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1. Introduction

Given G, a polygon in the plane, the Voronoi diagram for G is a partition of the polygon

into regions, each of which consists of the set of points in the polygon that are closer to a

particular boundary edge or vertex of G than to any other boundary edge or vertex. The
union of the boundaries of these regions in the interior of G contains what is called the medial

axis of G which is the set of points in the interior of G that have at least two closest points

on the boundary of G. G(n^) and G(n log n) algorithms for computing the Voronoi diagram

for an arbitrary simple polygon with n vertices, and therefore the medial axis of the polygon,

have been presented in [2] and [1], respectively. Figure 1 illustrates the Voronoi diagram for

a simple polygon. Figure 2 illustrates the medial axis of the same polygon.

The union of the boundaries of the regions in the Voronoi diagram for a polygon is

a tree-Hke planar structure whose edges are straight-line segments and possibly portions of

parabolic curves. It can be viewed as the points at which the regions meet as they are allowed

to grow simultaneously from their edges or vertices at the same rate. Here two points in

the polygon are encountered simultaneously during this growth process if and only if the

distances from them to their corresponding edges or vertices are equal. In this paper, we
present a new type of growth diagram for a polygon from which a tree-like planar structure

can be extracted whose edges are all straight-line segments. In this model, it is assumed

that the polygon is contained in the x — y plane of 3—dimensional space, and that a plane

in 3—dimensional space has been assigned to each edge in the boundary of the polygon in

such a way that given an edge the plane assigned to the edge contains the edge, the plane is

not perpendicular to the x — y plane, and an open set in the relative interior of the polygon

whose closure includes the edge is contained in the lower open half-space defined by the

plane. Under these assumptions and restricting the planes to the closed half-space above

the X — y plane, the polygon can be viewed as being enclosed by slopes that slant toward

it, each of which originates in a particular edge in the boundary of the polygon. A growth

diagram for the polygon can then be computed which is the perpendicular projection onto

the polygon of a continuous 2—dimensional surface which we call the growth surface for the

slopes at the boundary of the polygon [the growth surface for the polygon ioi short) and which

is obtained by allowing regions to grow simultaneously from the edges of the boundary of

the polygon at the same ascending rate along the slopes, each region growing where it is not

impeded by other regions. Here two points in the polygon are encountered simultaneously

during this growth process if and only if they are perpendicular projections onto the polygon

of points in the growth surface whose 2;—coordinates are equal. The growth diagram for the

polygon computed in this fashion is again a partition of the polygon into regions, each of

which corresponds to a particular boundary edge of the polygon, and the boundaries of which
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Figure 1: The Voronoi diagram for a simple polygon.
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Figure 2. THe mediEl exis of e simple polygon.
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consist of straight-line segments. Accordingly, a tree-like planar structure can be extracted

from this diagram which is the union of the boundaries of the regions of the diagram in

the relative interior of the polygon. This structure can also be viewed as the perpendicular

projection onto the polygon of the ridge of the growth surface for the polygon, which is the

set of points in 3—dimensional space where the regions of this surface meet as they grow

in the manner previously described. Figure 3 illustrates the perpendicular projection onto

the X — y plane of the growth surface for a simple polygon when all slopes slant toward the

polygon at the same angle.

In this paper, we describe the growth surface for a simple or multiply-connected polygon,

and present a brute force algorithm for computing it.

2. The growth surface for the slopes at the boundary of a polygon

We consider a simple or multiply-connected polygon G with n vertices that is contained in

the x — y plane of 3— dimensional space. We let e^, z = 1, . .

.

,n, be the edges of the boundary

of G. For each z, z = 1, . .

.

,n, we let Oi be an open convex set in the relative interior of

G whose closure includes e^, and we assume that planes hi, i = 1, . .
.
,7Z, in 3—dimensional

space have been chosen such that for each z, z = l,...,n, is contained in hi, hi is not

perpendicular to the x — y plane, and 0* is contained in the lower open half-space defined

by hi. In addition, for each z, z = 1, . .
.

