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Abstract

We extend the earlier work of Rust and Kirk (1982) on the inverse mod-

ulation of global fossil fuel production by variations in Northern Hemispheric

temperatures. The present study incorporates recent revisions and extensions

of the fuel production record and uses a much improved temperature record.

We show that the new data are consistent with the predictions of the original

Rust-Kirk model which we then extend to allow for time lags between varia-

tions in the temperature and the corresponding responses in fuel production.

The modulation enters the new model through the convolution of a lagged

averaging function with the temperature time-series. We also include exphcit

terms to account for the perturbations caused by the Great Depression and

World War II. The final model accounts for 99.84% of the total variance in

the production record. The temperature modulation produces variations of as

much as 30% in the total production. This modulation represents a feedback

which is consistent with the predictions of the Gaia hypothesis for a planetary

greenhouse temperature control. We use the new model to calculate 20-year

fuel production predictions for three temperature scenarios which hopefully

bracket the possibilities for temperature behavior during that time.
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1 Introduction

A previous analysis of the historicaJ record of global fossil fuel production

has suggested that the basically exponential growth is modulated inversely

by variations in the average surface temperature of the Northern Hemisphere

[Rust and Kirk (1982)]. Since that study was pubhshed, greatly improved

temperatures records have become available, and the global production record

has been updated and extended by several years. In this paper, we first repeat

the original analysis with the new data and then generahze the model to

allow for time lags between the temperature variations and their corresponding

responses in the production record.

Throughout this paper we will use the term “Paper I” to refer to the original

Rust and Kirk study which we briefly review in Section 2, where we also

show that the addition of the temperature modulation term to the exponential

model produces a statistically significant reduction in the residual variance. In

Section 3 we examine a new temperature record compiled by Jones, et al (1986,

1988, 1992) and a revised and extended record of production data compiled

by Marland (1989, 1992). The new additions to the data are consistent with

the predictions of the Rust-Kirk model, and the addition of the temperature

modulation to the exponential model again produces a significant reduction

of the residual variance. In Section 4, still further reductions are obtained by

allowing for a time lag between the temperature variations and their responses

in the production record. The length of the time lag becomes an additional free

parameter in the model, but its inclusion produces a statistically significant

reduction in the residual variance. In Section 5 we replace the assumption

of a single fixed lag for the response with the assumption that production

depends on the average temperature in some fixed time interval immediately

preceding the current time. This produces an additional reduction in the

residucil variance without increasing the number of free parameters in the

model.

The temperature averaging used in Section 5 corresponds to a convolu-

tion of the temperature record with a simple boxcar averaging function. In

Section 6 we show that this boxceir model is based on the same simple hnear

dynamics as the Rust-Kirk model. Even though it gives a much better fit to

the data than an unmodulated exponential, it stiU does not completely cap-

ture the temperature modulation. We show that the reason for this failure is

the two precipitous drops in production caused by the Great Depression and

World War II. In Section 7 we include these two drops as exphcit innovations

in the model, introducing two additional free parameters in the process. This

increases the total to six, so we perform extensive testing to establish their
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statistical significance. Not only do the new terms produce a significant re-

duction in the residual variance, but they also free the modulation term to

completely capture the temperature effect.

In Section 8 we introduce a more general temperature averaging function

constrained only to be nonnegative and to subtend unit area on a finite time

domain. The boxcar function is a simple example which depends on a single

free parameter specifying the length of the memory. Another one-parameter

example is a triangular function, but it gives a sum of squared residuals almost

identical to that obtained with the boxcar. Further reductions in the residual

variance require additional free parameters defining the shape of the averaging

function. In Section 9 we add two more parameters to specify a quadrilateral

function which produces a statistically significant reduction.

In Section 10 we develop a transfer function for the modulation, using an

annual mesh for the transfer function ordinates. Each ordinate becomes a

free parameter in the model. We determine the length of the transfer filter

by requiring each ordinate to produce a significant reduction of the residual

variance. The final result is a model with 13 free parameters which gives a

fit that acounts for 99.85% of the total variance in the production record. In

Section 11 we employ a Monte Carlo study to demonstrate that this impressive

fit is not simply attributable to the large number of free parameters, but

depends crucially on the use of the temperature time-series as the modulating

process.

In Section 12 we reduce the number of free parameters in the model by

replacing the discrete transfer function ordinates with a continuous function

obtained by fitting an optimal smoothing spline to them. This reduces the

number to 5, which is the same as the original Rust-Kirk model when the lat-

ter is augmented with terms for the Depression and World War II. The model

explains 99.84% of the total variance. We also isolate that part of the total

variation attributable to the temperature modulation and show that the mag-

nitude of that variation exceeds the combined magnitudes of the perturbations

caused by the Depression and the War.

In Section 13 we briefly review the Gaia Hypothesis and point out that

it would predict an inverse temperature modulation of fossil fuel production

if a greenhouse warming were initiated by releases of fossil fuel CO 2 to the

atmosphere. In Section 14 we conclude by calculating 20-year predictions of

total fossil fuel production for three possible future temperature scenarios.
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2 The Rust-Kirk Model

In Paper I, Rust and Kirk (1982) showed that global fossil fuel production

for the years 1870-1974 exhibited exponential growth with a rate modulated

inversely by temperature variations in the Northern Hemisphere. Using linear

dynamics, they developed a simple stockpile model for fossil fuel production

and consumption which gave a recursion relation for the annual production.

If P{t) and P{t — 1) are predicted values for global production in yecirs t and

(t — 1), then the recursion can be written

PW = {[i + a] - 6[r(t)-r(t-i)]}P(f-i)
, (2.1)

where T(t) and T(t — 1) are the corresponding yearly average temperatures for

the Northern Hemisphere, and a, 6, and Pq = P{0) are parameters determined

by least squares fitting. When the time step shrinks to zero, this recursion is

replaced by the analogous diiferential equation

—
dt

(
2 .2

)

which has the solution

P(t) = Po exp { at -
[
T{t) - T(0)

] } , (2.3)

with free parameters a, /3, and Pq. Throughout this paper we shall use epoch

1870.0 as the zero for the time scale, though we shall usually show the data

and fits plotted against the year rather than the time t used in making the

fits.

For T(t), Rust and Kirk used a smoothing spline approximation to the

record of 5-year average temperatures compiled by Mitchell (1961) and Brinkman

(1976). These data and the spline representation axe shown in Figure 1. The
least squares fit of (2.3) to the production record is shown as a solid curve in

Figure 2 which also shows a dashed curve representing the fit of an unmodu-

lated exponential,

P{t) = Poexp{at)
. (2-4)

The estimates of the adjustable parameters for the two fits, together with their

estimated ±1<7 uncertainties, are given in Table 1. The column labelled SSR
gives the sum of squared residuals for the fits, i.e.,

m
SSR = ^[P-P(ti)f .

