
NISTIR S367

Prediction of Geometric-Thermai
Machine Tooi Errors by
Artificiai Neurai Networks

D. E. Gilsinn

M. A. Donmez

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Supported by:

Navy Manufacturing Technology

(MANTECH) Program

Monitoring Office:

NAVAL Industrial Resources Support

Activity (NAVIRSA)

Attn: Leo Plonsky (203)

QC-

100

U56

1994

#5567

NIST

5
!

i

1

NISTIR 5367

Prediction of Geometric-Thermai
Machine Tooi Errors by
Artificiai Neurai Networks

D. E. Giisinn

M. A. Donmez

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Supported by:

Navy Manufacturing Technology

(MANTECH) Program

Monitoring Office:

NAVAL Industrial Resources Support

Activity (NAVIRSA)

Attn: Leo Plonsky (203)

April 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Techrwiogy

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Abstract

In machining operations, the precision of the workpiece dimensions depends on the accuracy of the

relative position of the cutting tool and the workpiece. Among the key factors that affect the

accuracy of this relative position are the geometric errors of the machine tool and the thermal

effects on these geometric errors. Recent work on developing models to predict volumetric errors

on NC lathes has led to a synthesis technique the combines the modeling of individual axis related

geometric-thermal components by way of a rigid body kinematic model to produce predicted errors

in the work volume of the machine. Homogeneous coordinate transformations are the tools used

to synthesize the individual error component models into the unified volumetric error model. The

individual error components are often modeled as polynomial functions of a component’s slide

position and the temperature state of the machine, which is typically measured by thermal sensors

located on the machine tool. An alternative method of modeling these component errors is

described in this report. Neural network computing is shown to be a viable technique for

developing mappings between machine tool component error measurements and the vector

consisting of both a component slide position and the temperature state of the machine as reported

by the thermal sensors. The conjugate gradient algorithm, used to compute the optimum neural

network weights for the machine tool error components, is described. A case study of the mapping

results for one component error of an actual NC lathe is given. Finally, the source codes for the

neural network algorithm and the conjugate gradient algorithm are given in FORTRAN.

Keywords: conjugate gradient algorithm; gradient descent algorithm; machine tool error

compensation; machine tool errors; neural networks; nonlinear optimization

Acknowledgement

We wish to thank Steve Osella for his careful review of the document. His suggestions helped

clarify serveral points in the text. We also wish to thank Judy Barnard for her exceptional

professionalism in the preparation of the document.

1

TABLE OF CONTENTS

1.0 Introduction 1

2.0 Machine Tool Error Compensation 3

3.0 Kinematic Model 3

3.1 General Model Structure 4

3.2 Predictive Machine Calibration 6

3.3 Individual Error Contributions 7

3.3.1 Linear Displacement Errors 7

3.3.2 Angular Errors 9

3.3.3 Straightness-Parallelism-Orthogonality 9

3.3.4 Spindle Thermal Drift 9

4.0 Some Regression Approach Shortcomings 10

5.0 Neural Networks 11

5.1 Parallel Distributed Processing Model 11

5.1.1 Processing Units 12

5.1.2 State of Activation 12

5.1.3 Output Function 13

5.1.4 Connectivity 13

5.1.5 Rule of Propagation 14

5.1.6 Activation Rule 18

5.1.7 Connectivity Modification 18

5.1.8 The Usage Environment 18

5.2 Learning Paradigm 19

6.0 Gradient Descent Algorithms 19

6.1 Algorithm Terminology 20

6.2 Computing the Gradient 23

6.3 Descent Strategy 28

6.4 Back Propagation Algorithm 29

6.5 Scaled Conjugate Gradient Algorithm 30

7.0 Adjusting for 111 Conditioning 38

8.0 Statistical Goodness-of-Fit Measures 42

ii

9.0

Geometric-Thermal Error Component Mapping 44

9.1 X-Displacement (Down) 45

9.2 X-Displacement (Up) 59

9.3 X-Displacement (Down) with X-Axis Related Thermocouples 63

9.4 X-Displacement (Down) with Z-Axis Related Thermocouples 63

9.5 X-Displacement (Up) with X-Axis Related Thermocouples 67

9.6 X-Displacement (Up) with Z-Axis Related Thermocouples 74

9.7 X-Displacement (Down) with 50 Hidden Nodes 74

9.8 X-Displacement (Down) with 40 Hidden Nodes 80

10. Conclusions 80

11. Bibliography 88

Appendix A: Main Program Listing 91

Appendix B: Sample Output File 130

Appendix C: Sample Input File 140

111

LIST OF FIGURES

Figure 1. The component errors that contribute to the combined X and Z errors 8

Figure 2. Perceptron model of a neural network processing unit 15

Figure 3. A sample of a fully connected feed-forward network with three input nodes,

four hidden nodes, and two output nodes 16

Figure 4. Schematic of the optimization strategy 21

Figure 5. Turning center with thermocouple locations identified 46

Figure 6. Histogram plot of the residual error distribution after the fit of the

X-displacement (down) data 51

Figure 7. Normality plot for residuals of the X-displacement (down) data 52

Figure 8. Correlation Coefficient Plot for the residuals of the X-displacement

(down) data 53

Figure 9. Histogram plot of the residual error distribution after the test of the

X-displacement (down) data. All data columns used 55

Figure 10. Error reduction curve for training on data with failed thermocouples

removed 56

Figure 11. Histogram of residuals for training data with failed thermocouples

removed 57

Figure 11A. Histogram of residuals for testing the trained neural net with failed

thermocouples removed 58

Figure 12. Regularized RMS error training curve for X-displacement upwards with

failed thermocouples removed 60

Figure 13. Ehstogram of residuals after neural net training on X-displacement upward

data with failed thermocouples removed 61

Figure 13A. Histogram of residuals after test data applied to neural net for

X-displacement, upwards. Failed thermocouples removed 62

Figure 14. Regularized RMS error training curve for fitting X-displacement downwards

data against X-axis thermocouples 64

Figure 15. Histogram of residuals after training with X-displacement downwards data for

X-axis related thermocouples 65

IV

Figure 15A. Histogram of residuals for testing the trained neural net with

X-displacement downward data against X-related thermocouples 66

Figure 16. Regularized RMS error training curve for X-displacement downwards data

against Z-axis related thermocouples 68

Figure 17. Histogram of residuals after training of X-displacement downwards data

against Z-axis related thermocouples 69

Figure 17A. Histogram of residuals for test data for X-displacement downwards

against Z-axis 70

Figure 18. Regularized RMS error training curve for X-displacement upward data

against X-axis related thermocouples 71

Figure 19. Histogram of residuals for training data of X-displacement upwards data

against X-axis related thermocouples 72

Figure 19A. Histogram of residuals of test data of X-displacement upwards against X-axis

related thermocouples 73

Figure 20. Regularized RMS error training curve for X-displacement upwards data

against Z-axis related thermocouples 75

Figure 21. Histogram of residual errors for training of X-displacement upwards data

against Z-axis related thermocouples 76

Figure 21A. Histogram of residual errors for testing X-displacement upwards data

against Z-axis related thermocouples 77

Figure 22. Regularized RMS error curve for training X-displacement downwards data

against all active thermocouples using 50 hidden nodes 78

Figure 23. Histogram of residual errors for training X-displacement downwards data

against all active thermocouples using 79

Figure 23A. Histogram of residual errors for testing X-displacement downwards data

against all active thermocouples using 50 hidden nodes 81

Figure 24. Regularized RMS error curve for training X-displacement downwards data

against all active thermocouples using 40 hidden nodes 82

Figure 25. Histogram of residuals for training X-displacement downwards data

against all active thermocouples using 40 hidden nodes 83

Figure 25A. Histogram of residuals for testing X-displacement downwards data

against all active thermocouples using 40 hidden nodes 84

V

1.0 Introduction

In machining operations, the precision of the workpiece dimensions depends on the accuracy of the

relative position of the cutting tool and the workpiece. Among the key factors that affect the

accuracy of this relative position are the geometric errors of the machine tool and the thermal

effects on these geometric errors. Geometric errors are caused by the unwanted motions of

machine elements such as carriages, cross-slides, and work-tables. These motions occur because

of geometric imperfections and misalignments of the machine tool design. Heat generated by the

machine tool and the cutting operation causes temperature changes of the machine tool elements

and environment. Due to the complex geometry of the machine structure, concentrated heat

sources such as the drive motors and spindle bearings, create thermal gradients along the machine

structure. Spindle growth, lead screw expansion, and a significant part of the machine structure

deformation are the results of these temperature changes and gradients; therefore, reducing the

geometric and thermally-induced errors of a machine tool is a key requirement for improving the

workpiece accuracy. In addition to the improved workpiece accuracy, productivity is increased by

the elimination of the nonproductive warm-up cycle of 1-2 hours commonly used to reach thermal

equilibrium when machining precision parts.

Recent work by Donmez and his colleagues [1,2,3], on developing models to predict volumetric

errors ofNC lathes, has led to a synthesis technique that combines the modeling of individual axis

related geometric-thermal error components by way of a rigid body kinematic model to produce

predicted errors in the work volume of the machine. Wu [4] describes several other error

component modeling techniques. For example, characterizing a 3-axis machine tool requires 21

geometric error components plus spindle errors. Some of these error components are purely

temperature related and others are functions of both temperature and nominal position. For a

formal definition of the various machine tool error components see Hocken [20].

Homogeneous coordinate transformations under rigid body kinematic assumptions have been used

by Donmez [1,5]
to synthesize individual error component models into a unified volumetric error

model. The rigid body kinematic sissumption implies that the machine component errors at each

slide depend on their own coordinate system and are not affected by the movements of other slides.

That is, measurements on each slide are independent with regard to position on other slides. The

end result of the synthesis produces volumetric components as functions of several individual error

1

components and nominal tool positions.

Individual error components are often modeled as polynomial ftmctions of the slide position and

temperature state of the machine, which is typically measured by thermal sensors located on the

machine tool. For a survey of these measurement techniques see Wu [4]. For a specific application

to an NC lathe see Donmez [5].

In this report we consider an alternative method of modeling the individual error components.

Instead of polynomial functions of axis position and selected temperature measurements we

consider the use of neural networks as a technique of developing mappings between patterns of

recorded position and machine thermal states and measured component errors. An object of this

modeling is to determine, if possible, limits on the number of data samples required and how many

and where thermal sensors should be placed. This report, however, concentrates on the

documentation of a particular neural net program and its application to sample data sets.

Neural network computing is a computational method that uses networks of simple processing

elements or neural nodes to implement a desired mapping relationship between input and output

data patterns. A neural node is a computational device that takes a number of inputs from either

external sources or other nodes, performs sums ofweighted inner products of these inputs, applies

a fixed nonlinear transformation to this inner product and passes the result on to the next layer of

neural nodes or to external outputs. Although neural networks have their early history connected

with biological questions of how the human brain works, certain forms of neural networks, called

multilayer feedforward networks, can be shown to produce functions that will uniformly

approximate continuous functions of many variables in the sense of mathematical approximation

theory (Cybenko [13]). For a discussion of the biological background of neural networks see Ritter,

Martinetz and Schulten [6]. For a discussion of the general mathematical problems of neural

computing see Cybenko [7].

The neural networks computer program used in this study is a modified version of one develped

by Dr. James L. Blue at NIST for a study of optical character recognition (see Grother and Blue

[8]). The optimization portion of the program is based on the scaled conjugate gradient algorithm

of M0ller [9]. Stefan Leigh of the Statistical Engineering Division at NIST developed the

DATAPLOT output described in section 9. The authors also wish to acknowledge John Meyer,

2

Phil Nanzetta and Don Blomquist for their continued support.

2.0 Machine Tool Error Compensation

Error compensation is defined as a method of cancelling the effects of systematic errors either by

directly or indirectly measuring these errors, or by predicting them using a model previously

established for the process. For a discussion of the techniques involved in machine tool error

compensation see Donmez [5, 21], Zhang [10]. Zhang describes geometric error corrections for

coordinate measuring machines whereas Donmez details the application of geometric-thermal error

correction to an NC lathe. The errors for which the system compensates are quasistatic geometric

and thermally-induced errors. These errors are predicted by using relationships established between

systematic errors and particular machine tool temperature profiles. In the process of building these

relationships, the geometric errors are measured using, for example, laser interferometry and high

precision capacitance probes. The temperature profile is determined by monitoring thermocouples

placed in critical locations. Some of these locations are the leadscrew nuts and bearing housings,

the spindle bearing housings, the headstock, the bed, several points on the cross slide and the

carriage bodies.

At present the relationships for each type of error, such as linear displacement, straightness, yaw,

and orthogonality, are established by applying least-squares curve fitting techniques to the error

data and the corresponding temperature profiles for each element of the machine. After predicting

each error component, the compensation system uses the principles of rigid body kinematics to

combine the error components in order to find the error at the cutting tool.

The actual error compensation is achieved by sending the error values to the machine controller.

The machine tool controller acts on the compensation values in software, thus, no modification to

the machine control hardware is necessary.

3.0 Kinematic Model

The rigid body kinematic model referred to in section 2.0 is a general mathematical model that

calculates the vector error at the cutting tool from a large number of reproducible error

components. These components correspond to errors contributed by machine structure elements.

3

The individual errors are decomposed into their geometric and thermally-induced error

components.

3.1 General Model Structure

The mathematical model used to predict volumetric errors, is generated by using homogeneous

transformation matrix manipulations, with the assumptions of rigid body kinematics. These

transformations describe the spatial relationships between the machine tool structural elements.

A homogeneous coordinate transformation matrix in three-dimensional space is a 4 X 4 matrix.

It is used to express a homogeneous coordinate vector in one coordinate system with respect to

another coordinate system. Similarly, a homogeneous transformation matrix can be used to

represent one coordinate system with respect to another or reference coordinate system. If the

coordinate frame is embedded in an object, then a homogeneous matrix describes the relative

position and orientation of this object with respect to another object or coordinate frame in space.

An important feature of homogeneous coordinate transformations is that they can be multiplied

in series to describe the position and orientation of one object with respect to several coordinate

frames.

The homogeneous transformation used to describe the spatial orientation and location of a machine

structural element takes the form

^Lt ^2x ^3x Px

^ly ^2y ^3y Py

^2z ^3z Pz

0 0 0 1

(1)

where the vectors Oj, 03 describe the axis system orientation of a coordinate frame with respect

to another coordinate frame. The vectorp is the position vector of the origin of the first coordinate

frame with respect to the second.

Since a machine tool can be considered as a chain of linkages, an approach that describes the

spatial geometry of linkages with respect to a reference frame by matrix multiplications can be used

to determine the spatial relationship between the cutting tool and the workpiece. Thus, by

4

multiplying the homogeneous transformation matrices corresponding to a series of elements such

as the carriage, cross-slide, cutting tool, workpiece and spindle, the cutting tool and the workpiece

position can be described with respect to a conveniently chosen fixed reference frame (Donmez [1]).

In ideal conditions, the cutting tool follows the contours of the ideal workpiece geometry. Thus,

at any time during the operation, the resultant homogeneous transformation matrices,

'^TOOL

for the cutting tool and

WORK (3)

for the point on the workpiece, should be identical. However, due to the individual errors involved,

these two matrices are not identical in reality. The total error, E, is represented by the following

equation:

T =T E^WORK ^TOOL^ (4)

The equation

F=T~^ T^ TOOL^ WORK

gives the resultant error matrix.

(5)

As discussed earlier homogeneous transformations can be multiplied in order to locate a structural

frame with respect to a reference frame such as, for example, the machine coordinate system. On

a lathe, for example, the final tool transformation may be a combination of transformations starting

with the horizontal slide (z), then the vertical slide (x), followed by the turret and finally the tool.

Thus one has the string of multiplications

f = T TURRET'p
^TOOL -*2 -^TURRET ^ TOOL ^ ’

where the leading superscripts represent the most immediate reference frame. Thus the second

transformation describes the orientation of the x-slide system with respect to the z-slide system.

The z-slide is ultimately referenced to the machine coordinate system. A similar set of component

matrices combine to form the workpiece transformation. This might, for example, be a combination

of the spindle coordinate system transformation followed by a workpiece transformation with

5

respect to the spindle.

Many of the components of these matrices are small so that the matrix multiplications make use

of the algebra of infinitesimals. That is, higher order terms are ignored. However, each of the

matrices are composed of elements that are functions of measured quantities. The individual

quantities will be described below.

3.2 Predictive Machine Calibration

The error vector at the tool tip consists of individual error components corresponding to different

structural elements of the machine tool. This is the result of the product of the homogeneous

transformations. In order to predict the resultant volumetric error at any location and at any time

in the machine work zone, all of these individual error components must be predicted. Although

these components are geometric error components of the structural elements of the machine tool,

their characteristics change as a result of such factors as thermal effects and loading conditions.

Currently, only the effects of nominal position and the thermal state of the machine on the

individual error components are considered. Factors such as tool post and workpiece deflection

are not considered although the mathematical model can account for such items. Thus, any error

(e) can be considered as some combination of nominal position (x) and temperature. This may be

expressed as:

e=a^+a^+a^ +-+bj'+bj' +• (7)

The coefficients in this equation can be determined by using least-squares curve-fitting techniques.

The data used in this analysis is obtained by making error measurements while monitoring axes

positions and temperatures on the machine structure. A description of this methodology and

related uncertainties due to data fitting for a particular machine tool are given in Donmez [5]. The

need to only measure individual axis related error components is at the basis of the rigid body

kinematic assumption.

Since a coordinate frame is assigned to each element of the machine tool, and these elements are

designed for shear rather than for bending, it is possible to determine the error at any nominal

position in a work zone by measuring the errors along the orthogonal axes of the work zone. This

procedure decreases the number of measurement points significantly since it eliminates the need

for grid measurements in the whole work zone.

6

3.3 Individual Error Contributions

The error components are classified into four groups with similar characteristics, measurement

procedures and measurement instrumentation. The four groups are: 1) linear displacement errors,

2) angular errors, 3) straightness-parallelism-orthogonality errors and 4) spindle thermal drift. A
schematic of all of the contributing errors is shown in Figure 1. This shows the nine axis related

errors that contribute to the total work volume error of an NC turning center.

3.3.1 Linear Displacement Errors

Linear displacement errors are errors of position of machine elements along their axes of motion.

This type of error is the direct result of drive system errors, such as erroneous lead of the ballscrew,

ballscrew misalignment, and coupling errors between the ballscrew and the feedback system. In

addition, displacement errors include displacements due to thermal effects on the ballscrew. Since

thermal effects are correlated with the effective length of the ballscrew, the linear displacement

errors are not easily decoupled and include position and thermally-induced components. For

example, it has been found (see Gilsinn, et. al. [11]) that the linear displacement error (6) for a

specific NC lathe at a nominal position (x) as a function of ballscrew bearing housing temperature

(T) can be described by an equation of the form:

6 = Aq + fljjc + + b^T + c^xT. (^)

where T here represents a particular thermocouple.

7

8

Figure

1:

The

component

errors

that

contribute

to

the

combined

X
and

Z

errors.

3.3.2

Angular Errors

Angular errors are rotational errors caused by geometric inaccuracies of the slideways and the

misalignment in the assemblies of structural elements of the machine tool. The three rotational

errors around the three orthogonal axes of the machine slide are defined as yaw, pitch and roll.

Yaw error is the rotational error of the slide around the axis perpendicular to the plane in which

the axis of motion lies. Pitch error is the rotational error of the slide around the axis which is in

the plane of motion and perpendicular to the axis of motion of the slide. Roll error is the

rotational error of the slide around the axis of motion. The contributions of all three types of

rotational errors to the resultant error are significant in three or more axis machining centers.

However, in turning centers, the contributions of roll and pitch errors to the resultant positioning

error of the cutting tool are in the nonsensitive direction, thus creating second order errors. The

nonsensitive direction in turning centers is the direction perpendicular to the plane in which the two

machine slides are moving. Therefore, yaw error measurements are sufficient for resultant error

calculations for turning centers of the type considered here. The yaw errors for an NC lathe have

been found to be of the form:

ey=aQ+a^x+a^^+b^T (9)

where the subscript y represents the yaw error.

3.3.3 Straightness-Parallelism-Orthogonalitv

Slide straightness error is the nonlinear translational movement of the slide in the two orthogonal

directions other than its axis of motion. Although straightness errors are translation errors rather

than rotational their functional form for an NC lathe have taken a similar one to the form of

angular errors described in section 3.3.2. Parallelism and orthogonality describe the angular

orientation of the machine axes with respect to each other. They have been found to be

polynomials with temperature dependence alone (see Donmez [5]).

3.3.4 Spindle Thermal Drift

Spindle thermal drift is the axial and radial translations along the axes of the machine tool along

with tilt motions in two orthogonal planes. These are thermally dependent functions only.

9

4.0 Some Regression Approach Shortcomings

For the turning center error functions described above two data sets were developed for each error

term (Gilsiim, et.al. [11]) These two data sets represented both forward and backward motions

along the axis of motion. The equation fitting process was one of trial and error. Engineering

judgement helped determine the appropriate variables entering each regression equation. This

judgement is based upon the knowledge of cause and effect relationships between temperature rise

and expansion of metal. The procedure did not lend itself to be automated, however.

Without engineering judgement, the regression process can become very unwieldy. In particular

for the turning center studied 40 thermocouples were used. Approximately 600 data samples were

taken along each axis of motion. A data sample included a nominal position along an axis of

motion and readings from the 40 thermocouples along with the measured error. Thus the initial

table for regression would be approximately 600 rows by 42 columns.

If a straightforward regression is required, to find equations up to quadratic order would require

adding 42 x 42 more columns to the data matrix to account for all possible product terms. The end

result would be a matrix of approximately 600 rows by 1800 columns. Standard regression packages

would require the inversion of an 1800 x 1800 matrix to determine the regression coefficients. This

is not a reasonable approach.

A stepwise regression procedure could begin by examining the correlation matrix between all of the

42 variables and select the first variable to enter the regression by the highest correlation

coefficient. Next, regression would be plotted against each of the other variables to determine

whether any of the other variables would likely enter the regression. If this process indicated

another variable could be added to the regression equation then another regression fit would be

performed with two variables. This process would continue until all variables are used up. Next

columns for all of the products would be added to the process. Again the data matrix would expand

to approximately 1800 columns.

It is clear that standard regression procedures are cumbersome when there are a large number of

variables involved. Physical intuition helps reduce the effort but cannot be easily introduced into

10

an automated means of generating the error component function maps. For this reason neural

networks are a possible alternative for generating component error maps.

5.0 Neural Networks

Neural Networks are linkages or networks of artificial processing units (or neurons) that model the

behavior of biological neural systems. Early studies of biological nervous systems guided the

structuring of neural networks. They can also be thought of as a weighted linking of distributed

adaptable processing units. These networks are often "taught” by presenting examples of inputs and

outputs to them and adjusting the weights and adapting the processing units so the neural network

reproduce as nearly as possible the known outputs for a given set of inputs. The techniques,

however, do not differ from those used in nonlinear regression.

Neural networks training can be thought of as solving a problem in classical approximation theory

(see Girosi and Poggio [12]). This theory deals with the approximating or interpolating a

continuous function f(x) by an approximating function F(w,x), where w is some vector of unknown

parameters. The approximation problem is to find the vector w of parameters that makes F(w,x)

match f(x) as closely as possible with respect to some predefined measure of closeness. Recent

research (see G. Cybenko [13]) has linked the class of neural networks called multilayered,

feedforward neural networks very closely with the classic approximation problem in the sense that

any continuous function of several variables over finite intervals can be approximated by a linear

combination of the functions defining the processing units. This will be discussed further below.

