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Abstract

Algorithms that attempt to accurately compute optical flow must cope with

occlusion, brightness changes, irregular motion, and the aperture problem. Most

optical flow algorithms have tried to overcome one or more of the problems

mentioned above. Yet, claims about the reliability of computed flow are still based

on ad hoc evaluation schemes. While a perfect algorithm that is free of all the

problems is not yet available, we present a reliable algorithm, which despite all

the difficulties, generates the output flow field wherever possible, and associates

with the output evaluation metrics that reflect the reliability of the output. The

evaluation metrics are complete in the sense that they are theoretically related to

the physical phenomena that cause the inherent problems noted above. Our

approach to computing optical flow expands the spatio-temporal image in terms of

Hermite polynomials and then derives multiple Gaussian smoothed gradient

constraint equations, which constitute an overdeteimined linear system that can be

solved for image flow with a least square method. Using the QR decomposition

technique, we extract the residual, condition number, and the determinant

associated with the linear system. These measures are shown to correspond to the

severity of the aforementioned problems. By thresholding the output using these

evaluation metrics, we extract different densities of output that can be compared

with other algorithms included in the evaluation scheme developed by Barron,

Fleet, and Beauchmin. We show that our algorithm performs consistently better

over a wide variety of synthetic and real image sequences.



1. Introduction

During the past decade, a great deal of effort has been spent on the computation of optical flow.

Three methodologies have been explored: spatio-temporal energy based[l,12,13,23], correlation

based[3,20,25], and gradient based methods[6,14, 18, 19,10]. There is a great deal of biological

motivation for spatio-temporal approaches. These techniques are based on the equation

0) = CO • M + CO • V
t X y

( 1 )

where (u,v) is the velocity of a point in the image, and co , co , co are spatial and temporal fre-
X y t

quencies at the point. The local image velocity (m,v) can be estimated by determining the plane of

nonzero spectrum in the spatio-temporal frequency domain[12]. The correlation-based method

typically finds prominent features or small patches of the image and attempts to match them in

successive images. Most researchers have used three strategies to match the candidate features or

patches: maximizing the correlation response measurement[20], minimizing the sum-of-squared

difference of the corresponding values[2], and coarse-to-fine search strategies[25]. The gradient-

based techniques extract optical flow from spatial and temporal derivatives of the image intensity.

In one approach[14], the first derivatives and the gradient constraint equation are used:

I^u + IyV + I, = 0 (2)

where /^, ly denote the partial derivatives of /, the image intensity, with respect to x, y, t re-

spectively. The two components (m, v) of the image velocity are constrained by only one linear

equation in (2). In another approach[19], second order derivatives are used to constrain image ve-

locity:

(3 )

Clearly, {u, v) can be recovered from (3) wherever they are linearly independent. Because of the

sensitivity of numerical differentiation to noise, velocity estimates from second derivatives are

not very accurate. In [10], Haralick and Lee present a facet model approach to obtain image ve-
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locity based on fitting a function to the intensities in local neighborhoods of spatio-temporal im-

ages. However, the approach requires first and second order partial derivatives in space and time.

A set of (5x5x5) operators were used for estimating the derivatives. The method is very sensitive

to noise.

Our approach is similar to the facet model method in that both estimate a local neighborhood of

the spatio-temporal image with a polynomial. The difference is in the use of an orthogonal Her-

mite polynomial basis to estimate the derivatives in an image neighborhood. Not only is our

approach based on more numerically stable estimation techniques but in addition, as the behavior

of Hermite polynomials is modeled by Gaussian derivatives, our gradient constraint equations are

more robust. Numerous physiological experiments [9,16,26] support the theory that the visual

receptive field can be modeled by Gaussian derivatives of various widths. Indeed, Gaussian deriv-

atives are linear, spatial shift and scale invariant, isotropic and insensitive to noise. In addition,

they are rotation and dimension invariant.

We categorize our algorithm as a gradient-based method. The major advantages over the previous

gradient based methods are numerical stability, characterization of the performance of the algo-

rithm, and simplicity. Numerical stability is achieved by using Hermite polynomials. The perfor-

mance of the algorithm is evaluated using the residual, condition number, and the determinant

obtained from an overextended linear system of gradient constraint equations. Simplicity is due to

the fact that the filtering process accomplishes smoothing and differentiation simultaneously. The

computations involve only convolutions and solution of linear systems.

As our extensive experiments attest, our algorithm performs consistently well over a large variety

of images. Furthermore, the paradigm presented here is justified by its power to unify and predict

theoretical relationships between image phenomena and computed flow field. To the best our

knowledge, only Kearney et al.[15] has exploited such a relationship as an integral part of the al-

gorithm.

The organization of this paper is as follows. We lay out the theoretical foundation in Section 2.
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Implementation details including the discussion of confidence measures are presented in Section

3 followed by extensive experiments and comparisons in Section 4. Section 5 concludes the

paper. Analytical results about the interpretation of confidence measures are aggregated in appen-

dices.