(2.5)

t=l
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where m is the number of measured data values Pi,

prediction at time tj. The final column (labelled

determination for each fit, i.e.,

= 1 -
SSR

CTSS

and P(ti) is the model

)
gives the coefficient of

(
2 .6

)

where CTSS is the corrected total sum of squares.

defined by
r 12

CTSS = 53 [Pi -P] ,

t=l

This latter quantity is

(2.7)

where P is the average value of the measured data. Thus estimates the

fraction of the total variance that is explained by the fitted model.

For aU the fits described in this paper, we used the interactive nonhnear

least squares code INVAR (Wolfe et al, 1987) which is based on the variable

sepcirable subroutine VARPRO (Golub and Pere5rra, 1973). We used equal

weighting which mecins that, by virtue of their magnitudes, the later data

points were weighted more heavily than the earlier ones. This weighting was

appropriate because the relative uncertainties in the later production estimates

are much smaller than those in the earher ones.

It is obvious from comparing the two curves in Fig. 2 that adding the tem-

preature modulation term to the model produced a significant improvement

in the fit. Nevertheless we will perform an F-test for significance on the new
parameter /?. This same procedure will be repeated in the following each time

a new parameter is added to the model. The test compares the SSR for the full

model (2.3) with the SSR for the reduced model (2.4) to determine whether

or not the P term produced a statistically significant reduction in the residual

variance. It tests the null hypothesis

Ho : /? = 0 .

It is based on the statistic

pi-p

u=—^
m—n

(
2 .8

)

(2.9)

where p and pi are respectively the SSR values for the full and reduced models,

n is the number of free parameters in the full model, and Uh is the number
of parameters in the null hypothesis. This statistic follows an F-distribution

with Tih and m — n degrees of freedom. The test procedure is to pick a proba-

bility level p and compare the calculated value of u with the percentage point
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Fp{nh,m — n). If u > Fp{nh,m — n), then the null hypothesis is rejected

cind the value of (3 is significant at the 100p% level. For the present problem,

m = 105, n = 3, and Uh = 1, so

u =
/4.454 X 10® \

V 7.822 X 105 “
)

X 103 = 478.8 .

The usual choice for the probability is p = 0.95 which gives Fp{l, 102) = 3.93.

This is much smaller than the calculated u, so the nuU hypothesis is rejected.

In fact. Ho is rejected even at the very high probabihty p = 0.9999, which

gives Fp(l,102) = 16.41.

3 The New Data

Since the publication of Paper I, several improved historical temperature records

have been compiled. The time-series of annual average Northern Hemisphere,

land-based temperatures compiled by Jones et al (1986) and updated and

extended by Jones (1988, 1992) axe shown in Fig. 3 together with a cubic

interpolating spline and an optimal smoothing sphne fit. Both of these splines

will be used in the following to represent the temperature function T(t). To

get the smoothing sphne, we used the cdgorithm CUBGCV (Hutchinson, 1986)

which chooses the smoothing constant to minimize the generalized cross val-

idation statistic (Craven and Wahba, 1979). In adopting this procedure, we

were not making a judgement about the quahty of the data. We needed a

smoothed representation of it, and minimizing the cross validation statistic

provided an objective way for choosing the amoimt of smoothing.

The fossil fuel production record has also been improved since the pubhca-

tion of Paper 1. Marland (1989, 1992) has revised the estimates for 1950-1974

eind extended the record through 1990 [see also Marland and Boden (1992)].

This new record is plotted in Figure 4 where the dashed curve was obtained

by fitting the unmodulated exponential (2.4), and the sohd fine by fitting the

Rust-Kirk model (2.3), using the smoothing spline representation of T(t). The
parameter values for these fits are given in Table 2.

The temperature modulation produces a visible improvement in the fit. To

determine whether or not this improvement is statistically significant, we again

performed the F-test described in Section 2, using the same null-h5rpothesis

(2.8). In the present Ccise, m = 121, n = 3, = 1, and the u-statistic (2.9)

becomes
/ 7.324 X 10®

V3.227 X 106
X 118 = 149.8 .
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Choosing probability p = 0.9999 gives i^(l,118) = 16.21 which is much

smaller than the value of u, so the null hypothesis is resoundingly rejected, and

the significance of the temperature modulation is estabfished at the 99.99%

level.

Two features of the data which were not captured by either model are the

precipitous drops in production which occurred in 1929-1932, corresponding

to the early years of the Great Depression, and in 1944-1945, the final year of

World War II. In the first case, production dropped from 1171.9 megatons in

1929 to 873.8 megatons in 1932. This is a decline of 25% in only three years.

In the second case the production dropped from 1352.2 in 1944 to 1203.6

megatons in 1945, a decline of 11% in a single year. It is interesting that both

of these calamitous events occurred during a period of rising temperatures,

but it is clear from Fig. 4 that the Rust-Kirk model does no better than the

exponential in accounting for them. We shall see in the following that it is

necessary to include these drops as explicit innovations in the model in order

to completely isolate and capture the temperature modulation.

4 A Lagged Response Model

The inclusion of the temperature modulation produced a significant increase

in the variance explained by the model, but an even better fit can be obtained

by cdlowing a time lag in the response to the temperature variations. This

lagged response model has the form

dP ( d \
-^(.-P-Tit-r))p , (4.1)

where r is a lag parcimeter which is to be determined by fitting. The solution

of this differential equation is

P(<) = Poexp{at - l3[T{t-r)-T{-T)]}
. (4.2)

Fitting this expression gave the paxameter values in the last row of Table 2

and the solid curve in Figure 5 which also shows the fit of an unmodulated

exponential. Comparing Figure 5 with 4 reveals that the time delay produces a

visible improvement in the fit. The statistical significance of that improvement

was verified by using the F-test with the null-hypothesis

Ho : T = 0 (4.3)
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Using m = 121, n = 4, n/i = 1, and the SSR values from Table 2 gives

u =
/3.227 X 10® \

V 1.651 X 10® ~
)

X 117 = 111.7 .

Using probability p = 0.9999 gives Fp(l,117) = 16.22 which is much smaller

than the it-value so the null hypothesis is rejected, and the improvement due

to the time lag is significant at a level greater than 99.99%.

5 A Lagged Interval Response Model

While it is reasonable to expect time delays in the temperature eifect, the

lagged response model (4.1) is unrealistic because it posits a dependence on

the instantaneous temperature at an exact moment r years in the past. It is

more reasonable to expect a dependence on the whole temperature history in

some immediately preceding time interval. The simplest such model has the

form
<iP L g

m-T{t-r)

dt \
^ T

This differential equation has the solution

which, since

can also be written

(5.1)

i on the interval
[
(t — t)

,
t ]•

‘i'

^

,
(5.2)

r^mdt’

,

Jo
(5.3)

(5.4)

For any value of r, the indicated integrals can be evaluated by numerically

integrating the spline function T{t). For this purpose, we used the adaptive

quadrature algorithm QIDB (Kahaner et al, 1989, Chapt. 5) from the GAMS
library (Boisvert et a/, 1984).

Using the smoothing sphne for T(t) to fit (5.4) gave the parameter esti-

mates in Table 3. The fitted curve was graphically identical to the sohd curve
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in Fig. 5. This is not surprising since the Mean Value Theorem guarantees

that there is some point (t — r') on the interval [(t — r) ,t] such that

Thus, if we taJse r' = 5.6 yr in model (4.1), then it becomes equivalent to

model (5.1) with r = 12.0 yr.

