysis will lead to the selection of the adequate balance for the measurement at

hand. An intuitive approximation is offered here and a more rigorous analysis is given later. For

example, to measure the density of a 200 g silicon crystal two balance observations are required by the

above density determination. From the air weighing equation it is obvious that the balance must have

a capacity of 200 g. The crystal density based on prior knowledge of the water density is limited to

about 5 ppm. For now, assume that there is no error associated with the air density, p^. The air

weighing requirements are satisfied with a 200 g capacity balance that has a reproducability of about

5 ppm; i.e., 1 mg or bener, not a difficult requirement to meet.

Expressing the left side of the water weighing equation, equation 2, (ignoring g) in terms of the crystal

density yields:

/

M. 1
St

I

(4)

where Af,, is the mass of the silicon crystal, p^, is the density of silicon, 2.3 g/cm^ and p^ is

approximately 1 g/cm^ Evaluating the above term yields a balance response of approximately 113 g.

The difference between the air and water weighings is the mass of displaced water, about 87 g. To
achieve a weighing reproducability of 5 ppm or better on a mass of 87 g we need a 200 g capacity

balance with standard deviation of 0.43 mg. Obviously, the liquid weighing imposes a more stringent

requirement on the balance than does the air weighing. The requirement that both weighings be

performed on the same balance leads to the selection of a 200 g capacity balance with a reproducabilty

of 0.1 mg for this work. If given a choice, it is preferable that the solid object just barely sink in the

liquid i.e., its density is only slightly greater than the liquid density. In this example, the choice of a

silicon crystal did not permit this freedom and the resulting signal-to-noise ratio, although good, has

not been maximized. The balance is also exposed to the total load of the hydrostatic suspension [2,3]

and the submerged crystal, and the sum must not exceed 200 g.

Funhermore, while the balance precision errors are presented here as the limiting factors in achieving

our 5 ppm measurement goal, there is another major contribution to consider. It has been assumed the

balance is perfectly linear, but it is not. The manufacturer’s specification for nonlinearity is 0.3 mg.
For now the error is treated as random and added to 0. 1 mg reproducability for a total error of 0.4 mg.
It has been implicitly indicated that the air density is without error; this is untrue but has very little

effect on the choice of a balance. Although the desired measurement error (0.43 mg) is now matched
to a balance performance specification, this does not preclude pushing the balance to a higher level of

performance, which shall be pursued later in the discussion.
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Air Density

The knowledge of the density of air and water embodies the information that ties the above density

measurement to the SI units. Therefore, it is important to use the best available formulas in calculating

these parameters. The air density equation for moist air used in this work is the CIPM 1981/91

recommendation [7]. This formulation ties its predecessor. CIPM-81, to the International Temperanire

Scale of 1990 (ITS-90) and utilizes better estimates for some of the constants and other parameters.

For brevity we do not reproduce the formulation here but note that a 0.0004 mole fraction for CO, is

assumed in our laboratory.

Errors in the parameters of temperature, pressure and relative humidity do affect the uncertainty of the

calculated air density. These parameters are measured with well-calibrated instruments with respective

errors of 0.01 °C, 13 pascals (0. 1 mm Hg), and 2% RH. Based on these error estimates an uncertainty

of 0.0003 mg/cm^ has been assigned to the calculated air density values. It is this error estimate that

is propagated in the analysis presented later.

Water Density

The work of Kell [8] is generally accepted as the best comprehensive treatment of water density. For

the sake of brevity Kell’s formula is not given here. The formula provides a value for the density of

air-free water at 1 atmosphere of pressure with an estimated uncertainty of 5 ppm. The formula

assumes the use of the IPTS-1968 (t68) temperature scale and temperanire t measured in terms of the

IPTS-1990 (t90) must be converted to IPTS-1968. This is readily accomplished in the range between

20 and 30 °C from the following approximate relationship [9]:

t90 - 168 = - 0.006 °C

To Kell’s formula is added the following terms from Bowman and Schoonover [2]:

l-(2.11 -.053g(l--j^)|(l0-‘)
(5)

1

P w “ P KeU

Where:

- water temperature

D “ days since boiling

- water density

C " compressibility = 47.7 ppm/atm

I ~ depth of immersion, cm
B = barometric pressure, in mm Hg

PKeu “ Kell’s water density
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These terms adjust Kell’s formula for the reaeraiion of water after boiling, dissolved gases, ana the

sample depth (compressibility of water) respectively.