5.1 Parallel Distributed Processing Model

Neural networks can also be throught of from the point of view of parallel processing. According

to Rumelhart, et al. [14] eight elements are relevant here:

1. Processing Units

2. A state of activation for each unit.

3. An output function for each unit.

4. A connectivity pattern between units

11

5. A rule for propagating patterns through the network.

6. An activation rule that combines inputs to a unit to produce an activation level for that unit.

7. A learning rule that modifies weights based on sample input and output data.

8. An environment in which the neural network operates.

5.1.1 Processing Units

Processing units perform the simple job of receiving input from their neighbors in the connectivity

structure, compute an output and send it on to its neighbors. The system can be considered parallel

in that each unit can carry out a computation at the same time.

Three types of units make up a network: input, hidden and output. Input units receive data from

outside sources and output units send data to outside destinations. Hidden units are those whose

inputs and outputs lie within the network itself.

5.1.2 State of Activation

As understood here, activation values are continuous values between 0 and 1. When a processing

unit receives a weighted sum of inputs from connected neighboring cells it produces an output or

activation level. This is a number between the minimum of 0 and the maximum of 1. Mathemati-

cally this can be expressed as:

/ n

yi=fi
V=l

W,jX. 0. (10)

where represents the output activation signal from the i-th processing unit, represents the

weight of the j to i interconnection, represents the threshold value of the i-th processing unit.

The type of transformation given by

t - e,-

y=i

is called an affine transformation.

12

The input to a processing unit can be either the output from connected neighboring units or directly

from outside the network. The output from the i-th processing unit can be used either as input to

neighboring units or as output from the network. The value of the weight determines how

strongly the output of the j-th processing unit influences the activity of the i-th processing unit.

5.1.3 Output Function

The sigmoid (or S-shaped) output function is used in practice to determine the level of activation

of a processing unit. For the i-th processing unit it is in general specified as;

where

=
1
1 + e '

(12)

a. -E
y=i

- e. (13)

The threshold 6- acts as a filter for incoming signals and a- is referred to as the activation of the

i-th processing unit. It is transformed by the sigmoid function to determine the magnitude of the

current output signal from the i-th unit, c is a constant which determines how steeply the i-th

processing unit ascends from a minimum to a maximum value. It is taken as 1 in this report. The

smaller it is the slower the ascent, the larger it is the more rapid the ascent. In particular for large

values the sigmoid function begins to approximate a step function. The computational unit

described in sections 5.1.1 to 5.1.3 is usually called a perceptron. This model is shown in Figure 2.

This figure shows the weighted input to a processing unit from three sources. The output y is

computed as a sigmoid function of an affine transformation of the inputs. The output is shown

being sent to three other units.

5.1.4 Connectivity

Processing units are linked to each other. Units connected to others by links in the network are

sometimes referred to as neighbors. Each link in the network has a weight assigned to it as

13

described above. The total pattern of links can be represented by specifying the weights for each

of the connections in the network. A positive weight represents an excitation input and a negative

weight represents an inhibitory input to a processing unit. The absolute value of the weight

specifies the strength of the connection. The term fan-in is sometimes used to represent the

number of units that generate inputs to a given unit and the term fan-out is the number of units

affected by a given units output.

Network connectivity architectures can be divided into two types: recurrent and non-recurrent.

Recurrent networks are those in which loops exist. That is, a units output can by way of various

links in the network ultimately return to affect its own input. A network is non-recurrent if a units

output does not affect its input. An important subclass of non-recurrent networks are those in

which the processing units are organized in layers and only one way links are allowed between

adjacent layers. These networks are called feedforward networks. Feedforward networks are called

fully connected if each unit on a layer is connected to every unit on an adjacent layer. Thus if there

are n units on one layer and m units on an adjacent layer then there are n x m connetions.

A feedforward network is in general a multilayered neural network in which perceptrons are

arranged in layers, Where the output of one layer becomes the input to the next layer. Ordinarily

the outputs of the final layer are weighted and summed together to produce the output, but the

final layer can also act as perceptrons. This is the type of network used in the current study and

is illustrated in Figure 3 in which there are three input nodes, four hidden nodes and two output

nodes.

5.1.5 Rule of Propagation

A rule of propagation is one that specifies how output values from nodes are to be combined with

the connectivities to produce inputs to neighboring nodes. Since the networks used in the current

study are fully connected feedforward networks the overall propagation rule can be precisely

specified.

The network used in this study and described here is a three layer neural net with one input layer,

one hidden layer and one output layer. Let there be I input nodes, H hidden nodes and J output

nodes. Each input node is connected to each of the hidden nodes and each of the hidden nodes

14

PERCEPTRON

MODEL

(Artificial

Neuron)

15

Figure

2.

Perceptron

model

of

a

neural

network

processing

unit.

Hidden

Nodes

Fully

Connected,

Feed

Forward

Network

is connected to eveiy output node. This means that there are I x H x J connections between input

nodes and output nodes. Let be the external input to the network at the i-th input node where

i = 1, ..., I. h&tyfj be the output from h-th hidden node andzy be the output from the j-th output

node. Let wlf^- be the weight on the link that connects the i-th input node with the h-th hidden

node and let w2j^ be the weight on the link that connects the h-th hidden node with the j-th output

node. In order to simplify the notation slightly the threshold values in the nodal activations can be

considered as weights in the sum and a dummy input node and hidden node can be added with a

constant input value of 1. That is,

X,., = 1.0 (14)

at the dummy I+l input node and a constant output at the dummy hidden node of

yg.i
= 10 (15)

The output function at each hidden node and output node will be the sigmoid function with

c = 1.0.

With this notation the propagation rule can be stated as follows: For the j-th hidden node, j
= 1,

..., J compute

yh=f
//+i \

\i=i

(16)

where — l-O- Next compute for each of the J output units the following:

V=i

(17)

where
2 = 1.0. The output function at each processing node is given by the sigmoid function

f(s) =

1 +e
(18)

Therefore given any input vector x = (Xp...,Xj
)
the propagation rule above produces an output

vector z = () at the final node layer.

17

5.1.6

Activation Rule

This is a rule by which the inputs to a processing nodes are combined and operated on by the nodal

output function to produce a new activation level at the node. This process has been described

mathematically in section 5.1.2.

5.1.7 Connectivity Modification

Changing the connectivity of a parallel distributed processing model changes its "knowledge". This

can be done by:

1. Developing new connectivities.

2. Losing some connectivities.

3. Modifying the strengths of existing connectivities.

Developing new connectivities and losing connectivities can be considered special cases of 3 so that

this study will consider only means of modifying existing strengths.

By far the most popular technique for modifying the connectivity strengths is called the Back-

Propagation Algorithm. Other algorithms have recently shown better performance and one of these

will be discussed below. These algorithms are essentially optimization algorithms.

5.1.8 The Usage Environment

Separate implementations of a feedforward neural net were applied to develop a selected number

of component errors that enter into the kinematic turning center error correction model. Weights

were developed to predict the linear displacement error of one axis of the machine using existing

data. The inputs were axis locations and thermocouple readings. The outputs were individual error

values for this particular error component.

If all of the error maps were developed by the method of neural nets, then the weights for each of

the component errors entering the kinematic model would be looked up and the neural net

propagation rule evaluated to produce error values for each component. These component errors

18

would be cxjmbined in the kinematic model to produce the spatial error of the turning center at the

given nominal position and machine temperature state.

5.2 Learning Paradigm

The learning approach used to modify the connectivity strengths is based on the paradigm of

associative learning. In this paradigm the neural net adapts its weights to produce a particular

pattern of connectivities and activations on the output units when particular input data patterns are

presented to the input units. The goal is to find a set of connectivity weightings and threshold

values so that when a particular pattern of data appears at the input then the associated pattern

of output data appears at the output units. The connectivity strengths are modified iteratively to

try to teach the network (i.e. modify the connectivity strengths) so that during the training (or

iterative modification) process the output data patterns for given training input patterns are made

to more closely match the desired or target output data patterns for the given input patterns.

6.0 Gradient Descent Algorithms

Supervised training of a neural net involves the reduction of some error value. To assess the overall

training (or weight adjustments) a cumulative error over all data patterns in the training set must

be computed. In particular let there be P data patterns in the training set and J the number of

output nodes. Let Zp = {Zp2,...,Zpj) be the p-th output data pattern for the input vector Xp =

(Xpp...,Xpj). Furthermore, let tp = (tpj,...,tpj) be the desired or target data pattern for the p-th input

Xp. Then the root-mean-square normalized error for the training set is given by

1 E E
p=i j=i

(19)

19

For the purpose of developing the algorithms, however, let

p j

p^l /=l

(20)

and then

-i-yii.
<[Ri

(21)

In the next several sections a detailed discussion of the theoretical background of the computer

code ^ven in Appendix A will be ^ven. Much of the description of the optimization algorithm is

based on M0ller [9]. The notation used in 6.2 is motivated by that used in Rumelhart [14]. The

general optimization scheme is shown in Figure 4.

6.1 Algorithm Terminology

Vector notation will be used to simplify equations as much as possible. In particular, a network

weight vector is a vector in real euclidean space R^, where N is the total number of link weights and

nodal threshold parameters. Let

where wlj^j is the weight on the link that cormects the i-th input unit with the h-th hidden unit. The

superscript T refers to the transpose of the vector.

Let the cumulative error function equation (20) in section 6.0, be considered a function ofw and

denoted by E(w). The gradient E*(w), is ^ven by

E\w) -
dE dE dE dE dE dE dE

dwl
11 dwii^^i dwl^^ dwlHI dwlnj^i dw2^, dw21^+1

(23)

20

21

Figure

4.

Schematic

of

the

optimization

strategy.

The sum and difference of two vectors, w, v, in are given by

W + V =

W - V =
(24)

The inner product of two vectors, w, v, in is given by

w.y. (25)

i=l

The length or norm ofw is given by

|w|

N
(26)

The Taylor expansion in vector form for E(w) can be expressed as

E(w+y) = E(w) + EXw)^y + ^y^E''{w)y +... (27)

where E”(w) is an N x N matrix called the Hessian.

An N X N matrix A is said to be positive definite if

y'^Ay > 0 (28)

for all y in R^.

Finally, let P2,...,pj^
be non-zero vectors in R^. This set of vectors is said to be a conjugate system

with respect to a non-singular symmetric N x N matrix A if

pjAp. = 0 (29)

for all i,j = l,...,k, i ^ j.

22

6.2 Computing the Gradient

To begin the cx)mputation of the gradient, E’(w), note that if f(u) is the sigmoid function

then

3^ =y(w)
1

l+e-“
(30)

^ = /(«) = /(«)(! -/(«)) = y (i-y) (31)
du

For the fully connected feedforward network described in 5.1.5 introduce the notation

7+1

(32)

i=l

where h = 1,2,...,H for the hidden units and p represents the p-th pattern. The output of the h-th

hidden unit is then given by

yph =f{^h) =
1

1 +e
-sIl

(33)

The derivative of
ypj^

with respect to sl^ is then given by

(34)

from the property of the sigmoid function derivative. This derivative is referred to as hderiv(h) in

the program given in Appendix A.

For each of the output units,
j
= 1,2,...,J, let

£7+1

s2. = w2.,y^ (35)

h=l

23

The output of the sigmoid function is then given by

=m =
1 ~^i
1 +e ^

The derivative is given by

dz
pj _

ds2:

= -Zpy)

and is referred to as oderiv(j) in the program in Appendix A.

Let the contribution to the total error by the p-th data pattern be given by

The total error is then given by

p

p^i

For notation let

Note that the gradient component

BE _j.
dw2jk „.i dw2jk

depends on only the sum s2j for the j-th output unit since the output at the j-th output

only on w2jjj, h = Therefore by the chain rule of partial differentiation

(36)

(37)

(38)

(39)

(40)

(41)

it depends

24

(42)
a£ a£ ds2,

dw2jf^ ds2j dw2jf^

But from the definition of s2j,

ds2.
(43)

Therefore

(44)

To complete this, one must compute 6'’^. Referring to the definition of Ep

ds2j
(^PJ ^Pj) ds2j

since the output at the j-th output unit, Zpj, is the only one affected by s2j. But then

^ =
-{hj- ^Pj)h>j{^ -^Pi)

(45)

(46)

and therefore

(47)

This is referred to as delta2(p,j) in the program in Appendix A. Finally,

dE

dw2j^

P

-E (48)

In the program in Appendix A

gm2UM) =
dw2,

(49)

25

To compute the other components of the gradient

JE_ f 3. (50)

note that contributes only to the sum slj^. Therefore, from the chain rule,

dE^ dE^ dsl,

dwl,^ dsli, dwl^
(51)

But

dsh

dwl^
= X

pt (52)

Then, if one defines

the equation above yields

dwi^^

(53)

(54)

and it is left to compute Since slj^ only affects the output of the h-th hidden unit one can use

the chain rule and compute

^ph
(55)

But then

dE„

st
dE

p

^ph
ypK(^ -yph) (56)

From the definition of Ep

26

(57)

^ph

J

-E {tpj - hi)
^ph

But

or

^ph ^2
,- ^ph

(58)

^ph
(59)

Then

El
^pH

J

-E('p/ (60)

Then

El
dsl.

-y^(i - yp/.)E (‘pj
- Zp;)Zp/(i -

7=1

(61)

or

6J<. =ypi.{^ - ypk)T,
7=1

(62)

which is referred to as deltal(p,h) in the program and finally

dE

dwi^
= -E

p=l
^yH^pi

(63)

Note that in the program in Appendix A

27

(64)

dE

dwl,,

The order in which the gradient components are compute is a reverse order. That is, for each

pattern p, 5^^ is computed for each output unit, j
= Then the gradient component

dE

dw2j^

P

= -E
p^i

(65)

is computed. Next, for each hidden unit, h = 1,...,H, one computes

= yp*(i - yp*)E

and sets

dE

dwl^

p

-E ^’’yh^pi

(66)

(67)

This is the reason that this method of computing the gradient is referred to as the method of back

propagation. The term delta rule is sometimes used for obvious reasons. The implementation of

this computation is given in the subroutine FORWARD in Appendix A.

6.3 Descent Strate^

The idea of the strategy used to minimize the error function E(w) is given in the following steps:

1. Select an initial weight vector and set n — 1.

2. Determine a search direction and a step size so that if E(Wjj + Aw^) < E(w^) where Aw^

= a^Pn*

3. Compute E’(Wjj) and update the current weight vector: + Aw„-

28

4. If E’(Wjj) ^ 0 then update the iteration counter n = n + 1 and go back to step 2. Otherwise,

return as the desired weight vector that minimizes E(w).

Various implementations of this strategy differ at step 2 in how to select a search direction and step

size.

6.4 Back Propagation Algorithm

The back propagation terminology should be applied strictly to the method of computing the

gradient of the error function as done in section 6.2. It is, though, generally applied to the method

of updating the weight vector by stepping in the dirction of the steepest descent.

To identify each iterative step, n will be used to designate the n-th step. At the n-th step the weight

update rule for the back propagation algorithm is

Awl^in)
dE

dwl
(n)

hi p=l
Pt

(68)

and

Aw2jf^(n) = -Ti
dE

dw2ji,
(«) =

>1

Z

P=1

'ph
(69)

where r{ is the multiplier that specifies the step size. It is sometimes referred to as the learning

rate. The index n indicates values computed at the n-th stage of the algorithm. The updated

weights are often computed as

Aw2j^(n)

““H — (w) + aAwL.(n-l)
dwlf^

^

-r\ (n) + aAw2.,(n-l)
dw2.^

(70)

The last term in the sum is called the momentum term and is used as a means of increasing the

convergence rate. The back propagation update procedure is equivalent to setting

29

Pu
= -E'(y^) (71)

in 6.3 and ~ r|, a constant. This does not include the momentum term. The end result is a

minimization procedure based on the first order Taylor series approximation

£(w+y) ~ E{w) + E'{wYy (7^)

This linear approximation is one reason for the poor convergence record of the back propagation

algorithm. Hie use of a constant step length does not give the algorithm the robustness of an

adaptively adjusted step size. Adding the momentum term as an attempt to make the algorithm

approximately second order adds another constant multipier that again adds to the lack of

robustness of the algorithm. In fact if the learning rate parameter is not selected properly

oscillations in the error function can be generated without producing any descent.

6.5 Scaled Conjugate Gradient Algorithm

The algorithm in this section is due to M0ller [9].

Assume that the error function E from equation (20) can be approximated locally (i.e. in a

neighborhood of a weight vector w) by a quadratic function of the form

^?wCy) " -^(^) E'{wYy + ~y'^E'\w)y (73)

where the subscript q stands for quadratic. The minimum of Eq^(y) is among the critical points

which are found by solving

E^(y) = E"(w)y + E'(w) = 0 (74)

for y. If the Hessian, E”(w), is positive definite then there is a unique global minimum. The

minimum can be computed iteratively. Two issues arise: How to select the search directions and

how to maintain the local Hessian positive definite for a non-quadratic function.

Let pj,...,pj^ be a conjugate system with respect to the Hessian. pj,...,pj^ forms a basis for R^. The

vector from the initial point y^ to the minimum y* can be expressed as a unique linear combination

30

of

N

y. -yi=T, «-iPi

i=l

(75)

for some aj’s real. The aj’s can be computed as follows: Multiply the Eq. (75) by p jE”(w) and get

pl(E"{w)y, - £V)y,) = <tjplE"(w)p. (76)

Using

gives

£V) = -E"{w)y^

p/(-E\w) - E"(w)y,) = ajp/E"(w)p.
T -nil/

(77)

(78)

Noting that

one can solve for aj as

= E"(w)y, + E'(w)

^ ^
-PjE^jy,)

’ pjE"(vi)p.

(79)

(80)

Therefore the minimum of the quadratic, y*, can be computed in N iterative steps. This can be

restated as follows. Let p^vjPn ^ conjugate system relative to the Hessian and let be an

initial point in the weight space. Determine the points y2»—jYn+i recursively by

y*.! =yt* <^tPk

where

and

(82)

31

(83)
§4 = PtE"(w)p^

Then y^j+j minimizes Eq„(y).

It is not necessary to assume that a conjugate system be known ahead of time. It is

possible to compute them iteratively along with the computation of y2J—jyN+i (Hestenes[15]). In

fact, be^n with in the weight space and take initially

the initial steepest descent. Then compute recursively

yk*i = y* * ^kPk

where aj^ is given above in Eq. (82) and

(86)

Set

Pk*i = '•**1 ^kPk

where

(88)

That is, is determined recursively as a linear combination of the current descent direction,

2, and the previous direction pj^..

Since the error function, E(w), is not necessarily quadratic the algorithm will not necessarily

converge in N steps. If it does not, then the algorithm is started again with the steepest descent

at the current point and continued.

32

At this point if one assumes that E”(w) is positive definite then the descent strategy from section

6.3 for the conjugate gradient algorithm can be stated as follows:
1.

Initialize. Set the iteration counter k = 1. Select an initial weight vector w^. Select the steepest

descent at as the initial direction

p, = r, = -£'(w,) (89)

2.

Calculate the current step length

5^
=

^ Pk ^k

= Plh

3.

Update the weight vector

^kPk

(90)

(91)

4.

Get the new descent direction

;fc+i

= -^Wi) (92)

5.

If the iteration counter k is a multiple of N then restart the algorithm by setting the direction

to the current steepest descent and continue:

Pk*l ^k*l
(93)

6. If k is not a multiple of N then compute a new conjugate direction by setting

7. If the steepest descent 0 then increment the iteration counter k = k + 1 and go back to

step 2 to get a new step length.

33

(94)

Pt*i

8. If Fjj = 0 then return
^
as the minimum.

For each iteration of this version of the algorithm the Hessian E”(wj^) must be computed and

stored. This can be a large matrix. Another approach is to estimate Sj^ in step 2 above by the

difference quotient (Hestenes [15])

s. = E%w,)p, « (95)

where 0 < Oj^ << 1. But this does not totally solve the minimization problem.

The previous algorithm assumed that E”(w) was globally positive definite and that the quadratic

approximation is a good approximation of E(w). Two devices have to be introduced to assure this.

The first device is to introduce a positive scalar parameter, by setting

EVi + OjP*) - £H)
, , .

:: Vi (96)

The parameter (called a Marquardt-Levenberg parameter) is chosen to control the positive

definiteness of E”(wjj). The second device is introduced to control how good the quadratic

approximation is. This is done by setting

^ ^
gCWj) - E(yv^*atPt)

‘ £(Wj) - EJ,a^p^

Ajj measures how well Eq^(ajjPjj) approximates E(wjj+ajjPjj). If Aj^ is close to 1 it indicates a good

approximation.

At each iteration the sign of in step 2 above tells the definiteness of E”(wij)- If > 0 it is

positive definite. If < 0 then must be adjusted to make 5jj > 0. The adjusted value is

computed as

34

I

(98)

A new 5j^ is computed as

K = - h)\Pkf = -6* - h\p^f (59)

The new step size is then given by

a,. =

6 .

\^k

T
h\Ptf

(100)

As a note here, the bigger the smaller the step size The strategy (see Fletcher [16]) in

adjusting also involves testing the measure Aj^. In particular, if > 0.75, can be relaxed by

setting

K =
(101)

This allows longer step lengths. If Aj^ < 0.25 then X^ is made larger by

(102)

This forces shorter steps in regions where the quadratic assumption is weaker.

The final scaled conjugate gradient algorithm (M0ller [9]) can now be stated:

1. a. Select an initial weight vector and scalars a > 0, X^ > 0, and X^ = 0.

b. Set the initial search direction to the steepest descent and the iteration counter, k, to 1, i.e.

= -E’(wi) k = 1.

c. Set a logical flag to true to indicate that a successful step to reduce the error function can be

made: success = .true.

35

2. If a successful reduction in error cannot be made, i.e. success = .false., then go on to step 3.

If a successful reduction in error can be made, i.e. success = .true., calculate new second order

terms:

a

5
k

T
Pk^k

(103)

3. Scale the approximate Hessian, Sj^, and the definiteness parameter, 5jj.:

^k
~

^k (^k~^k)^k\^

(104)

4. If the approximate Hessian is positive definite, 5^^ > 0, then go to step 5 to calculate a new step

size. If the approximate Hessian is not positive definite, < 0, then make it positive definite:

^k= ^k^
(6.)*

A, = 2 X.-—

2

''til

^tir

ip

^k ~ _^k

^k
~ ^k

(105)

5. Calculate the step size:

\^k = Pkh
(106)

6. Calculate the comparison parameter that measures how close the error function is to quadratic

at the current weight vector:

36

(107)A
k

26^[£(w^)-£(w^ + g,/7^)]

2

\^k

1. If Aj^ > 0 then a successful reduction in error can be made. Set success = .true, and

^kPk

'•w
= -£'(«'»..) (108)

=0

7a. Test whether k is a multiple of N.

7a.l. If so then restart the algorithm by setting the current direction to the current steepest

descent, and go on to step 7b.

7a.2. If not then create a new conjugate direction to step in by setting:

Pjt

Pk^i = '*.1 ^kPk

(109)

7b. If Aj^ > 0.75 then the quadratic approximation is considered trustworthy and the scale

parameter for the Hessian can be reduced by setting

k
k (110)

7c. If Ajj < 0 then a reduction in the error function is not possible. Set success = .false, and

r. = X, (111)

If there are too many failures in a row terminate the algorithm, otherwise continue to step 8.

8. If Ajj < 0.25 then the quadratic approximation is considered untrustworthy and the Hessian scale

37

parameter is increased to reduce the step size by setting

(112)

9a. If the steepest descent is nonzero, rj^ ^ 0, then update the iteration counter, k = k+1, and go

back to step 2.