The 12 year averaging interval was long enough to suggest replacing the

smoothing spline representation for T[t) with the interpolating spHne, shown

as the dotted Hne in Fig. 3. Although the latter tracks the strong year-to-year

temperature variations, the long time-length of the averaging function smooths

those variations enough to give the fit shown in Fig. 6, with the parameter

values given in the last row of Table 3. Although the fitted curve exhibits small

local wiggles, the SSR and B? values are better than those for the smoothing

spline, and the curve does a better job of tracking the dip in production during

the last decade. Thus, the interpolating spline improves the quality of the fit

without introducing any new free parameters. Unless otherwise noted, we will

use the interpolating spline representation of T{t) for all of the remaining fits

to be described in this paper.

6 The Boxczir Averaging Model

The lagged interval response model (5.4) can also be written

P(t) = Po exp
I
at — ^

^

h{t' — t; T)T{t')dt'

}
, (

6 . 1
)

where

if - T < t" < 0 ,

otherwise .

(
6 .2 )

The function r) is sometimes called a boxcar averaging function, and we
wiU refer to the model (6.1), or (5.4), as the boxcar model. This way of writing

it might appear to be unnecessarily comphcated, but it serves as a prototype

for the more reahstic tapered averaging models that will be introduced in

Section 8.

The boxcar model can also be written as a differential equation.

dt
b{t' - t;T)T{t')dt' P

1

8
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which makes the underlying assumptions more obvious. These assumptions

are essentially the same as those in Paper I, but here instantaneous derivatives

replace yearly differences, and the temperature dependence extends for more

than a year. We assume that

dt dt dt ’

(6.4)

with I(t) independent of temperature, but

H{t) oc - r b{t' -t;T)T{t')dt'
,

J t—T
(6.5)

where the minus sign indicates an inverse dependence of H{f) on the temper-

ature variations. Both dljdt and dHjdt are assumed to vary linearly with

global economic activity which is itself assumed to vary hnearly with P{t).

Thus,

^ = aP{t)
, (

6 .6
)

and

^ ^ P{t) ^ bit' - 1
- r)r(0 di']

. (6.7)

where a and /? axe constants which become free parameters in the fits.

The residuals for the boxcar fit, which are plotted in Figure 7, indicate

that the model does not completely account for the inverse temperature vari-

ations. They exhibit a systematic dechne in the years 1910-1945, when tem-

preatures were rising, and a discernible increase in the years 1945-1970, when

temperatures were decreasing. Thus the model has not accounted for all of

the temperature modulation. The cause for this shortcoming is the presence

of the two sharp drops in production during the years 1929-1932 and 1944-

1945. These axe short-term phenomena which axe apparently independent of

the longer-term temperature variations. In trying to adjust the values of the

free parameters to accommodate these two drastic changes, the fit fails to cap-

ture all of the temperature variation that the model was designed to describe.

In the next section we shall include these two effects as explicit innovations in

the model.

7 Modelling the Depression and the War
Between 1929 and 1932, fossil fuel production fell by roughly 100 megatons per

year, but then recovered almost exactly half of those losses in the subsequent
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3 years. To model these changes, we used an expression of the form

AGD[P{t)] = iDit) , (7.1)

where 7 is a non-negative parameter to be determined by fitting, and D[t) is

a notch function defined by

m =
{

\

0

— {t — ti929)

—3 -f 0.5(t — ^1932)

-1.5

)
t < ti929

j

,
fl929 < t < ti932

) ^1932 < t < tl935

, ^1935 < t
,

(7.2)

with ti929, ti932, and ^1935 being the times corresponding to years 1929, 1932,

and 1935 respectively. We assumed that the term (7.1) is a addition to the

model rather than a replacement for it during years 1929-1935. We initially

tried using only the drop section of the notch, i.e., years 1929-1932, but found

that the resulting model could account for only about half of the decrease in

those years. It seems reasonable to suppose that a significant fraction of the

decrease was caused by financial dislocations rather than by destruction or

shrinking of the production infrastructure. The partial recovery in the next

3 years might then be attributed to a resolution of some of those financial

difficulties rather than the creation of new infrastructure. Whatever the cause,

the data seem to demand the notch function.

To model the sharp decHne at the end of World War II, we used a simple

lineax drop of the form

Aww2[P{t)] = 6W{t)
,

(7.3)

where ^ is a non-negative fitting parameter and

W{t) = <

0

—(t — ^1944)

1

,
t < ti944

,

, ti944 < t < fi945
,

} ^1945 < i •

(7.4)

This drop, with no subsequent partial recovery, worked quite well in the fit.

Again, this seems reasonable because the sharp decline was most likely caused

by the destruction of production facilities in the closing years of the war.

Adding the terms (7.1) and (7.3) to the boxcar model (6.1) gives

P(t) = Pq exp
I
at — ^ h[i! — t\ T)T{t')dt'

+ 7D(<) + , (7.5)
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where h{t"\ r) is defined by Eqn. (6.2). This model has 6 free parameters:

Po, /5, T, 7, and 8. The parameter estimates obtained by fitting it to the

production data are given in Table 4 which also repeats the estimates for the

model (6.1) for comparison. Note the significant changes in the parameters

common to both fits. Note also that the addition of the two new terms nearly

halved the SSR value while boosting the percentage of variance explained by

the model from 99.64% to 99.82%. We performed an F-test to be sure that

this represents a significant improvement. In the full model, we were fitting

121 data points with 6 free parameters, and the null hypothesis was

Uo : {7 = 0, ^=0}
,

(7.6)

so m = 121, n = 6, and Uh = 2. The value of the u statistic (2.9) is thus

/1.321 X 10®

V6.548 X 105

115 ro .X —- = 58.5
2

)

which is much larger than Po.9999(2, 115) = 10.01, so the null hypothesis is

rejected at the 99.99% level.

A plot of the fit is given in Figure 8. Comparing it with the one given in

Figure 6 shows that it tracks the data better, not only in the years 1929-1935

and 1944-1945, but also in the years 1900-1929, 1935-1944, and 1945-1960.

This improvement is also quite evident in the plot of the residuals given in

Figure 9. Comparing them with the ones given in Fig. 7 shows that the new

terms have not only eliminated the sharp drops, but also have eliminated the

sytematic variation with temperature in the years 1910-1970. Thus the new

terms free the boxcar averaging term to completely capture the temperature

modulation.

Even though the new model explains 99.82% of the total variance in the

data, we shall see in the following that further significant improvements can

by obtained by including additional free parameters to give a more realistic

estimate of the temperature averaging function. Before doing that, however,

we wiU check whether the addition of the terms for the Depression and the War
makes it possible to drop some of the parameters previously included in the

model. We begin by adding the new terms to the unmodulated exponential

to get the model

P{t) = Po exp{at) -h ^D{t) -f SW{t)
,

(7.7)

which gives the fit shown in Figure 10. Note that the the drop for the Great

Depression is too large and the drop for World War II is almost neghgible.

