
Enhanced Machine
Controller Architecture
Overview

Frederick M. Proctor
Systems Integration Group

John Michaloski
Intelligent Controls Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC—
100

. U55

#5331

1993

NIST





NISTIR 5331

Enhanced Machine
Controller Architecture
Overview

Frederick M. Proctor
Systems Integration Group

John Michaloski
Intelligent Controls Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

December 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director





Enhanced Machine
Controller

Architecture
Overview

Fred Proctor

John Michaloski

Manufacturing Engineering Laboratory

National Institute of Standards and Technology



This work was performed by U.S. Government employees as

part of their official duties, and is not subject to copyright.



Enhanced Machine Controller Architecture Overview

1. Introduction

This overview provides a brief summary of NIST’s efforts to define an Enhanced Machine

Controller (EMC) architecture, with emphasis on the requirements of machine tools. The primary

concern is to implement an open architecture conforming to the Next Generation Controller

Specification for an Open System Architecture Standard (NGC SOSAS) [1] and to the NIST Real-

time Control System reference model architecture (RCS) [2, 3] by defining a set of modules, their

interfaces, and required basic functionality. The importance of multi-level feedback, “art-to-part”

requirements, and sensor-based enhancements will be directly addressed during the development

of the architecture.

Section 2 describes the machine tool hardware and software systems that are being implemented

at NIST for the EMC project This section was included at the beginning of the document so that

the subsequent discussions could be rooted in real machine control scenarios. Section 3 details the

goals of the EMC project and how the systems being implemented will help meet those goals.

Section 4 lists the requirements of users and systems integrators which drive the development of

the architecture. Section 5 outlines the EMC architecture and its relationships to the existing NIST
hierarchical control architecture and current industry standardization efforts. Sections 6 through 8

detail the modules which make up the controller. Section 9 details the controller infrastructure (the

“Virtual Machine”), Section 10 outlines the safety issue, and Section 11 provides a road map for

the subsequent documents that will provide a more complete and detailed description of the EMC
architecture.

Disclaimer: No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied. Certain commercial equipment, instruments, or

materials are identified in this report in order tofacilitate understanding. Such identification does

not imply recommendation or endorsement by the National Institute ofStandards and Technology,

nor does it imply that the materials or equipment identified are necessarily the best availablefor

the purpose.

2. System Description

The EMC controller implementation efforts at NIST are divided between two platforms, the Shop
Floor Controller and the Laboratory Development Controller. The Shop Floor Controller is based

on the PMAC motion controller from Delta Tau Data Systems, in an environmentally-enclosed 486

IBM-PC. The 486 is running the Microsoft MS-DOS operating system. This controller is

connected to a Monarch VMC-75 3-V2 axis vertical machining center, which has a positioning (W)
axis and a tool changer. A VGA monitor, keyboard, and trackball were mounted into an enclosure

for the operator console, replacing the original General Electric Mark Century 2000 controller

console. In addition, the control console includes jog buttons, a handwheel, and mode select

switches. All the Monarch control input and output lines run into a terminal block inside a cabinet

at the back of the machine, and are interfaced to the PMAC motion controller using a variety of

interconnect modules provided by Delta Tau.

In the Shop Floor Controller, the host computer is running Delta Tau’s PMAC-NC program. This

program provides operator interface functions such as graphics display and control panel input,

manages data such as tool offsets and parameter tables which affect axis motion, and manages the

rotary buffer used to download part programs to the PMAC board. NIST developed graphics “CNC
front ends” for this controller which can emulate either the Fanuc 10, GE 2000, or Allen-Bradley

8200 commercial controller interfaces. EIA-274-D part programs are first parsed by the PMAC-
NC program, and translated into the PMAC native language. The PMAC board communicates to

the host PC using a dual-ported RAM mechanism. The PMAC board performs the coordinate

3



Enhanced Machine Controller Architecture Overview

system trajectory planning, the axis trajectory interpolation, the servo computations, all of the PLC
tasks (selection between Z orW axes, control panel I/O, and tool changer), and axis limit checking.

The Laboratory Development Controller is also hosted by a 486 PC, and uses the PMAC motion

controller as well. However, this system differs in several ways. Most importantly, it is not

connected to a production machine tool, but to a hardware simulator which contains DC
servomotors and encoders. This allows development work to proceed without anxiety about injury

or damaging expensive production machinery. The Laboratory Development Controller is running

a real-time Unix operating system which is POSIX [4] compliant, and is controlled by software

from Cimetrix, Inc. Most of the functions performed by the PMAC board in the Shop Floor

Controller are performed in software on the PC host, namely PLC programs, part program

interpretation, and trajectory generation. Both systems are capable of handling EIA-274—

D

programs, which can be generated off-line using a CAD/CAM system. A recent benchmark

demonstrated both controllers running the NAS-979 “circle diamond square” test part program.

3. Implementation Plan

This document serves as an initial reference for the architecture, module definitions, and interfaces

which are being prototyped and implemented on both the Shop Floor Controller and Laboratory

Development Controller. Following this document will be the detailed specifications of each of the

modules laid out here, whose exact contents will be driven by the lessons learned during the

prototyping and implementation phases with both controllers. Implementation and prototyping

occur according to the following plan. Integration of existing enhancements, such as thermal

compensation and part probing, are performed on the Shop Floor Controller, because these

enhancements require actual analysis on the machine tool. Once these enhancements are

demonstrated and hardened, they are ported to the Laboratory Development Controller for

“wrapping” as modules which conform to the SOSAS architecture. These wrapped enhancements

are then be demonstrated again on the Monarch for a demonstration of a fully SOSAS-conformant

controller. Additional investigations which do not require machine tool time are performed on the

Laboratory Development Controller from the beginning. Such investigations include the testing of

new operating systems, CAD/CAM interfaces, and interfaces to the factory.

