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Abstract

The development of an algebraic grid generation system to track a solid-liquid in-

terface during directional solidification of a binary alloy is discussed. A single mapping,

constructed with tensor product B-splines, is proposed for calculations of both shallow

and deep solidification cells. The initial spline coefficients for the coordinate map-

ping are modified to minimize a discrete functional that regulates the smoothness and

orthogonality of the mesh. The use of transfinite blending function interpolation to

obtain an initial grid is examined.

Keywords: boundary fitted grid generation, algebraic grid generation, adaptive, B-

splines, transfinite blending functions, directional solidification

1. Introduction

One of the well known techniques used to study the microstructures that develop during

solidification of binary alloys is Bridgman growth, a directional solidification technique in

which a sample of the alloy is drawn through a constant temperature gradient at a uniform

rate of speed, V, as shown in Figure 1. A considerable amount of theoretical work has

focused on examining the morphological instabilities of the growing soHd-liquid interface [1-

6]. MulHns and Sekerka [1] used Hnear stability theory to predict the critical velocity for the

onset of instabihty for a planar interface. Experimental observations confirm the validity of

their results and show that after the onset of instability the structure of the interface can

change from planar to cellular to dendritic and back again as the growth velocity is increased

[7, 8]. Coriell et al. [2] extended the results of Mulhns and Sekerka, including the effects

from convection in the Hquid.

Although cellular microstructures are much simpler than dendritic, as the control param-

eters, growth velocity or temperature gradient, are changed, the cells may become very deep

and naxrow with re-entrant bulb-Hke shapes. To successfully track the interface, the grid

generation mapping must adapt to large deformations of the interface shape while maintain-

ing as much orthogonality and smoothness as possible. Ettouney and Brown [4] successfully

modeled slightly nonplanaj interfaces by using cin algebraic grid generation system where the

interface was described in terms of a univariate function. Unfortunately, this representation

of the interface, called a Monge transformation, fails for cells with vertical or re-entrant
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Figure 1: Bridgman growth technique.

walls. To overcome that problem, Ungar and Brown [5] developed a representation defined

by the division of the interface into disjoint sections that could be expressed as separate

Monge transformations written in either polar or rectangular coordinates. With this mixed

transformation, Ungar and Brown modeled cellular interfaces with grooves as much as 15

times longer than the cell wavelength. Ideally, analysts want a single grid generation tech-

nique that can track the interface as it changes from a shallow deformation to a narrow and

deeply grooved cell with re-entrant sidewalls. Furthermore, it should capture the change in

wavelength if the cell sphts.

Tsiveriotis and Brown [6] have made some progress in this area by using a two-step

procedure. In one direction the coordinate is defined by a generalized Poisson equation with

a scahng condition that forces the grid lines into concave areas of the interface. The other

coordinate is obtained by minimizing smoothness and orthogonality functionals similar to

those of Brackbill and Saltzman [9]. Tsiveriotis and Brown show impressive examples of

grids developed for narrow and re-entrant cells, but it is not clear whether this method is

as successful as the previous method of Ungar and Brown because the most narrow cells in

the earher paper are not redone. Also, to obtain better results, they fix a horizontal line

near the interface to decouple the far field domain from the domain near the interface. This

essentially creates two separate domains whose grid cells are not smoothly connected near

the line. This is fine for finite element calculations, but suggests problems for those who are

interested in using the technique to create grids suitable for finite difference schemes.

This paper describes progress to date in the development of an algebraic technique for

generating a boundary/interface fitted coordinate system that is smooth enough to be used

for finite difference calculations. No partial differential equations (pdes) are solved to obtain

the coordinate system, and the same system is used for the entire domain. The computation

of the interface is not discussed in this paper. It is assumed that the interface is available

as a discrete set of points, having been determined by some means such as an evaluation of

the Gibbs-Thomson equation which relates the interface mean curvature, concentration of

solute in the liquid, and the melting temperature near the interface [8, 10]. The feasibility
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of the grid generation technique is evaluated by examining its abiUty to create grids that

conform to interface shapes typical of those seen in experimental observations of directional

sohdification of binary alloys by the Bridgman growth technique [7, 8]. The grid generation

algorithm is an extension of an algebraic technique for generating boundary fitted grids [11].

This paper discusses the modifications needed and addresses the problems in tracking an

interface that deforms from a planar shape to a deep, re-entrant cellular microstructure.