11



The fit does not track the data, and though we do not show them here, the

residuals display the inverse temperature signature.

The next step is to check whether the inverse temperature dependence can

be adequately modelled by adding the new terms to the original Rust-Kirk

model (2.3), i.e.,

P{t) = Po exp {at - /3 [T{t)
- r(0)]} -f ^D{t) 6W{t)

. (7.8)

Using the optimal smoothing spline representation for T{t) to fit this ex-

pression gave the curve shown in Figure 11. The improvement over the fit

shown in Figure 10 is quite dramatic. The SSR values for the two models are

pi = 5.842 X 10® for (7.7) and p = 1.115 x 10® for (7.8) so by (2.9),

/5.842 X 10® \

VI. 115 X 106 )

(121-5) = 492
}

which is much larger than ^0.9999(1, 116) = 16.2. Thus the significance of the

parameter /? is adequately estabhshed. The important question now becomes

whether the parameter (3 is adequate by itself of whether we need to add the

lag parameter r.

Basically, the problem is to test the augmented boxcar model (7.5) against

the augmented Rust-Kirk model (7.8). Using the definition (6.2), it is not

difficult to show that the latter is the limit of the former as r —> 0. But it is

not simply a case of testing the fit shown in Figure 8 against the one shown in

Figure 11 since the latter used the optimal sphne representation of T{t) while

the former used the interpolating spline. To get two comparable fits, we used

the optimal smoothing spline representation with the model (7.5) to get the

fit shown in Figure 12 which appears to be only marginally better than the

one in Figure 11. It is important, therefore, to test the null hypothesis

710 : T = 0 (7.9)

The SSR values were p = 1.049 x 10® for (7.5) and pi = 1.115 x 10® for (7.8),

so (2.9) becomes

/1.115 X 10® \

V1.049 X 10® ~
)

(
121 - 6

)
7.24

)

which is larger than ^0.99(1, 115) = 6.86. Thus the nuU hypothesis is rejected

and the parameter r is significant at the 99% level.

Replacing the smoothing spline representation of T(t) with the interpolat-

ing spline gives a marked improvement in the boxcar fit, reducing the SSR

12



value from 1.049 x 10® to 6.548 x 10®, with no additional parameters. Com-

paring Figures 8 and 12 shows that most of this improvement comes from a

better fit in the years 1970-1990. It is clear from the preceding that all of the

6 free parameters in (7.5) are necessary to obtain this improved fit.

8 The Temperature Averaging Function

The boxcar model assumes a constant dependence on the temperatures at

every moment in a preceding time interval. Clearly, it is more realistic to

assume that the level of dependence decreases with increasing time delay.

Therefore we consider models of the form

P(t) = Po exp
I
at —

/3
1^^

w{t' — t’,T)T{t')dt'

— J
w{t'\r)T{t')dt'

I

+ ^D{t) + 8W{t)
,

(8.1)

where w{t"] r) is a tapered temperature averaging function, dependent on a

free parcimeter r, and constrained only by the properties:

w{t"]T) > 0 ,
—T < t" < 0 ,

1

w{f'] r) = 0 ,
otherwise

, J

and

(8.3)

The relationship between the temperature time series and the unknown aver-

aging function is shown schematically in Fig. 13.

One strategy for determining iy(t"; r) is to assume a functional form for it,

substitute this function into (8.1), and fit the resulting expression to the data.

The assumed function wiU have a free parameter r characterizing the length

of the memory. The boxcar averaging function (6.2) is the simplest example

of such a functional form.

Another simple example is the straight-line, triangular function defined by

I +^t"
.
-r<t"<0

,

0 ,
otherwise .

(8.4)

This function is completely specified by the parameter r and satisfies the unit

area constraint (8.3), but fitting it to the production data gives approximately

the same SSR cis the boxceir. To make significant improvements in the fit, it

is necessary to introduce additional free parameters defining the shape of the

averaging function.
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9 A Quadrilateral Averaging Function

Consider the quadrilateral function shown schematically in Figure 14. The

sides of the quadrilateral are defined by the coordinate axes and the two solid

lines intersecting at the point (—ti, hi). K the parameters r, Ti, hi and ho axe

chosen to give the quadrilateral unit axea, then

ho = —(2 - rhi)
, (9.1)

and the two Hne segments

Wi{t'']T,Ti,hi)

W2{t"]T,Ti,hi)

'^hi
,

hi ^//

T—Ti
' r—Ti

2-Thi .
2-(r+Ti)/ii

Ti

—T < t'' < —Ti ,

-Ti < < 0 .

(9.2)

define a piecewise linear function

w{t";T,Ti,hi) = <

191 (t"; r,Ti,hi)

0

)
—T’ ^ ^ —Ti

,
—Ti < < 0 ,

,
otherwise

(9.3)

which satisfies (8.2) and (8.3). Using this averaging function in the general

model (8.1) gives

P{t) = Po exp
I
at — ^

^

w{t' — t\r^Ti^hi)T{t')dt'

-j w{t'-,T,Ti,hi)T{t')dt'
I

+ 7D(<) + W(t) . (9.4)

If T{t) is the interpolating spline representation of the temperatures, then for

any values of the parameters r, Ti, and Ai, the integrals

ft /“t-Tl

/ w(t' — t]r,Ti,hi)T{t')dt' = / it;i(t' — t;T, Ti, /ii)!r(t')dt'
Jt—T Jt—T

+ [ W2{t' ~t;T,Ti,hi)T{t')dt' ,(9.5)
Jt—Tl

J
w{t';r,Ti,hi)T{t')dt' =

+

J wi{t'] T, Ti,hi)T{t')dt'

f W2{t']T,Ti,hi)T{t')dt'
J—

n

(9.6)
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can be evaluated numerically, so it is possible, though difficult, to fit (9.4) to

the data. The result is shown if Figure 15, and the corresponding parameter es-

timates are given in Table 4. Comparing these estimates with the correspond-

ing values for the boxcar fit shows that only r changed significantly. Adding

the two additional free parameters reduced the SSR from pi = 6.548 x 10^

to p = 5.637 X 10®. To verify that this is a statistically significant reduction,

consider the null hypothesis

Ho :

I
Ti = T

,
/ii = i

I
, (9.7)

which reduces (9.4) to (7.5). The u-statistic (2.9) becomes

/6.548 X 10® \

V5.637 X 105 )
X — = 9.131

2
J

and ^0.9995(2, 113) = 8.139, so the null hypothesis is rejected at the 99.95%

level of significance.

Using the estimates of r, Ti, and hi in (9.1) gives ho — 0.084, which

completes the specification of the shape and dimensions of the quadrilateral

window. A plot is given in Figure 16 which also shows the boxcar window

for comparison. The quadrilatercd window is surprisingly flat in the interval

[-5.1,0],

10 A Transfer Function for the Modulation

Changing from a boxcar to a quadrilateral averaging fimction required the

addition of two new parameters defining the intersection (ti,/ii) of the two

piecewise linear segments. A logical next step would be to introduce another

node (—T2, /i2) defined by two more free parameters. The new approximation

would be accepted only if the new model gave a statistically significant reduc-

tion in the SSR. If so, the whole procedure could be repeated and continued so

long as each new pair of free parameters produced a significant improvement in

the fit. But implementing this strategy would be clumsy because the piecewise

approximations are cumbersome, so we instead sought a discrete estimate of

the averaging function by replacing the integrals in (8.1) with approximating

quadrature sums.