,

n, we let hi be the closed half-plane in hi which is

the intersection of hi and the upper closed half-space defined by the x — y plane. With this

notation, G can then be viewed as being enclosed by the half-planes hi, i = 1,. .
.
,n, each of

which slants toward it.

We suppose that for each z, z = 1, . .
.

,

n, a region Ri grows from edge along the half-

plane hi in such a way that all such regions grow simultaneously at the same ascending rate,

each region growing where it is not impeded by other regions. Here the ascending rate is the

rate at which the z-coordinates of points in a region change as the region grows, which without

any loss of generality can be assumed to equal some undetermined positive constant. Under

these assumptions, the problem considered is that of computing the topological structure of

the continuous surface consisting of the regions Ri, i = 1, . .
.
,n.

We now make more precise the definition of the growth surface for the slopes at the

boundary of the polygon G. Without any loss of generahty we assume that G is simple.

We define the surface inductively, basing the induction on an integer variable k, which

corresponds to special elevation levels that the surface achieves as it grows. The variable k is

set to zero at the start of the growth process and for some positive integer q it is incremented

by one q times during this process.
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Figure 3: Perpendicular projection onto x —y plane of growth surface for a simple polygon

when all slopes slant toward the polygon at the same angle.
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The definition of the surface by induction proceeds as follows. First, we set zq = 0, po = I,

Gio = G, Rio = e^, i = 1 , . .

.

,n, and for each edge in the boundary of Gio we let i be the

integer for which the edge equals e^, 1 < i < n, and associate the edge with the plane hi.

This information corresponds to the start of the growth process, i. e. when k equals zero and

no growth has taken place yet. Next, given A;, 0 < A; < 9 ,
we assume that a positive number

(zero when k equals zero) Zk^ a positive integer pk, simple polygons Gjk, j = 1 , . .

.

,pa:, in the

plane z = Zk, and regions (line segments when k equals zero) Rik C hi^i = 1, . .
.

,

n, have been

identified such that the perpendicular projection onto the x — y plane of Gjkj j = 1, ... ,pk,

and Rik, i = 1 , . .

.

,n, is a collection of simple polygons (some line segments when k equals

zero) having pair-wise disjoint relative interiors, the union of which is G, and such that

for each j, j = 1, ... ,pk, every edge in the boundary of Gjk is contained in and associated

with one of the planes hi, i = 1 , . .

.

,n. We then show how to obtain from the information

at the k^^ level a positive number Zk+i > za:, a positive integer (zero when k + I equals q)

Pk+i, simple polygons (empty collection when k 1 equals q) Gj^k+it j = 1, • • • ,Pk+ii in the

plane z = ZkJ^i, and regions Ri^k+i, Rik Q Ri,k+i C hi, i = 1, . .
.
,n, such that the perpen-

dicular projection onto the x — y plane of Gj^k+i, j = 1 , . .
. ,Pk+i, and Ri^k+it i = 1 , . .

.

,n,

is a collection of simple polygons having pair-wise disjoint relative interiors, the union of

which is G, and show how to associate each edge in the boundary of each polygon Gj^k+i,

j = 1, . .

.

,Pk+i, with one of the planes hi, i = 1,. .
.
,n, in which the edge is contained. We

notice that q is selected so that Pq equals zero, the collection of simple polygons at the q^^

level is empty, and for each i, i = 1, . .
.
,n, Ri equals Riq.

In order to continue we need more notation. Given integers I, m, 1 < /,m < n, and

assuming the planes hi and hm are not identical or parallel, we let Lim = Lmi he the straight

line that is the intersection of the planes hi and hm- Given j

,

1 < j < Pk, and v, w, edges

of the boundary of the polygon Gjk such that v and w are adjacent to each other, we let

K, hg, 1 < r,s < n, be the planes associated with v and w, respectively. Given z', z' > Zk,

we denote by Lrs{z') the closed line segment in Ln between the planes z — Zk and z = z'

.