Section 2 provides a brief description of two algebraic techniques for generating coordinate

systems: transfinite blending function interpolation, the technique used to obtain an initial

approximation for the interface fitted mesh, and a boundary fitted grid generation technique

that uses a mapping constructed with B-splines. The B-spHne mapping is extended to

create the mapping for the interface tracking grid generation system . Section 3 explains the

construction of the grid generation mapping and Section 4 examines the results to date.

2. Algebraic Grid Generation Techniques

In algebraic grid generation, a direct transformation describes the relationship between the

computational and physical domains. The transformation is constructed so that it interpo-

lates the boundary points and/or points in the interior. It may also be constrained to match

derivatives. No partial differential equations are solved to obtain the curvilinear coordinates,

so algebraic techniques can be easier to construct than pde methods, and give easier con-

trol over grid characteristics such as orthogonality and grid point spacing. However, these

methods are sometimes criticized for allowing discontinuities on the boundary to propagate

into the interior and for not generating grids as smooth as those generated by pde methods.

Nevertheless, algebraic techniques have been used successfully to generate grids in both two

and three dimensions [11-16].

2.1. Transfinite Blending Function Interpolation

One of the most common and easiest algebraic methods to implement is transfinite blending

function interpolation, where interior regions are represented in terms of boundary functions.

This technique, which has been widely used for problems in grid generation [11, 12, 14, 15, 16],

was originally developed for problems in computer aided design. Gordon and Hall [14]

adapted and apphed the technique to grid generation for finite element and finite difference

calculations in the late sixties and early seventies. A simple example is illustrated by the

mapping T from the unit square I2 to the physical domain defined by

Tu,r/) =
i

3

-
(
1

)

where 0 = 6 < ••• < ^Af = 1 and 0 = rjo < . . . < Tjpf = 1. The continuous vector-

valued function f describes the boundary of the physical domain. $ and ^ are “blending”

or “connecting” functions that satisfy the conditions

$.(6 ) S,i =
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^kim) =
{ 5

’

(
3
)

Therefore, if M=N=1, one might choose $ and ^ to be linear Lagrange polynomials so that

T matches f on the boundary of l2 - If M and N are larger and derivative information is

given, the blending functions can be chosen so that interior curves and the derivatives there

are matched. Unfortunately, transfinite blending function interpolation may allow boundary

singularities to propagate into the interior of the mesh. Furthermore, if the boundary is

nonconvex, the grid lines may overlap the boundary. The choice of blending functions and

parametrization of the boundary function are very important in alleviating these problems.

Transfinite blending function interpolation provides a relatively easy way of obtaining an

initial grid that can be refined and smoothed by other techniques, whether algebraic, pde,

or variational. However, unfortunately, some techniques cannot use the grid if it contains

areas where the grid lines overlap, that is, areas of negative Jacobian [17].

2.2. Boundary Fitted Grid Generation Using Tensor Product B-splines

Saunders [11] developed an algebraic grid generation system that uses a mapping T from

the unit square I2 to a physical domain of arbitrary shape defined by

I y{i,v) j \ Er=i ) ’

(
4
)

where 0 and each Bij is the tensor product of cubic B-sphnes. Hence, Bij^^^r}) =
Bi{i)Bj{r)) where Bi and Bj are elements of cubic B-spline sequences associated with finite

nondecreasing knot sequences, say, and respectively. As defined by de

Boor [18], B-sphnes are essentially piecewise polynomials with continuity conditions at each

breakpoint determined by the repetition of the breakpoint value in the associated knot

sequence. For a typical cubic B-spline Bj, the value of the B-spHne is determined by the five

knots tj, tj+i, tj+ 2 ,
tj+3 ,

tj+4 . Its support is small, that is, Bj can be nonzero only on the

interval [tj,tj+4\. Consequently, only four B-splines, Bj- 3 ,
Bj can be nonzero on

the interval (tj,tj^i). The initial coefficients are chosen so that the mapping approximates

transfinite blending function interpolation. More specifically, the coefficients are selected to

produce a variation diminishing spHne approximation to the transfinite blending function

interpolant T defined in equation (1). In short, this means the coefficients are obtained by

evaluating T at average knot values as discussed in [18]. This shape preserving approximation

reproduces straight lines and preserves convexity [11, 18] . To increase the orthogonality and

smoothness of the grid lines the initial coefficients are modified to minimize the functional

where T denotes the grid generation mapping, J is the Jacobian of the mapping, and wi and

W2 are weight constants. When is large, the variation of the Jacobian values at nearby

points will be small, thereby decreasing skewness. When W 2 is large, the dot product term

will be small, causing the grid fines to approach orthogonality. To avoid solving the Euler

equations for the variational problem, this functional is approximated in the computer code

by the sum

Ji+i,j Jjj

H
.