To simplify the development, we temporarily drop the terms for the De-

pression and the War and work with the reduced model

P{t) = Po exp
I
at — /5 w(t’ — t; T)T(t')dt' — J

w{t'] r)T{t')dt'

(
10 . 1

)
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Since both temperature and fuel production axe tabulated at yearly intervals,

we used a quadrature mesh with At' = 1 to approximate the integrals, i.e..

f w{t' -t;T)T{t')dt' ^ + j)
Jt-r _

(
10 .2

)

J=-T

Qjw{j-,T)T{j)
, (10.3)

where the Qj axe the quadrature coefficients, and r is assumed to have an

integer value. Since the integrands depend on measured data, we used the

trapezoidal rule for the quadrature, so

f° w(t'
;
T)T{t')dt' S

7=-T

{Q.r,Q-r+l,Q-r+2, ... ,Q-2,Q-1,Qo} =
{
^(1, 2, 2, . . . , 2, 2, 1) }

= 1^11
I 2 ’

• • • ) J-J -L,
2 /

Substituting (10.2) and (10.3) into (10.1) and simplifying gives

P{t) = Po exp < at - ^ Qj w(j
;
t) [r(t + j)- T{j)]

3--T

(10.4)

(10.5)

which, taking i = —j and reversing the order of the summation, becomes

P{t) = Po exp
I
at - ^ Q_i w{-i ;

r) [r(t - z) - T{-i)]
j

Defining a new set of coefficients:

0i = fiQ-iw{-i;r)
,

i = 0,1,2, ...,T
,

gives

P{t) = Po exp
I
at -^ ft [T(t - i) - T(-i)]

|
.

Equation (8.2) requires

w{-t
;
t) = 0 , /Sr = 0 ,

so, defining a new integer

N = t-1
,

gives

P(t) = Po exp
I
at -^ft[T(t-i)-r(-i)]

I
,

(10 .6
)

(10.7)

(
10 .8

)

(10.9)

(
10 . 10 )

(10 . 11
)

16



which is a natural generalization of the original Rust-Kirk model. In fact, if

N = 0, the above model reduces exactly to (2.3) with (3 = /3o-

Restoring the terms for the Great Depression and World War II gives

P{t) = Poexp i^at -'^/3i[T{t -i) - T{-i)]^ + 'yD{t) -{ 8W{t)
,

(10.12)

The estimation procedure was to fix the value of N and fit this expression to the

data, in the process computing estimates for Pq, Qt, /3o, A, . .
. , Pn, 7, and 6.

The Pi values can then be used with the constraint (8.3) and Eq. (10.7) to back-

solve for p and the required w{—i ;t) values. Using trapezoidal quadrature to

evaluate the integral in (8.3) gives

N

j=0

Assuming exact equality, multiplying by P and using (10.7) gives

N
p =

Substituting this result into (10.7) and back-solving gives

(10.13)

(10.14)

w(—i
;
r) = ft

,
i — 0,1,2,. ..,iV

,
(10.15)

where the Q-i axe given by (10.4). Combining these results with Eq. (10.9)

gives a collection of points

M = {[—i
^

i = 0, 1, 2, . .
. ,
iV,r } (10.16)

which constitutes a discrete transfer function approximation to the tempera-

ture averaging function.

Our strategy for choosing the value of r was to fit (10.12) to the data with

successive values of N, starting with N = 1 and continuing for as long as each

new fit gave a statistically significant improvement in the SSR at the 95%
level. The estimated parameters for TNT = 6, 7, 8, 9, and 10 are given in Table

5. The table gives only the sum of the ft, but the estimates of the individual

ordinates w[—i]N -f 1) are plotted in Figure 17, with the ±1<7 uncertainties

plotted for the case N = S. None of the estimates in the table vary widely

from fit to fit and all are roughly comparable to those in Table 4 for the boxcar

and quadrilateral estimates. In particular, the value for a is very stable. In
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Fig. 17 the individual ordinates do not change drastically from one fit to the

next, and the estimates of the w{—i] iV + 1) are all positive for iV < 8, but for

iV > 9, some of them are negative. Thus, N = S is the largest value for which

the estimates satisfy the constraints (8.2).

For each new value of N we performed an F-test on the null hypothesis

Ho : pN = 0 (10.17)

to determine whether the new parameter produced a statistically significant

reduction in the SSR. The values of the u-statistic are tabulated in Table 5, to-

gether with the 95%-point for the approptiate F-distribution, i.e., ^0.95(1, 121—

7i) where n is the number of free parameters in the model and 121 is the num-

ber of data points. Compajing the numbers in the two rows reveals that the

null hypothesis should be rejected for all values up to and including N = S

and accepted for N >9. There is a satisfying consistency in the fact that the

threshold for acceptance is so sharp and corresponds exactly to the onset of

violations of the nonnegativity constraints (8.2). Also, at iV = 8, the value of

/? is maximized and the values of 7 and S are minimized. This means that the

percentage of the total variation explained by the temperature modulation is

maximized while the Vciriation assigned to the Great Depression and World

Wcir II is minimized. Accordingly we adopted the value N = S, i.e.

t = 9 , /?9 = 0 ,
'Lt;(-9;9) = 0

,
(10.18)

and used the corresponding values of /5o, /3i, . .
.

,

to compute the desired

estimates of iy(0;9), it;(— 1;9), ..., ii;(—8;9). The results are plotted in

Figure 18 as small circles with the ±lcr error bars attached. The figure also

shows the boxcar and quadrilateral estimates for comparison and a smoothing

spline fit that will be discussed in the next sectiom.

The ten circles plotted in Figure 18 define a transfer function whose shape

is similar to that of the quadrilateral estimate. Only two of the ten ±1(7

intervals fail to include the quadrilateral averaging function. Both functions

exhibit a flat plateau behavior between r = —4.5 and r = —1.5. This indicates

a long-lived temperature influence which, though surprising, is demanded by

the data. A possible cause might be the time required to increase or decrease

production capacity. Opening new mines or oilfields or building new refineries

are not done instantaneously, and once in place, there is undoubtedly a great

reluctance to shut them down until they become completely unprofitable.

The fit to the production data is plotted in Figure 19. It is not surprising

that it is very similar to the one shown in Figure 15 for the quadrilateral. The

latter used 8 free parameters to give SSR = 5.637 x 10® while the transfer model
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employed 13 free parameters to obtain SSR = 5.341 x 10^. Since the former

was not obtained from the latter by simply adding 5 more parameters, it is

not possible to directly compare them via the F-test. Nevertheless, we have

shown that all of the parameters in the transfer function model are significant,

so the transfer function is a better estimate of the true averaging function.