Throughout this document, it should be understood that NIST’s role in the EMC is not to act as a

developer of third-party enhancements, but as a system integrator whose intent is to take

enhancements already developed by third parties, port them to the controller implementations, and

document the effort required to do this. The result will be a set of interfaces required to make this

task easier on systems integrators.

4. EMC Requirements

The following sections outline the development of the EMC architecture, using an analysis of the

requirements placed on the architecture from several areas.

4.1 Legacy Requirements

The EMC must provide at least the capabilities found in the legacy systems familiar to machinists

today. These legacy capabilities, as applicable to the NIST testbed, are:

three-axis contour milling;

• automatic tool changing;

ELA-274-D part program interpretation;

• presentation of a graphic display typified by that of current controller technology;

4



Enhanced Machine Controller Architecture Overview

• “hands on” access by the machinist to physical jog buttons, wheels, and mode select

switches.

4.2 “Art-to-Part” Requirements

Automatically generating a process plan based on CAD part descriptions obviously requires great

system sophistication. For each step in a process plan, tool path planning is responsible for

directing the machine tool cutter to remove designated volumes of material. The path planning

generates motion primitives based on these volumes. It must account for proper machine tool setup

and fixturing, and account for any fixturing interference. Each motion primitive must be

transformed into motion segment trajectories. These segments are then transformed into a series of

set points for the individual axes. At a coarse level of description, the system functionality can be

loosely codified by the following breakdown:

• general purpose, such as computer-aided design or user interfacing (e.g., pendants, touch

screens, or display graphics);

• part design, such as geometric calculation, STEP data handling, or data management;

• process planning and scheduling;

• elementary machining operations, such as Material Removal Surface Element Volume

(MRSEV) or Boundary to B-Rep Conversion functions;

• tool path generation, such as NC programming interfaces, NC-code generation, and

machining simulation.

4.3 Feedback Requirements for Adaptive Control and Error Compensation

While the machine tool’s axis positions are closed with servo loops, typical NC programs are

interpreted “open loop” with no process feedback for monitoring machining. Error compensation,

if done at all, is done statically, by preprogramming instances where one would expect errors and

then compensating for the errors. This is common in today’s controllers which use lead screw

compensation tables. Dimensional accuracy and part finish can be improved by incorporating

dynamic closed-loop error compensation techniques, which resolves errors through environment

sensing.One can attach a sensor to the problem area, read real-time sensor feedback, evaluate this

reading against the expected model and then modify the course of action based on any measured

error. Among the types of feedback and error compensation the EMC project will be exploring

include:

• thermal error compensation

• geometric error compensation

• chatter control

• control algorithm error

One of the main criticisms of the SOSAS is that it did not grow out of a comprehensive prototyping

effort. The EMC philosophy is to attempt to install the above enhancements to our shop floor and

laboratory development controllers, and to supplement the SOSAS in areas where it says nothing

about how this is to be done.

4.4 Modularity, Portability, Extensibility, and Scalability Requirements

Additional requirements are placed on the controller by users or system integrators who want to

piece together their own systems component by component, modify the way their controller does

certain things, apply their modifications to another controller, or start small and upgrade as they

5



Enhanced Machine Controller Architecture Overview

grow. These requirements mean that the controller architecture must be modular, extensible,

portable, and scalable. Each of these is described in more detail in the following sections.

4.4.1 Modularity

Modularity refers to the ability of controls users and system integrators to purchase and replace

components of the controller without unduly affecting the rest of the controller. For the EMC, this

means the ability to replace hardware boards and peripheral devices such as disks or RAM with

equivalent products from another source. The key to doing this is the definition of the modules

which make up a controller, their functionality, their interfaces, and the basic controller

infrastructure (bus, microprocessor, operating system, etc.) which can support the modules. The
first three are addressed by the SOSAS but need to be fleshed out and validated; the infrastructure

definition is necessarily a choice made by the system integrators, in this case NIST.

4.4.2 Extensibility

Extensibility refers to the ability of knowledgable users and third parties to incrementally add

functionality to a module without replacing it completely. For example, an extensible plan

interpreter would allow users to add statements to the planning language (such as a new G code).

An extensible trajectory generator would allow this G code to be executed, while an extensible

discrete input/output module would allow the easy addition of a new actuator or sensor.

Extensibility is required by NIST for the incorporation of enhancements, but developing modules
which contain the “hooks” for extensibility remains the responsibility of module vendors.

4.4.3 Portability

Portability refers to the ease with which a module can be made to run in a controller based on

another platform. Portability normally refers to software source code, which should be compilable

for a variety of CPUs and operating systems. Standards such as ANSI C and POSIX serve as a

reference to which programmers adhere. For the EMC, portability is mostly an issue left to vendors

with whom NIST is working, since little if any porting effort in the form of source code

modification should be required of machine tool systems integrators.

4.4.4 Scalability

Scalability, like portability, refers to the ease with which a module can be made to run in a

controller based on another platform, but unlike portability, scalability is an attribute of the

controller architecture, not the implementation of the module. Scalability means that a controller

based on the architecture may be implemented equally easily by systems integrators entirely in

software on a fast processor, as a distributed multi-processor bus system, or in a standalone PC.

Scalability of the architecture gives system integrators the ability to build controllers around their

customer’s needs and budget, and gives customers the freedom to “scale up” to a higher-

performance implementation when their needs and budgets increase. Scalability is provided by the

SOSAS, and will be validated in the EMC testbed.

5. EMC Architecture

This section provides a summary of the architecture, at a block-diagram level. The evolution of the

architecture from its basis on the NIST RCS is discussed in the first section. The question of how
the EMC architecture is related to the SOSAS is answered in the second section. The subsequent

sections overview the modules which make up the EMC and the nature of the messages that are

understood by each module.