+ AfAt;

-4-



(6 )

+ Y^W2Dot^jAiArj

where Jij is the Jacobian value and Dotij is the dot product of dTl j and at mesh

point {(nVj) square. G is actually a fourth degree polynomial in each spline

coefficient so the minimum is found by using a cyclic coordinate descent technique which

sequentially finds the minimum with respect to each coefficient. This technique allows the

minimization routine to take advantage of the small support of B-sphnes when evaluating

the sums that comprise G.

An application of the grid generation algorithm is shown in Figures 2 and 3 for a puzzle

shaped domain. The boundary and initial grid are shown in Figure 2. The initial grid

was constructed using linear Lagrange polynomials for the blending functions. Note that

the grid lines overlap the nonconvex boundary. Figure 3a shows the mesh obtained after

the spline coefficients are modified to minimize the smoothing functional. The skewed areas

have been eliminated and the overlapping grid fines have been pulled into the interior. The

refined mesh in Figure 3b is obtained by evaluating T at additional points on the square.

The concentration near the bottom is achieved by applying an exponential function to the rj

variable. The algorithm discussed in this paper extends the boundary fitted mapping to fit a

curve in the interior of the physical domain. As in the case of the boundary fitted algorithm,

it will be shown that the new algorithm is robust enough to smooth and untangle an initial

grid containing skewed and overlapping grid fines.

(a) Puzzle shaped boundary. (b) Initial grid.

Figure 2: Puzzle shaped domain. Initial grid was produced using an approximation of

transfinite blending function interpolation.

3. An Interface Tracking Grid Generation System

The boundary fitted grid generation mapping discussed in the previous section forms the

basis for the interface tracking mapping. However, the mapping must now match the interface

curve on the interior of the physiccil domain in addition to fitting the outer physical boundary.

Furthermore, the system must be adaptive since the grid fines must change to follow the

deforming interface while maintaining as much smoothness and orthogonality as possible.
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(a) Optimized grid. (b) Optimized grid refined.

Figure 3: Optimized puzzle grids. Minimization of smoothing functional successfully pulls

grid lines inside the boundary.

3.1. Grid Generation Mapping

The proposed grid generation mapping, T, maps the unit square, J2) onto the physical

domain and is constructed so that the interface is the coordinate curve 77 = 1/2 as shown in

the figure. As before, the mapping has the form

~
I y(^. j

“
I Er=i E"=iPML ri))'

where 0 < ^,77 < 1 and Bij{(yr)) = Bi(()Bj{T}) where Bi and Bj are elements of cubic B-

spline sequences associated with finite nondecreasing knot sequences, and

respectively. The spline coefficients for T can be divided into three groups. The boundary

coefficients are the coefficients of those Bij that are nonzero on the boundary of I2. Since T
is defined so that the interface corresponds to coordinate curve 77 = 1/2, the coefficients of

the Bij that are nonzero when 77 = 1/2 are called the interface coefficients. The remaining

coefficients are called the interior coefficients.

Initially, the coefficients are chosen to approximate the following transfinite blending

function interpolant that matches the outer boundary and interface of the physical domain:

t=0

j=0

+ 1 /2 )

t“0 j=0

^ df
- E^.(0/3(’?)^te.i/2) (

8
)

where = 0, = 1 and 770 = 0, 771 = 1/2, 772 = 1. The continuous vector valued function

f, constructed from boundary data input by the user, maps the boundary of the square to
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Figure 4: Grid generation mapping.

the boundary of the physical domain and the line 77 = 1/2 to the interface. The transfinite

mapping T interpolates f on the boundary and matches f and dfldr) at rj = 1/2. The

blending functions are linear Lagrange polynomials satisfying

$i(6) = for = o>i

while and (3 are hermite quintic blending functions satisfying

= Srs

'^r{Va) = 0 for r,s = 0, 1,

2

PiVs) = 0

/3X'n»)
= for s = 0,1,2 .