The water temperamre measurements here are estimated to be uncertain by 0.003 °C with a negligible

effect on the water density.

A GENERAL ALGORITHM FOR HYDROSTATIC WEIGHING

The equilibrium conditions imposed on the use of eq. (3) can be avoided with a more detailed

algorithm. The chief advantage is the achievement of predictable results, i.e., an estimate of

measurement uncertainty. With a little extra effort higher performance can be obtained from the

balance. Both topics go hand in hand and are presented together here. However, before proceeding

it is beneficial to first examine the balance usage in a simple mass measurement and how the result is

affected by a nonlinear balance response.

In the above hydrostatic weighing derivation the balance response is discussed in terms of a spring

constant and the product of mass and local gravity is used to adjust the constant, that is, the balance

response is calibrated in terms of the gravitation force exerted on the balance. This force is expressed

by the following equation:

( P
S g^KO, (6)

where 5 is the mass of the calibration weight and its density at temperature, t.

The force imposed on the balance by an object of unknown mass is as follows:

P \

\ ^ g ^ KO^
Pxr j

(7)

where Af, is the mass of the unknown object and p„ is its density at temperature, t.

Therefore:

S i

^

L

(8 )

L is the ratio of balance observations:

L =
(9)
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The term, is the balance no-load indication during the calibration cycle and is defined to be zpro
and Ogj is zero or near zei:o when the balance pan is empty during the weighing cycle. Furthermore,
the balance response when the calibration weight is engaged, is redefined as O, for this and
all remaining applicable equations. We can now express a solution for the unknown mass, M,. in terms

of the balance observations:

M
X

s

\

o.

- o
,

V 2^ oa !

I p \

1 -

P̂

(10)

With a knowledge of the calibration weight’s mass and density at the air temperature, t, from a simple

weighing one can calculate the mass of an unknown object. Obviously the roles of 5 and X can be

interchanged to perform an in situ built-in mass calibration.

In calibrating the balance, the manufacturer forces the no-load indication to be zero and when the

calibration mass is engaged, forces it to indicate its nominal value. The ideal balance response is, of

course, a straight line connecting these points and for some balances to extrapolate beyond these bounds.

Usually, balances do not respond in the ideal manner and therefore any observation not at these points

may require correction for nonlinearity. In the following discussion it is assumed that the correction

for nonlinearity has been applied to the balance observations for the unknown object during both the

air and water weighings. The balance linearity topic will be revisited later in the discussion.

The General Hydrostatic Weighing Equations

It has been assumed that the air densities during the air and water weighings are different and it follows

that the various temperatures, barometric pressure, and relative humidity involved may also be different.

Temperature variations assure that there will be two slightly different densities for the object density

during the measurement sequence. Fortunately, this condition can be accounted for but it will require

additional information. This does not imply that there can be a lack of thermal equilibrium between

the constituents during each of the weighings but rather different temperamres may be encountered

during the air and water weighing. However, as noted earlier it is desirable to have the water

temperature slightly cooler than the surrounding air during the water weighing cycle. Special

precautions [2] must be taken to protect the measurement from the undesirable effects of this boundary

condition.

The above simple weighing equations are now replaced with ones that permit variations in the ambient

conditions that surround the objects during the weighings. Furthermore, the dependency of the

balance calibration with respect to air density is now taken into account. In addition, it is desirable to

express the object density at a reference temperamre that may be different from that of the

measurement. The expanded weighing equations are:
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air weighing
(ID

5

S

P 2,r' s \

0.
1

O^a - O
\ 2 oc

/ 1 - P \^ aw

/

P 2,
j 2 /

o.