9b. Otherwise, terminate the algorithm and return the weight vector for the desired

minimum.

The implementation by Dr. James Blue at NIST of M0ller’s algorithm is given in the subroutine

OPTWTS in Appendix A. For a comparison of the numerical advantages of the scaled conjugate

gradient technique versus the straightforward back propagation method see Grother and Blue [8].

7.0 Adjusting for 111 Conditioning

The discussion in this section is based on the results of Tychonov and Arsenin [17]. Since some

problems have solutions that are sensitive to small computational errors they have introduced a

technique that can be used to reduce this sensitivity. It is called the method of regularization.

There are other methods but in this section only the technique used in the program in Appendix

A will be discussed. For a discussion of other methods see Saarinen, Bramley and C^benko [18].

Let w be an n-dimensional real vector and z an m-dimensional real vector where n is greater than

or equal to m. The object is to find w such that

F(w) = z (113)

for a given z. The solution of this problem comes about by finding a map, R, such that

w = F(z). (114)

Since there might be no unique w to solve (113), R may not be uniquely defined.

In general, R in equation (114) will be called stable ifw depends continuously on z. More formally,

define a metric in n-dimensional space by

38

(115)Wj - IV, =

N
E - ’*’2,)'

i=l

For the moment assume that to every z there is a unique w such that w = R(z). The problem of

finding R is said to be stable if, for every s > 0, there exists a 5(s) such that

||z, -
ZjI i 6(€) - ||iv, - W

2
II

£ e (116)

where = RCz^), W2 = R(z2). Thus, small perturbations in z lead to small perturbations in w.

A stable problem is also called a well posed problem.

The problem of finding an approximate solution of (113), given z, in an ill posed case, i.e. not stable

as defined above, may be ambiguous in that there may be multiple solutions. Suppose that in (113)

z is only known approximately as z^ where

Iz
-

z^l £ 6. (117)

Let

<?6 M -

The problem of finding an approximate solution for (113) reduces to selecting an appropriate w

from Qg. This set may be too large so that not every element can be selected.

Suppose that F(wq) = Zq. An operator R(z,a), depending on a parameter a, is called a regularizing

operator for F(w) = z if

(1) there is a 5q > 0 such that the operator is defined for every a > 0 and

Iz
- ZolM S ^

and

(2) there exists a function a = a(5) such that for every s > 0 there exists 6(s) < 6q such that

where Wg = R(zg,a(5)). This says that, given a regularizing operator for (113), if

39

Woll £ e. (120)1^6
- Zo|h “ Ihs

Ih -
Zol ^ « (121)

then Wg = R(z8,a(6)) can be taken as an approximate solution. This solution is called the

regularized solution and a the regularizing parameter. TTie definition also implies that the existence

of a regularizing operator defines a stable method of approximating a solution to (113). Therefore

the problem of finding an approximate solution of (113) that is stable under small changes in the

right hand side reduces to finding an appropriate regularization operator and determining the

regularization parameter. This is called the Tychonov regularization method.

Define the function

Cliw)=\\wf (122)

This is called a stabilizing function. The set of w such that

Iwf <. d (123)

for a fixed d is closed and bounded. Equation (120) is taken as the stabilizing function and will be

used in the following manner:

Assume F(w) = Zq has a unique solution for the moment, called Wq. Let Zj be an approximation

to Zq such that

1^5
- Zolh (124)

Define

(?5 = (w||F(w) - z,| s 6}. (125)

The strategy for defining a regularization operator will be to look for elements in Qg that minimize

n(w). If Wg is such a number then the mapping Wg = R(zg,6) will be defined. It can be shown (see

40

Tychonov and Arsenin [17]) that R(z,6) is a regularizing operator and can be taken as an

approximate solution of (113) for z = Zq.

From this it is clear that the problem of finding an approximate solution of (113) with approximate

right hand side Zg consists of finding Wg where

min

and

Q5 = {>^I||W -
Zfilh (127)

If w = 0 is not an element of Qg then it can be shown (Tychonov and Arsenin [17]) that the

greatest lower bound of Q(w) on Qg is attained at an element Wg such that

||^(n) - z«|h 6- (128)

This says that the problem of solving (113) with approximate right hand side Zg is equivalent to the

conditional extremum problem of finding

min||w|p (12^)

subject to

1F(h.) - z,|| = 6. (130)

The method of Lagrange multipliers is used to solve this problem by minimizing

L(w,a) = ||F(w) - Zgf + alwf (1^1)

where a is determined by the condition that

41

IIfK) -
Z.I = 6 (132)

and is an element for which L(w,a) attains its greatest lower bound. Computationally a can be

found by taking a sequence of a’s

OL
k

(133)

where ag is fixed and 0 < q < 1 for k = 0, 1, 2, For each minimize (129) and calculate the

differences

P(V-^»||- (134)

Select such that

= 6 . (135)

In practice though an a is selected experimentally (see Grother and Blue [8]).

The method of Lagrange multipiers is used in the program in Appendix A. In the subroutine

FUNC the Lagrange multiplier is called wfactor and is read in from the run input file.

8.0 Statistical Goodness-of-Fit Measures

Since the neural net model assumed in the feedforward network is nonlinear the usual statistical

goodness-of-fit tests applied in linear regression analysis are not directly applicable. However, the

residuals between the target training data and the predicted data can be compared against a normal

distribution. This comparison can be used to test whether the distribution of residuals forms a

normal distribution with mean 0.

Before a test against a normal distribution is made the statistics to look at are: 1. Mean, 2. Standard

deviation and 3. Minimum and Maximum values. The mean and standard deviation can be used

to transform the residual errors given by

42

e(i) = Target(i) - Pred(i) (136)

for i = 1 to the number of samples to a standardized form. If the residuals e(i) satisfy a normal

distribution with sample mean e and sample standard deviation s, for sufficiently large samples,

E(i) = (e(i) - e)/s (137)

approximates a standard normal distribution, i.e. a normal distribution with mean 0 and standard

deviation 1. To test the hypothesis of normality the distribution E(i) can be compared to a

standard normal distribution. The test can be performed by using the Kolmogorov-Smimov test.

The Kolmogorov-Smimov two-sample test is a statistical test of whether two independent samples

have been drawn from the same population (or from populations with the same distribution). The

two-tailed test is sensitive to any kind of difference in the distribution from which the two samples

were drawn. The test is concerned with agreement between two cumulative distributions. If the

two samples have in fact been drawn from the same population distribution then the cumulative

distributions of both samples may be expected to be fairly close to each other. A large enough

deviation between two sample cumulative distributions is evidence for rejecting the hypothesis that

they are drawn from the same distribution.

The test involves specifying the cumulative frequency distribution which would occur under the

theoretical distribution and comparing that with the observed cumulative distribution. The

theoretical distribution represents what would be expected under the null hypothesis which is that

the normalized residuals satisfy the normal distribution with mean 0 and standard deviation 1. The

point at which these two distributions, theoretical and observed, show the greatest divergence is

determined. This statistic is used to perform the test.

For comparing one data set E(x) to a known cumulative distribution the statistic of interest is

®
I

'E(^) - -pw I

The significance level of an observed value of D is given approximately by the equation

43

00

(139)

>=i

The significance of an observed value of D is given approximately by

Prob{D ^Observed D) = Qj^{\fNObserved D) (1^0)

To compute the standardized cumulative normal one computes

X

F(x) =— fe (141)

v/27t

for X > 0 and F(x) — 1 - F(-x) for x < 0. Instead of directly computing the standardized cumulative

normal one Eq. (139), we can associate F(x) with the error function

X

(142)

by the relation F(x) = 0.5(1 +erf(xA/2)) for x > 0 and F(x) = 1 - F(-x) for x < 0. The error

function can be approximated by a polynomial as given in the ERF subroutine of the accompanying

program.

9.0 Geometric-Thermal Error Component Mapping

As shown earlier in Fig. 1, there are multiple sets of functions used as inputs to a kinematic model

to predict work volume error. This study takes a limited subset of those data sets to demonstrate

the nonlinear regression capabilities of a feedforward neural network to fit these data sets. Two

data sets are used. The measurement given in these two data sets were taken at different times.

They are the x-axis displacement errors moving vertically downward and vertically upward (see

Figure 5). The data shows that the hysteresis errors in approaching a point on an axis must be

mapped as two separate functions.

The criteria for a good fit are to have a distribution of the residuals after an optimization or test

run that has a near zero mean and has a standard deviation of less than half a micrometer. The

44

standard deviation requirement was based on the resolution of the correction available for this

machine tool.

9.1 X-Displacement (Down)

The data for this section was taken while the cross-slide of the lathe moved downwards.

The original data set included 595 records that listed nominal position, displacement error at that

nominal position and 40 thermocouple readings. For the locations of the thermocouples see Figure

5 and Table 1. Every third point was selected for a testing set of data (198 points). The rest (397

points) were taken for training.

The total number of the records included 35 repetitions of 17 samples from -12.7 mm to -215.9 mm

along the x-axis, with a sampling increment of -12.7 mm. The negative sign is used because the

machine "home", or zero position, is approximately 386 mm above the spindle axis. A partial

sample of the data set is shown in Table 2. The first row shows the number of data samples in the

data set, the number of inputs (41, i.e. one nominal position and 40 thermocouples), the number

of outputs (in this study 1), and a scale factor for unit conversion if necessary. The next row is a

set of column titles. "Position" refers to the column beginning with -12.7 (nominal position in

millimeters), "Diff refers to the column begirming with -1.1631E-3 (the measured error in

millimeters). 0,1,2 are headers for the next three columns. Note that the last one was wrapped

around by the printer. These columns are the thermocouple readings in Celsius for thermocouples

0, 1, 2. The columns for the other thermocouple readings are stacked in groups of 6 below the first

397 records. That is 397 records for thermocouples 3 through 8 are grouped after the first group,

then 397 records for thermocouples 9 through 14, etc.

The first set of 397 records has the first column as an index of the order in the group of 17 nominal

position samples. Thus 1 in column 1 indicates the first of 17 positions, 2 the second, etc. The

group numbers repeat for every repetition of the 17 samples. Note that some of the indices are

missing. These records have been extracted to form a file of test value to check the nonlinear

45

Ballscrew

housing

38

46

Figure

5.

Turning

Center

with

Thermocouple

locations

identified

LOCATION NO. LOCATION

0 Bottom of X-(Glass) Scale 20 Left End of Lower Z-Way

1 Top of X-Scale 21 Left End of Upper Z-Way

2 Coolant Tank 22 Right End of Lower Z-Way

3 Ambient 23 Right End of Upper Z-Way

4 Not Used 24 Lower FRont of Spindle Head

5 Not Used 25 Lower Rear of Spindle Head

6 Top Right of Bed 26 Upper Front of Spindle Head

7 Right of Z-Scale 27 Upper Rear of Spindle Head

8 Right Center of Z-Scale 28 Left of Top of Spindle Head

9 Left Center of Z-Scale 29 Middel of Top of Spindle Head

10 Left of Z-Scale 30 Right of Top of Spindle Head

11 Top of X-Way 31 Bottom Left of Bed

12 Bottom of X-Way 32 Top Left of Bed

13 Bottom of X-Head 33 Bottom Right of Bed

14 Top of X-Head 34 Not Used

15 Bottom of Z-Slide 35 Near X-Drive Motor Shaft Bearing

16 Top Left of Z-Slide 36 Left Z-Ballscrew Bearing

17 Bottom Right of Z-Slide 37 Right Z-Ballscrew Bearing

18 Top Right of Z-Slide 38 X-Ballscrew Housing

19 Hydraulic Tank 39 Z-Ballscrew Nut

Table 1. Thermocouple locations on the turning center.

47

397 41 1 1.000000
POSITION DIFF. 012

1
22.61200

-12.70000 -1.1631000E-03 22.58143 22.58286

2
22.61400

-25.40000 -3.2432000E-03 22.58286 22.58571

4
22.61800

-50.80000 -7.4136001E-03 22.58571 22.59143

5
22.62000

-63.50000 -9.2676003E-03 22.58714 22.59429

7
22.62400

-88.90000 -1.2797900E-02 22.59000 22.60000

8
22.62600

-101.6000 -1.4575700E-02 22.59143 22.60286

10
22.63000

-127.0000 -1.7064501E-02 22.59429 22.60857

11
22.63200

-139.7000 -1.8334400E-02 22.59571 22.61143

13
22.63600

-165.1000 -2.0315200E-02 22.59857 22.61714

14
22.63800

-177.8000 -2.1559600E-02 22.60000 22.62000

16
22.64200

-203.2000 -2.3108700E-02 22.60286 22.62571

17
22.64400

-215.9000 -2.3184700E-02 22.60429 22.62857

2
22.69029

-25.40000 -4.2566000E-03 22.63571 22.71314

3

22.69543
-38.10000 -6.3721999E-03 22.63857 22.72971

5
22.70572

-63.50000 -1.0079800E-02 22.64429 22.76286

6
22.71086

-76.20000 -1.1552600E-02 22.64714 22.77943

8
22.72114

-101.6000 -1.5183800E-02 22.65286 22.81257

9
22.72629

-114.3000 -1.6554900E-02 22.65571 22.82914

11
22.73657

-139.7000 -1.8839600E-02 22.66143 22.86229

12
22.74171

-152.4000 -1.9727901E-02 22.66429 22.87886

14
22.75200

-177.8000 -2.1961600E-02 22.67000 22.91200

15
22.75714

-190.5000 -2.2824399E-02 22.67286 22.92857

17
22.76743

-215.9000 -2.3432100E-02 22.67857 22.96171

1
22.86857

-12.70000 -1.1750000E-03 22.73372 23.26657

3

22.88571
-38.10000 -5.3284001E-03 22.74114 23.27971

4
22.89429

-50.80000 -7.1814000E-03 22.74486 23.28629

6
22.91143

-76.20000 -1.0404900E-02 22.75229 23.29943

7
22.92000

-88.90000 -1.2283200E-02 22.75600 23.30600

9
22.93714

-114.3000 -1.5252300E-02 22.76343 23.31914

Table 2. A partial sample input data.

48

regression.

The original data set included results from four thermocouples that failed. They were thermocoupl-

es numbered 3, 4, 16, and 19. These readings were set to zero and left in the neural net training

process to determine whether the neural net algorithm would weight the fitting towards the nonzero

columns. The results of the training are given in the next section.

After 1000 iterations of the conjugate gradient optimization routine the residuals between the target

values and the predicted values exhibited a normal distribution. The following statistics summarize

the distribution of residuals:

Mean = 0.4791046E-5 mm

Std. Dev. = 0.3068930E-3 mm

Range = 0.2006001E-2 mm

Minimum = -0.1096E-2 mm

Maximum = 0.9100009E-3 mm

A histogram of the residuals is shown in Figure 6 . The figure shows the near normality of the

distribution with a slight skew to the positive side. The normality of these residuals is a sign that

the errors after the fit exhibit randomness and do not reflect errors in the model.

Two other tests of the normality of the residuals are shown in Figures 7 and 8. The first is the

normality plot. The normality plot for a given distribution is a graphical data analysis technique

for determining if the given distribution provides a good distributional fit to the data. The vertical

axis is the ordered raw data. The horizontal axis is the ordered statistic from the normal

distribution with mean 0 and standard deviation 1. The axis shows from -3 standard deviations to

+3 standard deviations. The linearity of the plot is of interest. The more linear the plot the better

the distributional fit. The plot exhibits a linear trend, thus indicating normality.

Figure 8 is a correlation coefficient plot. It is a graphical data analysis technique for determining

which member of an entire family of distributions provides the best fit to the data. The normal

distribution is one of a large family of distributions called the Tukey lambda distributional family.

The family is parameterized by a simple value extending from -2 to 2. The value of the family

representing the normal distribution is 0.14. Thus if the data exhibits a normal distribution, the

49

correlation coefficient with each of the members of the Tukey family should reach a maximum with

respect to the family parameter at 0.14. In fact the residual data achieves a maximum of 0.9911880

at 0.14. This shows how close the residual data correlates with the normal distribution.

These results were generated by the software package DATAPLOT (see Filliben [19]) at NIST.

These fitting results show that the neural net algorithm does take the zero columns as part of the

input pattern and still reduces the regularized RMS error so that the standard deviation of the

residual errors falls within the desired value of less than half a micrometer. In particular, the

standard deviation is approximately 0.3 micrometers with a mean of approximately 0.005

micrometers.

After fitting the neural net, the optimum weights were then used to compute the predicted output

for 198 test samples of the X-Displacement (Down) data. These samples were all selected

separately from the pattern samples used to fit the weights. The results were as follows:

Mean = -0.2961085 E - 4 mm

Std. Dev. = 0.2255760 E - 3 mm

Range = 0.2019778 E - 2 mm

Minimum = -0.1119867 E - 2 mm
Maximum = 0.8999112 E - 3 mm

These are comparable to the results obtained during the fitting process. They again fall within the

desired criteria even through the columns with zeroed data have been left as part of the patterns.

The Kolmogorov-Smimov statistic for the residual distribution does not confirm that it is normally

distributed. However, Figure 9 shows that the major position of the distribution is centered near

zero as the mean suggests and falls between -5E-3 and +5E-3. This statistical test is thus too fine

a test for the distribution generated. Although its results are reported, they will not be referred to

in the later neural net fitting trials.

50

E
E
c

51

Figure

6.

Histogram

plot

of

the

residual

error

distribution

after

the

fit

of

the

x-displacement

(down)

data

i

0.001

52

Figure

7.

Normality

plot

for

residuals

of

the

x-displacement

(down)

data.

T- 0> 00
o o

fv. to
o o

to ^ CO CM
o d o d

53

Figure

8.

Correlation

Coefficient

Plot

for

the

residuals

of

the

x-displacement

(down)

data

Another training run of 1500 iterations of the neural net was done but without the zeroed data

from the four failed theromcouples. There were then 37 input nodes. The results of this fit are

Mean - 0.2527817 E - 5

Standard Deviation - 0.1701827 E - 3

Minimum = -0.6710416 E - 3

Maximum = 0.7603451 E - 3

These values show that the neural net algorithm was able to reduce the standard deviation of the

error well below the accpetable criteria. Figure 10 shows the error reduction curve for the

regularized RMS error as a function of the iteation cycles. Figure 11 shows the histogram of the

residual errors.

A test was performed with 198 patterns. The residual statistics for this test were:

Mean == -0.2718773 E - 4 mm
Standard Deviation 0.1935153 E - 3 mm
Minimum = -0.8775685 E - 3 mm
Maximum = 0.1151932 E - 2 mm

54

X-Displacement

(Down)

Test

55

Residual

errors

are

in

millimeters.

X-Displacement

(Down)

Train

in in CO in Cd in -T— in o
•

•o CO
m

•o CVJ
•

•o •

•o o
•o o o o o

JOJJ3 si/\iy pszuBinBey

56

0

200

400

600

800

1000

1200

1400

1600

Conjugate

Gradient

Iteration

Cycles

Figure

10.

Error

reduction

curve

for

training

on

data

with

failed

thermocouples

removed.

Regularized

RMS

errors

are

in

millimeters.

X-Displacement

(Down)

T
rain

GOO

siujOd io jequjnN

57

Figure

11.

Histogram

of

residuals

for

training

data

with

failed

thermocouples

removed.

Residual

errors

are

in

millimeters.

X-Displacement

(Down)

Test

c

s^ujOd 10 jeqiunN

58

Figure

11
A.

Histogram

of

residuals

for

testing

the

trained

neural

net

with

failed

thermocouples

removed.

Residual

errors

are

i

millimeters.

?

9.2 X-Displacement (Up)

In this data set all columns of thermocouple data that were not usable were eliminated from the

fitting process. Only 35 thermocouples were operating since thermocouples 0, 4, 5, 17, and 20 failed

to function. Therefore, 36 inputs to the neural net were used with 60 hidden nodes and one output

node. This generated 2581 unknown weights.

After 1500 iterations the conjugate gradient algorithm reported the following statistics for the

residual error between the measured and predicted outputs:

Mean = 0.1994597 E - 5 mm
Standards Deviation = 0.1338334 E - 3 mm

Minimum = -0.1036018 E - 2 mm

Maximum = 0.7032966 E - 3 mm

The regularized RMS error as a function of the iterations cycle is shown in Figure 12 and the

histogram of the residuals after the fitting is shown in Figure 13.

A test was run on independent data using the fitted weights and the residual errors reported were:

Mean = 0.2145889 E - 4 mm
Standard Deviation = 0.1509593 E - 3 mm

Minimum = -0.8786396 E - 3 mm

Maximum = 0.7763319 E - 3 mm

The histogram of the residuals for the test run are shwon in Figure 13a.

59

X-Displacement

(Up)

T
rain

CM C30 CD CM T- CO CO CM
•O T“

• • • CD O
•
o

•
o O

•o O o O o o o o
jojjg si/\lti pezueinSsy

60

0

200

400

600

800

100012001400

1600

Conjugate

Gradient

Iteration

Cycles

Figure

12.

Regularized

RMS

error

training

eurve

for

X-displaeement

upwards

with

failed

thermocouples

removed.

Regularized

RMS

errors

are

in

millimeters.

X-Displacement

(Up)

Train

SlUjOd jaqiunN

61

Figure

13.

Histogram

of

residuals

after

neural

net

training

on

X-displacement

upward

data

with

failed

thermocouples

removed.

Residual

errors

are

in

millimeters.

|

X-Displacement

(Up)

Test

62

Residual

errors

are

in

millimeters.

9.3 X-Displacement (Down) with X-Axis Related Thermocouples

In this numerical experiment only X-Axis related thermocouples as shown in Table 1 are used for

inputs. The thermocouples used in the fitting of the data were numbered 0, 1, 11, 12, 13, 14, 35,

and 35 in Table 1. The fitting algorithm reported the following results:

Mean = 0.1879598 E - 5 mm

Standard Deviation = 0.3769576 E - 3 mm

Minimum = -0.2565682 E - 2 mm
Maximum = 0.1568761 E - 2 mm

The regularized RMS error curve is shown in Figure 14 and the histogram of residual errors is

given in Figure 15. Note that the residual errors in this case seem to distribute themselves

bimodally around zero. The base of the distribution is broader than those resulting from fitting

experiments using all the usable thermocouples.

A test was then performed on 198 data patterns not used in the fitting process. The statistics

associated with the residuals for this test data were:

Mean = -0.2894112 E - 4 mm

Standard Deviation = 0.3918001 E - 3 mm
Minimum = -0.2590802 E - 2 mm
Maximum = 0.1427975 E - 2 mm

The histogram of the test residuals is given in Figure 15A.

9.4 X-Displacement (Down) with Z-Axis Related Thermocouples

In this section only the Z-Axis related thermocouples are used as inputs. From Table 1 the

thermocouples used were 7, 8,9, 10, 15, 17, 18, 20, 21, 22, 23, 36, 37, and 39. Although 16 is z-axis

related, it failed and was not used. The fitting algorithm reported the following results:

Mean = 0.9919781 E - 6 mm
Standard Deviation = 0.1879221 E - 3 mm
Minimum = -0.1144482 E - 2 mm
Maximum = 0.6796103 E - 3 mm

63

X-Displacement

(Down)

Train

X-Axis

Related

Thermocouples

Only

(/)

0
O
O
c
o
CO

CD

c
0
’u
CO

0
0
4-»0
O)
D
'c'
o
O

JOJJ3 siAiy p0Z!JB|nB0y

"O

N

3
too
o

cn

O-
D
OO
O
B
kM
o

><

too
a

. a
4-)

T3
c/3

•a
t-i

cd

C/D

><

C3 <D

1 e
<U

Uc

3)

64

X-Displacement

(Down)

Train

X-Axis

Related

Thermocouples

Only

sjujOd io JsqujnN

65

Figure

15.