Although linear, quadratic, and cubic polynomials were also tested as blending functions for

the T) coordinate, the hermite quintic polynomials produced the least amount of skewness

and overlap of grid cells. To force orthogonality at the interface, the components of the

derivative

drj
(^. 1 /2 )

are chosen to be



where

L = (dh\\(^y

and A" is a user defined orthogonality constant that regulates the magnitude of the normal

vectors at the interface. The initial coefficients for the grid generation mapping T are defined

by

a = for t = j = 1, ,n
(
9

)

where 5* = (-St+i + . . . + 3j+3)/3, i = 1, . .
. ,
m and + . . . + j = 1, . .

. ,
n.

With these coefficients T produces a variation diminishing spline approximation to T. Vari-

ation diminishing spHne approximations, discussed in detail in [18], are shape preserving

approximations that reproduce straight lines and preserve convexity.

As with the boundary fitted system, the smoothness and orthogonality of grid Hnes is

enhanced by modifying the coefficients to minimize the discrete smoothing functional de-

fined in equation (6). However, the flexibihty of the boundary and the interface coefficients

is hmited since even small changes in the coefficients can destroy the shape preserving prop-

erties of the spline mapping. Fortunately, the B-spline knot sequences { 5} and {t} can be

chosen so that the boundary coefficients affect only the boundary ajid a narrow area inside

the boundary. Using the continuity properties of B-spHnes with repeated knots [18], one can

show that if the first four knots of and are 0, the last four knots are 1, and

the rest located in the interval (0,1), then the only boundary coefficients are aij,/3ij and

GLmjiPmj j = 1 , . .
.

, 71 and and OLim^in for i = 1, . .
.
,r7i. Unless all the “interior”

knots are clustered near the center of (0, 1), the boundary coefficients will have a minimal

effect on the interior of the square. For example, aij and Pij will only affect points on the

support of Bijj that is, the narrow band
[
0

,
35

]
x illustrated in Figure 5, where

S 5 is the first interior knot in In fact the area of influence of all the boundary

Figure 5: Support of tensor product B-spline Bij.
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coefficients will be a narrow region along the boundary of the square. Consequently, even if

the boundary coefficients are fixed to guarantee that “boundary fittedness” is maintained,

the smoothing functional should be able to produce a significant amount of orthogonahty

and smoothness in the grid.

Ideally, however, one would like to include the boundary coefficients in the minimization

process to ensure that grid lines near the boundary are smooth and orthogonal. When
the boundary is rectangular, as it is with Bridgman growth, this is indeed possible. The
four sides are vertical or horizontal line segments satisfying either x{0,t]) = xq, x[l,rj) = xi,

0) = 2/0 ,
or ?/(f , 1) = ^1 ,

where xq, xi, yo, and yi are constants. By fixing the appropriate

a oi (5 coefficients one can guarantee that these boundary equations will remain satisfied.

For example, on the left vertical boundary where cc(0,7/) = xq, only Bij,j = l,...,n are

nonzero there so that x{0^r}) = Yij=i Hence, ^(O,?/) = Xq remains true if aij,

j = 1, . .

.

,n, that is, the a boundary coefficients for that side, are fixed. The corresponding

P coefficients, /9ij, j = 1, . .
.

,

n, are free to move. Similarly, for the right side, the a boundary

coefficients, amj, j = 1, . .
.

,

n are fixed. For the horizontal sides, the /3 boundary coefficients

are fixed. With the boundary coefficients fixed in this manner, minimizing the smoothing

functional causes a redistribution of the boundary points along the vertical or horizontal

lines. Of course, it is possible that a boundaxy point could be pushed beyond the endpoint

of the line segment, but this produces a negative Jacobian, a problem generally corrected by

the smoothing action of the Jacobian terms in the functional.

Since the interface may be quite complex, very Httle change is permitted in the interface

coefficients when the other coefficients are adjusted by the minimization of the smoothing

functional. Unfortunately, unlike the boundary coefficients, the interface coefficients affect

a significant number of points on the interior besides those mapped onto the interface. To

determine the interface coefficients one first finds I such that 1/2 E Then the

interface coefficients will be l3ik where 1 < i < m and I — 3 < k < 1. These are the

coefficients of the tensor product B-splines that might be nonzero when 77 = 1/2. However,

fixing these coefficients affects the mapping T not only on [0, 1] x but also on the

much larger bajid, [0,1] x [ti_3 ,tf+4 ]
seen in Figure 6, that is, the total support of all