O^w - O
\ 2 ow /

8 = M.
M - p

^8

= M.
/ 1 - p

V ^ an )

y8 water weighing
( 12 )

Solving the above equations for the unknown density, we have:

/

1
-

P )r aa

. ft V

(

1

P̂ aw

ft y /

/

1
-

\

P

P 2, p.^i,
P xm

f O >

^ W*
/ o.

K /

o ]c c c

0,-02w ow
>

0,-0
2fl oa /

P
j

^ aw

2 )

o.

V
o, - O

\ Zw <?w y

(13)

where:

Pan = Density of solid under test at 20 °C

S - Mass of calibration weight and p, its density at 20 ®C

tn = 20 "C

The reader will note that the density of the calibration weight now appears in the solution for pxtn

whereas its mass does not.

Air Weighing

Z, = 1 + 3 a (t^-20)

X = 1 + 3 (t,.-20)

a = linear thermal expansion of S

(3 = linear thermal expansion of object undergoing test

= air temperature

Paa = air density

0^ = the balance "zero" reading (pan empty)

= the balance indication with calibration weight engaged

02a
~ balance indication when loaded with the object of interest

Note: The balance "zero reading" may not actually be 0.
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Water Weighing

Z,

Y

1 -H 3 a (t^^-20)

I + 3 j (t^-20)

water temperature

p^. ~ water density

= air temperature

p,„,
= air density

Note: is comparable to (9,^ above

The differences in elevation between the calibration weight, the air weighing pan and the lower

immersed pan require corrections for the gradient in the earths gravitational field [2,10]. This

correction is approximately 200 micrograms per meter per kilogram. In the case of the balance used

here the calibration weight and the air weighing pan are at the same elevation and the (lower) water

weighing observations are adjusted to that elevation.

Linearity Test and Correction

The terms above, and 02^, are assumed to have been corrected for any nonlinear balance response.

We obtained the corrections by observing the balance response at 25%, 75% and 100% of capacity.

It was fortuitous that most of the loads in this work occurred at or near these points or the points of

calibration. The balance is calibrated with a 1(X) g weight and its capacity is 2(X) g; therefore, an

additional 100 g and 50 g weight is required for the test. As noted earlier the balance calibration forces

a pan-empty indication of 0.0000 and the 1(X) g indication to be lOO.OOCX); these points are given and

not observed. However, it is prudent to immediately check the calibration by reweighing the calibration

weight or its replica. This provides assurance that an error-free calibration occurred. Repeat ihe

procedure as necessary as some balances require several cycles to obtain a stable calibration.

The balance is used to measure the difference between the calibration weight and its replica until the

difference, in terms of the calibrated balance indication, is known with insignificant error. The sum

of these two weights is used to test the balance at 100% capacity and any observable difference between

the ideal and observed indication is a linearity error. That is, the observed response plus the correction

equals the ideal response. In a similar manner the difference between the 100 g calibration weight and

the sum of two 50 g weights can be obtained. These weights should have the same nominal density as

that of the calibration weight (8.0 g/cm^). A sum and difference weighing between the calibration

weight, S, and the two 50 g weights, designated D and E, results in two equations:

S-(D+E) == O,

D-E = O2

Where Oi and Oj are the balance observations. The solution for D is

D = (S+02-0,)/2
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D is in terms of balance units as defined by the calibration weight S. It is unnecessary to solve h r E

as it is of no further use here. In this application the balance is used to detect small differences between

nearly identical loads and the effect of any balance nonlinearity is trivial. Obviously we can measure

the above differences a number of times and minimize the the balance imprecision or use a more precise

balance. Similarly we could perform the linearity test multiple times to decrease the correction

uncertainty. We discuss this aspect of the measurement in the analysis section of the paper. The

linearity measurement sequence expressed as a percentage of capacity is:

0 25% 50% 75% 100% 75% 50% 25% 0

The corresponding observations are:

O, Oi O3 O4 O5 Oft O7 Og O9

This sequence minimizes the effects of drift and hysteresis, if any, and can be abbreviated to include

only the required range or just one point. In the manner described above additional weights could be

used to obtain the 12.5% point and so on. The response of our balance is depicted graphically by Fig.