We say that Lrs{z') is feasible in Gjk if its perpendicular projection onto the plane z = Zk

lies entirely in Gjk- Given j, 1 < j < Pk, and u, an edge of the boundary of the polygon

Gjk associated with the plane hm, 1 < m < n, we let v, w be edges of the boundary of the

polygon Gjk such that v and w are adjacent to u, v ^ w, and let hr, hg, 1 < r, s < n, be

the planes associated with v and w, respectively. Given z', z' > Zk, we say that a region can

grow from u to a height of z' if the lines Lmr and Lms ho not have a point in common whose

z—coordinate is between Zk and z'

.

If a region can grow from u to a height of z'

,

we denote by

T{u, z') the closure of the region in hm between the lines Lmr and Lms and the planes z = Zk

and z = z'. We say T(u, z') is feasible in Gjk if its perpendicular projection onto the plane
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z = Zk lies entirely in Gjk- Finally, given 1 < j ^ Pk, and u, n, w, edges of the boundary

of the polygon Gjk such that v and w are adjacent to each other and u ^ u ^ we let

hmi Ki hg, 1 < rnyTjS < Tij be the planes associated with u, v and w, respectively. Given

2', z' > Zkj we say that < s > is attainable in Gjk at a height of z' if a region can grow

from u to a height of z' and numbers s', y' exist such that Lrs intersects hm at (s', 2/', 2') and

{x\y\z') G T(u, 2'). We say that < m,r^s > is feasible in Gjk at a height of z' if < m,r’,s >
is attainable in Gjk at a height of 2', and Lra{z') and T{u,z') are feasible in Gjk^

With this notation we can now show how to obtain the desired information at the +
level. We compute

2fc+i = min{2' : for some m, r, s,j, 1 < m,r, 5 < n, 1 < i < pjtj

< 771
,
7*, s > is feasible in Gjk at a height of 2'}.

For each i^ i = 1 , . .
.

,

77, we let Ri,k+i be the union of Rik with all regions of the form

T(u, 2fc+i), where for some j, I < j < Pky "a is an edge of Gjk associated with the plane hi.

We let F be the set of points in the plane 2 — Zk+i that belong to the union of the regions

Ri,k+iy ^ = 1 , ... ,
77 . We let Pk+i be the number of simple polygons that F encloses, and if

Pk+i is positive we denote by Gj^k+i, J = 1
,

• • • ,PA:+i, these polygons. Given j,l <j < pt+i,

let u be an edge of the boundary of Gj^k+i^ Then, from the definition of F, for some positive

integer 77' and some function / from {!,..., 77'} into {!,..., 77}, there exist line segments

u/(i/), i' = 1 , ... ,77', having pair-wise disjoint relative interiors, such that u is their union,

and for each f', i' = 1 , ... ,77', C Among the planes /i/(t/), i' = 1 , ... ,77', we
select one using some type of tie-breaking procedure (discussed below) and associate u with

this plane. If Pk+i equals zero then k 1 equals q. Figure 4 illustrates a view from above

of the portion of the growth surface for a simple polygon G which is obtained during the

transition in the growth process from level 0 to level 1 for the case in which all slopes slant

toward the polygon at the same angle. Here < 4
,
1,2 > is feasible in Gio = G at a height

of 2i, and the polygons Gn and G21 are contained in the plane 2 = 21.

Next, we show that the growth surface as defined above is well-defined. In order to do

this we show that 2*1+1 and q are well-defined. In the following lemma the existence of triplets

of integers that are attainable in Gjk at some height for each j, j = 1 , ... ,p*., is estabhshed.

Lemma 1. Given j, 1 < j < Pk, there exist m^r^s^z', 1 < myr,s < n, 2' > 2*., such that

< m^r, s > is attainable in Gjk at a height of 2'.

Proof. For some positive integer 77', let ej, 7 = 1 , . .

.

,77', be the edges of the boundary of
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en

Figure 4: View from above of portion of growth surface for a simple polygon obtained during

transition in growth process from level 0 to level 1 for the case in which all slopes slant toward

the polygon at the same angle.
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Gjk> Let e > 0 be a number such that for each z, z = 1 , . .
.