6



Enhanced Machine Controller Architecture Overview

5.1 EMC and the NIST Real-time Control System

The EMC architecture is derived from the NIST Real-time Control System reference model

architecture (RCS) [2] and NASREM, the NASA/NBS reference model architecture [3]. RCS
builds upon experience acquired in the Automated Manufacturing Research Facility [5] during the

1980’s for constructing hierarchies of controllers for machining workcells which include robot,

machine tool, and coordinate measuring machines as components. The NASREM reference model

places heavy emphasis on teleoperation, and puts a burden on the architecture to support real-time

feedback from a human operator throughout the control hierarchy.

The EMC architecture conforms to both the NIST RCS reference model and to the Next Generation

Controller Specification for an Open System Architecture Standard (NGC SOSAS), which is the

specification resulting from the program sponsored by the U.S. Air Force for standardizing

machine controllers. The NIST and SOSAS models differ mainly in two ways. First,

RCS/NASREM specifies control modules that are arranged in a hierarchy, each module having the

capability for closed-loop control; the SOSAS specifies no such hierarchy for control, although it

does indicate a hierarchical layering of interfaces to the physical hardware level. Second,

RCS/NASREM specifies a higher resolution for the definition of the control modules than does the

SOSAS.

Since RCS/NASREM is more strict in its definition than is the SOSAS, defining a controller

architecture which satisfies both is straightforward: one focuses on the stricter model, deriving an

architecture whose components are then grouped and labeled according the coarser model. In the

discussions that follow, nomenclature from both RCS/NASREM and the SOSAS will be used, so

that a mapping between them will emerge.

5.2 EMC and the SOSAS

Following the SOSAS, the EMC defines the following Standardized Applications (SAs):

Workstation Planning Standardized Application (WPSA), Workstation Management Standardized

Application (WMSA), and Controls Standardized Application (CSA). As prescribed by the

SOSAS, the EMC Standardized Applications communicate by passing Neutral Manufacturing

Language (NML) messages. Communication within a single SA is not governed by the SOSAS,
and is not required to use NML. Furthermore, the SOSAS does not place the individual SAs in a

hierarchy, nor does it specify the architecture within the SAs other than defining the NML
messages a particular SA must respond to and what that response should be. However, the SOSAS
does not preclude organizing the SAs hierarchically in a particular implementation, nor does it

disallow further refinement within the SAs. In the EMC, this organization and refinement is done

so that the benefits of the NIST Real-time Control System architecture can be applied to machine
control within the broad constraints of the SOSAS. The EMC organization places the WPSA,
WMSA, and CSA into a hierarchy, and further refines the CSA into four modules which form a

branched hierarchy as specified in RCS/NASREM.

We allow for Domain-Independent Applications (DIAs), as prescribed by the SOSAS, which let

third parties enhance a controller by providing a function not present in the off-the-shelf version.

The desire to incorporate enhancements as DIAs is a direct driver for an open architecture. DIAs
can be a simple as a data logger which accumulates the time each tool has been used, or as complex
as model-based thermal compensation. Perhaps the most important DIA is the operator interface,

which is not part of the controller per se, but acts as an independent application allowing the user

to view the state of the workstation and at times giving one direct control as specified in NASREM.
The Virtual Machine comprises the software which interfaces directly to the underlying controller

hardware. The rationale for the VM is that something is needed to insure portability of SAs and

7



Enhanced Machine Controller Architecture Overview

modules across different operating systems and hardware platforms. The bulk of theVM functions

are provided by the underlying operating system (e.g., the file system, process tasking, interrupt

servicing), but interfaces to these functions require standardization by the VM. The VM further

standardizes the additional interfaces to the machine hardware, graphics displays, control panel

interface, and other machine- specific functions.

5.3 EMC Standardized Applications and Modules

Each of the Standardized Applications, and the modules which make up the Controls Standardized

Application, will be documented in the following sections so that these two questions can be

answered: “What is it that the Standardized Application or module must do?”, and “What does the

Standardized Application or module have at its disposal in order to do it?”

The answer to the first question is determined by the messages that an SA or module accepts. These

messages may come from another SA or module in the workstation, or from a DIA. A block

diagram of the modules and their relationships is shown in Figure 1. The body of this diagram uses

nomenclature from the SOSAS; in the left margin is the mapping to the NIST RCS architecture.

5.4 EMC Communication and Messages

The answer to the second question is determined by what messages the SA or module can issue.

These messages are directed to another SA or module in the workstation, or to the Virtual Machine.

A depiction of the message pathways and the types of messages they convey is shown in Figure 2

below. The messages which flow between SAs constitute NML, which is specified by the SOSAS.
The messages which flow inside the CSA between modules conform to the RCS and NASREM
reference models and will be fully defined as part of the EMC development.

6. The Workstation Planning Standardized Application (WPSA)

The WPSA is responsible for making a part design and generating the control plan which will

transform an “as-is” workpiece, typically a blank, into a “to-be” part. The control plan handles oart

handling, set-up, and fixturing, and then identifies the sequence of operations for the workstation’s

devices. A workstation may be a simple as a three-axis vertical machining center, or a complex

station containing a machining center, part handling robot, and inspection system. In both cases,

the WPSA allows the development of control plans for running the workstation. In a simple setup,

planning may involve the generation ofNC programs by a PC-based CAD/CAM system. In more
complicated scenarios, the WPSA may rely on scheduling and process planning software, solid

modelers, and expert systems to automatically produce a complex part requiring machining on

several tools and robot part handling and assembly. In the RCS architecture, the WPSA
corresponds to the Cell level.

WPSAs of today typically sit upstream of the controller, and allow CAD programmers to

graphically generate IGES files for their parts. CAM systems and post processors let them take

their IGES files and generate cutter location (CL) data and ultimately NC code for a particular

machine. Usually, no information from downstream production is automatically fed back into the

CAD/CAM system: planning runs “open loop.” For example, if the programmer specifies a 2-inch

end mill during the NC code generation phase, and only a l
3
/4-inch end mill is available at run time,

the part programmer is required to repeat that phase and insert more muling passes.