Histogram

of

residuals

after

training

with

X-displacement

downwards

data

for

X-axis

related

thermocouples.

Residual

errors

are

in

millimeters.

X-Displacement

(Down)

Test

X-Axis

Related

Thermocouples

Only

66

thermocouples.

Residual

errors

are

in

millimeters.

The regularized RMS error curve is shown in Figure 16 and the histogram of the residual errors

is given in Figure 17.

A test was performed on 198 separate data patterns. The test statistics of the residuals were:

Mean = -0.3042790 E - 4 mm

Standard Deviation = 0.2007157 E - 3 mm

Minimum = -0.1336623 E - 2 mm

Maximum = 0.9711841 E - 3 mm

A histogram of the test residuals is given in Figure 17A.

9.5 X-Displacement (Up) with X-Axis Related Thermocouples

This numerical experiment repeats that described in section 9.3 but used the data measured while

the tool turret moved upwards. Seven thermocouples were used. They were 1, 11, 12, 13, 14, 35,

and 38 as shown in Table 1. The fitting algorithm reported the following results:

Mean = 0.5959608 E - 5 mm

Standard Deviation = 0.2965477 E - 3 mm

Minimum = -0.1392284 E - 2 mm
Maximum = 0.124761 E - 2 mm

The regularized RMS error curve is shown in Figure 18 and the histogram of residual errors is

given in Figure 19.

A test of the fitted weights was performed on 297 patterns of data. The test statistics of the

residuals were given as:

Mean = 0.2316002 E - 4 mm
Standard Deviation = 0.2984127 E - 3 mm
Minimum = -0.1407236 E - 2 mm
Maximum = 0.1203012 E - 2 mm

A histogram of the residuals is given in Figure 19A.

67

X-Displacement

(Down)

Train

Z-Axis

Related

Thermocouples

Only

cn
o
o

O
c
o
(0

0

c
0
‘D
0
u.

0
0
•f-*

0
O)
D
‘c*
O
O

JOJJ3 siAiy pazueinBsy

•a

N
*n
cd

a
0)

c/3

0)
*

0.

3
OO
O
B
t-i

(U

(U
4->

*0

§
N
C/D

C
cd
GO
cd

cd
•*->

cd

•o
c/3

•o
«-i

ed

O
T3
>4->

c

6
oo
cd

*

0,
CO

><
t-l

(L>

D
O
GO

[c

® 1
c(L>

oo

:s
PC
•a
<L>

N
‘C
cd <D

C/Da
<D

\o

Ui

•I

68

X-Displacement

(Down)

Train

Z-Axis

Related

Thermocouples

Only

sjuiod io JsqiunN

69

Figure

17.

Histogram

of

residuals

after

training

of

X-displacement

downwards

data

against

Z-axis

related

thermocouples.

Residual

errors

are

in

millimeters.

X-Displacement

(Down)

Test

Z-Axis

Related

Thermocouples

Only

SlUjOd |0 JsqujnN

70

Figure

17A.

Histogram

of

residuals

for

test

data

for

X-displacement

downwards

against

Z-axis.

Residual

errors

are

in

millimeters

X-Displacement

(Up)

Train

X-Axis

Related

Thermocouples

Only

jojjg si/\IU pszueinBebi

•a
o

a

a
(D

c/3

o
*0.

3

O
B
O
•4-t

T3
a>
4-»

*0

cn

’i

><

c/3

*«3

to
vS

c3
•4^

CC
’O

I.
3
•4_>

c
ID

s
(DO
c3

*04

X

(D

3O
W)

'B
’c3

4^

>-

o
u,

0)

CO

s
Csi

*3
(UN

a

a
ID

E
^3

D
c«

c/3

o
t-l

u»
D
CO

S
Pi (K

00

(D
1-c

a

71

X-Displacement

(Up)

Train

X-Axis

Related

Thermocouples

Only

siujOd |0 JsquinN

72

Figure

19.

Histogram

of

residuals

for

training

data

of

X-displacement

upwards

data

against

X-axis

related

thermocouples.

Residual

errors

are

in

millimeters.

X-Displacement

(Up)

Test

X-Axis

Related

Thermocouples

Only

lO

siupd 10 JsqiunN

73

Figure

19A.

Histogram

of

residuals

of

test

data

of

X-displacement

upwards

against

X-axis

related

thermocouples.

Residual

errors

are

in

millimeters.

9.6 X"Displacement (Up) with Z-Axis Related Thermocouples

This numerical experiment is similar to that described in section 9.4 except that data taken while

the tool turret moved upwards was used. In this case, thermocouples numbered 7, 8, 9, 10, 15, 18,

21, 22, 23, 36, 37, and 39 were used (see Table 1). The fitting results reported were:

Mean = 0.1878900 E - 6 mm

Standard Deviation = 0.3308610 E - 3 mm

Minimum = -0.2056841 E - 2 mm
Maximum = 0.1320060 E - 2 mm

The regularized RMS errors are shown in Figure 20 and the histogram of residuals is shown in

Figure 21.

A test was performed on 297 data patterns. The test statistics were:

Mean = 0.1977327 E - 4 mm
Standard Deviation = 0.3356497 E - 3 mm

Minimum = -0.1775119 E - 2 mm
Maximum = 0.1378149 E - 2 mm

A histogram of the residuals is given in Figure 21A.

9.7 X-Displacement (Down) with 50 Hidden Nodes

This numerical experiment uses 36 thermocouples but reduces the number of hidden nodes used.

This in effect reduces the number of logistic function basis functions used in the assumed function

representation. The fitting results reported were:

Mean = 0.8658474 E - 6 mm
Standard Deviation = 0.2031533 E - 3 mm
Minimum = -0.1155412 E - 2 mm
Maximum = 0.1089299 E - 2 mm

Figure 22 shows the regularized RMS error and Figure 23 shows the distribution of residual errors.

The significance of the results here is that a reduction from 60 hidden nodes to 50 hidden nodes

for this data set did not change the residual distribution in any great degree.

74

X-Displacement

(Up)

Train

Z-Axis

Related

Thermocouples

Only

•TD
0
*C
cs

1
D
0^

oo
CO

oo

oo
CM
T“

ooo

oo
00

oo
<o

oo

oo
CM

(/)

0
o
o
c
o
CO
I—
0

c
0
TD
0
0
0
0
C^

o
O

J0JJ3 siAiy pezuBinBsy

*

0-

8
O
6
o

TD
(U
'4->

IS

N

cd
CUJ
cd

e«

ed

TJ
C/}

•D

I.
S
4-'

C
(L>

B
o
o

’Dh

><

.2

<v

3
O
CX)

’S
*e3

CO

•o

N
*c

lO CO m CM lO T— in o l-c

«o CO
• o CM o •

•o o o
l-l

>-(Eo CD o CD 4D c

C/D

a §
a;

O
CM

0
Ui

1

75

X-Displacement

(Up)

Train

Z-Axis

Related

Thermocouples

Only

D
3
o

in

SlUjOd 10 jequjnN

76

Figure

21.

Histogram

of

residual

errors

for

training

of

X-displacement

upwards

data

against

Z-axis

related

thermocouples,

errors

are

in

millimeters.

X-Displacement

(Up)

Test

Z-Axis

Related

Thermocouples

Only

s^ujOd jaqujnN

77

Figure

21
A.

Histogram

of

residual

errors

for

testing

X-displacement

upwards

data

against

Z-axis

related

thermocouples.

Residual

errors

are

in

millimeters.

X-Displacement

(Down)

Train

Using

50

Hidden

Nodes

JOJJH Sl/\ld pszueinBey

c
*0

32
o
lo
t)0

on
3
CA
O
'a
3
8
O
£
u<
<U

*->

>
•

4-»

o
a

•a -s

2 2
e«

t W3
,0 »-r

O
fl) >-i

C o
§ ^

2 OS
-rt

0) ô
C/D N

^ -
S a
<U <1>

o
•o
o
3

CS

o
>-l

.1^

78

X-Displacement

(Down)

Train

Using

50

Hidden

Nodes

p

79

nodes.

Residual

errors

are

in

millimeters.

A test was performed on 198 data patterns. The statistics for the residuals were:

Mean = -0.3120217 E - 4 mm
Standard Deviation = 0.2221139 E - 3 mm

Minimum = -0.1341797 E - 2 mm

Maximum = 0.1040228 E - 2 mm

A histogram of the residuals is given in Figure 23A.

9.8 X-Displacement (Down) with 40 Hidden Nodes

This numerical experiment uses 36 thermocouples but reduces the number of hidden nodes used

to 40. The fitting results reported were:

Mean — 0.8227056 E - 6 mm
Standard Deviation = 0.2425290 E - 3 mm

Minimum = -0.8013640 E - 3 mm

Maximum = 0.1270486 E - 2 mm

Figure 24 shows the regularized RMS error and Figure 25 shows the distribution of residual errors.

In this case, there appears to be a general broadening of the distribution.

A test was performed on 198 data patterns and the residual statistics were:

Mean = -0.2879812 E - 4 mm
Standard Deviation = 0.2538050 E - 3 mm

Minimum = -0.1000706 E - 2 mm

Maximum = 0.1212418 E - 2 mm

A histogram of the residuals is given in Figure 25A.

10. Conclusions

The first observation that can be made is that the scaled conjugate gradient algorithm is a very

consistent optimization technique for determining weights in a neural network. Table 3 assigns

index numbers from 1 to 9 to the sample training runs made. In Table 4 the training run

80

X-Displacement

(Down)

Test

Using

50

Hidden

Nodes

i

81

nodes.

Residual

errors

are

in

millimeters

X-Displacement

(Down)

Train

Using

40

Hidden

Nodes

CO

J0
o
O
c
o

’!-»

CD
u.
(D

C
0
TD
0
u.

0
0
+-»

0
O)

O
o

JOJJ3 si/\iy p0zuB|n60U

c
o

(U

*0,
D

o
>
o
CC

cd

«3
•o
CA

l-l

C3

O
CO

•a
(U
N
*c
cC

1
<U

O'!

(D
i-i

h*

82

nodes.

Regularized

RMS

errors

are

iri

millimeters.

X-Displacement

(Down)

Train

Using

40

Hidden

Nodes

in

o o o o o o9
in CO cvj T-

s\u\0d io JsqujnN

83

Residual

Errors

Figure

25.

Histogram

of

residuals

for

training

X-displacement

downwards

data

against

all

active

thermocouples

using

40

hidden

nodes.

Residual

errors

are

in

millimeters

X-Displacement

(Down)

Test

Using

40

Hidden

Nodes

84

Residual

errors

are

in

millimeters.

statistics are summarized. The residual error statistics are all grouped very tightly as shown in

Table 4. Since the number of connections in a network influences, the elasped time for a solution,

the iteration time per connection was computed for each run. This only varied, with rounding,

between 0.001 and 0.002 seconds. The elapsed time per connection varied between 1.3 and 2.3

seconds. All of the neural network computation were performed in FORTRAN on a CONVEX

C3820 with the UNIX operating system. The other run time statistics are also tightly grouped.

Table 4 gives the mean cpu time per iteration, the standard deviation of the cpu time for iteration,

the total elasped time for each run, the iteration time per network connection and the elasped cpu

time per network connection.

The next observation that can be made about the scaled conjugate gradient algorithm is that it is

easy to use and converges rapidly as shown in the figures in section 9. It does not require multiple

submission of randomized data patterns as the steepest descent algorithm sometimes requires. It

adaptively adjusts its steps and does not require the user to guess at learning and momentum

parameters as many implementations of the back-propagation algorithm requires. It can handle

large network problems as consistently as moderate to small network problems.

Finally, when neural network methods are compared with regression methods for mapping, both

have advantages and disadvantages. Regression analysis has the advantage that it is possible to

identify a physical interpretation to the final fitted equations. It’s disadvantage is the difficulty of

selecting, for example, the polynomial forms of temperatures and nominal positions to enter the

regression. Neural networks clearly will map thermal and nominal position data to position errors

comparatively rapidly and consistently. However, it is difficult to assign a physical interpretation

to the weighted network other than to say that it maps the training data.

As long as the objective remains only mapping data, neural networks demonstrate a clear advantage

of ease-of-use. But, if real time control is required, then judicious choice of regression polynomials

hold an advantage unless computer hardware can be built to evaluate neural networks with

comparable speeds.

85

Run Direction Hidden Node Thermocouple Selection :

1 Down 60 All

2 Down 60 Operating

3 Up 60 Operating

4 Down 60 X-Axis Related

5 Down 60 Z-Axis Related

6 Up 60 X-Axis Related

7 Up 60 Z-Axis Related

8 Down 50 Operating

9 Down 40 Operating

Table 3. Run Summary

86

ON

C/^

CO

’C
O
4->

O
c3
«-<

a
JH
O

Down 397
VO i> 40 1561 1500

0.83E-6 0.24E-3 -0.80E-3

CN
1

o

o

9
S
ii>

CO

1.81 0.21

2722.2

.0012

1.74

CO Down
397 36 37 50 1951 1500 0.87E-6

0.20E-3 -0.12E-2

o.lle-2

2.25 zro
3370.9

.0012

1.73

o-
D

298
CM o

VO o
ON

1500

b:

S
J

0.19E-6 0.33E-3 -0.21E-2

c!>

r—i

d> 0.94

0.88E-1

1405.9

o
o
p 1.56

VO
a,
D 298 oo o

VO
r-H o

VO
1500

0.60E-5 0.30E-3 -0.14E-2

CO
1

o
cs
t-h

o 0.71

0.53E-1

rz.901

.0012

1.78

Down
397

o
VO 1021 1500 0.99E-6

0.19E-3

-O.lle-2

0.68E-3

1.37

0.27E-1

2053.0

.0013

2.01

Down
397 00 ON o

VO VO
VO

1500

c«
.

<A

CO i

9
3
*s

:

..4> .

0.19E-5 0.38E-3 -0.26E-2 0.16E-2

n
«4-»-

t/i

*-l3

cd

c/i

§

c
9

lOT

0.59E-1

1521.6

.0015

2.30

c
3

o.
298

36 37 o
VO 2281 1500

0.73E-6 0.17E-3

00

o
1

0.59E-3

1.99 iro
r6Z.6Z

ONooo 1.31

CSl Down
397 36 37 o

VO 2341 1500
0.25E-5 0.17E-3 -0.67E-3 0.76E-3

2.69 0.21
4037.6

.0011

1.72

Down
397 40 t-h o

VO 2581 1500 0.33E-5

0.17E-3 -0.67E-3 0.93E-3

3.01 0.28
4511.6

.0012

1.75

c:
9

Direetion

Input

Patterns

Thermoeouples

Input

nodes

Hidden

nodes

Output

nodes

Connections

Iteractions

Mean

Std.

Dev.

Minimum Maximum

Mean

Time/Iteration

Std.

Dev.

Elasped

Time

Iteration

Time/Connection

Elasped

Time/Connection

Table

4.

Summary

of

training

run

results.

11. Bibliography

1. Donmez, M.A., Liu, C.R. and Barash, M.M., "A Generalized Mathematical Model for Machine

Tool Errors," Modeling, Sensing, and Control of Manufacturing Processes, Bk. No. H00370,

Srinivason, K., Hardt, D.L.E. and Komanduri, R., eds, ASME, New York
,
1987.

2. Donmez, M.A., Blomquist, D.S., Hocken, R.J., Liu, C.R. and Barash, M.M., "A General

Methodology for Machine Tool Accuracy Enhancement by Error Compensation," Precision

Engineering, Vol. 4, 1986.

3. Donmez, M.A., Lee, K., liu, C.R., Barash, M.M., "A Real-Time Error Compensation System

for a Computerized Numerical Control Turning Center," Proceedings of the International

Conference on Robotics and Automation, San Francisco, CA, April 7-10, 1986.

4. Wu, S. M., Anderson, R., "Survey and Analysis of Thermal Error Sensing and Compensation

Techniques on Machine Tools," Dept. Mechanical Eng. and Appl. Mech., The University of

Michigan, March, 1992.

5. Donmez, M.A., "A General Methodology for Machine Tool Accuracy Enhancement, Theory,

Application and Implementation," Ph.D. Thesis, Purdue University, August, 1985.

6. Ritter, H., Martinetz, T., Schulten,K., Neural Computation and Self-Organizing Maps, Addison-

Wesley, Reading, Massachusetts, 1992.

7. Cybenko, G., "Mathematical Problems in Neural Computing," CSRD Rpt. No. 905, Center for

Supercomputing Research and Development, Univ. of Illinois, August, 1989.

8. Grother, P.J., Blue, J.L., "Training Feed Forward Neural Networks Using Conjugate Gradients,"

NISTIR 4776, National Institute of Standards and Technology, Gaithersburg, MD, February,

1992.

9. M0ller, M.F., "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning," Neural

Networks, Vol. 6, No. 4, 1993.

88

10. Zhang, G., Veale, R., Charlton, T., Borchardt, B., Hocken, R., "Error Compensation of

Coordinate Measuring Machines," Annals of the CIRP, Vol. 34, No. 1, 1985.

11. Gilsinn, D.E., Bandy, H.T., Donmez, M.A., Greenspan,L., Harper, K., Wilkin, N., "Application

of a Generic Machine Tool Error Model to a Turning Center," NISTIR, (To appear). National

Institute of Standards and Technology, Gaithersburg, MD, 1993.

12. Girosi, F., Poggio, T., "Networks for Learning," in Neural Networks, Concepts, Applications,

and Implementations, Volume I, Antognetti, P. and Milutinovic, V., eds., Prentice Hall,

Englewood Cliffs, NJ., 1991.

13. Cybenko, G., "Approximation by Superposition of a Sigmoidal Functions," Math. Control

Signals Systems, Vol. 2, 1989.

14. Rumelhart, D.E., McClelland, J.L., et al.. Parallel Distributed Processing, Exploration in the

Microstructure of Cognition, Vol. 1: Foundations, MIT Press, Cambridge, Massachusetts, 1986.

15. Hestenes, M.R., Coiyugate Direction, Methods in Optimization, Springer-Verlag, New York,

1980.

16. Fletcher, R., Practical Methods of Optimization, John Wiley & Sons, Chichester, 1987.

17. Tikhonov, A.N., Arsenin, V.Y., Solutions of Ill-Posed Problems, John Wiley & Sons, New York,

1977.

18. Saarinen, S., Bramley, R., Cybenko, G., "Ill-Conditioning in Neural Network Training

Problems," SIAM Journ. on Sci. and Stat. Computing, to appear 1993.

19. Filliben, J.J., "DATAPLOT - Introduction and Overview", NBS SPEC. PUB. 667, National

Bureau of Standards, Gaithersburg, MD, June, 1984.

89

20. Hocken, R. J., "Quasistatic machine tool errors," Technology of Machine Tools. MTTF, 1980,

5.

21. Donmez, M. A., Yee, K. W., and Damazo, B., "Some Guidelines for Implementing Error

Compensation on Machine Tools," NISTIR 5236, National Institute of Standards and

Technology, Gaithersburg, MD (1993).

90

APPENDIX A

MAIN PROGRAM LISTING

91

c**
c
c NETCG.F
c
c**
c
c Main Routine
c
c This program implements a fully connected feedforward neural net.
c The program allows two alternatives:
c 1. If previous weights have been computed for the network
c links then the progreun can be used to compute net
c outputs from specified inputs.
c 2. If weights are not availeible then the program Ccui be
c used to compute weights by a least squares minimization
c technique using predefined data patterns auid a scaled
c conjugate gradient technique,
c
c The scaled conjugate gradient technique employed is due to:
c M. F. Holler, "A scaled conjugate gradient algorithm for fast
c supervised learning,” Neural Networks (To appear)
c
c Original Progreoa by:
c Jaunes L. Blue
c Computing and Applied Mathematics Laboratory
c National Institute of Standards and Technology
c Gaithersburg, MD 20899
c
c Modified by:
c David E. Gilsinn
c Memufacturing Engineering LzdDoratory
c National Institute of Standards and Technology
c Gaithersburg, MD 20899
c
c Modifications made to apply neural nets as a mapping technique
c for machine tool errors as functions of nominal axis tool position
c and thermocouple readings. These mapped errors are dlncorporated
c into a geometric-thermal error correction model to predict
c machine tool errors in the work volume as a function of nominal
c tool position and thermocouple readings
c
c Run specification file: netcg.in
c This file must exist before program execution. It contains run
c information such as data file names, network parameters and
c convergence criteria
c
c
c
c Definitions:
c maucpat
c maxins
c maxhid
c meixout
c meucwsize
c w(maxwsize)
c
c
c
c wsav(maxwsize)
c error

- meucimum allowed input patterns for teaching
- meucimum n\imber of input nodes allowed
- maximum number of hidden nodes allowed
- meucimum number of of output nodes allowed
- maximum number of weights allowed
- array of weights. The first numl are the
weights on the input to hidden links and
the rest are the weights on the hidden to
output links.

- temporary array for weights.
- current error function value

92

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

3

p
r
nruns
nseed

egoal
gwgoal

errdel

nfreq

npats
ninp
nhid
nout
ncalls

numl

nu2n2

numw
vinp (maxpat ,maxins+1

)

vout (maxpat ,maxout

)

target (maxpat ,maxout)
fpspec
fppat
fpgetw

fpputw

fprun

wfactor

output layer node index
pattern number index
run number index
number of runs
integer seed number for uniform random
number generator
convergence goal for the RMS of error
convergence goal for the ratio of the
RMS of the gradient to the RMS of the
weights. Measure relative change of the
error to the weights.
required error reduction factor for the
RMS of error every nfreq iterations
frequency for error checking and printing
of progress.
number of training patterns for a given run
number of input nodes
number of hidden nodes
number of output nodes
number of calls to network evaluation
subroutine forward
number of weights in links between* input
and hidden nodes
number of weights in links between hidden
and output nodes
total number of weights = numl + num2

- input data. Extra location
accounts for threshold dummy data.