,

n', a region can grow from ej to

a height of Zk + 2 e, and the regions T(e[, Zk e), i = 1 , . .

.

,n', are feasible in Gjk and have

pair-wise disjoint relative interiors. Let G" be the simple polygon in the plane z = Zk e

whose boundary is the set of points in that plane that belong to at least one region of the

form T(e(, 2^ -1- e), 1 < z < n^ Then G" has n' edges in its boundary, and these edges can be

denoted by e", z = 1 , . .

.

,n', in such a way that for each z, i= 1 , . .

.

,7i', e" C T(eJ, Zk + e).

Since the perpendicular projection of G” onto the plane 2 = is contained in the relative

interior of Gjk and for each z, z = 1, . .
.

,

n', ej- and e" are parallel, it follows that for some z,

1 < z < n', the length of e" is less than the length of e[. This implies that for some 2', 2' > 2jfc,

a region can grow from ej to a height of z' but not above it. Assuming that e[ is the edge

of the boundary of Gjk for which this happens with the smallest 2', we let u, ty, u 7^ ly, be

edges of the boundary of Gjk that are adjacent to e(, and let hmy hr, hg, 1 < m, r, s < n, be

the planes associated with v, e[ and w, respectively. It follows that < m,r,s > is attainable

in Gjk at a height of 2'.

The following lemma together with Lemma 1 establishes the existence of triplets of inte-

gers that are feasible in Gjk at some height for each j, j = 1 , . .

.

,pjfc. This shows that Zk+\ is

well-defined. The lemma also shows that in order to obtain 2^+1 it suffices to minimize over

all triplets of integers that are attainable in some Gjk at some height, 1 < j ^ pk- The last

observation is of importance in the development of our algorithm.

Lemma 2 . Given j, 1 < j < Pk, let

Zj^k+i — niiii{2' : for some m!,r\s\ 1 < m',r',s' < n,

< > is attainable in Gjk at a height of 2^}.

Let m, r, 5 be integers, 1 < m,r,s < n, such that < m,r,s > is attainable in Gjk at a height

of Then < m,r,s > is feasible in Gjk at a height of Zj^k+i- Thus

Zk+i = min{4jt+i : i = 1, • • •.?*}

Proof. By Lemma 1
,

is well-defined. Let u be the edge of the boundary of Gjk that is

associated with hm. We need to show that T{u, and are feasible in Gjk- For

simplicity we only do this for Lts^z'- j^^-^). Assuming that Lra{z'j f^j^-^)
is not feasible in Gjk, we

may think of the perpendicular projection of Lrs{z'jk^i) onto the plane 2 = 2*; as originating

at a vertex of Gjk, extending through the relative interior of Gjk, crossing the boundary of
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(jjjt, and extending beyond. But from the definition of a region can grow from each

edge of the boundary of Gjk to a height of Thus, the perpendicular projection of

onto the plane z = Zk can cross the boundary of Gjk as described only if for some

edge V in the boundary of Gjk and some number z, z > Zk, Lra{z) and T{v,z) have a point

in common with z— coordinate z and Lra{z) is feasible in Gjk> But this implies z <
which then contradicts the definition of Zj

f^^-^.
This completes the proof of the lemma.

In order to show that q is well-defined we need the following two lemmas. The proofs

extend to the case in which G is multiply-connected.

Lemma 3. Let A; be a positive integer such that the growth surface has reached the

level. For each i, i = 1, . .

.

,n, Rik and therefore its perpendicular projection onto the x — y

plane is a polygon.

Proof. Follows directly from the definition of Rik^ i = 1, . .

.

,n.

Lemma 4. Let A: be a positive integer such that the growth surface has reached the

level. Given integers m,r,s, 1 < m,?", s < n, at most one integer I, 0 < I < k, can exist such

that for some j, 1 < j < pi-i, < m,r,s > is feasible in Gjj^i at a height of zi.