2. Algorithm

In this section, we establish gradient constraint equations similar to (2) and (3) and expand them

to higher order. The difference here is that the gradients are computed by Gaussian derivatives.

The algorithm estimates optical flow by fitting a three dimensional polynomial to a spatio-tempo-

ral image sequence. The model is defined as follows:

I {x, y,t) = F {x-ut, y-vt) (4)

Equation (4) is based on the assumption that the motion in the image is constant over time and the

image brighmess pattern does not change over time. Using the Hermite polynomial basis to ex-

pand the function / and F, optical flow (u, v) can be estimated. The algorithm consists of two stag-

es: 1, convolution of the image / with a set of derivative masks generated by Hermite polynomials

and 2, least square error solution of an overdetermined linear system.

2.1 Hermite Polynomials

The nth Hermite polynomial (j:) is a solution of

d dH„
"_2;c— " + 2«//„ = 0

dx^

The (x) are derived by Rodrigues’ formula [11]

2 2

H„{x) = (-1) e —~e .

dx

It is clear from (6) that

(x) e where is the set of polynomials of degree n.

(5)

(6)
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The computation of (jc) is especially easy due to the following recursive relations:

= 2xH^(x)-2nH^_,{x)

HqM = 1

//j (x) = 2x

The orthogonality of [H^ {x) ] can be verified from (5) and (6).

By substituting G(x) for e in (6), we generalize to Hermite polynomials with respect to the Gaus-

sian function. Let these Hermite polynomials be denoted by //„ {x)

H„{x) = (-1)"G‘‘w-L(GW)
dx

Note that H„ (x) differs from (x) by a scaling product:

(7)

H„(x) =

2 O
H

"I ,l/2_
2 O

(8 )

where a is the standard deviation of G(x).

The scalar product of two functions and the L2-norm of a function with G(x) as a weight function

are defined as follows:

{a, b) = j
G{x)a (x) b {x) dx

—oo

The orthogonality of {7?„ (;c) } can be expressed in the following way:

where
rsmn \ <^m = n

0 <=>m^n

-2n
, 5a «!omn (9)

The 3D case of Hermite polynomials is especially simple because they are separable with respect

to dimension. Thus the polynomial with order n = i + j + kis:
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Hijk{x,y,t) = Hi{x) ^Hj(y) (10)

2.2 Derivation of Gradient Constraint Equations

One of the most important properties of Hermite polynomials is the property of Gaussian deriva-

tives. It is with this property that we are able to establish gradient constraint equations. This

property is manifested in the following theorem.

Theorem 1: A one dimensional signal I(x) can be expanded in terms of Hermite polynomials as

k = 0

then/. = (/,//t) = where //qW = 1 and/W =

k

dl

dx^
(11 )

The proof is given in Appendix A.

From Theorem 1, we know that [Ij^] can be interpreted in two ways: the expansion coefficients

and Gaussian derivatives of the image sequence.

Consider our motion model:

I {x, y,t) = F {x-ut, y-vt)

Now expand both sides with Hermite polynomials,

Hijk
oo oo oo

XXX 112

{ = 0y = 0yk=0

OO OO OO

= XXX^.
Hijk

where

'
lijk

=

(12)

Suppose the scene is smooth and the motion is steady, which means that the higher order terms in

the expansion vanish. We can then use a limited basis to represent the function. If only

Hqqq, Hiqq, Hqiq, Hqqi are used, we have the following:

^000 “ ^000

^100 “ ^100 ( 13 )

^010 “ -^010
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BF - BF BF -
^001

“ ^001 = (^»-^00l) = (~»-^OOo) = ( (-^)-5T (-^)37’'^OOo)001 Bt Bx By'

— ?F —
= (-W) <g, Hooo) + (-V) Hooo)

= (-m)<F,//ioo>+ (-v)(F,//oio>

= (-W)Fjqq+ (-V)Fqjq

The derivation of (14) is based on Theorem 1. From (13) and (14), we derive the first order gradi-

ent constraint equation.

/qoi + M^ioo + ^^010 “ ^

If a larger basis is used, we can have additional gradient constraint equations. For example, with

^000»^100»^010»^001»^101>^011»^110’^200>^020» following similar reasoning, we have the

second order gradient constraint equations:

/lOi
+ M/200 ^^110 “ ^

/qu + m/jjq + v/q2o = 0

Equations in (15) and (16) can be rewritten in a matrix form:

(16)

^100 ^010 ^001 0

^200 ^110
M

V
+

^101
= 0

/no ^020

y

/oil _0

(17)

Realizing that } is just the Gaussian derivatives of /, we note the similarity between (15), (16)

and (2), (3), rewritten here:

l,+l,U+lyV = 0

+
+V = ®

If the assumption of smooth scene and steady motion are not practical, we may use a larger poly-

nomial basis and thus generate additional gradient constraint equations, while still maintaining a

linear system of equations in u and v. More generally.