Giving the WPSA feedback from the controller allows for more intelligent machining. For

instance, it is not difficult to imagine the tool mismatch reprogramming described above being

automatic: at run time, when a tool mismatch is detected, a message is sent to the CAM portion of

the WPSA to regenerate the NC code based on the existing tools.

8



Enhanced Machine Controller Architecture Overview

CELL

WORKSTATIOI

EMOVE and

TASK

PRIM

SERVO

Limit switches

Valves and solenoids

Encoders

Figure 1 . EMC Modules

The following sections outline the capabilities of the WPSA that will be implemented in the EMC
under the current program, or have been implemented at NIST in the past on other RCS controllers

and are candidates for porting to the EMC platforms in the future.

9



Enhanced Machine Controller Architecture Overview

CELL

WORKSTATIO

EMOVE and

TASK

PRIM

SERVO

Limit switches

Valves and solenoids

Figure 2. EMC Messages

6.1 CAD/CAM Design and Planning

The EMC must handle at least the functionality provided by “legacy systems.” Such systems are

the typical CNC machining centers which are programmed in some dialect of ELA-274-D, and

exist in a shop where programmers seated at workstations running commercial CAD/CAM
software can generate NC code using some collection of post processors tailored to each machine.

10



Enhanced Machine Controller Architecture Overview

The programs are generated off-line, and are punched onto tape or downloaded over a network for

execution. Operators can single step the programs during machining, or edit them.

The NC code generated in such a scenario is analogous to a SOSAS Control Plan. The WPSA must

either generate EIA-274-D, BCL, or NCL NC code. Current CAD/CAM systems can output

EIA-274—D, and NIST is using such systems from a variety of vendors, including Alpha- 1,

CADKEY, MasterCAM, and AutoCAD. NIST has developed a translator which converts

EIA-274-D into NCL (but not the reverse, as NCL contains instructions that are not contained in

EIA-274-D).

NC verification tools are supported by the EMC WPSA. At the Shop Floor Controller console, the

operator can bring up a standalone commercial product, N-See, and watch as the EIA-274-D code

is interpreted and a solid model of the stock is machined graphically.

6.2 Solid and Surface Modeling

Some of the CAD/CAM systems listed above provide solid modeling capabilities. For example,

NIST has purchased the solid modeling option to AutoCAD. The Alpha- 1 CAD/CAM system uses

a novel surface construction method for describing parts, lacing the surfaces together at edges

which are represented as non-uniform rational B splines (NURBS). The addition ofNURBS to the

primitives used to describe edges means that complex shapes can now be described exactly,

without resorting to approximation using small segments of straight lines or circular arcs. The

result of this is a reduction in control plan size, a reduction in the time it takes to interpret a control

plan, and an improved surface finish. For these benefits to be realized, however, modifications in

both the Plan Interpretation and Trajectory Generation modules need to be made.

6.3 Feature Recognition

Previous work in the NIST Automated Manufacturing Research Facility resulted in an NC code

generator which took a feature-based description of the part to be machined and output EIA-274-D
code in the dialect used on the Monarch VMC-75’s previous controller, a General Electric Mark
Century 2000 [6]. Since both the Shop Floor Controller and Laboratory Development Controller

platforms accept EIA-274-D, this package will port to the new systems with the minimum effort

required to change the output format from the GE-2000 dialect to standard EIA-274-D.

6.4 PDES Data Interfacing

Future work includes augmenting the WPSA so that it handles geometry and process planning data

represented in PDES [7]. This will involve cooperation with vendors of CAD/CAM and process

planning software. This cooperation is currently taking place as part of the NIST PDES testbed.

6.5 Coordinated Planning Between Multiple Devices

The WPSA will handle the generation of control plans for multiple devices (e.g., multiple CSAs)
in a single workstation, such as a workstation in which a robot loads a machine tool. No scheduling

or process planning software is currently used in the EMC, since only one CSA is used to control

the machining center. However, with the incorporation of a standard interface to the factory (cell),

this could be done, particularly since both the Shop Floor Controller and Laboratory Development
Controller are connected to local area networks.

Note that current planning languages, such as EIA-274-D, do not have language support for

multiple devices directly. Synchronization between multiple devices, e.g., a robot and machine
tool, is typically done using handshaking via interlocks. These handshaking statements are

programmed into both the robot and machine tool programs explicitly. It is the job of the WPSA

11



Enhanced Machine Controller Architecture Overview

to generate such interlocking in plans developed for multiple devices controlled by separate CSAs.
If tight synchronization is required, those devices must be controlled in a single CSA, as described

in a later section.

7. The Workstation Management Standardized Application (WMSA)

The WPSA communicates through message passing to theWMSA by passing NML messages. The
WMSA is responsible for managing the state of the workstation, and performs the functions of

mode control, resource management, health monitoring, and other administrative tasks. In simple

workstations, the WMSA may simply control the interaction of a machinist and the part program,

disabling certain modes at times for safety or part integrity. In complex workstations, the WMSA
may perform startup, shutdown, and safety operations, monitor levels of consumables, lock out

resources shared by robots and machine tools, and maintain a database of machine operations and

resource usages. In the RCS architecture, the WMSA corresponds to the Workstation level.

The WMSA can be regarded as the main “event loop” of the workstation, processing events from

the operator, factory cell interface, or sensors, switching between modes and states, running control

plans, logging data, switching control to the machinist, and performing many other functions. It is

the WMSA which coordinates the actions of the other physical machines, such as machine tools

and robots, which cooperate in a machining cell.

The SOSAS identifies 17 behaviors of the WMSA:
1. handle NML messages

2. perform workstation startup sequence

3. perform external communication

4. control workstation execution

5. handle exceptions

6. perform shutdown sequence

7. configure workstation

8. control mode/state

9. monitor safety

10. manage health

1 1 . control diagnostics

12. schedule tasks

13. determine resource availability

14. handle resource request

15. manage application configuration

16. provide data logging

17. generate OBIOS calls

The following sections group these 17 behaviors into areas that we will address in the EMC.