Proof. We assume that for some /, 0 < / < A:, and some 1 < j < Pi-ij < Tn,r,s > is

feasible in Gjj-i at a height of z/, and that this is the smallest I for which this happens.

It follows that either Lra intersects hm at one point or Lra is contained in hm. In the first

case the lemma follows trivially. In the second case let V be an integer, I < V < k^ such

that for some \ < j' < < m^r^s > is feasible in Gjiji-i at a height of z//. It follows

that a portion of Lra right below the plane z = zi and another one right below the plane

z = z// belong to the growth surface. Since Lra intersects hm at z = zi which is between

the two aforementioned portions of Lra, and at z = z// which is above the second portion, it

follows from the fact that Rrii and Rai' are polygons (Lemma 3) that Rmi' is not connected,

a contradiction to the fact that Rmii is a polygon (Lemma 3). The lemma follows.

Finally, the following lemma shows that q is well-defined.

Lemma 5. There exists a positive integer q such that pq equals zero, and for each k,

0 < k < q^ Pk is positive.

11



Proof. Let A; be a non-negative integer such that the growth surface has reached the

level. If pk is positive it follows from Lemma 1 and Lemma 2 that integers m, r, s, j exist,

1 < m,r, s < 71, 1 < j < pki such that <m^r^s> is feasible in Gjk at a height of Zk+i. But

this can only happen a finite number of times from Lemma 4 and the fact that the number

of possible permutations of n things 3 at a time is finite. Thus, for some 9 > 0, p, must

equal zero and this is the first q for which this happens.

In the above definition of the growth surface for the slopes at the boundary of a polygon,

a tie-breaking procedure was mentioned. Given a positive integer k such that the growth

surface has reached the k^^ level with pk ^ 0, such a procedure is required if for some ji’,

1 ^ i ^ Pk, the boundary of Gjk contains an edge u such that for some integer n' >2 and

some function / from n'} into {1, . .

.

,7i}, there exist line segments u z' = 1, . .

.

,7i',

having pair-wise disjoint relative interiors with the properties that u equals their union and

for each i\i' = 1 , . .
.

,

n', Rf{it),k- Whenever this happens, given m', 1 < m' < n',

V 7^ m', the edges e/(m') oi the boundary of the polygon G are either parallel or colinear

and the planes and are identical or intersect at the line that contains the edge

u. This is why it only makes sense to associate the same plane with all of the edges

i' = l,...,7i', and for that matter with their union u. In keeping with the spirit of the

definition of the growth surface one then selects one of the planes i' = 1, . .

.

,7i', and

associates u with this plane. In order to select one of the planes a tie-breaking procedure

is necessary. Accordingly, one such procedure selects the plane that slants the most toward

the polygon. Another one selects the plane that slants the least.

The assumptions made about the planes hi^i = 1, . .
.

,

n, can be relaxed in such a way that

the lemmas presented above still hold and a growth surface for the slopes at the boundary

of the polygon G can still be defined. Again, we consider a simple or multiply-connected

polygon G with n vertices that is contained in the x — y plane of 3— dimensional space. We
let e^, i = 1, ... ,71, be the edges of the boundary of G. For each z, z = 1, . .

.

,7i, we let Oi
be an open convex set in the relative interior of G whose closure includes e^, and we let gi

be the closed half-plane in the x — y plane whose relative interior contains Oi and whose

boundary contains e^. In what follows, for each z, z = 1, . .

.

,7i, given a closed half-plane h

in the upper closed half-space defined by the x — y plane, if h contains we denote the

measure of the smaller of the two angles between h and gi by ai{h). We assume that a plane

h' in 3— dimensional space has been given which is not perpendicular to the x — y plane

and we let G' be the perpendicular projection onto h' of G. We let i— 1, . .

.

,7i, be the

edges of G* in such a way that for each z, z = 1, . .
.

,

ti, ej is the perpendicular projection

12



onto h' of We let /ij, z = 1, . .

.