7



h,j,

k

+ 1, ifc- 1
“ ^ (18)

In fact, we can use as many equations as necessary for a particular image scene and motion.

Another approach is to use a nonlinear system to achieve higher accuracy. For example, we could

add ^002 previous second order basis. The additional equation will be

^002 (^200
^^ ^^

020
^^)

The equation is not linear, so it might be necessary to use an iterative algorithm to search for the

optimal solution.

3. Implementation

3.1 Localizing Computation

Recall that our motion model assumes that motion in the image is constant over time. To assure

this is not violated, we should only use a small local neighborhood to compute optical flow for

each pixel. In addition, we have to adapt the algorithm to the discrete case as required for the

common image input. Therefore, we define local expansion coefficients {x, y, t) } to approx-

imate {/.y^ } and redefine the inner product as a local computation in V:

hjk (x, y, t) = {I (x, y, t) , Hiji)

= + ^0’ 3” + ^ + ffl) ^ijk (^0’ yO’ ^o) ^ (^0’ ^0’ 'o)

V

(20)

Substituting {1;^^ (x, y, t) ) for {/-^ ) in (17), we have an overextended linear system:

2ooi (x,y,0 0
M(x,y,f)

-1-

2ioi (x,y,t)
~ 0

[v (x, y, r)J n
/oii(x,y, 0_

u

(21 )hoo(x,y,t) Iiio(x,y,t)

fno (x,y,t) i020 (-x,y,t)

Note that we have reduced global computation in (17) to local computation in (21). Now for every
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single image pixel, there is an associated linear system that can be solved for optical flow.

Let ^

^010 (x,y,t)

hooix,y,t) I^iQ{x,y,t)

lQ2Qix,y,t)

J = u (x, y, t)

y(x, y, t)_

,b = W
/ooi (x, y, t)

hoi (x, y, 0 (22)

We introduce a weight matrix W to compensate the difference of norms between first and second

order Hermite polynomials,

W =

0 0

0 ^2 0 ,

0 0 W
2

(23)

Since {/^-^ (jc, y, t) } is just a local approximation of
[hji^],

we solve the overextended linear sys-

tem for/ (or u and v) in the least square error sense:

E = min\\Af+ b
\\ , (24)

Using the QR decomposition method [Householder Triangularization], we derive the following:

A = QR, and E = min\\QRf+b\\ = m/n||R/-i-

,

where Q is unitary. (25)

d
R,

R is an upper triangular matrix, denoted by 0 ^2 and
S

0 0
[0 oj

where R^ is the upper square matrix.

Let Q^b be where b^ is the upper 2-element vector. Equation (25) becomes

E = min(\\R/+bJI^ +r)

= r if R^ is not singular. (27)

The solution is computed from = 0 (28)

In the actual implementation, we use a floating point computation; as a result, R^ is rarely singu-
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lar. However, the behavior of determines the accuracy of the solution. Also the residual r of

the overextended linear system plays an important role in determining the accuracy of the solu-

tion. We devote the next subsection to the discussion of accuracy of the computed optical flow

and associated confidence measures.

3.2 Confidence Measures

Optical flow computed from noisy data is unreliable and there should be a mechanism to reject

unreliable or poor flow estimates. The confidence measure is defined as a quantitative value that

indicates the degree of confidence in the quality of the computed result. Our algorithm provides

ample information about the behavior of the system equations. It is then shown that this informa-

tion signifies certain image phenomena, e.g., occlusion, which present difficulties for optical flow

computation. Therefore, it can be utilized as confidence measures. We first analyze some potential

confidence measures in the following subsections.

3.2.1 Residual

The residual of our algorithm is \\Af+ b\\ or r {=E) (27). The residual of an overextended linear

system indicates the degree to which the equations disagree with one another. Recalling (15)and

(16), if [I ) are computed exactly, these equations should hold. The reason for the existence of

residual lies in the approximation error of (jc,y, 0 )• A high approximation error may indi-

cate one of three problems:

1. The assumption of constant motion is violated in the window V. It is possible that the

window covers more than one moving object. Occlusion and multiple independently

moving objects in a window can cause this problem.

2. The assumption of constant image brightness is violated. It is not unusual for the

brightness of an object to change when the viewing angle changes due to relative

motion. In addition, the observing camera may adjust the picture balance for different

scenes, resulting in change of object brightness. Similar results can be caused by the

10



shadow of a moving object.

3. Truncation error. Truncation errors are introduced when we use a small window to

compute [lijk {x, y,t) }. Within the small window, the Hermite polynomials are no

longer orthogonal and the expansion coefficients are not accurate.