7.1 WMSA Mode and State Control

The WMSA is required to maintain and switch between the operating modes of the workstation.

The SOSAS identifies five modes:

1. startup

2. normal production

3. failure recovery

12



Enhanced Machine Controller Architecture Overview

4. maintenance

5. shutdown

Within each mode there are states that require WMSA maintenance. For example, in each of the

five modes there must be some provision for operator override, implying that there are an

automatic and a manual state. In normal production mode, there may be automatic, manual, or

manual data input states in which the operator has varying degrees of control during machining.

7.1.1 Execution States

States of operation maintained by the WMSA include manual and automatic. The manual state of

normal production mode allows the machinist to control the operation of the machine using the

operator interface. This includes such actions as homing and jogging the axes, and changing tools.

Automatic state is the state in which the controller executes control plans (NC programs). During

startup and shutdown modes, the automatic execution state would allow operator-free startup and

shutdown of the controller, while in manual mode the operator would be assisting these operations,

perhaps by manually releasing tools or operating fixtures. Failure recovery and maintenance modes
are modes in which the automatic state does not apply.

7.1.2 Resource States

Resources include such items as coolant and other consumables, tooling, part loaders, and fixtures.

The WMSA maintains the state of any interlocks or semaphores which limit access to resources by

the operator interface, other DIAs, and control plans. In workstations with several CSAs, such as

those consisting of a robot and machine tool, arbitrating requests for shared resources is an

important function of the WMSA.

7.2 WMSA Events

In order for Domain Independent Applications to easily act on the modes and states of the

controller, there needs to be the provision for sending events to these DIAs. Controller events are

akin to the events which drive graphical user interfaces, such as X Windows, and relieve the

programmer of the burden of continually reading the controller to determine these states. These

events include:

notification of the transition from one mode to another, for the controller

notification of the transition from one state to another, for each SA and module
• notification of Virtual Machine events, such as interrupts

• release of system semaphores, and system clock ticks

Provisions must be made for programmers to attach to each of these events discriminately, so that

each program is not overloaded with inappropriate events.

8. The Controls Standardized Application (CSA)

The WMSA communicates via NML message passing to Controls Standardized Applications. The
CSAs include the functions which are normally associated with standalone CNCs, namely part

program interpretation, trajectory generation, execution of Programmable Logic Controller (PLC)
programs, spindle control, and servo control of machine axes. For each machine, there is a single

CSA; that is, in a workstation consisting of a three-axis vertical machining center and a part-

handling robot, there would be a single WPSA, one WMSA, and two CSAs, one each for the robot

and machine tool. Each CSA communicates via NML message passing to the single WMSA for

the workstation.

13



Enhanced Machine Controller Architecture Overview

Because of the wide availability of products which perform some of the functions of the CSA
mentioned above (such as motion control boards), the CSA defined in the SOSAS will be refined

further into these modules: Plan Interpretation, Trajectory Generation, Discrete Input/Output, and

Servo Control.

8.1 The Plan Interpretation Module

The Plan Interpretation Module, or interpreter, reads and executes Control Plans expressed in the

SOSAS Neutral Command Language (NCL), or legacy languages such as EIA-274-D, BCL, or

APT. The interpretation is the result of an NML command issued by the WMSA. This module is

extensible, so that new statements may be added to the planning language to give part programmers

the ability to reference enhancements. The interpreter reads control plans and issues the

appropriate commands to its subordinates, the Discrete Input/Output Module and the Trajectory

Generator Module.

The plan interpreter is the transition point between the abstract geometric part description and the

physical realities of the machining workstation. The interpreter is responsible for generation of tool

paths to achieve removal of some volume of material. In the RCS architecture, the plan

interpretation module comprises the functions of both the Task and Elementary Move (EMOVE)
levels. More specifically, in cases where the planning language contains macros (e.g., the

EIA-274-D canned cycles), the primitives which make up the macro map to Elementary Move
plans, while the macro itself maps to Task level plans.

In general, a CSA plan interpreter is concerned with coordinating machine motion with tool

cutting. This coordinated effort results in tool-path motion keyframe poses to the trajectory

generator and accessory commands to devices such as a tool changer or gripper. All motion

pathways must also be checked for the clearance of tools and machine links with obstacles.

8.1.1 Plan Interpretation Functionality

The required capabilities of the plan interpreter module include:

• interface to the Discrete Input/Output Module (e.g., tool change requests)

• interface to the Trajectory Generation Module (e.g., linear and circular interpolation)

• interpretation of part programs (e.g., EIA-274-D, BCL, or NCL languages)

• cuing the machinist for part fixturing and other manual tasks

• p?
fh-planning based on part features

• e nsion of the interpreter to handle instructions which may result from enhancements of

the subordinate modules

• availability to DIAs of the identifiers of the currently executing Control Plan, the statement

being executed now, and the statement which will be executed next

• availability to DIAs of the coordinate frame referenced by the current instruction

• availability to DIAs of the fixturing information

• availability to DIAs of the tooling information

• ability of DIAs to insert control plan statements

8.1.2 Plan Interpretation Interfaces

The plan interpreter communicates with the Discrete Input/Output Module and the Trajectory

Generation Module of its CSA by passing messages which correspond to NCL statements in the

control plan. If the control plans are not written in NCL (for example, EIA-274-D or BCL), the

control plan statements need to be mapped into NCL messages.

14



Enhanced Machine Controller Architecture Overview

The NCL messages between the plan interpreter and the Discrete InpuL/Output Module are

tabulated below. In this and other tables, the arguments in each message have been omitted for

brevity, but will be detailed in documents which will follow this overview.