11 Uniqueness of the Modulation

Although the production data support the 13 free pajameters in the transfer

function model, it is natural to wonder about the uniqueness of the tempera-

ture record as a modulating function. Given so many free parameters, would it

be possible to obtain as good a fit using some completely different time-series

for the modulating function? To test this possibility, we generated 10,000

random time-series with the same number of points, the same mean, and the

same variance about that mean as the measured temperature record. More

precisely, we generated 10,000 time-series of the form

T{yi) = T^. + r,{yi) , y; = 1851, 1852,..., 1991
,

(11.1)

where Tav is the average of the 141 temperatures in the measured time-series,

and the T){yi) are random samples from a normal distribution,

77 ~n(0 ,
c
7-2(T))

,
(11.2)

where cr^(T') is the variance of the measured temperature about Tav We used

each of these random time-series to fit the N = S transfer function model to

the production data and recorded the resulting SSR. The distribution of SSR
Vcilues is shown in Figure 20. The mean and standard deviation were SSRau =
(4.2 di 1.1) X 10®, and the smallest was SSRmm = 7.708x10® which is larger than

the value SSR = 5.341 X 10® obtained with the real temperatures. Thus, even

with 13 free parameters, the probability that a random time series wiU give a

fit as good as the temperature record is less than 0.0001. The production data

demand the temperature time-series as the modulating function.

12 A Spline Modulating Function

The transfer function model included 13 free parameters, but 9 of them were

required to specify the transfer function. To reduce the number of parame-

ters, we used the CUBGCV algorithm (Hutchinson, 1986) to fit an optimal
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smoothing spline to the 9 discrete transfer ordinates. This gave a continuous

averaging function which is shown as the sohd curve in Figure 18. Note that

the time span of the function is 9.1370 years because we did not require the

spline to satisfy the restriction iu(—9;9) = 0. In fitting the spHne, we weighted

the discrete ordinates inversely with their ±1(7 uncertainties, except in the case

of ti;(~9; 9) which had been assigned the value zero. To that point, we assigned

an uncertainty equal to the largest of the uncertainties for the other ordinates.

The smoothing constant s was chosen by the CUBGCV subroutine to mini-

mize the cross-validation statistic, i.e., to minimize the expected mean square

error at the data points. The value s = 0 would have given an interpolating

spline incorporating the point-to-point variations due to the statistical uncer-

tainties. A very large value (s —^ oo) would have given a least squares straight

line, which would have been far too smooth. The zero point t = —9.1370 was

determined by a variant of the ZEROIN algorithm (Dekker, 1969) coded at

the Sandia Laboratories (Shampine and Watts, 1970). Numerically integrat-

ing the spline from t = —9.1370 to t = 0 gave the value 1.00221, so the spline

function was multiphed by the reciprocal of that value to force it to satisfy the

constraint (8.3). It is this renormalized function that is plotted in Figure 18.

If Wa(t) denotes the spHne averaging function, then the corresponding

lagged response model can be written [cf. Eqn. (8.1)]

P{t) = Pq exp
I
at —

^

Wa(t' — t)T(t')dt'

- w.{t')T{t')dt''^
}

+ 7l>(i) + 6W{t)
,

° (12.1)

where tq = 9.1370. This model has 5 free parameters, Pq, ck, /3, 7, and 6.

Using the interpolating sphne representation for T{t) and fitting (12.1) gives

the solid curve in Figure 21 and the parameter estimates in the last column

of Table 4. These estimates do not differ significantly from the corresponding

values for the quadrilateral averaging function. The SSR values for the two

models agree to four significant digits even though the latter has 3 additional

adjustable parameters. This is not surprising since the two averaging functions

(shown in Figure 18) are so similar ever3rwhere except the subinterval t = — 1

to t = 0.

To isolate the effect of the temperature modulation, we also fit the data

with a model of the form

P{t) = Poexp{ait)

+

6iW{t)
, (12.2)
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where ai, 71, and were fixed at the values obtained from the spline averaging

model (the values in the last column of Table 4), but the parameter Pq was

allowed to vary because holding it similarly fixed would be tantamount to the

unjustified assumption that the modulation was exactly zero at epoch 1870.0.

The fit gave the dashed curve shown in Figure 21. Since the exponential rate

and the drops for the Great Depression and World War II were identical to

those in the spline model, the difference between the two curves measures the

magnitude of the temperature modulation. The residuals for the two models

are plotted in Figure 22 where again, the difference between the two curves

measures the modulation. This modulation is rendered even more explicitly

in Figure 23 where the soHd curve is a plot of the difference between the two

models in Figure 21. The perturbations for the Depression and the War are

also plotted as dashed curves for comparison. It is important to remember

that these perturbations are additive effects, independent of the temperature

modulation.

It is apparent from Figure 23 that the underlying exponential growth pro-

duces a corresponding inflation of the modulation which makes it difficult to

compare the values at different times during the record. In Figure 24 we have

replotted the three curves as fractions of the predicted total production in the

same year. More precisely, for each year we divided the deviations plotted in

Figure 23 by the predicted total production for that year, i.e., by the value

plotted on the sohd curve in Figure 21. Comparing the sohd curve with the

smoothing spline fit to the temperatures, given in Figure 3, shows that the

period of generally increasing temperatures from 1887 to 1940 produced a de-

crease in the modulation from -1-33% of the total in 1888 to —9% of the total

in 1942. This decline, though gradual, was more than three times greater than

the 12% net decrease caused by the Great Depression and more than twice

the 17% drop caused by the destruction of World War II. The magnitudes of

these perturbations were also smaller than the increase in the modulation from

—9% of the total in 1942 to H-14% of the total in 1972 which was produced

by the falling temperatures between 1940 and 1968. Finally, the increasing

temperatures from 1969 to 1990 produced a drop in the modulation from 14%
of the total in 1972 to —19% of the total in 1990. This drop was greater than

the combined total for the depression and the Wcir.

13 The Gaia Hypothesis

When they wrote Paper I, Rust and Kirk were not awaxe of the Gaia hypoth-

esis which had been posed almost a decade earher [Lovelock (1972), Lovelock
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and Margulis (1974), Margulis and Lovelock (1974)]. This hypothesis regards

the atmosphere as a component part of the biosphere rather than as a

mere environment for life,” and suggests that the total ensemble of Hving

organisms which constitute the biosphere can act as a single entity to regulate

chemical composition, surface pH and possibly also climate.” In particular.

Lovelock and MarguHs point out that throughout the approximately
^

3x10®
year history of life on Earth, the temperature of the Earth’s surface has re-

mained remarkably constant in spite of the fact that the luminosity of the

Sun has increased by approximately tenfold during the same period. One im-

portant factor in maintaining this temperature constancy is the presence of

greenhouse gases in the atmosphere, and the most effective of these interact

strongly with the biosphere. According to the Gaia hypothesis, the biosphere

adjusts the concentrations of these gases as one of the controls for maintaining

the optimal surface temperature for life.