We can model the above errors as perturbations to the linear system (Appendix B):

E = mini + ^)f+ (tf + Ab)
|| , whereN and Ab denote errors.

We prove in Appendix B the following analytical results:

A/ = /-/= -( (N/+ Ab)

(29)

r = I-A\A^a] ^A^ ](Nf+Ab)

(30)

(31)

Note that the expressions of both optical flow error A/ (30) and residual r (31) contain the error

vector (A/+ Ab) . Even so, it may be deceptive to claim that the residual is proportional to the

{ T T
optical flow error because the error vector is mapped by different matrices (I A A I A ,

T

.

Vi ,T. -1 T .

I-A\^A A
j

A ). We further show that the matrix I -A\^A A
j

A in the residual expression

has only one nontrivial eigenvalue, which happens to be 1. This makes it more likely for the error

vector to be mapped to a small vector. Nonetheless, it is clear that a large residual certainly means

there are errors and the optical flow result may be inaccurate.

Note that the three problems mentioned above suggest contradictory choices for the window size.

With larger windows, problems 1 and 2 may be aggravated; with smaller windows, problem 3

may become intolerable.

Using |l/r| as a confidence measure, we can locate these problems and eliminate unreliable

results.

3.2.2 Condition Number

The condition number of , denoted by k (R^) , is defined as
||
||^J^||

and can be shown to be

11



, where X^-„ are eigenvalues of .

1^1mm

A condition number measures the extent to which a linear system maps the input error into output

error, or in brief, the numerical instability of the system. The higher the condition number, the

more ill-conditioned a system is. Recalling (24), we regard b as the input of the system and/the

output. There are inherent errors in the elements of b. We certainly do not consider/ which con-

tains errors magnified by an ill-conditioned A reliable. Since matrixA is concerned with the image

texture only and not with motion, we find the correspondence between a high condition number

and the following two scenarios of the image neighborhood:

1. When there is a steep edge in the ;c(y) direction (Fig 1.1), so that the first order and

second order derivatives are very large for x(y) and small for y(x).

2. When there is a lack of texture in a direction (Fig 1.2), so that the derivatives in the x

direction are approximately proportional to the derivatives in the y direction, i.e.

I(x,y) ^I(kx + y )

.

Fig 1.1 Smoothed steep edge. Fig 1.2 Lack of texture in x+y direction.

The above two findings are easily verified from the QR decomposition process as explained in

Appendix D.

If there is motion in the area where one of the two scenarios dominate, then it corresponds to what

is known as the aperture problem. Since we will not be able to recover the velocity accurately

with any local computation, we may as well eliminate the results.

So 1/k (R^) can be used as a confidence measure.
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3.2.3 Determinant

The determinant of is • ?i
2

- solving (28) or f - -R~^ ’ the determinant plays an

important role in the matrix inverse. Since we use the QR decomposition method, Q is unitary

(orthonormal projection) so the behavior of is similar to the original A. Looking at (24), a

small determinant of R^ indicates one of the following two scenarios:

1. The two columns ofA are close to being linearly dependent. This is the same as the

second scenario in the discussion of condition number. In fact, we prove in

Appendix E that low determinant due to linear dependency also causes high condi-

tion number.

2. All the elements ofA are very small. This corresponds to a uniform brightness area,

e.g. blue sky.

As noted before, the above corresponds to the general case of the aperture problem. It is interest-

ing to note that Barron, Fleet, and Beauchemin [4] recognize the determinant as a better confi-

dence measure in the application of the liras et al. [22] optical flow algorithm than the condition

number as used in the original paper. Our analysis using the principles of linear algebra agrees

with their empirical findings.

So we shall use ^det (R^)
|

as a confidence measure.

3.2.4 Integration of Confidence Measures

Based on the above analysis, we choose a combination of confidence measures according to the

nature of a given image sequence.

If the image sequence contains numerous moving objects or the brighmess changes significantly,

residuals should be used as confidence measures. The residual is unique in the sense that it cap-

tures the three problems in 3.2.1, which no other measure does.

Condition number and determinant have something in common although they may capture differ-
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ent scenarios. Together they signify the relationship between numerical instability and the aper-

ture problem. We suggest the multiplicative combination of these two, det {R^) /k , which

is equivalent to using \Mmin' proposed by Gkosi et al.[8] in a similar context and

was used in Barron’s implementation [4] of Lucas and Kanade’s optical flow algorithm. In our al-

gorithm, it simply means the smaller of the derivatives in x and y directions. We shall use it to

capture the aperture problems and to avoid numerical instability.

All the above mentioned problems are not unique to our algorithm. In fact, many of them are

common to other optical flow algorithms. However, we believe our algorithm is the first serious

effort to capture most of the problems in optical flow computation in a quantitative way.