Table 1: Plan Interpretation to Discrete Input/Output NCL Messages

NCL Message Description

set_output set an I/O point output

get_input get an I/O point input

change_tool change the tool

act ivate_coolant turn coolant on or off

act ivate_spindie turn the spindle on or off

The NCL messages between the plan interpreter and the Trajectory Generator Module are

tabularized below:

Table 2: Plan Interpretation to Trajectory Generation NCL Messages

NCL Message Description

posit ion_axes non-coordinated axis move

posit ion_tool non-coordinated tool move

linear_move coordinated axis linear move (EIA-274-D “GO” instruction)

circular_move_cw coordinated axis clockwise circular move (“Gl”)

circular_move_ccw coordinated axis clockwise circular move (“G2”)

move_NURBS_curve coordinated axis NURBS curvilinear move

jog_axes manual axis jog

jog_tool manual tool jog

8.2 The Discrete Input/Output Module

The Discrete Input/Output Module is responsible for executing plans targeted at discrete actuators

such as valves and solenoids, and reading the state of sensors such as limit switches. These plans

are typically called Programmable Logic Control programs, written in ladder logic or other high-

level languages such as those specified in the IEC-1131 standard (e.g., Grafcet), BASIC, or C.

Requests for the execution of these plans are issued by the interpreter, during the course of the

interpretation of a control plan. In the RCS architecture, the discrete input/output module performs

Primitive (PRIM) level functions, specifically those concerned with discrete actuator control.

Discrete input/output plans are loosely coupled with motion control and will be separated from
motion control to insure modularity. In some cases, however, a discrete I/O device may be loosely

coupled to axis motion while the machine is operating in one mode, and tightly coupled in another

mode. For example, spindle rotation is normally controlled independently from axis motion, and
is merely maintained at a constant velocity for machining operations and changed infrequently.

However, during tapping, the rotation of the spindle must be tightly coordinated with the Z axis,

15



Enhanced Machine Controller Architecture Overview

and control of the spindle needs to be dynamically reconfigurable so that it may be coordinated

with the axis trajectories.

8.2.1 Discrete Input!Output Functionality

The required capabilities of the Discrete Input/Output module include:

ability to run PLC programs written in one of the IEC-1 131 languages, or the C language,

as specified by the SOSAS
• availability to DIAs of the current values of each of the sensors and actuators to which the

Discrete Input/Output module is interfaced

8.2.2 Discrete Input/Output Interfaces

The Discrete I/O CSA module is connected to the external actuators and sensors through standard

interfaces. Defacto interfaces, such as 0 to 24 volt or 4 to 20 milliamp references, are typical and

will be supported. Standards for interfacing a variety of devices, such as the OBIOS from the Real

Time Consortium, or CAN Bus, will also be supported. Additionally, the Discrete Input/Output

module may have subordinate Servo Control modules, for example when controlling spindle

velocity. The nature of this interface is somewhat ill-defined at the moment, so no attempt will be

made to differentiate the functionality of the subordinate servo module or its interfaces from those

of the Discrete Input/Output module at this time.

Table 3: External Discrete Input/Output Module Interfaces

Interface Description

0 to 24 Volt typical digital I/O point

0 to 5 Volt typical analog or digital I/O point

CAN Bus Philips discrete input/output bus

OBIOS Real Time Consortium open basic input/output system

8.3 The Trajectory Generator Module

The Trajectory Generation Module is responsible for transforming motion path points into

dynamic curvilinear trajectories. The motion path points are passed to the trajectory generator by

the interpreter during control plan interpretation. The generation of dynamic curvilinear

trajectories typically involves computing smooth motion in Cartesian or other world coordinate

space. Points along the computed smooth trajectory are selected periodically at the interpolation

interval
, and sent to the Servo Control Module. In the RCS architecture, these functions are

performed by the Primitive (PRIM) level, in cases where the actuators are continuously controlled

and tightly coordinated.

In a normal machining operation the execution is open-loop, during which a series of position and

velocity setpoints are “picked off’ the trajectory in world coordinates and then sent to the Servo

Control module. However, in many cases the generation of trajectories requires the use of sensor

feedback, as is the case with guarded moves or constant-force machining.

The actual conversion of trajectories from the world coordinate system to joint space takes place

in the Servo Control module. This is a requirement when performing Cartesian servoing, for

16



Enhanced Machine Controller Architecture Overview

example, in which servo computations are done in world coordinates. The responsibility for

making available the kinematics and Jacobian are thus placed upon the Servo Control module.

8.3.1 Trajectory Generation Module Functionality

The required capabilities of the Trajectory Generation module include:

ability to plan and execute linear and circular trajectories

the ability to extend the trajectory planning to handle trajectories defined with NURBS
the ability to offset trajectories with transforms generated by sensor data

availability to DIAs of the current world coordinate frame used for trajectory calculations

availability to DIAs of the current position and velocity of the tool tip in the world

coordinate frame

availability to DIAs of the timer semaphore which defines the interpolation interval

8.3.2 Trajectory Generation Interfaces

The Trajectory Generation Module communicates with the Servo Control Module of its CSA by

passing messages which contain the computed setpoints for the tool position, in the current world

coordinate frame. Additionally, configuration control message are passed to the servo controller.

These messages corresponds to NCL statements, and are tabularized below:

Table 4: Trajectory Generation to Servo Control NCL Messages

NCL Message Description

set_axis_limits define axis limits

axis_posit ion position setpoint

axis_velocity velocity setpoint

8.4 The Servo Control Module

The Servo Control Module of the CSA is responsible for device interface for axis control and

sensing of device feedback. The servo controller computes the motions of the individual joint

actuators required to move the tool to the setpoints issued by the trajectory generator. Typically,

the servo control module calculates actuator set points at a higher frequency than they are sent by

the trajectory generator, so that subinterpolation needs to be performed. While controlling the

device, the servo level is responsible for monitoring and interpreting the device feedback,

computing outputs to the servoed axes using PID or other control laws. The servo control module
corresponds to the Servo level of the RCS architecture.