- confuted output data.
- output data for training.

file id for file names and run parameters
file id for training pattern data in fnpat
file id for existing weights, if emy, in
fngetw
file id for storing final weights after
training in fnputw
file id for run summ2a:y and error messages
in fnrun
regularization pareoneter

C 4: 4r 4: 4r 4r 4r* 4r 4: 4: 4: 4r 4:* 4r* 4r 4: 4; 4: 4r 4r ir 4; 4r 4r* ib 4: ir 4r 4r 4: 4r 4r ir 4r* 4: 4;A tfc 4; 4r 4r ir 4; 4r* 4r 4; ir* ir 4; 4;

C
C
C
C
C
C
C
C

Parameter Specifications

MAXP - Maximum number of data patterns
MAXI - Maximum number of input units
MAXH - Meucimum number of hidden units
MAXO - Maximum number of output units

C**-/:*************************
parameter (MAXP = 3500)
parameter (MAXI =42)
parameter (MAXH = 100)
parameter (MAXO = 26)
parameter (MAXW = MAXH4r (maxI+1) + MAX04r (MAXH+1)

)

c**
c
c
c

Variedjle Declarations

93

c**
real w (MAXW)
real wsav(MAXW)
real vinp(MAXP, MAXI+1) , data(MAXP,MAXI+l)
real vout(MAXP, MAXO) , err(MAXP,MAXO) , temp(MAXP)
real target (MAXP, MAXO)
real giii(MAXW) , wnew(MAXW) , pvect (MAXW) ,rvect(MAXW)
real svect(MAXW) , vhid(MAXP,MAXH+l) ,deltal(MAXP,MAXH)
real delta2 (MAXP,MAXO) , hderiv (MAXH) ,oderiv(MAXO)
integer ithenn(MAXI) , idiim(MAXP) , idatfl(MAXI+l)
integer p
integer r
integer fpspec, fppat, fpgetw, fpputw, fprun, fpscr, fpgrph
integer fpgrwl,fpgrw2, fpgrer
character*80 title
character*40 fnrun
character*40 fnpat
character*40 fngetw
character*40 fnputw
character*40 fngrph
character*40 fngrwl^ fngrw2, fngrer
character*! key, aster (80)

c**
c
c Begin Executables
c
Cic^c'k^c^e^c^c^e^c^^^c^c^:^c-k^c^c^c^e^c•1cic^c•k-k1:ie^c^(^:^c^e1c^:^t^l^c^c1c^c1c1cie^c^c^c^c4^^c^e^e^t^e^cic^c^e^:^c^c•k^:•k-kieie-kic^kic

C
do 2 i *= 1,80

aster (i) = **»

2 continue
maucpat = MAXP
maxtns = MAXI
maxhid = MAXH

. maxout = MAXO
naucwsize = MAXW

c set file designation unit numbers
c

fpspec = 9
fppat = 10
fpgetw = 11
fpputw = 12
fprun = 13
fpscr = 14
fpgrph = 15
fpgrwl = 16
fpgrw2 = 17
fpgrer = 18

c
c open file for run specifications
c

open (fpspec, file = ‘netcg.in*, status = *old*)
write (*,9000)

9000 format (* Reading run specification file*)
c
c»» Read first line: number of runs
c

read (fpspec, *) nruns
write (fprun, 999) nruns

c

94

c Begin major loop over the number of runs,
c

do 23000 r = 1, nruns
c
C*****************************icieic*’kicicie-kicie***-k***ic***i:*ie’k*****-k1c-k*ic’k'k

C
c For each run read the run specification file
c
c***
c
c get the run title (<= 80 char)
c

read (fpspec , *

)

title
c»» read file names, one neune per line
c
c first file ncune: run output file name
c

read (fpspec , *) fnrun
c
c second file name: pattern input file n€uiie

c
read (fpspec, *) fnpat

c
c third file name: initial weights file name
c

read (fpspec , *) fngetw
c
c fourth file naone: final weights output file name
c

read (fpspec , *) fnputw
c
c fifth file name: graphics output file (Regularized error during opt)
c

read (fpspec , *) fngrph
c
c sixth file name: input-to-hidden weights graphics output
c

read (fpspec , *) fngrwl
c
c seventh file naune: hidden-to-output weights graphics output
c

read (fpspec,*) fngrw2
c
c eighth file name: error graphics file (after fit)
c

read (fpspec , *) fngrer
c
c»»'read network parameters for the run
c
c number of input patterns
c ninnber of input nodes
c niimber of hidden nodes
c number of output nodes
c regularization coefficient of |w| in error function (ex. l.e-3)
c nseed is 0 if reading weights, else rcindom number seed (ex. 12345)
c

read (fpspec , *) npats ,ninp , nhid , nout ,wfactor , nseed
c
c test parameters read against boxmds
c

95

if(npats .gt. maxpat) then
print *f *Have npats, • patterns; limit is maxpat
stop

else if(ninp .gt. maxins) then
print *Have ninp, • input nodes; limit is *, maxins
stop

else if(nhid .gt. maxhid) then
print *, *Have *, nhid, • hidden nodes; limit is *, maxhid
stop

else if(nout .gt. maxout) then
print *f ‘Have *, nout, * output nodes; limit is maxout
stop

end if
c
c»» read convergence parcuneters for the current run
c
c number of iterations through the data for conjugate gradient routine
c if set nonzero then the iterations are for training (ex. 200)
c if zero then this flags a testing run
c goal for error (RMS) (ex. 0.01)
c goal for g (RMS) / w (RMS) (ex. l.e-12)
c frequency for checking convergence (ex. 10)
c quit if error reduction too small (ex. 1.0)
c

read (fpspec , *) niter, egoal , gwgoal , nfreq, errdel
c
c read data column flags. These determine which input columns
c enter the fitting process
c

read (fpspec,*) (idatfl(i), i=l,20)
read (fpspec,*) (idatfl(i), i = 21,41)

c
c»» end of run specification input
c

close (fpspec)
c
Q'kic’kieitle'k'kiticle’kitleit'k'kie'k'kie'kieltlelt'k'kie'kie'kielele'k'k'k’kitie’k'kie’kit'kifk'kitieie'k'k'k'k’kifk’kieifkie'kic-k*

C
c end of run specification
c
c begin reading data patterns for training or testing
c
c***
c
c compute number of weights for each layer
c
c first get number of weights between input nodes and hidden nodes
c

numl = nhid*(ninp+l)
c
c next between the hidden nodes and the output nodes
c

num2 = nout*(nhid+l)
c
c total number of weights both layers
c

numw = numl + num2
c
c open output file for the run
c

96

open(fprun, file = fnrun, status = 'un3aiown*)
c
c write output header
c

9005

9007

9008

9009

9019

c
c check for training or testing run
c

if (niter .gt. 0) then
write(fprun , 988) * Training on *, fnpat

else
print *, ' '

write(fprun , 988) * Testing on fnpat
end if
write (fprun , 9 0 09

)

c
c get the inputs and target patterns to be learned
c

open(fppat, file = fnpat, status = ‘old*)
c
c next call reads data file to get network parmeters
c and sets up data arrays vinp and target
c

write (*,9010)
9010 format (* Reading pattern data*)

call getpat (fppat, data, idatfl, vinp, target, npats,ninp,nout,
1 maxpat ,maxins , maxout , itherm , idum , slope , tmax)

close (fppat)
write(fprun,9011) npats

9011 formate The number of data patterns is *,i6)
write (fprun , 9 009

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9 009

)

c
c write out network parameters
c

write (fprun , 9 02 1

)

9021 format (29X, 'NETWORK SPECIFICATION')
write (fprun , 9 009

)

write (fprun, 9007) (aster (j) ,j=l, 80)
write (fprun, 9009

)

write (fprun, 9022

)

9022 format (12x, 'INPUT NODES *, IIX, 'HIDDEN NODES *, IIX, 'OUTPUT NODES')
write (fprun , 9 02 3

)

9023 format (/)
write (fprun, 9024) ninp,nhid,nout

9024 format(15x,i2,2(22x,i2)

)

write (fprun , 9 0 0 5

)

format (

'

write (fprun , 9 007

)

format (lx , 8 Oal

)

write (fprun, 9008) title
format (lx , a8 0

)

write (fprun , 9007

)

write (fprun, 9009

)

format (//)
write (fprun , 9 019

)

format (

*

write (fprun , 9 0 09

)

write (fprun , 9 007

)

write (fprun , 9 0 09

)

NEURAL NET RUN REPORT*)
(aster(j)

, j=l,80)

(aster(j) , j=l,80)

DATA SET*)

(aster(j) , j=l,80)

97

write (fprun ,

9

0

2

3

)

write (fprun ,9025)
9025 format (8X, 'WEIGHTS (I TO H) *, 8x, 'WEIGHTS (H TO O) ', 9x, 'TOTAL WEIGHTS')

write (fprun , 9 02 3

)

write (fprun, 9026) numl , num2 , numw
9026 format (14x, i4,20x, i4, 19x, i4)

write (fpr\in , 9 009

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9 009

)

c
C***'**'* *

c
c end of data pattern input
c
c begin entering initial network weights
c either random
c or previously saved
c
0***
c
c get initial weights
c
c if nseed is a positive integer generate random initial weights
c

write (*,9020)
9020 formate Generating network weights')

write (fprun , 9 027

)

9027 format(33x, 'RUN PARAMETERS')
write (fprun , 9 009

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9 009

)

if (nseed .le. 0) then
c
c otherwise get weights from the file fngetw
c

open(fpgetw, file = fngetw, status = 'old')
write (fprun, 987) fngetw
call setwts(fpgetw, w, w(numl+l) , 0,ninp,nhid,nout)
close (fpgetw)

c
c generate random weights for nseed > 0
c

else
write (fprun, 986) nseed
call setwts(0, w, w(numl+l) , nseed, ninp,nhid,nout)

end if
c
c**
c
c end of initial weight generation
c
c begin weight optimization by the conjugate gradient method
c
c**
c
c write out the regularization pareuneter
c

write (fprun, 984) wfactor
c
c save the current weights for computing the rms change in weights

98

c for each training run
c

do 23014 n = 1, numw
wsav(n) = w(n)

23014 continue
c
c write out convergence criteria for a training run, ignore
c for a testing run
c

9028

90281

9029

90282

90280
&

90283

90284

90285
&

c
c Open scratch and graphics files
c

open (fpscr , status^ * scratch *

)

open (fpgrph , file=fngrph , status= * unknown *

)

open (fpgrer , file=fngrer , status= • unknown *

)

c
c initialize calls to subroutine forward. This subroutine evaluates
c the network output for a given input pattern given the current
c weights
c

ncalls = 0
c
c Do the training or testing depending on niter
c niter = 0 for testing
c niter > 0 for training
c
c In either case the error is returned with an appropriate flag
c

iwrt = 0
write (*,9030)

9030 format (* Entering optimization phase.')
call optwts (niter, numw, w, error, gw, iter, ierr,numl,

1 num2,wfactor,vinp,vout, target, npats,ninp,
2 nhid , nout ,maxpat ,meocins ,maxhid ,meocout

,

3 maxwsize , ncalls ,gm , wnew,pvect , rvect , svect ,vhid.

if (niter .gt. 0) then
write (fprun ,9028)
format (

* 1 *

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9009

)

write (fprun , 9028 1

)

format (28x, 'RUN TERMINATION CRITERIA')
write (fprun , 9 009

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9009

)

write (fprun, 9029) niter
formate Maximum number of iterations is ',i6)
write (fprun, 90282) nfreq
format (

' Error checking frequency is every ' , i3 ,
' iterations

'

)

write (fprun , 9 028 0

)

formate is terminated on either max iterations or',/,
' one of the criteria below.')

write (fprun, 90283) egoal
format (

' RMS error <= ' , gl2 . 3

)

write (fprun, 90284) gwgoal
formate (RMS of g) <= ',gl2.3,' * (RMS of w)')
write (fprun, 90285) errdel, nfreq
formate (RMS err) > ',gl2.3,' * (RMS err ',i4,

' iterations ago) '

)

end if

99

4 deltal , delta2 , hderiv , oderiv , fpscr , fpgrph , fprun

,

& nfreq,errdel,egoal,gwgoal,iw2rt)
close (fpgrph)
close (fpscr)

c
Ci:-k’k’k1ci:-k'k’k-kicicieie’kicic**’k’k-ki!ieieic*’k*-kicicrkieicierk‘kicic’ki:*‘1cicie'k'kicic-ki:ic‘kic’kic*ieicicic'kic'k*'k

c end of weight optimization
c
c write out run information
c
c**

9040

9041

9043
9045

9046
9048

c for

9100

write (*,9040)
format (

* Output phase .
•

)

iwrt = 1
call func(. false. ,numw,w, error, gw, numl,num2,wfactor,

& vinp ,vout , target , npats , ninp , nhid , nout

,

& maxpat ,maxins ,maxhid ,maxout , ncalls ,vhid

,

& deltal ,delta2 , hderiv, oderiv , iwrt , fprun)
write (fprun , 9 028

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun , 9 009

)

write (fprun , 904 1

)

format (35x ,
•RUN RESULTS »

)

write (fprun , 9009

)

write (fprun, 9007) (aster(j) , j=l,80)
write (fprun ,9009)
do 9045 np = 1, npats

do 9043 j = l,nout
target (np,j) = tmax + (target(np, j) - 0.99) /slope
vout(np,j) = tmax + (vout(np,j) - 0.99) /slope
err(np,j) = (target(np, j)-vout(np, j)

)

continue
continue

ermn = 0.0
targmn = 0.0
errmax = l.e-20
errmin = l.e20
do 9048 np = 1, npats

do 9046 j = l,nout
ermn = ermn + err(np,j)
targmn = targmn + target (np,j)
if (err(np,j) .gt. errmax) errmax = err(np,j)
if (err(np,j) .It. errmin) errmin = err(np,j)
continue
continue
ermn = ermn/float(np*j)
targmn = targmn/float(np*j)

one output node only
do 9100 np = 1, npats

temp(np) = err(np,l)
continue

std = 0.0
ssmn = 0.0
ssreg =0.0
do 90491 np = 1, npats

do 9049 j = l,nout
std = std + (err(np, j)-ermn) **2
ssmn = ssmn + (target(np, j)

- targmn) **2

100

9049
ssreg = ssreg + (vout(np,j) - targmn)**2
continue

90491 continue
std = std/float(np*j - l)
std = sqrt(std)
rsq = ssreg/ssmn

write (fprun, 90490) rsq
90490 format (//, 2 8x, *R-SQ of nonlinear fit = *,gl5«7)

write (fprun, 90492

)

90492 format (//, 28x, *Pointwise Error*)
write (fprun , 902 3

)

write (fprun ,90493)
90493 format(15x, 'Mean* ,27x, 'Standard Deviation*)

write (fprun, 90494) ermn,std
90494 format (9x,gl5.7,25x,gl5.7)
c normalize eror distribution and compute Kolmogorov-Smimov statistic

do 9105 np = l,npats
temp(np) = (temp(np) - ennn)/std

9105 continue
c
c compute Kolmogorov-Smimov statistic and significance
c

90498

90495
&

90496

90500
90503
c
c generate error histogreim display file
c

write (fpgrer, 90504) err(np,l)
90504 format(gl2*4)
90505 continue
c
c display k-s statistic
c

write (fprun, 9110) d,prob
9110 formate Kolmogorov-Smimov distemce statistic = *,gl5.7,/,

& * Kolmogorov-Smimov significance value = *,gl5.7)
close (fpgrer)

c
c write out convergence information for training runs, ignore for
c testiing runs
c

if (niter .gt. 0) then
call endopt(fprun, iter, ncalls, ierr, error, gw)

c
c compute rms change in the weights for training runs, ignore for
c testing runs
c

call ksone(temp,npats,d,prob)
write (fprun , 9 0 4 9 8

)

format (//,14x, 'Minimxim* ,32x, 'Maximum')
write (fprun, 90494) errmin,errmax
write (fprun , 902 3

)

write (fprun, 90495)
format (8x, 'Data* ,7x, 'Output* ,7x, 'Desired* ,7x, 'Predicted*

,

7X, 'Absolute*

)

write (fprun , 90496

)

format (8x, 'Index* ,7x, 'Node* ,8x, 'Output* ,8x, 'Output* ,10x, 'Error*

)

do 90505 np = l,npats
do 90503 j = l,nout

write (fprun, 90500) np, j , target (np,j) ,vout(np, j) ,err(np, j)
format (8x, i4 , 8x, i4 , 5x,gl2 . 4 , lx,gl2 . 4 , 7x,gl2 .4)
continue

101

23020

do 23020 n = 1, numw
wsav(n) = wsav(n) - w(n)

continue
dif = snrm2 (numw, wsav, 1) / sqrt(float (numw)

)

write (fpirun, 985) dif
c
c skip to here for testing runs
c

end if
c
c***
c
c write out final weights for training runs, ignore for testing
c
c***
c
c print final weights for training runs
c

if (niter .gt. 0) then
open(fpputw, file = fnputw, status - *\in)aiown‘)

open (fpgrwl, file = fngrwl , status = 'unknown*)
open (fpgrw2, file = fngrw2 , status = 'unknown*)
call putwts(fpputw, fpgrwl, fpgrw2,w, w(numl+l) ,ninp,nhid,nout)
close (fpputw)
close (fpgrwl)
close (fpgrw2

)

write (fprun, 983) fnputw
end if
close (fprun)

c
c**
c
c end of the run loop. Go back for another run specification
c if any
c
c**
c
c loop on runs
c
23000 continue

stop
c
C*******4r4r******4;***
C
c formats
c
c***
c
983 format (

*

984 format (

'

985 format (

*

986 format (

'

987 format (

'

988 format (

'

999 format (

'

end

Weights written to file ' , a40)
Regularization factor wfactor = ', lpel2.3)
Rms change in weights', f6.3)
Random initial weights, seed ' , ilO)
Initial weights from file ' , a41)
'/al2, a41)
Doing ', i3, ' run(s)')

c**
c
c setwts
c

102

c**
subroutine setwts(fp, wl, w2, nseed,ninp,nhid,nout)

c**
c
c Set up the initial weights for the neural net
c Test on the unit number fp.
c If fp > 0, read from there.
c If fp <= 0, use pseudo-random weights in the range
c (-scale, scale) , but first initializing
c the generator to nseed.
c wl - weights between input and hidden nodes
c w2 - weights between hidden and ouput nodes
c
c**

parameter (scale = 0.5)
real wl(nhid, ninp+1)
real w2(nout, nhid+1)
integer fp, h, i, j, minp, mhid, mout

c
c**
c
c test unit number fp for whether to read weights or generate
c random weights
c
c if fp > 0 then read weights
c
0 4r 4: 4r 4:*** 4:* 4r* 4c ir ******* * 4r 4r * * 4:** * 4r ib 4r * A* 4: 4; * 4: 4r 4: 4r 4; 4r 4;* 4r 4: 4c 4: 4; 4: 4r 4r 4c ** ir 4; 4; 4; * 4: * 4: ic 4r

C
if(fp .gt. 0) then

c
c***
c
c come to this section to read previously stored weights
c
C***4c**4r**4c******4r*******4c*****4c****4r**4c4:********4c***4r**4c*4r**4c4c4c*4c**4c*

C
c first get number of input, hidden and output nodes associated with
c the weights
c

read(fp, *) minp, mhid, mout
c
c test these against network parameter specs for this run
c

if((ninp .ne. minp) .or. (nhid .ne. mhid) .or. (nout
& .ne. mout)) then

if(ninp .ne. minp) then
print *, * Saved network has *, minp, * inputs; using *,

& ninp
if (nhid .ne. mhid) then
print *, * Saved network has *, mhid,

& ' hidden nodes ; using ' , nhid
if (nout .ne. mout) then
print *, * Saved network has *, mout,

& • outdput nodes ; using * , nout
stop

end if
end if

end if
end if

c

103

c if network parameters match then
c read input to hidden nodes weights
c

do 23040 h = 1, nhid
read(fp, *) (wl(h,i), i = 1, ninp+1)

23040 continue
c
c then read hidden to output nodes weights
c

do 23042 j = 1, nout
read(fp, *) (w2(j,h), h = 1, nhid+1)

23042 continue
c
Qic'kic'k’kic1iic4c1eie1eieicie'k1c1c1c1eie1cic1c"kic1c1c1eicici:ie1cie'k1e1c1c’kieicif±±ic'k’kic1cii1i'kieicieicieieieieicicieicie'k

C
c return after weights have been read in
c
c otherwise
c
c if fp = 0 come here to generate random weights
c in the range (-scale, scale) where scale is set at the beginning
c of this subroutine as a parameter,
c
0***
c

else
c
c initialize random numbers to given seed
c

z = uni(nseed)
c
c set input to hidden nodes weights
c

do 23044 h = 1, nhid
do 23046 i = 1, ninp+1

wl(h,i) = 2.0 * scale *(uni(0) - 0.5)
23046 continue
23044 continue
c
c set hidden to output nodes weights
c

do 23048 j = 1, nout
do 23050 h = 1, nhid+1

w2(j,h) = 2.0 * scale *(uni(0) - 0.5)
23050 continue
23048 continue
c
Cle‘k1cic-k1t‘k1e1f1c*1e1ticik1e1c'k1e1:1cie1:1c1e1c*icit1(1e'k’kic1:1eic1(ic1e1e1f-k1c1e‘k1(1c1e1e1c1:’k1e'k1e1c1e1e1fi(1e1c1iieic

C
c return section
c

++ 4c********************A*******
C

end if
return
end

c
c**
c
c getpat

104

c
c**

subroutine getpat (fppat , data , idatf1 , vinp , target , npats , ninp , nout

,

1 maxpat ,maxins ,maxout , itherm , idum , slope , tmax)
0**
c
c Read the input, the target for each pattern
c
c This subroutine depends on the particular data set formats
c
c The current data set includes eixis position, machine tool error
c at the position and 40 thermocouple readings
c
0**

integer fppat
real vinp (maxpat , maxins+l) , data (maxpat ,maxins+1

)

real target (maxpat, maxout)
integer i, j, p, idatfl (maxins+l)
character*10 posit, diff
integer itherm (maxins) , idum (maxpat)

c
c read number of data patterns in file, number of input variables,
c niomber of output variables cind a scale factor for the output data,
c This scale factor is used to produce the correct units if necessary,
c This section also checks against specifications. If there are
c discrepancies then it reports and stops,
c

read (fppat, *) mpats, minp, mout, scale
if(mpats .It. npats .or. ninp .ne. minp .or. nout

& .ne. mout) then
if (npats .gt. mpats) then
print *, * File has *, mpats, • patterns; using *, npats
end if
if (ninp .ne. minp) then
print *, * File has •, minp, * inputs; using *, ninp
end if
if (nout .ne. mout) then
print *, • File has », mout, * outdput nodes; using *, nout
end if

end if
c
c read header line
c

read(fppat,*) posit, diff , (itherm(j) , j=l,3)
c
c get first set of data, scale the nominal axis position
c and map the target output to the interval (0,1)
c

tmin = l.eSO
tmax = -l.e30
do 80 p = 1, npats
read(fppat,*) idum(p) , data(p,l), target(p,l),

1 (data(p,j) ,j=2,4)
if (target (p,l) .le. tmin) tmin = target (p,l)
if (target (p,l) .ge. tmax) tmax = target (p,l)

80 continue
c
c transform target data to lie between 0.01 and 0.99 in order to
c match sigmoid range
c

105

slope = 0.98/ (tmax-tmin)
do 85 p = l,npats

target (p,l) = slope* (target (p, 1)
continue

tmax) + 0.99
85
c
c get the next 6 groups of thermocouple data
c

do 100 k = 1,6
read(fppat,*) (itherm(j), j=4+(k-l) *6,9+(k-l) *6)
do 90 p = l,npats
read(fppat, *) (data(p, j) , j=5+(k-l) *6,10+(k-l) *6)

90 continue
100 continue
c
c get data for the 40-th thermocouple
c

read(fppat, *) itherm(40)
do 110 p = l,npats
read(fppat, *) data (p, 41)

110 continue
c
c copying nonzero columns to vinp
c

minp = 0
do 182 j = 1,41

if (idatfl(j) .ne. 0) then
minp = minp+1
do 181 p = l,npats

vinp (p,minp) = data(p,j)
181 continue

endif
182 continue

c
c the last weight of each hidden node is really its bias,
c so its input value is 1
c

do 183 p = l,npats
vinp (p,minp+1) = 1.0

183 continue
ninp = minp
return
end

c**
c
c func
c
c**

subroutine func(dograd, numw, wt, err, gm,numl,num2,wfactor,
1 vinp ,vout , target , npats , ninp , nhid , nout

,

2 maxpat ,maxins ,maxhid ,maxout , ncalls ,vhid

,

3 deltal ,delta2 ,hderiv ,Oderiv , iwrt , fprun)
C**********4r***
C
c This subroutine regularizes the error and negative gradient returned
c from the neural network evaluation function forward
c
C**********ir4r**

logical dograd
real wt(*) , err, gm(*)
real vinp (maxpat,maxins+1) ,vout (maxpat,maxout)

106

real target (maxpat , maxout) , vhid (maxpat , maxhid+1

)

real deltal (maxpat, maxhid) , delta2 (maxpat, maxout)
real hderiv(maxhid) , Oderiv (maxout)
integer fprun

c
c Evaluate the neural net function
c

call forward (dograd, wt, wt(numl+l), err, gm, gm(n\aml+l) ,vinp,
1 vout , target , npats , ninp , nhid , nout , maxpat , maxins

,

2 maxhid, maxout, ncalIs,vhid, deltal, delta2 ,hderiv,
3 OderiV , iwrt , fprun

)

c
c average the norm squared of the weight vector,
c

wsq = sdot(numw, wt, 1, wt, 1) / (2 * numw)
c
c This is the Tychonov regularization step, wfactor is the
c regularization parameter
c

err = err + wfactor * wsq
wf = wfactor / numw

c
c
c
c
c

return the regularized negative gradient if needed. Note the
gm is already negative on return from forward. The sign
just propagates the negative to the second term.

thenif (dograd .eq. .true.)
do 23105 n = 1, numw

gm(n) = gui(n) - wf * wt(n)
23105 continue

end if
return
end

Qicic'kiclcicicicicicle'kii'kiclclfk’k'kic'klc'kic^ciiicicic'k-kiciticrk'k-kiciclc-k'k'kiclc'kiclcicicicicicicicicicis'k’kic'ieic’kisicicicic

C
c forward
c

icificidc Icicle 1: it 1e1e1ei(1(Icicle Icitlelcleie 1c isle -k Icicle hie 1c Icicle Iclchh Icicle Icicle Ic’klc'kiclele-kielc’k

sxibroutine forward (dograd, wl, w2, error, gml, gm2,vinp,
1 vout , target , npats , ninp , nhid , nout ,maxpat

,

2 mcLxins , maxhid ,maxout , ncalls ,vhid , deltal

,

3 delta2 , hderiv , Oderiv , iwrt , fprun)
C.1c1:1e1e1c1e1c1e1e1e1e1c1c1i1e1c1e1c1e1c1e1e1c1e1e1e1e1e1c1e1e1e1e1c1c1e1e1e1e1e1e1e1e1c1c1c1e1c1e1c1e1e1c1e1c1e1e1e1e1c1e1c1e1c1c1e1e1e1e1c

C
C
C
C
C
C
C
Clc1c1c1:1c1e1c1e1c1c1e1e1e1e1e1c1e1e1e1c1e1e1c1e1e1c1e1e1e1e1e1e1e1e1e1c1e1e1e1c1c1e1c1e1e1e1c1e1e1e1c1e1e1c1e1e1e1e1e1e1e1c1c1e1e1e1c1c1e1c

logical dograd
real wl(nhid, ninp + 1)
real w2(nout, nhid + 1)
real gml(nhid, ninp + 1)
real gm2(nout, nhid + 1)
real vinp (maxpat, maxins+1)
real vout (maxpat, maxout)
real target (maxpat, maxout)
real vhid (maxpat, maxhid+1)

Calculate outputs and (optionally) negative gradient. This is the
main neural net evaluation function. It presumes a fully connected
feedforward neural net with two active layers, a hidden one and
an output one. The unit activation fxinctions are the sigmoid
functions

.