4. Experiments

Based on the work of Barron, Fleet, and Beauchemin[4], we conducted extensive comparisons of

our algorithm with other current optical flow algorithms, including ones by Horn and

Schunck[14], Lucas and Kanade[17], liras et al. [22], Nagel[19], Anandan[2], Singh[20], Hee-

ger[12], Waxman et al. [24], Heet and Jepson[7]. The synthetic image sequences we used for

comparison are Sinusoid, Translating Tree, Diverging Tree, and Yosemite Ry-by. All of the above

come with optical flow ground truth. The real image sequences we used for demonstration are SRI

Trees, Rubik Cube, and Hamburg Taxi. All of these images were provided by J.L. Barron.

The error statistic utilized is the angle error between the computed optical flow time-space direc-

tion (Mg, Vg, 1) and the ground truth flow time-space direction (m^, v^, 1) averaged over the

whole image. Note that the 3D directions are different from the intuitive 2D flow directions. It

takes into account the magnitude as normalized with respect to time. Refer to [4] for more details.

We recognize the importance of optical flow magnitude for subsequent applications, e.g. time to

contact. To separate magnitude error from angle error, we listed the magnitude error, defined as

the difference of the magnitudes of computed flow and ground truth flow, scaled by the ground

truth flow. But there are no comparison data available.
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In order to make extensive comparisons, we implemented our algorithm in such a way that a

threshold on a specified confidence measure can be used to eliminate unreliable flow values, thus

controlling the number of points, or density, for which computed flow field values are available.

In all the tables in the following subsections, the first column is density, the second and third col-

umns present the error statistics for our algorithm for that density, and the fourth and fifth columns

present the error statistics for a given comparison algorithm for the same density. The error statis-

tics and associated density for the comparison algorithms were obtained from Barron et al. [4].

For a single technique with multiple rows of data, different threshold values are used in the algo-

rithm to produce multiple densities of output. For the actual threshold values of the comparison

algorithms, refer to Barron et al.[4].

The results show that our algorithm performs consistently well over a wide set of images, if not

the best in every single sequence. On the other hand, most of the other techniques included in

comparisons perform well only over a narrow set of images.

4.1 Sinusoid

Sinusoid is a synthetic image sequence (Fig 2) generated by a spatial sinusoidal wave traversing

toward the upper right side. For our method we chose a window size large enough (17x17x7 for

x,y,t) to prevent aliasing. Fig 3.1 shows the true optical flow for sinusoid, while Fig 3.2 shows the

flow computed with our method. The output density in Fig 3.2 is 100%. |l/r| was used as the

confidence measure in Table 1. Our algorithm performs far better than all of the other algorithms

except Fleet and Jepson’s. The average magnitude error is 1.83% for 100% density.

Fig 2. Spatial sinusoid
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Fig S.lTnie optical flow for sinusoid Fig 3.2 Computed optical flow (100%)

Table 1: Summary of Sinusoid Error Statistics

Density

Our A1 ;orithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 0.65' 0.25' 4.19' 0.50' Horn & Schunck (original unthresholded)

2.55' 0.59' Horn & Schunck (modified unthresholded)

2.47' 0.16' Lucas and Kanade (unthresholded)

2.59' 0.71' liras et al. (unthresholded)

2.55' 0.93' Nagel

30.80' 5.45' Anandan

2.24' 0.02' Singh (step 1 unthresholded)

0.03' o.or Fleet and Jepson

12.8% 0.65' 0.26' 64.26' 26.14' Waxman et al.

4.2 Translating And Diverging Tree

The translating and diverging tree sequences are two realistic synthetic sequences simulating the

motion of simple translation and expansion, respectively, of a poster (Fig 4). The window size

used in our method is 19x19x11 for translating tree and 17x17x9 for diverging tree. Due to the

lack of texture in some background areas, we used ^det {R^)
|

as the confidence measure. The

magnitude error for translating tree is 131% for 100% density and 1.23% for 50% density; for di-

verging tree, it is 2.08% for 100% density and 1.51% for 50% density. Fig 5 and Fig 6 show the

results. The output density for Fig 5.2 and Fig 6.2 is 90%. Error statistics are shown in Table 2

and Table 3. Note that when the density is low (<10%), the error increases. It is because the area

with high |der
|

corresponds to high contrast comers and may well represent motion bound-

16



aries. Only Uras’s and Fleet and Jepson’s algorithms perform better than ours in terms of average

error for translating tree. For diverging tree, our algorithm’s performance is good but not out-

standing. It is due to the fact that the velocity variation is large in a local window.