Carbon dioxide is one of the important greenhouse gases. Its atmospheric

concentration is currently increasing at an exponential rate almost identical

to that for fossil fuel production (Rust et al, 1979), and approximately 58%
of the fossil fuel carbon finds permanent residence in the atmosphere (Kirk

and Rust, 1983). Recent updates of the measurements of Keehng and his

colleagues [Boden (1988)], reveal that this rate was sufficient to raise the CO 2

level by almost 11% in the years 1958 through 1987 [see also Keeling et al

(1982)]. This dramatic increase is causing concern about the onset of a global

greenhouse warming. If the Gaia hypothesis is correct, then the biosphere

should sense such a warming and produce a feedback to counter it. Although

we cannot identify a mechanism for the feedback, we note that the modulation

that we have described is this paper operates in a manner consistent with the

Gaia prediction.

The rapid technological progress in this century has led to the wide-spread

behef that man has finally conquered Nature and is now able to control her

for his own benefit. But the relentless, basically exponential growth in fossil

fuel production over the last 130 years is disturbingly reminiscent of the be-

havior of a colony of microbes in a petri dish. There is now little doubt that

such behavior wiU have drastic and probably negative consequences. The real

debate is currently centered on the time-scale for these changes, usually with

an underlying assumption that when the effects become troublesome, amelio-

rating technologies wiU be developed. But the temperature modulation of the

fossil fuel production suggests that Nature may not be content to await these

new technologies. In the last section we showed that the production changes

associated with the temperature variations are considerably laxger than those

caused by the severest economic catastrophes concocted by man. There may
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be controversy about whether or not the strong warming trend of the last

two decades represents the onset of the greenhouse warming, but whatever

its cause, it provoked a significant, perhaps Gaiaen, response in the fossil fuel

production rate. It would seem then that the recent announcement of The

End of Nature (McKibben,1989) may have been premature.

We urge readers who are not already familiar with the Gciia hypothesis to

consult Lovelock’s very accessible books on the subject [(Lovelock, 1979, 1988,

1991)].

14 Extrapolations

We have demonstrated a significant inverse correlation between Northern Hemi-

spheric land surface temperatures and the global production of fossil fuels

which, in turn, is an indicator of global economic activity. The optimal smooth-

ing spline in Figure 3 shows that the last two decades have seen the most rapid

warming since the beginning of the temperature record. At the same time the

modulation plots given in Figures 23 and 24 show a corresponding decHne in

the rate of increase in fossil fuel production. In fact there were actual declines

in the total production in the years 1980-1983. It is therefore reasonable to

wonder whether the current global recession may be due more to the recent

temperature increase than to the success or failure of any particular economic

or pohtical system.

It is also natural to wonder about future economic activity, and in partic-

ular about what the model (12.1) predicts about future fossil fuel production.

Of course, the model can make such a prediction only if it is suppHed with the

future temperature record which is, of course, completely unknown. But we

can envisage possible future temperature scenarios and calculate the resulting

predictions of fuel production. Three such scenarios are given in Figure 25

which shows three possible 20-yeax extensions of the optimal smoothing spline

fit to the temperature record. The upper extension was obtained by hnearly

extrapolating the spline fit, and the lower extension was obtained by reversing

that extrapolation, i.e., by reflecting it through the horizontal direction. The
middle extension was obtained by simply repeating the final value of the spline

for each of the 20 years. Of course the real temperature record will have large

year-to-year variations, but the temperature averaging will tend to smooth out

their effects on the yearly production. Therefore we ignore them and consider

only the smooth extensions shown in the figure. The upper and lower scenarios

hopefully represent extremes of conceivable future temperature change. The

record to date does not contain a cooling period comparable to the lower sce-
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nario, and the rate of the recent warming, which the upper scenario extends,

hopefully represents an upper extreme for future temperature changes.

To compute the fuel production predictions corresponding the these three

scenarios, we used the model (12.1) with the parameter values from the last

column of Table 4, i.e.,

P{t) = {18Z)expl{0.0326)t-(0.n)^J^^^^^^w.{t'-t)T{t’)dt'

- f IJ-9.137 J J

+ (93)i)(f) + (213)W^(t)
,

(14.1)

where D{t) and W{t) are given by Equations (7.2) and (7.4) respectively, and

Wa{t) is the averaging function shown as a smooth curve in Figure 18. For T'(t),

we used interpolating spline fits to the three extended temperature records.

For the years with actual temperature measurements, these fits were identical

to the interpolating spline shown in Figure 3. The integrals were computed

numerically using the Gauss-Kronrod automatic integrator QAG (Piessens et

al, 1983). The results are plotted in Figure 26 where the data points and the

sohd curve passing through them are the same as those in Figure 21, and each

of the extrapolations corresponds to the temperature extrapolation with the

same fine pattern in Figure 25.

For aU of the temperature extrapolations, the model initially predicts a few

years with no increases, or even decreases, in fuel production while the lagged

averaging function works through the recent temperature increases. After the

initial hiatus, the lower temperature extrapolation (long dashes) predicts a

spectacular increase in fuel production with almost a 200% increase by the end

of the twenty years. Of course this assumes the existence of sufficient readily

available fuel reserves and no large scale changes to other energy sources during

the period. The constant temperature extrapolation (short dashes) predicts an

eventually constant rate exponential growth which would produce an increase

of about 70% in the total production by the end of the period. Although this

prediction appears to be more consistent with the historical record than the

other two, it depends on a temperature scenario that, with our present state

of knowledge, is just as improbable as the other two. The higher temperature

scenario predicts a virtual halt to all increases in fossil fuel production. Should

the temperature scenario upon which it depends actually materialize, there

could be Httle remaining doubt that the predicted greenhouse warming had

arrived. While the concomitant reduction in fossil fuel production might have

a desirable ameliorating effect, the associated economic adjustments might be

severe, especially if global population growth continues at the present rate.
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Tables

Table 1: Parameter estimates from fits to the old fossil fuel production data

(1870-1974) using the Mitchell-Brinkmann temperature record.

Model Po CC P
[10® tons] [yr-'] [(“C)-!]

SSR
[10® tons]^

Exponential

Rust-Kirk

122 ± 9 .0345 ± .0008

176 ±5 .0327 ±.0003 1.24 ±.06

4.454 X 10® .9678

7.822 X 10® .9943

Table 2: Parameter estimates from fits to the updated fossil fuel production

data (1870-1990) using the Jones temperature record.

Model Po cc P T

[10® tons] [yr-i] ((®C7)-‘] [yr]

SSR R2

[10® tons]^

Exponential

Rust-Kirk

Lagged R-K

174 ± 10 .0302 ± .0006

139 ± 6 .0346 ±.0005 .58 ± .05

172 ± 6 .0333 ±.0004 .97 ± .06 5.6 ± .4

7.324 X 10® .9798

3.227 X 10® .9911

1.651 X 10® .9955

Table 3: Parameter estimates from fits using boxcar averaging on spline rep-

resentations of the Jones temperature record.

T{t) Po a fir
[10® tons] [yr-i] [(“(7)-'] [yr]

SSR
[10® tons]^

Sm. Spline

Int. Spline

170 ±6 .0336 ±.0003 1.04 ±.07 12.0 ± .9

160 ± 4 .0336 ± .0003 0.86 ± .04 8.4 ± .3

1.691 X 10® .9953

1.321 X 10® .9964
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Table 4; Parameter estimates from fits using various estimates of the averaging

on the interpolating spline representation of the Jones temperature record.