107

real delta2 (maxpat, laaxout)
real deltal (maxpat, maxhid)
real hderiv (maxhid)
real oderiv(maxout)
integer h, i, j, p, fprun

c
c SMIN should be small enough so that exp(SMIN) is negligible,
c but large enough so that exp(-SMIN) does not overflow,
c

parameter (smin = -40.0)
c
c accumulate calls to the neural net evaluator
c

ncalls = ncalls +1
c
c initialize error fo accumulation

error = 0.0
c
c The object of this loop over all patterns is to compute the sum
c of the output errors over all of the patterns and to optionally
c compute the network delta factors for each network layer as a
c function of each pattern,
c

do 23107 p = 1, npats
do 23109 h = 1, nhid

c
c Accumulate the input signals to each hidden layer node as the
c inner product of the vector of weights on all of the links
c from the input nodes and the vector of all of the inputs for the
c p-th pattern, sdot is the dot product function from the BIAS
c package and essentially performs
c sum = 0
c do i = 1, ninp+1
c sum = sum + wl(h,i) * vinp(p,i)
c

sum = sdot(ninp+l, wl(h,l), nhid, vinp(p,l), mcixpat)
c
c assume the exponential sigmoid function for the activation function
c and evaluate the output at each hidden node as a function of the
c input signal. Test for underflow first,
c

if (sum .ge. smin) then
vhid(p,h) = 1.0 / (1.0 + exp(-sum))

else
vhid(p,h) = 0.0

end if
c
c compute the derivative of the hidden node output with respect to
c the total input signal, i.e. partial of vhid w. r. t. sum.
c

hderiv (h) = vhid(p,h)*(1.0-vhid(p,h)

)

23109 continue
c
c the last weight of each output node is really its bias,
c so its output value is 1
c

vhid(p,nhid+l) = 1.0
c

do 23113 j = 1, nout
c

108

c Compute the input signal to each output node as the inner product of
c the weight vector between the hidden nodes and the output nodes
c and the output vector of values from the hidden nodes, sdot performs
c
c sum = 0
c do h = 1, nhid+1
c sum = sxim + w2(j,h) * vhid(p,h)
c

sum = sdot(nhid+l, w2(j,l), nout, vhid(p,l), maxpat)
c
c assxime the exponential sigmoid function as the activation function
c at each output node. Test for underflow,
c

if (sum .ge. smin) then
vout(p,j) = 1.0 / (1.0 + exp (-sum))

else
vout(p,j) = 0.0

end if
c
c compute the derivative of the output with respect to the total input
c signal, i.e. partial of vout w. r. t. sum.
c

oderiv(j) = vout(p, j) *(1.0-vout(p, j)

)

c
c accumulate error function over the patterns. The division by 2 in
c the error function definition is done once below,
c

error = error + (target(p,j) - vout(p,j)) ** 2
23113 continue
c
c if the negative gradient is optionally required generate the
c the network deltas,
c

if(dograd .eg. .false.) goto 23117
c
c output deltas
c

do 23119 j = 1, nout
delta2(p,j) = (target (p,j) - vout(p,j)) * oderiv(j)

23119 continue
c
c hidden deltas
c

do 23121 h = 1, nhid
c
c perform an inner product here with sdot
c
c sum = 0.0
c do j = 1, nout
c sum = sum + delta2(p,j) * w2(j,h)
c

sum = sdot(nout, delta2(p,l), maxpat, w2(l,h), 1)
deltal(p,h) = sum * hderiv(h)

23121 continue
c
c this is the end of the loop over all patterns
c
23117 continue
23107 continue
c

109

c Average error per node over all patterns and nodes
c

div = (npats * nout)
error = error / (2 * div)
if(dograd .eq. .false.) goto 23123

c
c optionally generate the negative gradients with respect to the
c link weights
c
c first calculate negative gradient of error
c with respect to input weights
c

do 23125 h = 1, nhid
do 23127 i = 1, ninp+1

gml(h,i) = sdot(npats, deltal(l,h), 1, vinp(l,i), 1) /
& div

23127 continue
23125 continue
c
c finally with respect to output weights
c

do 23129 j = 1, nout
do 23131 h = 1, nhid+1

gm2(j,h) = sdot(npats, delta2(l,j), 1, vhid(l,h), 1) /
& div

23131 continue
23129 continue
23123 continue

return
end

c**
c
c putwts
c
C-k1ci(1e'k1e1c1c1c1c1e‘k-kii1c-k1c1c'k-k1c1ci:1c'k'k1c1cic1e1cic1cic1c1c±ieicieiciti:1cicieic1c‘kie1cic"k1(icii1c1iiiie'kieicicicicic’kic'ic

subroutine putwts (fp,fpgrwl,fpgrw2, wl, w2,ninp, nhid, nout)
qIs "ki: Ic "k ic 1c Iclcic 1e "k Icic 1c ^lieic'kleie’k Icicle •kiefc'kic1e1citic'kicrkieic-k1c1cic'k'kic1c"kicic’kicicicicic"kic^:ic"k'kieieic 4c

C
c Write the weights to file with unit number fp.
c Weights for each node start on a new line,
c
c Write weights to graphics file
c
Qkkkkkkkkkic kiclcicicieicic it kiciciciciclclcicicicicicicicicicicicicicicicic kick kicicicicic kick kicicicicicicicicicicicicicic

integer fp , fpgrwl , fpgrw2
real wl(nhid, ninp+1)
real w2(nout, nhid+1)
integer h, i, j
write(fp, 998) ninp, nhid, nout
do 23133 h = 1, nhid
write(fp, 999) (wl(h,i), i = 1, ninp+1)

23133 continue
do 23135 j = 1, nout
write(fp, 999) (w2(j,h), h = 1, nhid+1)

23135 continue
noutpl = nout + 1
nipl = ninp + 1
nip2 = ninp + 2
nhpl = nhid + l
izero = 0

110

write (fpgrwl, 9000) nip2,nhpl
9000 format (i6, lx, i6)

write (fpgrwl, 9010) izero, (i,i=l,nhid)
9010 format (i6, lOOilS)

do 23200 i = l,nipl
write (fpgrwl, 9020) i, (wl(h,i) ,h=l,nhid)

9020 format(i6,100el5.6)
23200 continue

write(fpgrw2,9000) nhpl,noutpl
do 23250 h = l,nhpl

write(fpgrw2,9030) h,w2(l,h)
9030 format(i6,el5.6)

23250 continue
return

998 format(3i5)
999 format (lx,5el4. 6)

end
c**
c
c endopt
c
0**

subroutine endopt (fprxin, iter, ncalls, ierr, err, gw)
c**
c
c Do some output at the end of the optimization
c
0**

integer fprun
c
c if ierr is <= 0 signal error goal achieved
c

assign 900 to ifmt
c
c if ierr = 1 then hit iteration limit without
c convergence within specified goals
c

if (ierr .eg. 1) then
assign 901 to ifmt

c
c if ierr = 2 then run termination due to small gradient
c

else if (ierr .eq. 2) then
assign 902 to ifmt

c
c if ierr = 3 then error return due to slow convergence
c

else if (ierr .eq. 3) then
assign 903 to ifmt

end if
c

write (*, ifmt) iter, ierr
write (fprun, ifmt) iter, ierr
write (*, 989) iter, ncalls, err, gw
write (fprun, 989) iter, ncalls, err, gw

c
return

c
900 formate Iter*, i6, •; ierr *, il, * : achieved error goal*)
901 formate Iter*, i6, *; ierr *, il, * : iteration limit*)

111

: gradient small *

)

\ i6, * function calls; Err

902 format(* Iter*, i6, ierr *, ii,
903 format(* Iter*, i6, *; ierr *, ii,

& * : slow convergence of error *

)

989 formate* Used*, i6, * iterations;
& f6.3,*; |g|/|w| *, lpe9.3)

end
Q-kic'kic-kic-klcieieiticIt’k’k’k’k-klcic’kliicic-kiciciciciticieicicieic’k-k’kieic-k-krk’k-k-k-kic-kic-kicieidc’k-kic-k’kic’kicie’k'k-k-kie

C
c uni
C
C********************** *i:*f:ic**ie*-kic*ic***ik*ic1c***-k**ic*********************

real function uni(jd)
c**
c***revision date 810915
c***category no. g4a23

random numbers, uniform random numbers
blue, jauaes, scientific computing division, nbs
kahaner, david, scientific computing division, nbs
marsaglia, george, computer science dept. , wash state univ

this routine generates quasi uniform random numbers on [0,1)
and can be used on any computer with at least 16 bit integers,
e.g., with a largest integer at least 32767.

use

c***keywords
c***author
c
c
c
c***purpose
c
c
c* **description
c
c this routine generates quasi uniform random numbers on the interval
c [0,1). it can be used with any computer with at least 16 bit
c integers, e.g., with a largest integer at least equal to 32767.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

first time....
2 = uni(jd)
here jd is any non-zero integer,
this causes initialization of the progreim
and the first random number to be returned as z.

subsequent times . .

.

z = uni(O)
causes the ne^ct random number to be returned as z.

machine dependencies . .

.

mdig *= a lower bound on the nximber of binary digits availcible
for representing integers, this value is defaulted
internally to 16, but may be increased in line with
remark a below.

remarks ...
a. this program can be used in two ways:

(1) to obtain repeatable results on different computers,
set *mdig* to the smallest of its values on each, or,

(2) to allow the longest sequence of random numbers to be
generated without cycling (repeating) set *mdig* to the
largest possible value.

b. the sequence of numbers generated depends on the initial
input *jd* as well as the value of *mdig*.
if mdig=16 (the default) one should find that
the first evaluation

2=uni(305) gives 2=. 027832881. .

.

the second evaluation
2=uni(0) gives z=. 56102176. .

.

112

c the third evaluation
c z=uni(0) gives z=. 41456343

,

c the thousandth evaluation
c z=uni(0) gives z=. 19797357 ..

.

c
c***references (none)
c***routines called (none)
c***end prologue uni
c
Qicicicicicicicielc'kicicicicicicicicicicic'k-k-kleieicic-kic’kic'kicrk’kicie'kicicicic'k’kicic'k’kiciticicic’k’k'k-krk'krk’kicic’k-kicic’kicic-kic-k-k-k-k

C
integer in(17)

c
save i, j ,in,iiil,in2

c
c note... if a fortran 77 compiler is not availcdjle, the preceding
c save statement should be removed,
c
comment data mdig / 16 /

data mdig / 32 /
data m(l) ,m(2) ,m(3) ,m(4) ,m(5) ,m(6) ,m(7) ,m(8) ,m(9) ,m(10) ,m(ll)

,

1 m(12) ,m(13) ,m(14) ,m(15) ,m(16) ,m(17)
2 / 30788,23052,2053,19346,10646,19427,23975,
3 19049,10949,19693,29746,26748,2796,23890,
4 29168,31924,16499 /

data ml,m2,i,j / 32767,256,5,17 /
c***first executable statement uni

if(jd .eg. 0) go to 3

c fill
ml = 2**(mdig-2) + (2** (mdig-2) -1)
m2 = 2**(mdig/2)
jseed = min0(iabs(jd) ,ml)
if (mod(jseed,2) .eq.O) jseed=j seed-1
kO =mod(9069,m2)
kl = 9069/m2
jo = mod (jseed, m2)
jl = jseed/m2
do 2 i=l,17

jseed = j0*k0
jl = mod(jseed/m2+j0*kl+jl*k0,m2/2)
jo = mod (jseed, m2)

2 m(i) = j0+m2*jl
i=5
j=17

c begin main loop here
3 k=m(i)-m(j)

if(k .It. 0) k=k+ml
m(j)=k
i=i-l
if(i .eg. 0) i=17
3=3-1
if(j .eg. 0) j=17
uni=float (k) /float (ml)
return
end

0 4r 4r 4: ir 4r 4r 4r 4r 4r 4: 4; 4r 4r 4r 4; A ir 4r 4: i; 4r 4; 4r 4: 4r 4; 4: 4; 4r 4r * 4: 4; 4r 4:* 4: 4: 4; 4: 4: 4; 4; 4: 4: 4; 4: 4; 4: 4r 4; 4r 4r ir ir 4: 4r 4;

C
c sdot
C
C 4r 4: 4: 4; 4r 4r 4: 4: 4: 4; 4r 4r 4r 4r 4r 4: 4r 4r 4r 4r 4r 4r 4r 4r 4: 4r 4r 4r 4: 4: 4r 4r 4r 4; 4r 4r 4r 4r 4r 4r 4; 4r 4c 4; 4r 4r 4; 4r 4r 4r 4r 4r 4: 4c 4r 4r 4r 4: 4r 4r 4r 4r 4r 4; 4r 4r 4r 4r 4;

113

REAL FUNCTION SDOT(N,SX, INCX^SY, INCY)
C** ******•!:***
C
c To compute the inner product between vectors sx and sy with
c separate increments. This routine from the BLAS library,
c
C**

REAL SX(*) ,SY(*)
C***FIRST EXECUTABLE STATEMENT SDOT

SDOT = O.OEO
IF(N.LE.O) RETURN
IF (INCX . EQ . INCY) IF (INCX-1) 5,20,60

5 CONTINUE
C
C CODE FOR UNEQUAL INCREMENTS OR NONPOSITIVE INCREMENTS.
C

IX = 1
lY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
SDOT = SDOT + SX(IX)*SY(IY)
IX = IX + INCX
lY = lY + INCY

10 CONTINUE
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5.
C

20 M = MOD(N,5)
IF(M .EQ. 0) GO TO 40
DO 30 I = 1,M
SDOT = SDOT + SX(I)*SY(I)

30 CONTINUE
IF(N .LT. 5) RETURN

40 MPl = M + 1
DO 50 I = MP1,N,5
SDOT = SDOT + SX(I)*SY(I) + SX(I + 1)*SY(I + 1) +

1 SX(I + 2)*Sy(I + 2) + SX(I + 3)*SY(I + 3) + SX(I + 4)*SY(I + 4)
50 CONTINUE

RETURN
C
C CODE FOR POSITIVE EQUAL INCREMENTS .NE.l.
C

60 CONTINUE
NS=N*INCX
DO 70 1=1, NS, INCX
SDOT = SDOT + SX(I)*SY(I)

70 CONTINUE
RETURN
END

Cifk**
C
c snrm2
c
c**

REAL FUNCTION SNRM2 (N,SX,INCX)

114

oo

o

onoo

nnnn

non

on

non

0**
c
c This function computes the norm of the vector sx with increment
c allowed. The routine is from the BIAS library,
c
c**

INTEGER NEXT
REAL SX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE
DATA ZERO, ONE /O.OEO, l.OEO/

C
DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /

C***FIRST EXECUTABLE STATEMENT SNRM2
IF(N .GT. 0) GO TO 10
SNRM2 = ZERO
GO TO 300

C
10 ASSIGN 30 TO NEXT

SUM = ZERO
NN = N * INCX

C BEGIN MAIN LOOP
1 = 1

20 GO TO NEXT, (30, 50, 70, 110)
30 IF(ABS(SX(I)) .GT. CUTLO) GO TO 85

ASSIGN 50 TO NEXT
XMAX = ZERO

PHASE 1. SUM IS ZERO

50 IF(SX(I) .EQ. ZERO) GO TO 200
IF(ABS(SX(I)) .GT. CUTLO) GO TO 85

PREPARE FOR PHASE 2.
ASSIGN 70 TO NEXT
GO TO 105

PREPARE FOR PHASE 4.

100 I = J
ASSIGN 110 TO NEXT
SUM = (SUM / SX(I)) / SX(I)

105 XMAX = ABS(SX(I))
GO TO 115

PHASE 2. SUM IS SMALL.
SCALE TO AVOID DESTRUCTIVE UNDERFLOW.

70 IF(ABS(SX(I)) .GT. CUTLO) GO TO 75

COMMON CODE FOR PHASES 2 AND 4.
IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW.

110 IF(ABS(SX(I)) .LE. XMAX) GO TO 115
SUM = ONE + SUM * (XMAX / SX(I))**2
XMAX = ABS(SX(I))
GO TO 200

115 SUM = SUM + (SX(I)/XMAX)**2
GO TO 200

115

C PREPARE FOR PHASE 3.
C

75 SUM = (SUM * XMAX) * XMAX
C
c
C FOR REAL OR D.P. SET HITEST = CUTHI/N
C FOR COMPLEX SET HITEST = CUTHI/(2*N)
C

85 HITEST = CUTHI/FLOAT(N)

C
C PHASE 3. SUM IS MID-RANGE. NO SCALING.
C

DO 95 J =I,NN,INCX
IF(ABS(SX(J)) .GE. HITEST) GO TO 100

95 SUM = SUM + SX(J)**2
SNRM2 = SQRT(SUM)

GO TO 300
C

200 CONTINUE
1=1+ INCX
IF (I .LE. NN) GO TO 20

C
C END OF MAIN LOOP.
C
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
C

SNRM2 = XMAX * SQRT(SUM)
300 CONTINUE

RETURN
END

c**
c
c optwts
c
Cle1c1e'1c1e1f1c1e1i1c'k1e-ki:i:1e1c±1:1:'k1c1e1c1:'k1c1fk±1c1c’k1e1c'k1c1c1e1c1c1c’k'kit1eie1c1i1e1c*1:ic’k1c1e1e'k1cici:i:icrkieiciticic

subroutine optwts (itermax, num, w, rmserr, gw, iter, ierr,nuial,
1 nu2n2 ,wfactor ,vinp ,vout , target , npats , ninp , nhid

,

2 nout ,maxpat ,maxins ,maxhid , meixout ,naxwsize

,

3 ncalls,gin,wnew,p,r,s,vhid,deltal,delta2,
4 hderiv, oderiv, fpscr , fpgrph, fprun,nfreq,
& errdel , egoal , gwgoal , iwrt

)

c**
c
c Solve neural net least squares problem by scaled conjugate gradients,
c Return weight vector, error, |g|/|w|.
c Stop if emy of the following is true (return value as ierr)
c 0) rmserr <= egoal
c 1) Used itermax iterations.
c 2) Size of gradient vector < GWRATIO * size of weight vector
c 3) Error hasn't gone down by EFACTOR in nfreq iterations
c
Clc1e1c1e1cic1t1c1t1e’k1cii1e'k1c1c1e1c1c1e1c1c1c1eieic1e1eicicicii4:1e1e1e1cie1c1e1f1t±1cicickiei:1c’k1cit1e'k1f'ki:1c1eit1cieicieic'ki:1c

c the weights
real w(num)

c
real vinp (maxpat ,maxins+l

)

real vout (maxpat,maocout)
real target (maxpat ,maocout

)

real vhid (maxpat ,maxhid+1

)

real delta2 (maxpat , maocout

)

116

real deltal (roaxpat^maxhid)
real hderiv(iaaxhid)
real oderiv(inaxout)

c negative gradients of error wrt w*s
real gin(inaxwsize)

c new weights for temporary storage
real wnew(maxwsize)

c direction vector
real p(maxwsize)

c remembered negative gradient
real r(maxwsize)

c second derivative info along p direction
real s(maxwsize)

c number of steps since last restart
integer icount

c number of consecutive failures
integer fcovuit
integer fpscr, fpgrph, fprxin
logical success

c
c starting value for xl (or lambda) . This is lambda_l.
c

parameter (xlstart = 0.01)
c
c***
c
c ******* INITIALIZATION SECTION ********
c
c**
c
c test whether the maximum number of iterations is positive,
c If not exit with the computed function value (error) without the
c negative gradient, itermax is set to 0 when running tests,
c

if (itermax .gt. 0) then
c
c
c
c When itermaoc > 0:
c Get initial function value and negative gradient
c Compute initial rms error and zero iteration counter
c Set counters and set initial search direction
c
c
c

write (fprun, 999) itermax, num
999 formate iterations = *,i6,* # of weights = */i6)

c
c**
c
c ********** get initial function and negative gradient *********
c
c**
c
c get inital error and negative gradient
c

call func (itermax .gt. 0, niam, w, error, gm,numl,num2,
1 wfactor ,vinp ,vout , target , npats , ninp , nhid , nout

,

2 maxpat ,maxins ,maxhid ,maxout , ncalls ,vhid

,

3 deltal , delta2 , hderiv , Oderiv , iwrt , fprun)

117

c
c get the norm of the weight vector
c

wsiz = snrm2(niim, w, i)
c
c initialize the iteration counter if itermax > 0
c

iter = 0
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c

c
c
c

c
c
c
c
c
c
c

c
c

compute the rms error.