Fig 4. Translating and diverging tree

Fig 5.1 True flow for translating tree

Fig 6.1 True flow for diverging tree Fig 6.2 Computed flow for diverging tree (90%)
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Table 2: Summary of Translating Tree Error Statistics

Density

Our Aljgorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 1.05* 1.45* 38.72* 27.67* Horn & Schunck (original unthresholded)

2.02* 2.27* Horn & Schunck (modified unthresholded)

0.62* 0.52* Uras et al. (unthresholded)

2.44* 3.06* Nagel

4.54* 3.10* Anandan

1.64* 2.44* Singh (step 1 unthresholded)

1.25* 3.29* Singh (step 2 unthresholded)

99.6% 1.04* 1.42* 1.11* 0.89* Singh (step 2)

74.5% 0.72* 0.82* 0.32* 0.38* Heet and Jepson

53-57% 0.66* 0.77* 32.66* 24.50* Horn & Schunck (original)

5.63* 2.78* Heeger (level 1)

1.89* 2.40* Horn & Schunck (modified)

49.7% 0.65* 0.75* 0.23* 0.19* Fleet and Jepson

44.2% 0.63* 0.69* 8.50* 13.50* Heeger (level 0)

40-42% 0.62* 0.66* 0.46* 0.35* Uras et al.

0.72* 0.75* Singh (step 1)

0.66* 0.67* Lucas and Kanade

26.8% 0.60* 0.59* 0.25* 0.21* Fleet and Jepson

13.1% 0.58* 0.51* 0.56* 0.58* Lucas and Kanade

1.9% 0.70* 0.60* 6.66* 10.72* Waxman et al.

Table 3: Summary of Diverging Tree Error Statistics

Density

Our Al gorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 2.91* 2.89* 12.02* 11.72* Horn & Schunck (original unthresholded)

2.55* 3.67* Horn & Schunck (modified unthresholded)

4.64* 3.48* Uras et al. (unthresholded)

2.94* 3.23* Nagel

7.64* 4.96* Anandan

17.66* 14.25* Singh (step 1 unthresholded)

8.60* 4.78* Singh (step 2 unthresholded)

99% 2.83* 2.57* 8.40* 4.78* Singh (step 2)

73.8% 2.43* 1.97* 4.95* 3.09* Heeger (combined)

60-61% 2.32* 1.84* 0.99* 0.78* Heet and Jepson

8.93* 7.79* Horn & Schunck (original)

3.83* 2.19* Uras et al.

46-48% 2.26* 1.84* 2.50* 3.89* Horn & Schunck (modified)

0.80’ 0.73* Heet and Jepson

1.94* 2.06* Lucas and Kanade

28.2% 2.29* 1.92* 0.73* 0.46* Heet and Jepson
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Table 3: Summary of Diverging Tree Error Statistics

Density

Our A1gorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

24.3% 2.29' 1.91' 1.65' 1.48' Lucas and Kanade

4.9% 2.52' 2.33' 13.69' 11.83' Waxman et al.

3.9% 2.51' 2.27' 5.62' 6.16' Singh (step 1)

4.3 Yosemite Fly-by

The Yosemite Fly-by sequence is a synthetic realistic image sequence (Fig 7). The flight scene is

simulated from actual aerial photos and digital-terrain maps plus artificial sky and clouds. Since

the clouds in the sky change brightness over time, it presents difficulties for our method. Based on

our previous analysis, we used |l/r| as the confidence measure to eliminate those data points

which correspond to a large blank area in the sky and at motion boundaries in Fig 8.2. Since the

motion is rather fast in some areas, we used a larger window (21x21x7). Error statistics are shown

in Table 4. The magnitude error is 27.2% for 100% density and 9.27% for 50% density. Again, the

clouds account for the large magnitude error. The output density for Fig 8.2 is 75%. Only Lucas

and Kanade’s algorithm performs better than ours. From this we believe our algorithm should

work well with real images. This will be shown in the next subsection.

Fig 7. Yosemite fly-by image
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Fig 8. 1 True optical flow field for Yosemite fly-by Fig 8.2 Computed optical flow for Yosemite fly-by (75%)

Table 4: Summary of Yosemite Fly-by Error Statistics

Density

Our A1 vorithm Other Algorithm

Average

Error

Standard

Deviation

Average

Error

Standard

Deviation
Technique by

100% 10.17* 13.61* 32.43* 30.28* Horn & Schunck (original unthresholded)

11.26* 16.41* Horn & Schunck (modified unthresholded)

10.44* 15.00* Uras et al. (unthresholded)

11.71* 10.59* Nagel

15.84* 13.46* Anandan

18.24* 17.02* Singh (step 1 unthresholded)

13.16* 12.07* Singh (step 2 unthresholded)

97.8% 9.73* 13.21* 12.9* 11.57* Singh (step 2)

64.2% 5.14* 7.67* 20.89* 34.26* Heeger (level 0)

59.6% 4.95* 7.42* 25.41* 28.14* Horn & Schunck (original)

44.8% 4.59* 6.90* 11.74* 19.04* Heeger (combined)

33-35% 4.42* 6.72* 4.10* 9.58* Lucas and Kanade

4.29* 11.24* Fleet and Jepson

5.48* 10.41* Horn & Schunck (modified)

30.6% 4.40* 6.70* 4.95* 12.39* Heet and Jepson

15% 4.34* 6.57* 10.51* 12.11* Heeger (level 1)

6.74* 16.01* Uras et al.