,n, be planes in 3—dimensional space perpendicular to h'

in such a way that for each i, i = . .
.
,n, e[ C h[. Clearly, for each z, z = 1, . .

.

,n, e,- C /ij.

For each z, z = 1, . .
.

,

n, we let h[ be the closed half-plane in h[ which is the intersection

of h[ and the upper closed half-space defined by the x — y plane. Finally, we assume that

planes hi, i = 1, . .

.

,n, have been chosen such that for each z, z = 1, . .

.

,n, is contained

in hi, and with hi denoting for each z, z = 1, . .

.

,n, the closed half-plane in hi which is the

intersection of hi and the upper closed half-space defined by the x — y plane, we assume

that for each i, i = 1, . .

.

,n, ai{hi) < OLi{hi). Under these assumptions and using arguments

similar to the ones used above, it is possible to show that a growth surface for the polygon

can be properly defined as above if the following condition holds: For each k, k > 0, with

Pk 7^ 0, and each j, 1 < i < Pkt there exists at least one edge u in the boundary of Gjk such

that ii hi, I < I < n, is the plane associated with u then ai{hi) < ai{hi). This condition is

satisfied if, for example, for at least one /, 1 < / < n, it is the case that ai(hi) < a/(A[), and

the tie-breaking procedure used is the one that selects the plane that slants the most toward

the polygon.

Finally, we notice that the ridge of the growth surface for a polygon is a tree-like structure

whose edges are all straight-line segments and that if the polygon is simple this structure

consists of exactly one connected component. We also notice that the ridge of the growth

surface for a multiply-connected polygon does not necessarily consist of one connected com-

ponent. This is the case when for some edge in the boundary of the polygon, the region

that grows from the edge does not turn out to be a simple polygon. We illustrate this

situation with an example. We consider the multiply-connected polygon in Figure 5 whose

boundary has e^, z = 1,...,8, as edges. Assuming this polygon is contained in the x—y
plane of 3—dimensional space we let hi be any plane that contains ei and that slants toward

the polygon, and for each z, z = 2,. .

.

,8, we let hi be the plane that contains and that

is perpendicular to the x — y plane. Under these assumptions, it follows that the growth

surface for the polygon is such that the perpendicular projection of Ri onto the x — y plane

is the polygon itself while those of z = 2, . .
.

,

8, are the edges ei,i = 2,. ..,8, respectively.

Accordingly, the ridge of the growth surface consists of two connected components, that cor-

respond essentially to the outer and inner boundaries of the polygon, respectively, and that

are separated from each other by the interior of Ri .

3. A brute force algorithm

In this section we present a brute force algorithm in the form of a procedure called GROSUR
for computing the growth surface for the slopes at the boundary of a simple or multiply-

connected polygon. The algorithm follows closely the definition by induction of the growth

13
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Figure 5; A multiply-connected polygon.
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surface for a polygon presented in the previous section, and its justification follows from

Lemma 2 in the same section. Actually, a stronger version of Lemma 2 is required. In order

to present this new version of the lemma we expand on the notion of ‘attainable.’ Given j, /,

1 ^ i) ^ ^ Pfcj a-ii edge of the boundary of the polygon Gjk, and v,w, edges of the boundary

of the polygon Gik such that v and w are adjacent to each other and u ^ u, u ^ w, we let

hm, hr, ha, 1 < m,r,s < Ti, be the planes associated with u, v, and w, respectively. Given

z', z' > Zk, we say that < m,T,s > is attainable in Gjk U Gik at a height of z' if a region can

grow from u to a height of z' and numbers x', y' exist such that Lra intersects hm at {x' ,y'z')

and {x' ,y', z') G T[u, z'). The new version of Lemma 2, which we call Lemma 2’, follows.

Lemma 2’. Let

= min{ 2:^
: for some m' ,r' ,s' ,j' ,1'

,

1 < m',T\s' < n, 1 < j' ,1' < pjb,

< m',r\s > is attainable in Gj'k U Gvk at a height of z'}.