Note rms error is the sqrt of the sums of square differences
with no leading 1/2. error has a leading 1/2 that must be canceled
by the 2 multiplier. Note that error includes division by
the product of the number of patterns and the number of
outputs when passed back from func. Therefore the next line forms a
legitimate rms error by computing the norm of a vector and dividing
by the square root of its length.

rmserr = sqrt (error * 2)

initialize error flag to indicate exit with iteration count
larger than itermax. This is the default setting.

ierr = 1

initialize relative distance for numerical derivative

sigma = l.e-4

initialize lambda to lambda__l > 0

xl = xlstart

initailize lambda_l bar to 0

xlb = 0

initialize positive definiteness parameter to 0

deltak = 0

initialize logical flag identifying that a reduction in
error function can be made

success = .true.

save the current rms error

rmsold = rmserr

identify how often to restart the algorithm. The conjugate
gradient algorithms must be restarted after the total number
of iterations becomes a multiple of the number of unknowns.
This is because the function being minimized is not necessarily
quadratic.

iover = num

initialize the number of iterations since last restart. This

118

c counter gets reset after each restart. It is used to test
c against iover.
c

icount = 0

c
c initialize the number of failed iterations in a row. An iteration
c is considered a failure if it does not reduce the error function,
c This counter will be used as a termination check. The s\ibroutine
c will stop on too many failures in a row.
c

fcount = 0
c
c initialize the number of iterations since last convergence check
c

ncount = 0
c
c save the max iterations
c

iter = itermax
c

c
C ******** get initial search direction********
c
c***
c
c initialize both the step direction and current steepest
c descent array to the initial steepest descent
c

do 23006 n = 1, num
p(n) = gm(n)
r(n) = gin(n)

23006 continue
c
0**
c
c ******** initialize iteration counter *********
c
c**
c
c initialize the iteration counter. This index continues to
c accumulate no matter how many restarts,
c

k = 0
write (*,9000)

9000 format(* Iteration, rmserr*)
else

c
c**
c
C ******** RUNNING TESTS ONLY *********
c
c**
c
c When itermax <= 0:
c Get initial function value and rms error
c Set return flag
c
c
c

119

c get inital error only
c

call func(itenQax .gt. 0, num, w, error, gm,niml,num2,
1 wfactor ,vinp ,vout , target , npats , ninp , nhid , nout

,

2 maxpat , maxins , maxhid ,maxout , ncalls ,vhid

,

3 deltal , delta2 , hderiv , oderiv , iwrt , fprun)
c
c get the norm of the weight vector
c

wsiz = snrm2 (niim, w, 1)
c
c set error index if itermax <= 0 then exit with rms error
c

iter = -1
c
c compute the rms error no matter what itermax is
c

rmserr = sqrt (error * 2)
c
c return if itermax <= 0, This would happen on testing rxins
c and not training runs
c

return
end if

c
c**
c
C ****** main iteration loop *************
c
c**
c
c Entry for the main iteration loop
c if the iteration counter hits the maximum iterations then exit the
c routine
c
23008 if(k .ge. itermax) then

goto 23009
end if

c
c increment the counter for the number of iterations since
c the last restart
c

icount = icount + 1
c
c get the norm of the current direction vector
c

psiz = snrm2(num, p, 1)
c
c square this norm
c

psq = psiz**2
c
c if a reduction in the error can be made compute the
c quadratic terms otherwise only adjust parameters with current
c quadratic information by skipping to step 3 of the algorithm,
c A reduction in error cannot be made if the comparison
c delta is < 0. If so try scaling the current Hessian again, get
c a new step size and recompute the comparison pareuneter delta,
c

if (success .eg. .true.) then

120

C************************ ************icit*****i:icic************
C
c******** GET SECOND ORDER DIRECTIONAL DERIVATIVE *********
c
Q***************************** *icic**************************
C
c a reduction in the . error function can be made
c get divisor for approximate second derivative info
c

sigmak = sigma * wsiz / psiz
do 23012 n = 1, num

wnew(n) = w(n) + sigmak * p(n)
23012 continue
c
c get error and negative gradient at the new weight vector point
c

call func(,true., num, wnew, enew, s,numl,num2,wfactor,
1 vinp ,vout , target , npats , ninp , nhid , nout

,

2 maxpat ,maxins ,maxhid ,maxout , ncalls ,vhid

,

3 deltal , delta2 , hderiv , oderiv , iwrt , fprun)
c
c Compute the second order directional derivative along p
c

do 23014 n = 1, num
s(n) = (gm(n) - s(n)) / sigmak

23014 continue
c
c compute definiteness check pareimeter
c

deltak = sdot(num, s, 1, p, 1)
end if

c
c***
c
C ********* make hessian POSITIVE DEFINITE ***********
c
c***
c
c section to scale approximate Hessian
c and definiteness parcuneter
c
c skip to this section if a reduction
c in error could not be previously done,
c Attempt to scale and try stepping again,
c The subroutine will terminate if too many attempts
c in a row are made to try to reduce the error and
c fail,
c
c save Iconbdak - lambdak_bar
c

c = xl - xlb
c
c if it is 0 skip the scaling
c

if(c .ne. 0.0) then
c
c scale the approximate Hessieui and the definiteness parameter
c

do 23018 n = 1, num

121

23018
s(n) = s(n) + c * p(n)

continue
deltak = deltak + c * psq

end if
c
c
c
c test for the definiteness of the Hessian
c if it is not positive definite (deltak <=0) scale the
c second order term to make it positive definite
c before taking a new step.
c If it is positive definite skip to get a new
c step size
c
c
c

if (deltak .le. 0) then
c = xl - 2 * deltak / psq
do 23022 n = 1, num

s(n) = s(n) + c * p(n)
23022 continue

xlb = 2 * (xl - deltak / psq)
deltak = - deltak + xl * psq
xl = xlb

end if
c
c***
c
c ******** COMPUTE NEW STEP LENGTH **********
c
c***
c

xmu =sdot(num, p, 1, r, 1)
alpha = xmu / deltak

c
0**************4:***
C
C ********* COMPUTE NEW WEIGHT VECTOR ************
c
C**
c

do 23024 n = 1, num
wnew(n) = w(n) + alpha * p(n)

23024 continue
c
c***
c
C ******** COMPUTE QUADRATIC TEST PARAMETER ********
c
C********* 4r* **** 4:****4;'*4(**4r*** *4;********* *4;************
C
c get new function value and negative gradient
c compute quadratic approximation test parameter
c A reduction in error can be made if delta >=0
c otherwise delta < 0 means a reduction could not
c be made,
c

call func(.true., num, wnew, enew, gm,numl,num2,
1 wfactor ,vinp ,vout , target , npats , ninp

,

2 nhid , nout ,maxpat ,maxins ,maxhid ,maxout

,

122

3 ncalls , vhid , deltal , delta2 , hderiv , oderiv , iwrt , fprun)
delta = 2 * deltak * (error — enew) / xmu**2

c
c if a reduction in error can be made (delta >= 0) get a new
c conjugate direction, otherwise get a count of the failures,
c

if (delta .ge. 0.0) then
c
c**
c
c ******** SETUP FOR NEW CONJUGATE DIRECTION **********
C *** OTHERWISE TEST FOR TOO MANY UNSUCCESSFUL STEPS **

c
c**
c
c a reduction in error was made
c set up new conjugate direction and
c adjust parcuneters to maintain a
c trustworthy quadratic approximation
c
c iteration counter czm be updated as well as the count of the number
c of iterations since the last convergence check. Since this is a
c successful iteration the number of failed iterations in a row can
c be reset to 0
c

k = k + 1
write (fpscr, *) k,rmserr
if (mod(k,nfreq) .eq. 0) write(*,*) k,rmserr
ncount = ncount + 1
fcount = 0

c
c***
c
c ********** UPDATE THE WEIGHT VECTOR ************
c
^**‘4:

C
do 23028 n = 1, num

w(n) = wnew(n)
23028 continue
c
c compute its norm
c

wsiz = snrm2(num, w, 1)
c
c update the current error function value
c

error = enew
xlb = 0
success = . true

.

c
0***
c
C ********** TEST FOR ALGORITHM RESTART ************
c
c***
c

if (mod(icount, iover) .eq. 0)then
c
c***

123

c
c ********** Qg»p CONJUGATE DIRECTION ************
C
C***********4:***
C
c restart by setting current direction to steepest descent
c

do 23032 n = 1, num
p(n) = gm(n)

23032 continue
else

c
c if there is no restart get a new conjugate direction
c

beta = (sdot(nuiii, gm, 1, gm, 1) - sdot(nuia, gm, 1, r, 1))
& / xmu

do 23034 n = 1, num
p(n) = gm(n) + beta * p(n)

23034 continue
end if

c
c After getting new direction update current steepest descent
c

do 23036 n = 1, num
r(n) = gm(n)

23036 continue
c
c**
c
c ****** test quadratic trustworthiness ***********
c
c**
c

if (delta .ge. 0.75) then
c
c quadratic approximation is trustworthy at this point, can reduce
c leunbda to increase step size
c

xl = xl / 2
c
c test whether delta < 0.25
c
c not nearly as good a quadratic approximation therefore increase xl to
c reduce the step length
c

else if (delta .It. 0.25) then
xl = 4.0 * xl

end if
else

c
c**
c
c ********** test for too many unsuccessful steps ***********
c *************** COME HERE IF DELTA < 0 ********************
c
C**
c
c end if delta < 0 too many times
c
c unsuccessful step and error cannot be reduced

124

c increment iteration failure counter
c

xlb = xl
success = .false,
fcount = fcount + 1

c
c Do not exit on a single failure to reduce the error. Attempt to
c scale another time. However set two failures as a limit,
c If there are fewer than two failures in a row then go on to step 8

c to adjust lambdak upwards which reduces the step size and possibly
c the local error
c

if (fcount .gt. 2) then
c
c if the number of iterations since the last restart is not greater
c than the iteration failure counter then exit
c

if(icount .gt. fcount) then
c
c at least one good step since restart then restart again
c

do 23044 n = 1, num
p(n) = gm(n)

23044 continue
c
c initialize lambda_)c to lambda_l
c

xl = xlstart
c
c set l 2aiibda__k bar back to 0
c

xlb = 0
success = .true,
delta = 1.0
icount = 0
fcount = 0

c
c return with error index if the failure count is > 2 and the
c number of iterations since the last restart is <= the failure count
c

else
ierr = 3

iter = k
goto 23009

end if
end if

end if
c
Qlc’k'k1citfc1tic1cieic1:4:1cic1c1ticicic4c1cicici(icic’kicicTkicicic'kic'ic*ie’k1c‘kicicicicicicic1cie‘k1ci:icic1cic±ic

C
c ******** test for convergence *****************
c
c**
c
c
c adjust xl if delta < .25
c

if (delta .It. 0.25) then
xl = 4.0*xl

end if

125

c
c compute current rms error and the norm of the current descent
c direction
c

rmserr = sqrt (error * 2)
gsiz = snrm2 (num, r, 1)

c
c if the error function can be reduced and the convergence counter
c is >= number of iterations before convergence check then reset
c convergence check counter and test for convergence,
c

if ((success .eg. .true.) .and. (ncount .ge. nfreq)) then
ncount = 0

c
c Terminate if convergence too slow
c

if (rmserr .gt. errdel * rmsold) then
ierr = 3

iter = k
goto 23009

end if
c
c save the current rms error for future check
c

rmsold = rmserr
end if

c
c Terminate when error satisfactory
c

if (rmserr .It. egoal) then
ierr = 0
iter = k
goto 23009

end if
c
c Terminate when gradient is too small
c

if (gsiz .It. gwgoal * max (1.0, wsiz)) then
ierr = 2
iter = k
goto 23009

end if
c
Ck icicle It Icicle icicle it 1c1e1c1cieieicie1c-k1e1c1e"k1c1c’kic1('iiic-k’k1cicic1cicic-kicici:-kie'k"kic‘kieicic1cie-k-k

C
C ******* GO BACK TO TOP OF MAIN LOOP ********
c
c**
c

goto 23008
c
C**************4r***
C
c ********** exit **********
C
C***
c
c compute ratio of descent magnitude over weight magnitude
c
23009 continue

126

gw = gsiz / wsiz
c
c rewind scratch file and write out graphics file
c

ncol = 2
rewind (fpscr

)

write (fpgrph , *) iter , ncol
do 24000 i = loiter

read (fpscr, *) it,rer
write (fpgrph,*) it,rer

24000 continue
return
end

c**
c Kolmogorov-Smimov one-distribution test
c**

SUBROUTINE KSONE (DATA,N, D, PROB)
c**
c
c From Press, et al. "Numerical Recipes"
c
c Given an array of N values, DATA, and given a user supplied
c function of a single variable, CUMUL, which is the
c cumulative distribution function ranging from 0 (for
c smallest values of its argument) to 1 (for largest values
c of its argument) , this routine returns the K-S statistic, D,
c and the significance level PROB. Small values of PROB show
c that the cumulative distribution function of DATA is
c significantly different from CUMUL. The array DATA is
c modified by being sorted into ascending order,
c
Q’k'k'k'k'k'kieic'k'kie'k'k'k'k'kit’kit'kit'k'k'kifkitie'kic'kic'kic'k'kic'k-kicic'kit'k'kicicieickifk'k'k'k'k'k

DIMENSION DATA(N)
CALL SORT (N, DATA)
EN=N
D=0.
F0=0.
DO 11 J=1,N
FN=J/EN
FF=CDMUL(DATA(J)

)

DT=AMAXl(ABS(FO-FF) ,ABS(FN-FF)

)

IF(DT.GT.D)D=DT
F0=FN

11 CONTINUE
PROB=PROBKS (SQRT (EN) *D)
RETURN
END

Q'k'kific'kieicicit'kieicle'k'k’kit'kitle'k'kieic'k’k’k’kifkifkitifk'kieifkitifk’k'k'k’k'kit'kieltit'kic’kit

FUNCTION PROBKS(ALAM)
c**
c
c From Press, et al., "Numerical Recipes"

^ c
c This function calculates the significance for the
c K-S statistic
c
C'kic-kic-kicle'k-kicleiciciclelelc'kic’kicicicicic'kicie'krkicifkifit'kie'kieicieieic-kie-kli’k’kicicic'k'kieic'k

PARAMETER (EPS1=0.001, EPS2=l.E-8)
A2=-2 . *ALAM**2
FAC=2

.

127

PROBKS=0

.

TERMBF=0

.

DO 11 J=l,100
TERM=FAC*EXP (A2*J**2

)

PROBKS=PROBKS+TERM
IF(ABS(TERM) . LT.EPSl*TERMBF.OR. ABS (TERM) . LT. EPS2*PROBKS) RETURN
FAC=-FAC
TERMBF=ABS (TERM)

11 CONTINUE
PROBKS=l

.

RETURN
END

C***
FUNCTION ERFCC(X)

0***
c
c From Press, et al., "Numerical Recipes”
c
c Returns the complimentary error function with
c fractional error less than 1.2e-7
c
0***

Z=ABS(X)
T=1./(1«+0*5*Z)
ERFCC=T*EXP(-Z*Z-1. 26551223+T* (1. 00002368+T* (. 37409196+

* T* (. 09678418+T* (-. 18628806+T* (. 27886807+T* (-1.13520398+
* T*(1.48851587+T*(-.82215223+T*. 17087277)))))))))
IF (X.LT.O.) ERFCC=2.-ERFCC
RETURN
END

0***
SUBROUTINE SORT(N,RA)

0**
c
c From Press, et al., "Numerical Recipes"
c
c Sorts an array, RA, of length N into ascending numerical
c order using the Heapsort algorithm. N is input; RA is
c replaced on output by its sorted rearrangement,
c
0**

DIMENSION RA(N)
L=N/2+l
IR=N

10 CONTINUE
IF(L.GT.1)THEN

L=L-1
RRA=RA(L)

ELSE
RRA=RA(IR)
RA(IR)=RA(1)
IR=IR-1
IF(IR.EQ.1)THEN
RA(1)=RRA
RETURN

ENDIF
ENDIF
I=L
J=ia-L

20 IF(J.LE.IR)THEN

128

IF(J.LT.IR)THEN
IF(RA(J) .LT.RA(J+1)) J=J+1

ENDIF
IF (RRA. LT . RA (J)) THEN
RA(I)=RA(J)
I=J
J=J+J

ELSE
J=IR+1

ENDIF
GO TO 20
ENDIF
RA(I)=RRA

GO TO 10
END

function erf(x)
Ck 'k'k-k’k’kiclciclc’klcle icicle it leieic'k’k’k-k'kic'k-kicieieic'kic'k-kicic’kic'kicicicicicic'kic’kic’k-kicicicic

C
c This function computes the error function
c
Qicieieieicicicicicleicicicicleicieleicieieicicieieicieicieieicieieicieieicicicicicleieicicieieicicicicicicieieiei:

erf =1. - erfcc(x)
return
end

Ckicic iciclea icicicicielcicicicicicleicieicicicieicicicieicieicicicieleicicicicieicicielcicicicicicicicicicicic

function cumul(x)
Qieicieieieieicieieicieieieieieieieicieieieicicieieieieicieieieieieieieieieieieieieicieieieieieieieicicieieieieie

C
c This function returns the cumulative distribution of
c the (0,1) normal distribution
c
Qieieicicieieieicieieieicicieicieieieieicicicicieicicicicicicicieicicicicieieicieicieicieieicicieieicicicieieieic

if (x .ge. 0.) then
cumul = 0.5* (l.+erf (x/ (sqrt(2.)))

)

else
cumul = 1. - 0.5* (l.+erf (-x/(sqrt (2.)))

)

endif
return
end

129

APPENDIX B

SAMPLE OUTPUT FILE

130

X
*

NEURAL NET RUN REPORT
****************’****it***********^******rfc’**’**********************************^**.*

•*•***********•**********************************'*********************

DATA SET

Training on xdspdown.tm

The number of data patterns is 397

**

NETWORK SPECIFICATION

**********it**

INPUT NODES HIDDEN NODES OUTPUT NODES

37 60 1

WEIGHTS (I TO H) WEIGHTS (H TO 0) TOTAL WEIGHTi

2280 61 2341

**

RUN PARAMETERS

131

Random initial weights, seed 12345
Regularization factor wfactor = 1.300E-03

1
**

RUN TERMINATION CRITERIA

Maximum number of iterations is 1500
Error checking frequency is every 1 iterations
Run is terminated on either max iterations or
one of the criteria below.
RMS error <= O.lOOE-02
(RMS of g) <= O.lOOE-11 * (RMS of w)
(RMS err) > 1.00 * (RMS err 1 iterations ago)
max iterations = 1500 # of weights = 2341

1

RUN RESULTS

R-SQ of nonlinear fit = 0.9961917

Pointwise Error

Mean
0.2527817E-05

Standard Deviation
0.1701827E-03

Minimum
-0.6710461E-03

Maximum
0.7603451E-03

Data
Index

1
2
3

4
5

Output
Node

1
1
1
1
1

Desired
Output

-0.1163E-02
-0-3243E-02
-0.7414E-02
-0.9268E-02
-0.1280E-01

Predicted
Output

-0.1325E-02
-0.3874E-02
-0.7286E-02
-0.9583E-02
-0.1326E-01

Absolute
Error
0.1616E-03
0.6303E-03
-0.1279E-03
0.3158E-03
0.4662E-03

132

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 -0.1458E-01 -0.1474E-01 0,1646E-03
1 -0.1706E-01 -0-1717E-01 0.1092E-03
1 -0.1833E-01 -0.1842E-01 0.8106E-04
1 -0.2032E-01 -0.2079E-01 0.4792E-03
1 -0.2156E-01 -0.2180E-01 0.2378E-03
1 -0.2311E-01 -0.2283E-01 -0.2781E-03
1 -0.2318E-01 -0.2311E-01 -0.7785E-04
1 -0.4257E-02 -0.3586E-02 -0.6710E-03
1 -0.6372E-02 -0.6389E-02 0.1641E-04
1 -0.1008E-01 -0.9664E-02 -0.4157E-03
1 -0.1155E-01 -0.1149E-01 -0.6624E*04
1 -0.1518E-01 -0.1489E-01 -0.2914E-03
1 -0.1655E-01 -0.1609E-01 -0.4650E-03
1 -0.1884E-01 -0,1832E-01 -0.5189E-03
1 -0,1973E-01 -0,1938E-01 -0.3496E-03
1 -0.2196E-01 -0.2135E-01 -0.6079E-03
1 -0.2282E-01 -0.2230E-01 -0.5200E-03
1 -0.2343E-01 -0.2282E-01 -0.6117E-03
1 -0.1175E-02 -0.8425E-03 -0.3325E-03
1 -0.5328E-02 -0.5506E-02 0.1773E-03
1 -0.7181E-02 -0.6983E-02 -0.1988E-03
1 -0.1040E-01 -0.1081E-01 0.4007E-03
1 -0.1228E-01 -0.1273E-01 0.4491E-03
1 -0.1525E-01 -0.1556E-01 0.3107E-03
1 -0.1632E-01 -0.1659E-01 0.2763E-03
1 -0.1830E-01 -0.1844E-01 0.1442E-03
1 -0.1923E-01 -0.1932E-01 0.8399E-04
1 -0.2129E-01 -0.2151E-01 0.2196E-03
1 -0.2179E-01 -0.2187E-01 0.7486E-04
1 0.1793E-05 -0.2798E-03 0.2816E-03
1 -0.2097E-02 -0.2078E-02 -0.1882E-04
1 -0.6162E-02 -0.5910E-02 -0.2519E-03
1 -0.7888E-02 -0.7834E-02 -0.5306E-04
1 -0.1129E-01 -0.1145E-01 0.1600E-03
1 -0.1296E-01 -0.1312E-01 0.1557E-03
1 -0.1534E-01 -0.1548E-01 0.1386E-03
1 -0.1643E-01 -0.1645E-01 0.2010E-04
1 -0.1831E-01 -0.1826E-01 -0.5399E-04
1 -0.1953E-01 -0.1919E-01 -0.3315E-03
1 -0.2092E-01 -0.2113E-01 0.2115E-03
1 -0.2094E-01 -0.2108E-01 0.1425E-03
1 -0.1468E-02 -0.1398E-02 -0.6996E-04
1 -0.3597E-02 -0.3544E-02 -0.5235E-04
1 -0.7325E-02 -0.6886E-02 -0.4393E-03
1 -0.8745E-02 -0.8568E-02 -0.1776E-03
1 -0.1230E-01 -0.1223E-01 -0.6508E-04
1 -0.1367E-01 -0.1364E-01 -0.2880E-04
1 -0.1584E-01 -0.1581E-01 -0.3006E-04
1 -0.1671E-01 -0.1678E-01 0.7707E-04
1 -0.1888E-01 -0.1860E-01 -0.2891E-03
1 -0.1975E-01 -0.2014E-01 0.3973E-03
1 -0.2030E-01 -0.2040E-01 0.1018E-03
1 0.2488E-02 0.1828E>02 0.6604E-03
1 -0.1376E-02 -0.1298E-02 -0.7775E-04
1 -0.3241E-02 -0.3020E-02 -0.2215E-03
1 -0.6488E-02 -0.6362E-02 -0.1268E-03
1 -0.8302E-02 -0.8139E-02 -0.1638E-03
1 -0.1122E-01 -0.1091E-01 -0.3138E-03
1 -0.1219E-01 -0.1208E-01 -0.1158E-03
1 -0.1420E-01 -0.1424E-01 0.4655E-04