the tensor product B-splines that are possibly nonzero on [0, 1] x This band can be

narrowed significantly by using a larger number of knots for the t sequence and concentrating

some near 1/2. However, concentrating the knots too closely will affect the smoothness of

the grid fines. On the other hand, since a continuous B-spfine is close to zero near the

boundary of its support, all interface coefficients do not equally affect the mapping of the

interface. In particular, allowing the coefficients and for 1 < i < m to move
appears to have very little effect on the accuracy of the interface mapping. Nevertheless, the

inflexibility of the interface coefficients suggests that they should be chosen to produce as

much orthogonality and smoothness as possible at the outset.

3.2. The Algorithm

Although the calculation of the interface must be addressed in order to integrate the grid

generation system with the equations that model the directional solidification problem, the

current code assumes that both the boundary and interface data are available as sets of

discrete points. The focus here is on demonstrating the ability of the grid generation mapping

to adapt as the interface changes.

Using the boundary data and initial interface data, the code first computes the B-splines

needed to define T. K and are the sequences chosen to define the B-splines,

-9-



Figure 6: Support of tensor product B-splines nonzero when r/ = 1/2.

then the total number of coefficients used in the mapping will be 2 x m x n. Consequently,

although the number of knots must be sufficient to accurately capture the shape of a com-

plicated interface, this must be balanced by the fact that increasing the number of knots

increases the size of the optimization problem. Fortunately, the accuracy of the mapping

is also improved by concentrating the t knots near the interface. This is accomplished by

replacing {t} with the sequence {7(t)} where 7 is the hyperbolic sine function

sinh(2ct — c) -|- sinh(c)
""

2sinh(c)

where c is a constant that determines the degree of concentration. This has the additional

beneficial effect of decreasing the area influenced by the interface coefficients. The mesh over

which the smoothing functional is evaluated must have at least 2 x m x n grid points, and

the concentration of points in the rj direction should be similar to the concentration of knots

for sequence {t}.

As stated above, the transfinite blending function mapping T is evaluated at average

knot values to obtain coefficients that produce a variation diminishing spline approximation

to T. The coefficients are modified to minimize the discrete smoothing functional to obtain

more smoothness and orthogonality in the grids. This step is unnecessary if the interface

is planar. The actual grid is obtained by evaluating T at equally spaced values of f and

Tj. Replacing 7 with the sinh mapping 7(77) concentrates the grid near the interface. To

create a grid for the next interface, the code first reads the data for the new interface. The

old interface coefficients plus one layer of coefficients above and below them, that is,

Pik where 1 < i < m and / — 4 < k < / +!, are replaced by coefficients that produce

a variation diminishing spline approximation to the transfinite blending function mapping

that interpolates the new interface. The smoothing functional is then minimized in order to

eliminate any overlap of grid lines and improve smoothness and orthogonahty. The process

is repeated to obtain a grid for the next interface.

These steps are illustrated in Figure 7 which shows a sequence of grids concentrated

neaj curves that demonstrate the type of sinusoidal deformation that appears soon after the
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onset of instability during the directional solidification of a metal alloy. The first grid, rep-

resenting a planar interface, requires no additional smoothing. The eight other grids consist

of pairs representing the initial and smoothed grids, respectively. The minimization routine

successfully “untangles” overlapping Hnes while enhancing the smoothness and orthogonality

of the grid lines. A concentration of grid points near the interface was obtained by evaluating

with sinh concentration constant c = 4.

3.3. Implementation

The usefulness of this technique for generating grids for solidification problems will largely

be determined by how fast and efficiently the grids can be produced. Of course, the primary

bottleneck in the grid generation routine is the minimization of the smoothing functional. De-

pending on the number of knots used to define the grid generation mapping, the optimization

problem can be of fairly large scale. For example, if the knot sequences { 3 } and {t} both have

22 elements, then the number of spHne coefficients, aij and ^ij, will be 2 x (22 — 4) x (22 — 4)

or 648 [18]. Hence we have a minimization problem involving 648 variables. An ongoing

problem is to determine the best optimization technique to use. Currently, the code uses a

modified cycHc coordinate descent algorithm which minimizes a multivariable function by se-

quentially finding the minimum with respect to each variable. The cyclic coordinate descent

method is relatively easy to implement and requires no gradient information to determine

the direction of descent, but in general it has a much slower convergence rate than conjugate

gradient or quasi-Newton methods [19]. However, the simplicity of the technique makes it

easy to exploit the properties of B-splines during the minimization process. For each spline

coefficient, the sum in equation (6) need only be computed over the cirea that the coefficient

affects. The small support of B-splines means that this area can be quite small. The example

illustrated in Figure 8 shows the support of tensor product B-spline Bej for specified knot

sequences {s} and {t} and a given distribution of mesh points on the computational domain.