8.4.1 Servo Controller Functionality

The required capabilities of the Servo Control module include:

• transforming world coordinate system (e.g., Cartesian points, ZYZ Euler angles) into the

joint coordinate system

• subinterpolation of actuator setpoints

• initialization and monitoring of the axis controllers

• availability to DIAs of the current values of each of the sensors and actuators to which the

servo module is interfaced

• ability of DIAs to access the external servo controller interfaces

17



Enhanced Machine Controller Architecture Overview

8.4.2 Servo Controller External Interfaces

The Servo Control CSA module is connected to the external actuators and sensors through standard

interfaces. De facto interfaces, such as quadrature encoder and +/- 10 volt axis velocity references,

are typical and will be supported. Standards for interfacing a variety of devices, such as the OBIOS
from the Real Time Consortium, or SERCOS, will also be supported.

Table 5: External Servo Control Module Interfaces

Interface Description

quadrature encoding incremental feedback from encoders

+/- 10 volt velocity reference to motor amplifiers

PWM velocity reference to motor amplifiers

OBIOS Real Time Consortium open basic input/output system

9. The Virtual Machine

The Virtual Machine is the set of all software which interfaces directly to the underlying controller

hardware. While the operating system provides most of this interface, such as the file system, more
is required to support the additional capabilities of a machine tool or robot The additional

interfaces which comprise the Virtual Machine are the communication system, the display

interface, and the information base.

9.1 The Operating System

The operating system is specified by the SOSAS to be POSIX-compliant. POSIX does not specify

a particular operating system, but the interfaces to systems programmers that operating systems

must provide. In our Shop Floor Controller, the current operating system is DOS, which is not

POSIX compliant; in the Laboratory Development Controller we are running LynxOS, which is a

real-time POSIX-compliant operating system.

It is anticipated that full support of POSIX functionality (let alone exact compliance) will not be

required for a machine controller, but that a subset is more appropriate. Part of the purpose of the

implementation phase of the EMC project, at least as far as the Laboratory Development Controller

is concerned, is to define that subset At this point, it is clear that at a minimum, we need the

functionality of the POSIX real-time extensions for semaphores, shared memory, clocks and

timers, interprocess communication (see the next section), and threads. However, we feel that it is

inappropriate and unnecessary to declare that the operating system be POSIX-compliant, in the

same way that we would not declare that controllers use the VME bus. Other suitable and popular

operating systems exist that we feel vendors will select based on their market. While this

complicates things for developers (e.g., porting and support for both the Macintosh and PC), it is

certainly an improvement over the proliferation of unique operating systems or lack thereof that

characterizes today’s controller market.

9.2 The Communication System

While POSIX specifies several mechanisms for interprocess communication (for instance,

message queues) what is needed is a uniform interface to communication that can be configured

for a particular mechanism. NIST has implemented a unique communication system which

18



Enhanced Machine Controller Architecture Overview

presents a programming interface for sending, testing, and receiving messages between two

separate processes. This communication system interface is identical to programs regardless of

which operating system or which hardware on which the programs run. The actual mechanism

underlying the reads, tests, and writes is dynamically configurable to several types which are

analogous to the Unix block special or character special devices. Block special mechanisms do not

support queueing of data; that is, new data overwrites old data regardless of whether it has been

read. These mechanisms are suitable for messages which upon arrival supercede any messages

which arrived before. Character special mechanisms queue the messages. These mechanisms are

suitable for messages which assume that previous messages have been received and that their

actions will occur. NIST is in the process of defining these mechanisms so that they are

implemented using POSIX calls.

Pursuant to the NIST RCS [2, 3], we recommend that all communication mechanisms use the

overwriting protocols, since queueing can be implemented on top of these using agreed-upon

process-to-process handshaking with no loss of generality. The advantage of the overwriting

protocols is that they naturally fit into the framework of cyclic closed-loop control, the model used

for all levels in the RCS hierarchy.

9.3 Display System

The display system provides developers with a way to display data to the operator and to get input

from the operator. The display system will probably be most heavily used by the Operator Interface

DIA. Defining the display system allows developers of machine tool and robot controller user

interfaces to write portable code that can be used on a variety of different machines.

The SOSAS specifies that X Windows and Motif provide the display services. Recently, this

requirement has been relaxed, so that other display systems such as Microsoft Windows or Open
Look can be considered. This complicates things for the user interface developer, but gives

additional flexibility.

9.4 Information Base

The information base provides a uniform interface for requests to store or fetch information about

the state of the controller. This information is distributed across the controller (for example, axis

positions in the servo module, kinematics in the trajectory module, tool ID in the discrete

input/output module). It is too cumbersome to require that each module copy public data to a single

information base. Rather, request are made to the individual module for information. These

requests can be implemented so that they minimize the data latency. For example, if fast access to

servo control data is required, the information base functions would be compiled in to the servo

module, and all public data would appear in its address space. Alternatively, if the requesting

program does not need fast access to the data, it may reside outside the module. In this case, the

information base functions would be implemented using network transport mechanisms.

10. Safety

When defining the architecture of an open control system, one which will allow non-cooperating

vendors to provide products and enhancements to an existing controller, some questions arise:

• What guarantees that the added product cannot damage the machine or injure the operator?

• Who is liable in case this happens?

In answering the first question, it should be noted that safety can never be absolutely guaranteed.

Whatever mechanisms the controller or machine builders provide, the machinist can always find a

19



Enhanced Machine Controller Architecture Overview

way to circumvent them. Limit switches which detect die removal of safety shields can be taped

shut by machinists. Dead man’s switches can be clamped closed. Any protection in software is

vulnerable to the same attacks used to override copy protection. Code developers can remove

nuisance safety mechanisms by simply overwriting the code with “no-ops,” or null operations.

Safety programs can simply fail to work due to insufficient testing. Processors executing the safety

software may fault, simultaneously causing a dangerous axis runaway condition while halting the

software which could check for this.