8.7% 4.40* 6.76* 3.05* 7.31* Lucas and Kanade

7.4% 4.45* 6.88* 20.32* 20.60* Waxman et al.

2.4% 4.90* 7.60* 11.51* 11.83* Heeger (level 2)

2.2% 4.85* 7.51* 16.29* 25.70* Singh (step 1)
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4.4 Real Images

Current optical flow algorithms often have difficulty with real image sequences. The reasons in-

clude camera jitter, nonrigidity of objects, and brightness variations due to changes in lighting or

adjusted camera settings. Here we show that our confidence measures can eliminate many of the

unreliable flow values. The optical flow output of the following subsections has undergone thresh-

olding using two confidence measures, |l/r| and

4.4.1 SRI Trees

The SRI trees sequence (Fig 9.1) is a scene of stationary trees taken from a camera moving later-

ally. The tree in the center of the scene is closer to the camera and therefore generates large optical

flow, as shown in the computed optical flow field (Fig 9.2). The noise in this sequence is signifi-

cantly larger than the others. The output density for this sequence is 71%.

Fig 9.1 SRI trees image Fig 9.2 Computed optical flow field for SRI trees

4.4.2 Rubik Cube

The Rubik cube sequence (Fig 10.1) is generated by a stationary camera looking at a rotating plat-

form with a Rubik cube on it. Note that the output in the area without texture is eliminated by

thresholding on the confidence measure and the flow field is well organized and corresponds to

moving objects (Fig 10.2). The output density for this sequence is 47%.
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Fig 10. 1 Rubik Cube image Fig 10.2 Computed optical flow field for Rubik Cube

4.4.3 Hamburg Taxis

The Hamburg taxis sequence (Fig 11.1) contains three independently moving vehicles in front of

a stationary background. Our algorithm captures all the three moving objects, as shown in the

flow field (Fig 11.2). The output density of the sequence is 50%.

Fig 11.1 Hamburg taxi image Fig 11.2 Computed optical flow for Hamburg taxis

5. Conclusion

Some claim that the optical flow problem is ill-posed. We find that as long as the computation is

local and robust numerical techniques are employed to provide sufficient information about the
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reliability of the result, then the extraction of reliable optical flow values is possible and the com-

puted flow field should be useful for other applications such as obstacle avoidance, 3-D scene

reconstruction, etc. The algorithm presented here is an attempt in this direction. We have demon-

strated that our algorithm compares very favorably with other existing algorithms and performs

consistently well over a variety of synthetic and real images.

Appendix. A

We prove Theorem 1 as follows:

Proof: The first equality comes from the orthogonality of { //„ (jc) } . We now prove the second

equality, which claims that the scalar product of a function and the ktti Hermite polynomial is equal

to the scalar product of the /:th derivative of the function and 1.

= jG(.x)I(x)H;,(x)dx

Appendix. B

First, let us model the error due to brightness change. The context (Section 3.2.1) has stated the



two possible reasons for brightness change. One is referred to as reflection; the other is referred to

as glooming. Regarding them as additive noise, we model the image intensity as:

/ {x, y,t) = / U, y,t) +N (x, y, t) (32)

As far as the image sequence is concerned, the difference between reflection and glooming is that

reflection can be represented by impulse noise and glooming can be represented by sustained

noise with respect to time (Fig 12).

t t

Fig 12.1 Reflection noise in the time dimension. Fig 12.2 Glooming noise in the time dimension.

So for reflection noise, assuming there is a single frame of strong reflection, we can simplify (32)

as:

Hx, y, 0

The expansion coefficients are

I (x, y,t) t^O

I {x, y,t) +r (x, y) t = 0
(33)

hjk 0 = X ^o> y

+

Jo’ ^ ^ijk (^0’ yo’
^ yo’ ^o)

y

= hjk (.X, y,t) +'^^r(x + XQ,y+ y^) {Xq, -t) G (Xg, y^, -t) )

^0 ^0 (34)

Realizing that the zeroth Hermite polynomial Hq is an even function and the first Hermite polyno-

mial 7?! is an odd function (Fig 13), we know that when t is equal to 0, the noise affects (0

more than (r) and when t is not equal to zero but small, then the noise affects Iiji
(r) more

than IijQ (t) . The above statement will hold true even with multiple frames of strong reflection.
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Fig 13.1 Hq {t)G (t) is an even function. Fig 13.2 Hi {t) G (t) is an odd function.

Note that (22) indicates that b consists of /yi (0 only and A consists of Iijq (t) only. We conclude

here that when a strong reflection happens in the middle frame of the sequence, the matrix A is

perturbed more; otherwise vector b is perturbed more.