Model Boxcar (6.1) Boxcar (7.5) Quadrilateral Spline (12.1)

Po [10® tons] 160 ±4 186 ±5 184 ±4 183 ±4

a [yr"'] .0336 ± .0003 .0325 ± .0002 .0326 ± .0002 .0326 ± .0002

-e [(°c)-'] .86 ± .04 .77 ±.03 .77 ± .03 .77 ±.02

T [yr] 8.4 ±.3 7.8 ± .2 9.0 ±.6

n W 5.1 ±.9

.141 ±.016

7 [10® tons/yr] 92± 14 92 ±14 93 ±13

8 [10® tons/yr] 189 ± 28 206 ± 27 213 ± 25

SSR [10® tons]^ 1.321 X 10® 6.548 X 10® 5.637 X 10® 5.637 X 10®

.9964 .9982 .9984 .9984
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Table 5; Parameter estimates for temperature transfer function models of fossil

fuel production. The parameter units are the same as in the previous table

Model

n

N = 6

11

N = 7

12 13

N = 9

14

oII

Po 187 183 186 ±5 186 186

a .0326 .0327 .0327 ± .0002 .0327 .0327

/3 0.75 0.76 0.78 0.77 0.76

7 96 94 92 ±13 93 94

6 240 229 215 ± 27 218 223

p (SSR) 6.044 X 10= 5.717 X 10= 5.341 X 10= 5.326 X 10= 5.294 X 10=

Pi 8.278 X 10= 6.044 X 10= 5.717 X 10= 5.341 X 10= 5.326 X 10=

u 40.658 6.225 7.608 0.315 0.629

-?^o.95 (l} 121 — n) 3.927 3.928 3.929 3.930 3.931

.9983 .9984 .9985 .9985 .9985
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Figure Captions

Figure 1 The Mitchell-Brinkmann temperature record. The histogram ordi-

nates are 5-year average Northern Hemispheric temperature variations

from the 1880-1885 mean value. The smooth curve is an unweighted

cubic smoothing spline fit with a smoothing constant of 0.05.

Figure 2 Global fossil fuel production (1870-1974). The data points are mea-

sured yearly global totals expressed in megatons of carbon. The soHd

curve is a fit of the Rust-Kirk model (2.3), and the dashed curve is a fit

of the unmodulated exponential (2.4).

Figure 3 Northern Hemisphere land temperature variations for the years

1851-1991. The data points are yearly average departures from the mean

for the period 1951-1970. The dotted curve connecting the points is a

cubic interpolating spline, and the solid curve is an optimal smoothing

spline fit to the data.

Figure 4 Global fossil fuel production (1870-1990). The data points are mea-

sured yearly global totals expressed in megatons of carbon. The sohd

curve is the fit of the Rust-Kirk model (2.3) using the smoothing spline

in Figure 3 for T{i). The dashed curve is the fit of the exponential model

(2.4) which is shown for comparison.

Figure 5 Global fossil fuel production (1870-1990). The sohd curve is the fit

of the lagged response model (4.2) [or the lagged average model (5.4)],

using the smoothing spline representation for T{t). The dashed curve is

the fit of the exponential model (2.4) which is shown for comparison.

Figure 6 Global fossil fuel production (1870-1990). The curve is the fit of

the lagged average (boxcar) model (5.4) using the interpolating spline

representation for T{t).

Figure 7 Residuals for the fit of the boxcar averaging model (6.1) or (5.4)

using the interpolating spline representation for T{t). The circles and

dashed hne segments mark the years 1929-1932 and 1944-1945.

Figure 8 Global fossil fuel production (1870-1990). The curve is the fit of

the boxcar averaging model (7.5) which includes explicit terms for the

Great Depression and World War II.
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Figure 9 Residuals (data - fit) for the boxcar averaging fit shown in Fig.

8. The circles and dashed line segments mark the years 1929-1932 and

1944-1945.

Figure 10 Global fossil fuel production (1870-1990). The curve is the fit of an

exponential augmented with terms for the Great Depression and World

War II, i.e., the model (7.7).

Figure 11 Global fossil fuel production (1870-1990). The curve is the fit of

the model obtained by augmenting the Rust-Kirk model with terms for

the Great Depression and World War II, i.e., the model (7.8), and using

the optimal smoothing spline representation of T{t).

Figure 12 Global fossil fuel production (1870-1990). The curve is the fit of

the augmented boxcar averaging model (7.5) using the optimal smooth-

ing spline representation of T(t).

Figure 13 The relationship between the temperature record T(t') and the

temperature averaging function t£;(t"; t) = w{t' — t; r).

Figure 14 The quadrilateral averaging function.

Figure 15 Global fossil fuel production (1870-1990). The curve is the fit of

the quadrilateral averaging model (9.4) using the interpolating spline

representation of T(t).

Figure 16 Temperature averaging functions estimated from fits to the fos-

sil fuel production record (1870-1990). The dashed lines represent the

quadrilateral window from the fit shown in Fig. 15 and the solid fines

represent the boxcar window obtained from the fit in Fig. 8.

Figure 17 Discrete point estimates of the temperature transfer function for

the values r = 7, 8, 9, 10, and 11. The discrete points are joined by

straight fine segments, but are indicated by plotted symbols only in the

case of T = 9 where they axe indicated by small circles with ±la error

bars attached.

Figure 18 Estimates of the temperature averaging fimction. The two dashed

curves represent the boxcar and quadrilateral estimates given in columns

2 and 3 of Table 4. The circles are the the estimated discrete ordinates

for the r = 9 transfer function, with the error bars indicating the ilcr

imcertainties. The solid curve is the optimal smoothing spline fit to those

ordinates, renormalized to satisfy the unit area constraint (8.3).
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Figure 19 Global fossil fuel production (1870-1990). The curve is the fit of

the N = S {t = 9) transfer function model (10.12).

Figure 20 Distribution of SSR values for the fits of the N = S (r = 9) transfer

function model (10.12) using 10,000 randomly chosen temperature time-

series.

Figure 21 Global fossil fuel production (1870-1990). The soHd curve is the

fit of the lagged response model (12.1), and the dashed curve is the best

fitting unmodulated exponential with the same rate constant a and the

same perturbations for the Great Depression and World War II.

Figure 22 Residuals (data - model) for the fits given in Figure 21.

Figure 23 The temperature modulation and the perturbations for the Great

Depression and World War II. The sohd curve is the difference of the

two model predictions plotted in Figure 21, and the dashed curves are

the drops used in both of those models.

Figure 24 The temperature modulation and the perturbations for the Great

Depression and World War II expressed as a fraction of the total pro-

duction in the same year.

Figure 25 Three future temperature scenarios. The data points and the

smoothing spline fit to them are the same as those in Figure 3.

Figure 26 Fossil fuel production predictions for the three temperature sce-

narios given in Figure 25. The data points and the curve through them
are the same as those in Figure 21.
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