A solution to these problems is to incorporate a “watchdog” safety system [8] into the controller,

consisting of completely separate hardware which constantly monitors the activity of the

workstation and causes a complete but safe shutdown when any safety conditions are violated.

Examples of conditions to be monitored include

• axes position, velocity, and acceleration

• tool speed

• cutter force

• engagement of safety shields

• servo following error

• motor current and torque

• hardware health signals (“heartbeats”) of computers and equipment

• software health signals of processes

When safety conditions are violated, the watchdog safety system opens the emergency stop loop

circuitry for a full stop of all systems which could potentially cause damage to the machine or

operator, such as axes, spindle, and tooling. The connection of these to the emergency stop loop

must be made so that they are not damaged when such a stop is made.

The watchdog safety system must exist as a separate system which is not intended to be extensible.

The conditions to be monitored should be set at limits which no reasonable machining operation

would ever exceed. Limits are only set by the OEM. The conditions must be available to the

watchdog safety system in “raw” form, i.e., not after processing by the controller software.

For example, axes position and velocity may be captured directly from encoders, scales, or

tachometers, and fed to the safety system. Derived quantities such as acceleration must be

coi puted by the safety system, not the machine controller, by hardw ire or by software which is

simple and correct in the software engineering sense.

Health signals, or “heartbeats,” should be provided by vital hardware (such as the CPU) in the form

of continuously alternating signal levels, not absolute levels. The absence of alternation is an

indication that the hardware has failed. Software processes (such as the looping of Discrete

Input/Output module processes) should generate hardware signals which also alternate in level to

indicate health. The watchdog safety system can be equipped with missing pulse detectors to

trigger a fault when these processes have failed to issue an alternating signal.

11. Road Map of Subsequent Documents

This document is an initial overview of the architecture that the EMC engineers will use as the

reference for controller development. Machine controllers will be built which conform to this

reference model architecture. As a result of the implementation efforts, details of the standardized

applications and modules will become clear, and will form the foundation of a second series of

documents. Listed below are each of the documents which will be issued, and a brief description

of their intended contents.

20



Enhanced Machine Controller Architecture Overview

Workstation Planning Standardized Application

This document covers the WPSA, focusing on two areas: scheduling and programming.

Scheduling will discuss how the workstation connects to the rest of the factory network, what

communication protocols are used (e.g., MMS), and what is responsible for scheduling jobs in the

factory.

Workstation Management Standardized Application

This covers theWMSA “engine,” and details the minimum capabilities required for a controller to

be a controller. In this document we will discuss the modes and states of the controller.

Plan Interpretation Module

Here will be detailed the planning languages (e.g., EIA-274-D, BCL, NCL), and how we
implemented extensibility, i.e., the ability to add a new G code to reflect the addition of NURBS
profiling in the trajectory generator. We will also detail the interfaces that allowed us to “swap” the

plan interpretation module.

Discrete Input/Output Module

PLC languages will be detailed here, as will the messages that run PLC programs. IEC-1131 will

be addressed in this document.

Trajectory Generation Module

The bulk of the trajectory generation module will derive from the more complex realm of five-axis

milling and robotics.This is where we will detail the commands used to build a queue of motion

primitives, and what those primitives are. Extensibility will be demonstrated by adding NURBS
trajectory generation to the weak set which is normally used now, namely straight lines and circles,

and we’ll tell how we did it What we used to represent the machine’s kinematic model, Jacobian,

and other models will be spelled out.

Servo Control Module

This document will contain the list of all servo parameters we’ll need, based on position control

but with the flexibility to handle force and other physical quantities as well. Details of the error

compensation methods we used (thermal/geometric, lead screw compensation tables, etc.) will

appear in this volume. The hardware and software interfaces we defined which allow us to replace

motion control boards from one vendor with those of another will be written down.

Virtual Machine

The controller “infrastructure” will be laid out here. This includes the operating system, display

capability, control panel interface, system variables, and events. How we handled different buses

and CPUs will be detailed.

Domain Independent Applications

The domain-independent applications include the operator interface, tool management, part

probing, and thermal compensation. The interfaces which each required will be documented, as

will the mechanism by which each was performed.

21



Enhanced Machine Controller Architecture Overview

12. References

1 . The Martin Marietta Corporation, Next Generation Workstation/Machine Controller

Specification for an Open System Architecture Standard (Draft), Volumes I through VI,

Document No. NGC-0001-13-000-SYS, March 1992.

2. Albus, J. S., “RCS: A Reference Model Architecture for Intelligent Control,” IEEE Journal

on Computer Architecturesfor Intelligent Machines, May 1992.

3. Albus, J. S., Lumia, R., Fiala, J. C, and Wavering, A. J., “NASREM: The NASA/NBS
Standard Reference Model for Telerobot Control System Architecture,” Proceedings of the

20th International Symposium on Industrial Robots, Tokyo, Japan, October 4-6, 1989.

4. POSIX (Portable Operating System Interface) . FIPS Publication 151-1.

5. Simpson, J., Hocken, R., and Albus, J., “The Automated Manufacturing Research Facility of

the National Bureau of Standards.” Journal of Manufacturing Systems 1 (1), 1983.

6. Kramer, T., “Process Planning for a Milling Machine from a Feature-Based Design,”

Proceedings ofManufacturing International, Atlanta, Georgia, April 1988, ASME, Vol. Ill,

pp. 179-189, 1988.

7. National Computer Graphics Association, IGES/PDES Organization Reference Manual .

January 1993. NCGA: 2722 Merrilee Drive, Suite 200, Fairfax, VA 22031.

8. R. D. Kilmer, H. G. McCain, M. Juberts and S. A. Legowik, “Safety Computer Design and

Implementation,” International Trends in Manufacturing Technology: Robot Safety . IFS

(Publications) Ltd., Springer-Verlag, Berlin, 1985.

22