For glooming noise, assuming that from a certain point of time on, the brightness change for some

objects, we model the image intensity as follows:

(35)

The noise g (Xy y) may well be proportional to I (x, y) in the real world though.

Contrary to the case of reflection noise, from the even and odd properties of Hermite polynomials

and similar reasoning to that above, we conclude that when r is equal to or close to 0, the noise

affects both A and b, and for other values of r, the effect is negligible. This fact can be easily seen

by aligning Fig 12.1(2) and Fig 13.1(2) correspondingly.

Now if the source of error is independently moving objects (objects A and B) in a small window

or occlusion, the image intensity is

^ I{x,y,t) (x,y,t)sV^

Jg(x,y,t) {x,y,t)eVg’
Hx,y,t) = (36)

where (V^) contains the image of object A(B). Suppose object A occupies a larger area in the

window and we intend to estimate the velocity of A. Regarding the image of object B as a source
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of noise, we can model 7^ (x, y, t) as an extension of object A’s image I (x, y, t) plus noise

r) .

For most kinds of noise, the following model may be adequate:

E = min\ (A + N)f+ (b + Ab)
||

as written in (29).

We conclude this appendix with a claim that the perturbation caused by multiple moving objects

is usually greater than that caused by brightness change. It is often more random and covers a

larger volume of the 3D spatio-temporal image.

Appendix. C

Let A and b, defined in (22), contain no noise and let the noise is modelled as in (29). Then,

E = Af+b = 0 and / = - A)~^A'^b

.

(37)

Let the new optical flow be f and new residual be E and assume that N « A and Ab « b element-

wise. Then

7 = -[(A+iV)^(A+N)]-i(A+iV)J’(i> + A6) ,and (38)

[ (A + iV) (A + N) ]
-1 = (A^A [/ + (A^A) "1 (A^iV + N^A) ] )

“i

= [/- (A^A)-! (A^N +NU)] (A^A)-!
^ 50 (39)

7 = - iA'^A)-Wb+ (A^A)-i {ATN + NTA) (A^A)-lA^ft+ {A^A)-^A^b- {A^A)-^A^Ab.

Using (37), this can be simplified as follows:

/=/- (A^A)-^A'^Nf- {A'^A)-^A^Ab and A/= (A^A) -U^iV/- (A^A)-^A^Ab

.

For the residual, substituting f into (29), and using (37), we have

£ =
II
(A + N)f- A (A^A) -^A'^Nf-A (A^A) “U^Ab + b + Ab||

= ||(/-A(A^A)-iAJ') (iV/+Ab)||
asin(31).

To understand E better, we analyze matrix I-A (A^A) ~^A^ , denoted by K.
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.2
Let a - /iio-^20(/o20 ’ ^ - ^io(/o20 “^oio^iio» ^ - -^010^200 “^lOc/iiO’

K = /-A(A^A)-iA^ = 1

a^ + c'^

a?- ab ac

ab b'^ be

ac be

(40)

The eigenvalues of matrix K are (0,0,1), which means that it maps any vector to one single direc-

tion, specified by the eigenvector corresponding to the nontrivial eigenvalue.

Appendix. D

We show that a high condition number of matrix corresponds to one of the two scenarios in

Section 3.2.2. Recalling (26), with Q unitary (length-preserving and relative angle-preserving),

we have
|>.i| =

||
(/ioo.'^200’-^iio)1 > “<1 A2 + =

||
(^oiO’-^iiO’Wl' ^ high condition

number means either 1. |}i
2

|

» |?ij| or 2. |?i
2

|

« . In case 1, it is apparent that the second column

of matrix A
(/qio’ -^no’

^ much larger than the first column
(/^oo’ ^200’ ^iio^

means

that the derivatives in the direction of y are much larger than the derivatives in the direction of

This corresponds to the first scenario in 3.2.2. In case 2, there are two possibilities: one is that d is

also very small, the other is that d is comparable with . If both ^2 ^ small, we have a

case opposite to case 1. This also corresponds to the first scenario in 3.2.2. If d is not small, it indi-

cates that the two column vectors of matrix A are close to being linearly dependent. It means that

the derivatives in the x direction are proportional to the derivatives in the y direction. This corre-

sponds to the second scenario in 3.2.2.

Appendix. E

We show that for any 2x2 matrix R, a small determinant relative to the elements of the matrix

results in a high condition number, i.e. if \det (R) \«\Tr (R)
| ,

then cond(R) will be large.
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cond {R)
|X.l —

, let Tr(R) >0 without loss of generality, then

cond (R)
Tr(R) +jTr(R)^-4detT^

Tr (R) - jTr{R)^-Adet {R)

|rr(i?) + {Tr(R) -2det(R))\

\Tr{R) - (Tr(R) -2det(R))\

Tr{R)-det(R) Tr(R)

\det{R)\ \det{R)\

as can be seen from the assumption that the condition number is very large.
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