Let m, r, s, j, / be integers, 1 < m,r, s, < n, 1 < j,l ^ Vk^ such that < m,r, s > is attainable

in Gjk U Gik at a height of Then j equals I and < m, r, s > is feasible in Gjk{= Gik) at

a height of Thus 2^+1 equals

In what follows, given integers m, r, s, 1 < m,r,s < n, and a number z', z' > Zk,

we say that < m,r,s > is attainable in F = Uji^^-^Gj^k at a height of z' if for integers j, I,

1 < j, / < Pfc, < m,r,s > is attainable in Gjk U Gik at a height of z'. This definition and

Lemma 2’ allow the computation of Zk+i when only information about the edges of the

boundaries of the polygons Gjk, j = 1, ... ,pk, is available.

Let G, n, ei, h^, q, Zk, Pk, Rxk, Gjk, k = 0, . .
. ,q, i = 1, . .

.
,n, j = 1, . . .,pk, be as defined

in the previous section. Given k, j

,

0 < k < q, I < j < Pk, 'a, a.n edge of the boundary of

Gjk, and 2 ', 2 ' > Zk, such that a region can grow from u to a height of z', we let T{u,z')

be also as defined in the previous section. In the following we list and describe variables

and procedures used in procedure GROSUR. However, in order to do so an observation and

some notation are necessary. First the observation. We notice that each execution of line 4

of GROSUR (fisted below) corresponds to a growth level k, starting with k equal to zero,

and that no variable corresponding to k is explicitly used in the procedure. Neither are

variables that would correspond to pk and Gjk, k = 0, ... ,q, j = 1,. .
. ,pk. Thus, in what

follows, whenever we say ‘the polygons at the current level’ we will mean that GROSUR is

currently being executed, that at the present moment k is implicitly defined and set equal

to some non-negative integer, and that the polygons at the current level are the polygons
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Ojk-, ji’ = 1, . . . which are also implicitly defined. All of this is in accordance with the

observation after Lemma 2’ that essentially states that in order to compute complete

information about the polygons Gjky j = 1, ... ,pk, is not necessary and that in fact certain

information about the edges of the boundaries of the polygons suffices. Finally the notation.

Let e be an edge of the boundary of a polygon. Let O be a closed rectangle contained in

the polygon with e as one of its sides. Let Ql and Qr be the endpoints of e. We say that

Ql is the left endpoint of e and that Qr is the right endpoint of e if in a counterclockwise

direction around the interior of O, Qr is the first vertex of O that appears after Ql in the

boundary of O. The descriptions of variables and procedures follow.

R\ A function whose domain is the set ,n}. As an input variable for GROSUR, for

each i, i = 1,. . .,n, R{i) equals e^. At the start of each execution of fine 4 of procedure

GROSUR, for each i^i ~ 1, . .
.
,n, R{i) equals the i^^ growth region up to the current level.

As an output variable for GROSUR, for each i,i = 1, . .
. ,
n, ^(i) equals the growth region

in the growth surface for the polygon.

H: A function whose domain is the set {!,... ,n}. At all times, for each i,i = 1, . .
.
,n, H(i)

equals plane hi.

p: A non-negative integer. As an input variable for GROSUR, p equals n, and at the start

of each execution of line 4 of GROSUR equals the total number of edges in the boundaries

of the polygons at the current level.

U: A function whose domain is the set {1, . .
. ,p}. As an input variable for GROSUR, for

each j, j = 1, . .
. ,p, C/(j) equals ej. At the start of each execution of line 4 of GROSUR with

p ^ 0, for each jj = 1, . .
. ,p, U{j) equals the edge in the boundaries of the polygons at

the current level.

N: A function whose domain is the set {!,... ,p}. As an input variable for GROSUR and at

the start of each execution of line 4 of GROSUR with p ^ 0, for each j = 1, . .
. ,p, N{j)

equals the edge adjacent to U{j) in the boundary of the polygon that contains U{j), the left

endpoint of which is the right endpoint of U{j).