If the functional is minimized with respect to coefficients asj or I3ej then the sums in (6)

need only be computed over i, j such that 2 < z < 5 and 4 < j < 7. The B-spline values and

their derivatives are computed using the de Boor routines BVALUE, BSPLVN, BSPLVD,
and INTERV [18].

Even with the smaller sums a significant amount of time can be wasted during the

execution of the minimization routine if the code can not take advantage of the optimization

features of the computer being used. At the present time the code is running on a Cray Y-

MP4E/232 computer system having two central processing units (CPUs). The small support

of tensor product B-splines facilitates the design of an algorithm that takes advantage of the

vectorization features of the computer. One can easily show that the support of a tensor

product B-spline Bij will be disjoint, except possibly on the support boundary, from the

support of any tensor product B-spline Bpq where either |p
—

fl > 4 or \q — j\ >4. This is

illustrated in Figure 9 for Bsj. This means that the minimization code can be designed

so that the smoothing functional is minimized with respect to the coefficients associated

with those tensor product B-splines having disjoint support simultaneously. The sums must

be restricted so that they are computed only over those points that faU inside the support

area, but this does not appear to decrease the effectiveness of the minimization routine.

Rewriting the code to minimize a vector of coefficients simultaneously produced a speedup

by a factor close to 4.5. By integrating small, frequently called routines into the calling

routines (inlining) and eliminating redundant code, a larger speedup was obtained. For

example, the original scalar code eliminated the overlap of grid lines, that is, areas with
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Figure 7: Grids simulating the gradueil deformation of an interface.
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Figure 8: Support of tensor product B-spline Bqj.

3^4
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Figure 9: Tensor product B-splines with disjoint support. The shaded area shows the support

of Bsj. The surrounding boxes show other tensor product B-splines with disjoint support.
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Table 1: User CPU Time (seconds)

Iterations Scalar Vectorized Vectorized-f

5 216.9 48.6 13.3

10 442.36 97.04 27.05

negative Jacobian, by determining the appropriate interval that would guarantee a positive

Jacobian for each coefficient. However, this is unnecessary since the Jacobian terms of the

smoothing functional tend to perform the same function by untanghng grid lines to minimize

the difference in Jacobians at nearby grid points.

Table 1 shows the user CPU times for a problem of moderate size. For this problem, m =
18 and n ~ 24 so that the number of spline coefficients is 2 x 18 x 24 = 864. The minimization

was performed on a 60 x 50 mesh. Since the system contains only two processors, very little

effort was focused on paxallelizing the code. The automatic parallelization option of the

compiler was tested, but it produced only a minor speedup in the code. The table shows the

single processor times for five and ten iterations of the minimization routine for three cases:

the scalar code, the initial vectorized version where the code was rewritten to minimize with

respect to a vector of coefficients (vectorized), and the improved vectorized version in which

some routines were inlined and others eliminated (vectorized-f ). The final vectorized run is

over 16 times faster than the scalar run.

4. Results and Discussion

For all the examples shown, the number of spline coefficients used to define the grid gen-

eration mapping is 2 x m x n where m is the number of B-spHnes associated with knot

sequence {s}, or the “f” sequence, and n is the number associated with knot sequence {t},

the sequence. Recall that a concentration of grid points near the interface (coordinate

curve 7)
= 1/2) is obtained by evaluating T at (^,7(77)). To increase the accuracy of the

spline mapping and decrease the area affected by the interface coefficients, the sinh function

is also used to concentrate the 77 knots near the interface. This means that the sequence

{7(0} used instead of {t} in the definition of the mapping. The constant values of c

associated with these two t5rpes of concentration are called the mesh concentration and the

knot concentration, respectively. The orthogonality constant K represents the magnitude of

the normal vectors at the interface as defined in section 3.1. It should also be noted that the

term “initial grid” is used to refer to any grid computed using the initial spline coefficients.