4. We note the 0 and 50% points are forced to be on the ideal response line and that the others may

not be. The "zero" observations are only necessary to insure that the balance is in the zero capture

range of the mechanism and preferably the pan is nearly empty. If not, the user may inadvertently shift

the origin of the curve between measurements and not be able to characterize the response on a long

term basis. For this reason it is wise to disconnect the immersed weighing pan before performing the

balance calibration during the water weighing cycle. Thereafter the balance is not rezeroed.

Additionally, the balance should always be leveled before use.

The linearity correction is derived relative to the calibration weight S, here the 50% point. We obtain

the correction at the 75% point by subtracting the average of observations O3 and O7 from the average

of O4 and Oft. This difference plus the linearity correction, Lc is equated to the value obtained for

weight D above :

D = ((04+Oft)/2) - ((03-07)/2) + Lc

Similar expressions can be written for the other points and the corresponding linearity correction can

be obtained for each one.

LIQUID DENSITY BY HYDROSTATIC WEIGHING

An examination of eq. (13) reveals the possibility of determining the water density, or the density of

other liquids, with prior knowledge of the solid object density. Relabeling the terms as p^ and p,

as Pj, and rearranging terms, the density of an unknown liquid by hydrostatic weighing is:
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Figure 4. The balance response illustrated here is typical of the model used for this

work.
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(14)

where:

[

i

t

! P Sim
1

/

( P
j

^ aa
fl

1

P J ^2 y

> >

1o ^Iw
~
^ow

1 -
aL

p,Z.
2

o.

\
0

,
-o

\ Iw ow

lY
OsZ

1 /

o.

\ ^2a ^oa /

= Liquid density under test at the bath temperature, Bt.

= Solid object density standard normalized at 25 °C.

m = 25 °C

PYCNOMETER CALIBRATION

The pycnometer is a vessel that can be used to determine the density of liquids and solids, see figure

5. The discussion is here confined to the liquid density application. In practice the user must know
the pycnometer capacity. This is readily accomplished by weighing the pycnometer empty and then

filled with pure water at a known temperature. From the two weighings and with knowledge of water

density, the pycnometer capacity can be calculated. However, examination of the details of a

pycnometer calibration reveals a minor difficulty. That is, the pycnometer must be soaked in a

temperature- controlled bath to measure the temperature of the contained water. It is assumed that with

sufficient thermal soaking all constituents obtain the bath temperature. However, when the pycnometer

is removed from the bath for weighing, the exterior must be dried before storing in the balance over

night to achieve thermal equilibrium [11]. At the time of weighing the total displacement volume,

pycnometer and contents, may have changed from the initial condition of the water bath, i.e., a change

in temperature. The capacity of interest is at the temperature of the water bath while the buoyant force

at the time of weighing depends on the balance temperature.

The pycnometer capacity, C, at the bath temperature is given by the solution of the empty and full

weighings (not shown) with correction for the change in displacement volume above:

=

1 -
Pgf

p,Z2
- Q

1 -
oE

p,Zl

\^2F
~
^oF) \^1E

~
^oEjl

1 -

P wF^
ivBt

(15)

‘ (P
1 -

Q =

oF
\ \

Y

1 -
a£

V *'F J

(16)
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Figure 5. A schematic illustration of the pycnometer immersed in the constant

temperature bath. For clarity the plugs are shown partially inserted.
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where:

Puf = Water density during the air weighing of the full pycnometer
= air density during full weighing

p^£ = air density during empty weighing

pp = the approximate density of the pycnometer body at 20 °C

The mass of the calibration weight, 5, now appears in a measurement solution for the first time other

than the simple mass measurement of eq. (10).