P: A function whose domain is the set {!,... ,p}. As an input variable for GROSUR and at

the start of each execution of line 4 of GROSUR with p 0, for each jf, j = 1, . .
. ,p, P{j)

equals the edge adjacent to U{j) in the boundary of the polygon that contains U{j), the
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right endpoint of which is the left endpoint of U{j).

z: A non-negative number. At the start of each execution of line 4 of GROSUR, z equals

the elevation of the current level.

r: A function whose domain is the set {1, . . • ,p}. At the start of each execution of line 4 of

GROSUR with p 7^ 0
,
for each j = 1 , . .

.

,

p, r[j) equals the number of line segments having

pair-wise disjoint relative interiors into which U[j) can be partitioned with the property that

given ’"(i)) there exists z, 1 < i < n, such that the segment in the partition of

U{j) is contained in R{i).

V: A function whose domain consists of pairs of positive integers of the form {l,j}, where

l<j< p, and 1 < / < T{j). At the start of each execution of hne 4 of GROSUR with p 7^ 0,

for each j, j = 1, . .

.

,p, . .
.

,

U(r(j), j) are Hne segments having pair-wise disjoint rel-

ative interiors with the property that U{j) equals and that given ’"(i))

there exists i, 1 < i < n, such that V(l,j) C R(z).

A: A function whose domain consists of line segments computed in GROSUR and whose

range is the set { 1 , . .
.

,

n}. At the start of each execution of line 4 of GROSUR with p 7^ 0
,

for each j = 1 , . .

.

,p, and each /,!</< t’O), A{V{l,j)) equals the integer 1 < i < n,

for which V{l,j) C R(z).

TIEBRK(if, A, U,r, jf, /): Given j, 1 < i < p, and using some type of tie-breaking criterion,

procedure TIEBRK selects one of the planes H{A{V{l,j)))y . .
. ^
H{A{V{r[j),j))). The in-

teger /,!</< ^(i)) is the one for which H{A{V{l^j))) is the selected plane.

MINATT(i, if, C/, AT, P, p, A): Assuming that the edges U{j), j = l,...,p, are the edges of

the boundaries of the polygons at the current level, say level k, k > 0, with Zk = i, and us-

ing functions ff, AT, P, A for any other required information, procedure MINATT computes

z = Zk+i as in Lemma 2’ above.

TGROWT(z, ff, U, AT, P, J, A, T): Given j, 1 < j < p, assuming that U{j) is an edge of the

boundary of a polygon at the current level and that a region can grow from U{j) to a height

of i, and using functions H
^
N

^
P

^
A for any required information, procedure TGROWT

computes T — T{U{j), z).
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BEDGES{R, z^U, N, Pjp,V,r, A): Through an analysis for each j = of the set

of points in R(A(U{j))) with 2:—coordinate equal to i, and using functions iV, P for any

other required information, procedure BEDGES computes p, U{j), N{j), PU)i ’’(i))

i = 1) • • • jP) ^ !)• •• at the next level.

Procedure GROSUR now follows.

procedure GROSUR(R, C/, N, P)

begin

1. i := 0;

2. for j := 1 until p do

begin

3. r(j) := 1; V{l,j) := U{jy, A{V{l,j)) ~ j

end

4. while (p ^ 0) do

begin

5. for j := 1 until p do

begin

6. TIEBRK(if,A,1/,r,7, /);

7 . A(t70-)) := A(V(/, j))

end

8. MINATT(i, H, U, N, P, p, A);

9. for j := 1 until p do

begin

10. TGROWT(i, H, U, AT, P, A, T);

11 . ;j(A(t70-))) := J7(A([7(i))) U r
end

12. BEDGES(P, i, U, N, P,p, r, A)

end

end

4. Summary

We have defined inductively the growth surface for the slopes at the boundary of a simple or

multiply-connected polygon. We have also presented a brute force algorithm for computing it
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which is essentially a restatement of its definition. Finally, we report that an implementation

of the algorithm in Fortran has been completed at the National Institute of Standards and

Technology.
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