In the first example the bottom of the puzzle boundary displayed in Figure 2 is now

shown as an interface. This is similaj to the re-entrant shape that commonly appears in

cellular microstructures. For this example m = 19 and n = 20. The orthogonality constant

K is ^ and the knot concentration is 3. The variation diminishing spline approximation to

T produces the mesh shown on the left in Figure 10. Although the grid cells axe skewed in

some axeas, the grid appears orthogonal near the interface. Hence, the initial grid already

looks fairly good there. This is important since most of the interface coefficients remain fixed

throughout the minimization process. Using a 40 x 42 initial grid with mesh concentration

3, the optimization routine significantly improves the smoothness and general orthogonality

of the grid cells. This is illustrated in the grid on the right, computed after forty iterations.

The Jacobian and orthogonality weights used for the smoothing functional, W\ cind ii;2, were

0.65 and 10, respectively.
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(a) Initieil grid. (b) Optimized grid.

Figure 10: Grids produced using linear and hermite quintic blending functions. Grid on

right was produced after forty iterations of the smoothing routine.

To illustrate the flexibility of the grid generation routine, the next six grids show grids

that fit curves that are typical of the shapes seen during deformation of an interface from a

sinusoidal shape to a deep cell. These grids actually continue the sequence that was started

in Figure 7. The first grid in Figure 11 is the final grid in Figure 7. The grids show

the meshes obtained after the smoothing functional is minimized. The initial grids, most

of which contciined overlapping grid fines, are not shown. For all of the grids m = n = 18

and the knot concentration is 3. The minimization was performed on a 40 x 40 mesh using

a mesh concentration of 3. An orthogonality constant of AT = 4 was used for the grids in

Figure 11 and Figure 12a. This was increased to 4.5 for Figure 12b and to 5 for the grids in

Figure 13 to maintain the smoothness and orthogonality near the interface as the interface

cell deepened. In every case the smoothing routine successfully removed overlapping grid

fines. The number of iterations of the minimization routine executed varied from 5 or 10 for

the mildly deformed shapes of Figures 7 and 11 to around 30 for the deeper and re-entrant

grooves in Figure 13. The orthogonality weight for the smoothing functional, W2 j
was kept

at 10 for all grids. The Jacobian weight, ^^;l, ranged between .01 and .2 for the grids in

Figure 7, but was set to .5 for the deeper deformations shown in Figures 11b, 12, and 13.

The grids were able to maintain a significant amount of orthogonality and smoothness both

within the interior and along the boundary as the grid points redistributed themselves to

follow the interface.

5. Conclusions

The development of an algebraic grid generation system to track a solid-liquid interface

has been discussed. The proposed grid generation mapping, composed of tensor product

B-splines, effectively approximates interface shapes of varying degrees of complexity. For

each shape the initial coefficients are chosen to approximate a transfinite blending function
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Figure 11: Grids show the mildly deformed sinusoidal shapes commonly observed during the

initial stages of the deformation of a solid-liquid interface.

Figure 12: Grids show deeper grooves, but orthogonality is mcuntained at the interface.
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(a) (b)

Figure 13: Grid on left shows deep and narrow groove. Grid on right shows deep re-entrant

bulb-like cell.

mapping that produces nearly orthogonal grid lines near the interface. Adjusting the coef-

ficients to minimize a discrete smoothing functional smoothes the spacing of the grid lines,

untangles overlapping lines, and enhances the orthogonality of the initial grid even as the

interface becomes more distorted. Smoothness and orthogonality is improved along the outer

boundary by adjusting those boundary coefficients whose movement will not alter the shape

of the boundary.

Currently, the grid generation system allows some interaction as the interface changes so

that orthogonality and smoothness parameters can be adjusted as the interface cell deepens.

Ideally, this should all be done automatically by the code. Additional study will be continued

in this area. The next phase, which has already begun, is to couple the grid generation

algorithm with equations that deterrmne the interface shape so that the system can be used

in the numerical analysis of microstructures that develop during directional solidification.

Although the system will be designed to track the deformation of a planar interface into a

deep ceU, it may also be used to improve calculations in phase field models [20, 21, 22] where

the interface is not viewed as a curve or surface with zero thickness. In such models accuracy

can be improved by concentrating the grid points in the area neaj the interface even if the

interface is not tracked exactly.

Disclaimer

Identification of commercial products in this paper does not imply recommendation or en-

dorsement by NIST.
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