The pycnometer design accommodates any water volume expansion with its covered overflow bowl, see

Fig. 5. It was designed at NIST years ago, with the wire plugs shown in Fig. 5. added for this work.

These stoppers make it unnecessary to set the water meniscus at the ends of the filling capillaries.

It is noteworthy that weighing glass pycnometers in low humidity environments can be plagued with

static charge. Static charge can be detected with an inexpensive capacitance based electrometer. As

a precaution the exterior surface was coated with a slightly visible amount of tin oxide to prevent charge

and none was detected during its use. At this time the pycnometer measurement data has not been

analyzed and will be presented in a later report.

PYCNOMETER APPLICATION

With the pycnometer volume (capacity) assigned by the above method it can be used in a similar fashion

to determine the density of other liquids. The error associated with the water calibration will be carried

forward in its use to determine the density of other liquids. It follows from the solution of the eirpfy

and full pycnometer weighings that the unknown liquid density, p^g,, at the bath temperature, Bt is;

P LBt~

1 -

p,Z
2 / -R

1 -
aE

Ps^i

O.
\

,

^
2£ ^oE >

(C^ - 25)

< D ^
^ LBt

oF

\ LFt)

(17)

R = \ - fif' X / 1
_ Y

K
^ P /

where:

^25 = pycnometer volume at 25 ®C

PiF, = the liquid density during the weighing.

k - cubic thermal coefficient of pycnometer body
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The problem of filling the pycnometer at the bath temperature and weighing it at another requires prior

knowledge of the density ratio, In practice one can adjust these temperamres close to each

other and eliminate the tPi-m. If not, handbook information may be available or the liquid dilation may
be determined with additional pycnometer measurements and appropriate iteration.

GLASSWARE CALIBRATION

Flasks, burettes and pipettes are usually calibrated by gravimetric means and it is a simple matter to

apply the pycnometer calibration equation above to this application. However, in general glassware

does not warrant such attention to detail. A simplified equation is offered here for the calibration of

general use glassware. The capacity, C„ is:

1 1"O1 fO.-OE]

pj o,
J

P w P a

(18)

Where:

t = water temperature in degrees Celsius

Pa
~ average air density of the weighing cycles

p^ = water density

pj = calibration weight density at room temperature

Of = empty flask balance indication

Of = flask plus water balance indication

In the above equation it is assumed that the balance has been zeroed before the empty and full weigh/^gs

and the flask capacity is at the temperature of the water. The nominal value of the built-in calibraiion

mass, S, is usually adjurted to be accurate within the least significant digit displayed by the balance and

may not need additional calibration for this application. It has been assumed the weight is made from

a material with a density near 8.0 g/cm^ and has been adjusted to the "8.0 apparent mass scale".

ANALYSIS

The method of Ku [1 1] has been used to propagate errors in the functional relationship, f(Xj,X2 XJ,

of the uncorrelated variables Xj,X2,...,X„. Tables 1-5 present for each variable its value, the estimated

standard deviation and an evaluation of the partial derivatives. At the bottom of each table is the

estimated combined standard deviation for the ftmction as given by the following relationship:

(.SDf-Z
i-1

{ ^ \2

(19)
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In this work, the measurement uncertainty for the mass of the silicon crystal, its density, and the

measured density of water, is defined to be 3 times the combined estimated standard deviation from the

appropriate table.

An important parameter iii the error analysis is the balance reproducabilty as measured by the standard

deviation. The balance used here, like many electronic balances, performs better when lightly loaded.

Its standard deviation was found to be 49 ug from 0 to 100 g and 118 ^JLg upward to 200 g. These
standard deviations are combined in quadrature with the standard deviation of the linearity correction.

At the 200 g level of the air weighings the combined standard deviation is 138 /xg, while water

weighings near 100 g are nearly free of nonlinearity and the standard deviation remains at 49 ^g. As
previously noted the balance weighings were repeated 6 times, which is reflected in Tables 1 and 2.