133

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

1 -0.1507E-01 -0.1533E-01 0.2595E-03
1 -0.1700E-01 -0.1699E-01 -0.4636E-05
1 -0.1746E-01 -0.1752E-01 0.5755E-04
1 0.2593E-02 0.1833E-02 0.7603E-03
1 0.6198E-03 0.2878E-03 0.3320E-03
1 -0.3264E-02 -0.3036E-02 -0.2276E-03
1 -0.4950E-02 -0.4917E-02 -0.3323E-04
1 -0.8222E-02 -0.8189E-02 -0.3262E-04
1 -0.9858E-02 -0.9702E-02 -0.1557E-03
1 -0.1209E-01 -0.1207E-01 -0.1951E-04
1 -0.1316E-01 -0.1311E-01 -0.5524E-04
1 -0.1494E-01 -0.1525E-01 0.3142E-03
1 -0.1612E-01 -0.1623E-01 O.llOlE-03
1 -0.1741E-01 -0.1735E-01 -0.5937E-04
1 -0.1726E-01 -0.1721E-01 -0.4983E-04
1 0.6733E-03 0.2910E-03 0.3823E-03
1 -0.1272E-02 -0.1278E-02 0.6169E-05
1 -0.4924E-02 -0.4856E-02 -0.6874E-04
1 -0.6306E-02 -0.6314E-02 0.8279E-05
1 -0.9831E-02 -0.9574E-02 -0.2563E-03
1 -O.llllE-01 -0.1078E-01 -0.3309E-03
1 -0.1316E-01 -0.1297E-01 -0.1877E-03
1 -0.1406E-01 -0.1405E-01 -0.1310E-04
1 -0.1601E-01 -0.1611E-01 0.9975E-04
1 -0.1678E-01 -0.1678E-01 -0.1146E-05
1 -0.1721E-01 -0.1714E-01 -0.7141E-04
1 0.2579E-02 0.1851E-02 0.7282E-03
1 -0.1295E-02 -0.1287E-02 -0.8701E-05
1 -0.3260E-02 -0.3002E-02 -0.2582E-03
1 -0.6250E-02 -0.6342E-02 0.9177E-04
1 -0.8164E-02 -0.8125E-02 -0.3906E-04
1 -0.1105E-01 -0.1082E-01 -0.2297E-03
1 -0.1205E-01 -0.1198E-01 -0.7428E-04
1 -0.1400E-01 -0.1406E-01 0.6104E-04
1 -0.1487E-01 -0.1512E-01 0.2482E-03
1 -0.1679E-01 -0.1675E-01 -0,4665E-04
1 -0.1721E-01 -0.1710E-01 -0.1147E-03
1 0.2526E-02 0.1836E-02 0.6905E-03
1 0.6611E-03 0.2722E-03 0.3889E-03
1 -0.3156E-02 -0.3043E-02 -0.1126E-03
1 -0.4917E-02 -0.4940E-02 0.2303E-04
1 -0.8160E-02 -0.8220E-02 0.5995E-04
1 -0.9743E-02 -0.9713E-02 -0,3018E-04
1 -0.1205E-01 -0.1208E-01 0.3676E-04
1 -0.1307E-01 -0.1310E-01 0.2860E-04
1 -0.1482E-01 -0.1519E-01 0.3719E-03
1 -0.1594E-01 -0.1615E-01 0.2065E-03
1 -0.1720E-01 -0.1710E-01 -0.9839E-04
1 -0.1711E-01 -0.1714E-01 0.2684E-04
1 0.5598E-03 0.3568E-03 0.2031E-03
1 -0.1313E-02 -0.1199E-02 -0.1141E-03
1 -0.4561E-02 -0.4660E-02 0.9950E-04
1 -0.5753E-02 -0.5913E-02 0.1608E-03
1 -0.9051E-02 -0.9135E-02 0.8416E-04
1 -0.1022E-01 -0.1014E-01 -0.7277E-04
1 -0.1197E-01 -0.1196E-01 -0,8461E-05
1 -0.1273E-01 -0.1267E-01 -0.5241E-04
1 -0.1443E-01 -0.1409E-01 -0.3391E-03
1 -0.1503E-01 -0.1475E-01 -0.2820E-03
1 -0.1505E-01 -0.1485E-01 -0.2073E-03

134

126 1 0,2346E-
127 1 -0.1313E-
128 1 -0.3114E-
129 1 -0.5853E-
130 1 -0.7579E-
131 1 -0.1019E-
132 1 -0.1105E-
133 1 -0.1275E-
134 1 -0.1346E-
135 1 -0.1500E-
136 1 -0.1533E-
137 1 0.2332E-
138 1 0.5386E-
139 1 - -0.3086E-
140 1 -0.4683E-
141 1 -0.7598E-
142 1 -0.9145E-
143 1 -0.1107E-
144 1 -0.1198E-
145 1 -0.1342E-
146 1 -0.1441E-
147 1 -0.1534E-
148 1 -0.1516E-
149 1 0.4563E-
150 1 -0.1461E-
151 1 -0.4604E-
152 1 -0.5921E-
153 1 -0.9140E-
154 1 -0.1020E-
155 1 -0.1197E-
156 1 -0.1271E-
157 1 -0.1445E-
158 1 -0.1509E-
159 1 -0.1510E-
160 1 0.2195E-
161 1 -0.1461E-
162 1 -0.3210E-
163 1 -0.5946E-
164 1 -0.7696E-
165 1 -0.1025E-
166 1 -0.1109E-
167. 1 -0.1273E-
168 1 -0.1342E-
169 1 -0.1509E-
170 1 -0.1536E-
171 1 0.1812E-
172 1 0.7500E-
173 1 -0.3505E-
174 1 -0.4998E-
175 1 -0.7933E-
176 1 -0.9400E-
177 1 -0.1137E-
178 1 -0.1225E-
179 1 -0.1361E-
180

.
1 -0.1457E-

181 1 -0.1543E-
182 1 -0.1522E-
183 1 0.1029E-
184 1 -0.1758E-
185 1 -0.4922E-

0.1974E-02 0.3718E-03
-0 .1228E-02 -0.8421E-04
-0.2908E-02 -0.2066E-03
-0.5957E-02 0.1037E-03
-0.7659E-02 0.8058E-04
-0.1023E-01 0.3708E-04
-0.1120E-01 0.1499E-03
-0.1276E-01 0,1070E-04
-0.1347E-01 0.1532E-04
-0.1486E-01 -0.1390E-03
-0.1523E-01 -0.9902E-04
0.1966E-02 0.3655E-03
0.3271E-03 0.2115E-03
-0.2893E-02 -0,1924E-03
-0.4645E-02 -0.3774E-04
-0,7578E-02 -0.2066E-04
-0.9116E-02 -0.2846E-04
-O.llllE-01 0.4086E-04
-0.1195E-01 -0.2667E-04
-0.1340E-01 -0.2403E-04
-0.1412E-01 -0.2910E-03
-0.1514E-01 -0.1986E-03
-0.1493E-01 -0.2296E-03
0,3172E-03 0.1391E-03
-0.1251E-02 -0.2097E-03
-0.4646E-02 0.4264E-04
-0.5879E-02 -0.4141E-04
-0.9110E-02 -0.3020E-04
-0.1015E-01 -0.5578E-04
-0.1197E-01 -0.6506E-05
-0.1270E-01 -0.8681E-05
-0.1416E-01 -0.2956E-03
-0.1485E-01 -0,2387E-03
-0.1502E-01 -0.8416E-04
0.1937E-02 0.2587E-03
-0.1286E-02 -0.1746E-03
-0.2960E-02 -0.2495E-03
-0.5935E-02 -0.1170E-04
-0.7641E-02 -0.5500E-04
-0.1020E-01 -0.5539E-04
-0.1117E-01 0.7675E-04
-0.1273E-01 0.1186E-05
-0.1346E-01 0.4102E-04
-0.1486E-01 -0.2286E-03
-0.1518E-01 -0.1824E-03
0.1528E-02 0.2837E-03
0.7359E-05 0.6764E-04
-0.3363E-02 -0.1422E-03
-0.5042E-02 0.4353E-04
-0.7867E-02 -0.6615E-04
-0.9189E-02 -0.2113E-03
-0.1145E-01 0.7965E-04
-0.1229E-01 0.3176E-04
-0.1378E-01 0.1710E-03
-0.1455E-01 -0.2769E-04
-0.1532E-01 -0.1077E-03
-0.1547E-01 0.2576E-03
-0.1759E-04 0.1205E-03
-0.1682E-02 -0.7618E-04
-0.5030E-02 0.1086E-03

02
02
02
02
02
01
01
01
01
01
01
02
03
02
02
02
02
01
01
01
01
01
01
03
02
02
02
02
01
01
01
01
01
01
02
02
02
02
02
01
01
01
01
01
01
02
04
02
02
02
02
01
01
01
01
01
01
03
02
02

135

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

1 -0.6161E-02 -0.6177E-02 0.1650E-04
1 -0.9299E-02 -0.9189E-02 -0.1096E-03
1 -0.1046E-01 -0.1050E-01 0.3537E-04
1 -0.1210E-01 -0.1228E-01 0.1823E-03
1 -0.1281E-01 -0.1302E-01 0.2124E-03
1 -0.1452E-01 -0.1452E-01 -0.5068E-05
1 -0.1510E-01 -0.1517E-01 0 . 6611E- 04
1 -0.1517E-01 -0.1540E-01 0,2394E-03
1 0.1814E-02 0.1413E-02 0.4013E-03
1 -0.1784E-02 -0.1712E-02 -0.7168E-04
1 -0.3378E-02 -0.3404E-02 0.2578E-04
1 -0.6211E-02 -0.6193E-02 -0.1866E-04
1 -0.7857E-02 -0.7868E-02 0.1148E-04
1 -0.1041E-01 -0.1049E-01 0.7709E-04
1 -0.1124E-01 -0.1144E-01 0.1959E-03
1 -0.1281E-01 -0.1299E-01 0.1845E-03
1 -0.1349E-01 -0.1373E-01 0.2404E-03
1 -0.1510E-01 -0.1508E-01 -0.2208E-04
1 -0.1532E-01 -0.1505E-01 -0.2702E-03
1 0.1784E-02 0.1357E-02 0.4272E-03
1 -0.8735E-05 -0.9434E-04 0.8561E-04
1 -0.3454E-02 -0.3441E-02 -0.1247E-04
1 -0.5023E-02 -0.5096E-02 0.7303E-04
1 -0.7906E-02 -0.7897E-02 -0.9729E-05
1 -0.9323E-02 -0.9193E-02 -0.1293E-03
1 -0.1127E-01 -0.1146E-01 0.1944E-03
1 -0.1217E-01 -0.1228E-01 0.1033E-03
1 -0.1353E-01 -0.1373E-01 0.1951E-03
1 -0.1457E-01 -0.1446E-01 -0.1102E-03
1 -0.1534E-01 -0.1503E-01 -0.3132E-03
1 -0.1518E-01 -0.1525E-01 0.7089E-04
1 -0.4026E-04 -0.1137E-03 0.7345E-04
1 -0.1908E-02 -0.1799E-02 -0.1091E-03
1 -0.5096E-02 -0.5142E-02 0.4644E-04
1 -0.6308E-02 -0.6257E-02 -0.5129E-04
1 -0.9394E-02 -0.9231E-02 "0.1633E-03
1 -0.1048E-01 -0.1056E-01 0,7619E-04
1 -0.1219E-01 -0.1233E-01 0,1323E-03
1 -0.1285E-01 -0.1305E-01 0.2060E-03
1 -0.1454E-01 -0,1453E-01 -0.4727E-05
1 -0.1506E-01 -0.1515E-01 0.8687E-04
1 -0.1518E-01 -0.1536E-01 0.1812E-03
1 0.1311E-02 0.1654E-02 -0.3427E-03
1 -0.1891E-02 -0.2049E-02 0.1577E-03
1 -0.3521E-02 -0.3429E-02 -0.9240E-04
1 -0.5892E-02 -0.6012E-02 0.1197E-03
1 -0.7497E-02 -0.7371E-02 -0.1265E-03
1 -0.9741E-02 -0.9818E-02 0.7623E-04
1 -0.1046E-01 -0.1033E-01 -0.1242E-03
1 -0.1186E-01 -0.1177E-01 -0.9780E-04
1 -0.1243E-01 -0.1236E-01 -0.6552E-04
1 -0,1378E-01 -0.1358E-01 -0.1990E-03
1 -0.1391E-01 -0.1411E-01 0.1992E-03
1 0.1502E-02 0,1626E-02 -0.1247E-03
1 -0.2200E-03 -0.4421E-03 0.2222E-03
1 -0.3546E-02 -0.3500E-02 -0.4610E-04
1 -0.4872E-02 -0.4883E-02 0.1080E-04
1 -0.7472E-02 -0.7472E--02 0.1611E-06
1 -0.8797E-02 -0.8870E-02 0.7331E-04
1 -0.1048E-01 -0.1041E-01 -0.7584E-04

136

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

1 -0.1125E-01 -0.1121E-01 -0-4116E-04
1 -0.1240E-01 -0.1243E-01 0.2545E-04
1 -0.1330E-01 -0.1305E-01 -0.2491E-03
1 -0.1394E-01 -0.1420E-01 0.2620E-03
1 -0.1359E-01 -0.1424E-01 0.6536E-03
1 -0.1996E-03 -0.5163E-03 0.3167E-03
1 -0.1992E-02 -0.2231E-02 0.2390E-03
1 -0.4872E-02 -0.5018E-02 0.1458E-03
1 -0.5994E-02 -0.6229E-02 0.2346E-03
1 -0.8822E-02 -0.8998E-02 0.1755E-03
1 -0.9792E-02 -0.1002E-01 0.2262E-03
1 -0.1127E-01 -0.1132E-01 0.4582E-04
1 -0.1181E-01 -0.1193E-01 0.1196E-03
1 -0.1332E-01 -0.1314E-01 -0.1788E-03
1 -0.1378E-01 -0.1376E-01 -0.2162E-04
1 -0.1359E-01 -0.1432E-01 0.7344E-03
1 0.1370E-02 0.1545E-02 -0.1753E-03
1 -0.1967E-02 -0.2261E-02 0.2944E-03
1 -0.3496E-02 -0.3711E-02 0.2152E-03
1 -0.6019E-02 -0.6258E-02 0.2388E-03
1 -0,7573E-02 -0.7647E-02 0.7415E-04
1 -0.9843E-02 -0.1006E-01 0.2138E-03
1 -0.1051E-01 -0.1057E-01 0.6175E-04
1 -0.1184E-01 -0.1198E-01 0.1414E-03
1 -0.1240E-01 -0.1258E-01 0.1750E-03
1 -0,1381E-01 -0.1382E-01 0.1284E-04
1 -0.1399E-01 -0.1435E-01 0.3623E-03
1 0.1428E-02 0.1494E-02 -0.6550E-04
1 -0.1768E-03 -0.6132E-03 0.4364E-03
1 -0.3546E-02 -0.3842E-02 0.2959E-03
1 -0.4948E-02 -0.5141E-02 0.1929E-03
1 -0.7472E-02 -0.7792E-02 0.3206E-03
1 -0.8899E>02 -0.9173E-02 0.2744E-03
1 -0.1058E-01 -0.1073E-01 0.1504E-03
1 -0.1125E-01 -0,1153E-01 0.2811E-03
1 -0.1245E-01 -0.1273E-01 0.2828E-03
1 -0.1337E-01 -0.1335E-01 -0.2060E-04
1 -0.1404E-01 -0.1448E-01 0.4380E-03
1 -0.1369E-01 -0.1442E-01 0.7331E-03
1 -0.1647E-02 -0.1170E-02 -0.4774E-03
1 -0.3392E-02 -0.2985E-02 -0.4070E-03
1 -0.6372E-02 -0.6067E-02 -0.3054E-03
1 -0.7418E-02 -0.7245E-02 -0.1732E-03
1 -0.1027E-01 -0.1006E-01 -0.2093E-03
1 -0.1134E-01 -0.1114E-01 -0.2041E-03
1 -0.1282E-01 -0.1250E-01 -0.3253E-03
1 -0.1339E-01 -0.1309E-01 -0.2974E-03
1 -0.1487E-01 -0.1433E-01 -0.5428E-03
1 -0.1533E-01 -0.1495E-01 -0.3819E-03
1 -0.1526E-01 -0.1498E-01 -0.2808E-03
1 0.1156E-03 0.6177E-03 -0.5021E-03
1 -0.3390E-02 -0.3001E-02 -0.3885E-03
1 -0.4994E-02 -0.4828E-02 -0.1658E-03
1 -0.7465E-02 -0.7257E-02 -0.2080E-03
1 -0.9094E-02 -0.8710E-02 -0.3845E-03
1 -0.1139E-01 -0.1116E-01 -0.2314E-03
1 -0.1210E-01 -0.1176E-01 -0.3431E-03
1 -0,1348E-01 -0.1312E-01 -0.3610E-03
1 -0.1404E-01 -0.1373E-01 -0.3195E-03
1 -0.1540E-01 -0.1497E-01 -0.4250E-03

137

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

1 -0.1561E-01 -0.1534E-01 -0.2688E-03
1 0.2924E-04 0.5461E-03 -0.5169E-03
1 -0.1732E-02 -0.1244E-02 -0.4885E-03
1 -0.5044E-02 -0.4905E-02 -0.1390E-03
1 -0.6420E-02 -0.6154E-02 -0.2657E-03
1 -0.9094E-02 -0.8825E-02 -0.2697E-03
1 -0.1047E-01 -0.1020E-01 -0.2719E-03
1 -0.1210E-01 -0.1190E*01 -0.2039E-03
1 -0.1289E-01 -0.1267E-01 -0.2269E-03
1 -0.1407E-01 -0.1386E-01 -0.2134E-03
1 -0.1489E-01 -0.1448E-01 -0.4059E-03
1 -0,1561E-01 -0.1541E-01 -0.1974E-03
1 -0.1536E-01 -0.1500E-01 -0.3505E-03
1 -0.1768E-02 -0.1296E-02 -0.4721E-03
1 -0.3517E-02 -0,3096E-02 -0.4210E-03
1 -0.6471E-02 -0.6221E-02 -0.2501E-03
1 -0.7517E-02 -0.7402E-02 -0.1148E-03
1 -0.1047E-01 -0.1025E-01 -0.2253E-03
1 -0.1144E-01 -0.1133E-01 -0.1119E-03
1 -0.1287E-01 -0.1272E-01 -0.1541E-03
1 -0.1346E-01 -0.1330E-01 -0.1557E-03
1 -0.1492E-01 -0.1452E-01 -0.3948E-03
1 -0.1543E-01 -0.1512E-01 -0.3129E-03
1 -0.1536E-01 -0.1500E-01 -0.3622E-03
1 -0.1417E-03 0.4591E-03 -0.6008E-03
1 -0.3443E-02 -0.3127E-02 -0.3155E-03
1 -0.5073E-02 -0.4982E-02 -0.9076E-04
1 -0.7597E-02 -0.7437E-02 -0.1592E-03
1 -0.9151E-02 -0.8901E-02 -0.2497E-03
1 -0.1147E-01 -0.1137E-01 -0.1056E-03
1 -0.1216E-01 -0.1200E-01 -0.1641E-03
1 -0.1354E-01 -0.1336E-01 -0.1854E-03
1 -0.1408E-01 -0.1396E-01 -0.1226E-03
1 -0.1544E-01 -0.1517E-01 -0.2626E-03
1 -0.1569E-01 -0.1545E-01 -0.2436E-03
1 0.7671E-04 0.2077E-03 -0.1310E-03
1 -0.1559E-02 -0.1531E-02 -0.2731E-04
1 -0.4895E-02 -0.5171E-02 0.2755E-03
1 -0.6271E-02 -0.6485E-02 0.2134E-03
1 -0.9049E-02 -0.9072E-02 0.2285E-04
1 -0.1035E-01 -0.1045E-01 0.9730E-04
1 -0.1206E-01 -0.1218E-01 0.1238E-03
1 -0.1283E-01 -0.1294E-01 0.1102E-03
1 -0.1400E-01 -0.1417E-01 0.1691E-03
1 -0.1490E-01 -0.1484E-01 -0.5521E-04
1 -0.1564E-01 -0.1564E-01 0.1378E-06
1 -0.1532E-01 -0,1552E-01 0.2044E-03
1 -0.1442E-02 -0,1548E-02 0.1067E-03
1 -0.3239E-02 -0.3317E-02 0.7767E-04
1 -0.6271E-02 -0.6495E-02 0.2233E-03
1 -0.7444E-02 -0.7616E-02 0,1714E-03
1 -0.1035E-01 -0.1046E-01 0.1144E-03
1 -0.1137E-01 -0.1151E-01 0.1408E-03
1 -0.1278E-01 -0.1297E-01 0.1897E-03
1 -0.1342E-01 -0.1356E-01 0.1477E-03
1 -0.1490E-01 -0.1484E-01 -0.5431E-04
1 -0.1538E-01 -0.1544E-01 0.5332E-04
1 -0.1534E-01 -0.1542E-01 0.7625E-04
1 0.1402E-03 0.1743E-03 -0.3406E-04
1 -0.3367E-02 -0.3362E-02 -0.4798E-05

138

366 1 -0.4870E-02 -0.5203E-02 0.3329E-03
367 1 -0.7444E-02 -0.7655E-02 0.2108E-03
368 1 -0.9024E-02 -0.9137E-02 0.1137E-03
369 1 -0.1137E-01 -0.1156E-01 0.1853E-03
370 1 -0.1203E-01 -0.1226E-01 0.2285E-03
371 1 -0.1344E-01 -0.1362E-01 0.1755E-03
372 1 -0.1403E-01 -0.1424E-01 0.2143E-03
373 1 -0.1541E-01 -0.1550E-01 0.8990E-04
374 1 -0.1567E-01 -0.1562E-01 -0.5090E-04
375 1 0.1656E-03 0.1723E-03 -0.6694E-05
376 1 -0.1515E-02 -0.1587E-02 0.7160E-04
377 1 -0.4870E-02 -0.5215E-02 0.3451E-03
378 1 -0.6322E-02 -0.6539E-02 0.2165E-03
379 1 -0.8948E-02 -0.9163E-02 0.2151E-03
380 1 -0.1032E-01 -0.1055E-01 0.2268E-03
381 1 -0.1206E-01 -0.1232E-01 0.2619E-03
382 1 -0.1283E-01 -0.1308E-01 0.2531E-03
383 1 -0.1403E-01 -0.1431E-01 0.2854E-03
384 1 -0.1490E-01 -0.1497E-01 0.7639E-04
385 1 -0.1564E-01 -0.1571E-01 0.6475E-04
386 1 -0.1537E-01 -0.1564E-01 0.2691E-03
387 1 -0.1531E-02 -0.1609E-02 0.7815E-04
388 1 -0.3367E-02 -0.3397E-02 0.3005E-04
389 1 -0.6373E-02 -0.6587E-02 0.2146E-03
390 1 -0.7444E-02 -0.7718E-02 0.2736E-03
391 1 -0.1035E-01 -0.1061E-01 0.2599E-03
392 1 -0.1132E-01 -0.1167E-01 0.3484E-03
393 1 -0.1283E-01 -0.1316E-01 0.3296E-03
394 1 -0.1339E-01 -0.1376E-01 0.3719E-03
395 1 -0.1487E-01 -0.1505E-01 0.1775E-03
396 1 -0.1538E-01 -0.1565E-01 0.2622E-03
397 1 -0.1537E-01 -0.1571E-01 0.3394E-03

Kolmogorov-Smirnov distance statistic = 0.9152800E-01
Kolmogorov-Smirnov significance value = 0.2583816E-02
Iter 1500; ierr 1 : iteration limit
Used 1500 iterations; 3011 function calls; Err 0.000; |g|/|w| 1.018E-04
Rms change in weights 0.070
Weights written to file xdspdntmwt . out

139

3

;vj

“a

1

1

N

.'l