It is noteworthy that the balance calibration reproducabilty (49 ^g) is not improved by repeated

calibration cycles and therefore is only performed once. This standard deviation carmot be obtained

explicitly but from the nature of digital circuits it is known to be less than 1/2 a count i.e. 50 /xg and

the value (49 /xg) determined by repeated weighings at the 100 g level was used here. Furthermore,

the ratio of the balance indications is dimensionless and it is the standard deviation of the ratios that are

propagated in the remaining tables.

DATA

As described earlier the balance weighings were repeated six times and defined as one measurement.

In addition five independent determinations of each property, i.e, mass, crystal density, and water

density were performed. For example, each time the silicon crystal density was measured by

hydrostatic weighing the distilled water was replaced and the immersed constituents degassed by boiling

the apparatus in situ [2]. The estimates of the balance standard deviation were obtained from the

within-group of six repeated measurements. The weighing sequence used in the collection of these data

began with a balance calibration followed with six pan-empty and pan-loaded weighings using a

symmetrical format. This sequence results in 13 balance observations: A1 B1 A2 B2 A3 B3 A4 Iw

A5 B5 A6 B6 A7 where the A’s correspond to the empty pan observations and the B’s to the loaded

pan observations. This measurement sequence was immediately followed with the balance linearity test

described earlier. The preceding six weighings are reduced to an average value as follows:

[(Bl-HB2+B3+B4-bB54-B6)/6] - [(Al-A2-A3-A4-A5-A6-A7)/7] = Average

The linearity correction for a balance indication of B is then applied. The "A" values are always near

zero and do not require correction.

The methods reported here are demonstrated with measurements of the mass, and density of a 200 g

silicon crystal and the density of water. The silicon crystal mass was determined by an independent

comparison to standards on a more precise balance by the method of combinational weighing. The

average mass value assigned by intercomparision to mass standards is 199.42655 g. The difference

between this mass and that obtained by direct weighing on the balance is 0.07 ppm and their respective

uncertainties are 0.25 ppm and 2.25 ppm. The silicon crystal density is known to be 2.3291226 g/cm^

at 20 ®C [5] with an uncertainty of 2 ppm. The mean value assigned from these measurements is

2.329117 g/cm^ at 20 °C., a di^erence of 2.4 ppm with an estimated uncertainty of 5.7 ppm. The
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measured water density values differ from those calculated by the Kell equation with corrections for

dissolved gasses and depth of immersion as follows:

Kell - measured values = 6. 0, -1, 0, 7 ppm

The water temperature ranged from 23. 1 15 °C to 23.516 "C. The estimated uncertainty of the values

assigned here is 3.4 ppm . Given the 5 ppm uncertainty assigned to Kell’s values, differences as large

as 8.4 ppm could be expected.

With the advantage of hindsight it is clear some improvement to the measurements could be obtained

by not using the balance microprocessor built-in calibration function. Performing the calibration

manually would permit the advantage of multiple calibrations and may result in a smaller estimated

standard deviation. However, this technique would cause the inconvenience of a longer measurement

sequence.

CONCLUSIONS

We believe our investigations of the testing and use of the electronic balance support the contention that

very respectable measurements at the parts per million level can be achieved in the measurement areas

demonstrated. It is noteworthy that when the balance is used properly the need for well-calibrated

laboratory weight sets is eliminated. Most users would be well served by obtaining a mass value for

the balance calibration weight from an appropriate source along with a density determination. The

needs of many users would certainly be satisfied by accepting the value and tolerance assigned by a

reputable balance maker.

We did not cover all of the common uses of balances. There are simple applications such as the

tolerance testing of weights for regulatory use, i.e., weights and measures, where these techniques can

be adopted. It appears to us that many modem electronic balances perform so well that it might be

beyond the ability of many laboratories to adequately test and calibrate them. This could well be a

problem in the future where some applications, requiring certification, are limited by the ability of the

certifying agency.
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