
NISTIR 5295

Guide to Software Engineering
Environment Assessment
and Evaiuation

B.B. Cuthlll

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

QC

100

.056

//5295

1993
V .

NIST





NISTIR 5295

Guide to SoftwareEngineering
Environment Assessment
and Evaiuation

B.B. Cuthill

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

November 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakai; Director



)



Guide to Software Engineering Environment

Assessment and Evaluation

Barbara Cuthill

June, 1993

Table of Contents

Executive Summary 1

Section 1. Introduction 2

Section 2. Background: Software Engineering Environments (SEEs) 3

2.1 Software Development Activities 3

2.2 Development of Software Engineering Environments 4

Section 3. Software Engineering Environment Characteristics 6

3.1 SEE Structure 6

3.1.1 Frameworks: background and definitions 6

3.1.2 NISTIECMA Reference Model for Frameworks of SEEs 8

3.1.3 Implications of framework choices 9

3.2 SEE Functionality 9

3.2.1 Populated frameworks: background and definitions 10

3.2.2 NGCR PSESWG Reference Model of Project Support Environments 10

3.2.3 Constraints on functionality choices 13

3.3 SEE Integration 13

3.3.1 Integration definitions 13

3.3.2 Frameworks and integration 15

3.3.3 Defining the extent of SEE integration 16

3.3.4 SEE integration standards 17

Section 4. Software Engineering Environment Assessment Methodology 19

1



4.1 Overview of Software Engineering Environment Assessment Process 19

4.2 Identify Candidate SEE Frameworks 20

4.3 Map Framework Capabilities to NIST/ECMA Reference Model 20

4.3.1 Purpose of reference model mappings 20

4.3.2 Using mapping guidelines 22

4.3.3 Results of the mapping process 24

4.4 Identify Interfaces Between Framework and Tools 24

4.5 Identify Tools Compatible to Framework/Integration Standards 25

4.6 Map Tool Options to PSESWG Reference Model 25

4.7 Results of Assessment Process 26

Section 5. Software Engineering Environment Evaluation Methodology 28

5.1 Overview of the Software Engineering Environment Evaluation Process 28

5.2 Establish Customer Requirements 29

5.2.1 Prerequisites for effective SEE use 29

5.2.2 Define how customer expects SEE to support process 29

5.2.3 Results of establishing customer requirements 30

5.3 Select Criteria for Evaluation 31

5.3.1 Identify criteria 31

5.3.2 Create test plan for criteria 31

5.3.3 Results of criteria selection 32

5.4 Use Assessments to Identify Candidate SEEs 32

5.5 Execute plan for testing criteria on candidate SEEs 34

5.6 Analyze Results of Testing Criteria 35

5.7 Results of the Evaluation Process 35

5.8 Performing Evaluations 36

ii



Section 6. Conclusions 37

Section 7. References 38

Appendix A: Definitions of NGCR PSESWG Reference Model Services and

NIST/ECMA Framework Model Services 41

A.l Technical Engineering Services 41

A.2 Technical Management Services 43

A.3 Project Management Services 44

A.4 Support Services 44

A.5 Framework Services 46

Appendix B. Models of Tool Assessment and Evaluation 52

B. l IEEE and ISO Recommended Tool Evaluation and Selection Processes 52

B.l.l Evaluation process 52

B.1.2 Selection process 53

B.2 Software Technology Support Center (STSC) Model 54

Appendix C: Mapping Guidelines 57

Appendix D: Criteria Sources 59

D.l Technical Engineering Services Criteria Sources 59

D.2 Technical Management Services Criteria Sources 62

D.3 Project Management Services Criteria Sources 63

D.4 Support Services Criteria Sources 63

D.5 Framework Services Criteria Sources 63

D.6 General Criteria Sources 64

D.7 Criteria Sources for Management Readiness to Adopt SEE Technology 64

iii





Executive Summary

This guide outlines general approaches to software engineering environment assessment

and evaluation. This guide defines SEE assessment as the process of accurately describing the

capabilities of a software engineering environment to support and integrate a range of CASE
tools. The guide defines software engineering environment evaluation as the process of

determining how well a SEE matches the customer’s requirements. Thus, the evaluation process

builds on the assessment process by using the descriptions of software engineering environments

capabilities generated by the assessment process to evaluate the software engineering environment

with respect to specific customer requirements or criteria. While there are several models of tool

assessment, evaluation and selection [e.g., 11, 14, 21, 23], there has been very little work done

in assessing or evaluating full software engineering environments or environment frameworks,

in part because these are new products [14].

The assessment and evaluation approaches presented here focus on accurately defining

the integration and functional capabilities of candidate software engineering environments and

the requirements of the customer. The NIST/ECMA Framework for Software Engineering

Environments [24] and the NGCR PSESWG Reference Model for Project Support Environments

[25] provide the definitions of software engineering environment capabilities used in these

approaches. Wasserman [28], Thomas and Nejmeh [27] and Brown [3] provide the definitions

of integration capacity used to describe the extent of integration present in candidate software

engineering environments. The results of the assessment process are accurate descriptions of the

capabilities of selected software engineering environments given in terms of accepted definitions

or models. The results of the evaluation process are descriptions of how well candidate software

engineering environments match the requirements with respect to the needs of the customer

organization and compared to other software engineering environments.

1



Section 1. Introduction

A software engineering environment (SEE) is an interconnected collection of computer

aided software engineering (CASE) tools providing automated support for software engineering

development activities [14]. It includes tools supporting part or all of the software development

process across portions of the software lifecycle. It may also include tools supporting the

management of the software development process.

The purpose of assessing a SEE is to describe accurately with reference to an accepted

model what the capabilities of a SEE are to support and integrate a range of CASE tools and to

support specific software development activities. The purpose of evaluating SEEs or SEE
components is to determine how well the SEE meets a set of customer requirements. Assessments

are useful to the evaluation process because they provide a basis for comparing SEEs to each

other or to some standard criteria.

This guide outlines general approaches to SEE assessment and evaluation focusing on

accurately defining the integration and functional capabilities of candidate SEEs and the

requirements of the customer. The evaluation process builds on the assessment process by using

the descriptions of SEE capabilities generated by the assessment process to evaluate the SEE with

respect to specific customer requirements defined in terms of the same model. While there are

several models of tool assessment, evaluation and selection [eg., 11, 14, 21, 23], there has been

very little work done in assessing or evaluating full software engineering environments or

environment frameworks, in part because these are new products [14].

The ability to accurately assess and evaluate SEEs for a particular purpose is important

because SEEs are expensive investments with potentially high risk for software developers. The

software developer must find a SEE that will meet his current needs. A SEE must also evolve

over time to match the changes in the developer’s process and the best tools for upgrading the

SEE may not always come from the same vendors. CASE tools and SEEs have until now not

been able to meet this challenge in part because the capabilities of these products have not

matched the needs of software developers. With most CASE tools abandoned within 6 months

of purchase [8, 16, 18], the importance of matching the more complex SEEs to individual and

organizational requirements cannot be overstated [26]. SEE assessment and evaluation techniques

supporting this matching process will help software developers more accurately select SEEs in

the future.

The rest of this paper will define SEE capabilities, assessment methods for those

capabilities and evaluation methods for SEEs.

2



Section 2: Background: Software Engineering Environments

2.1 Software Development Activities

A SEE is a complex software product supporting part or all of an organization’s software

development activities across portions of the software life cycle. A software development

organization performs a number of activities which a SEE can support using processes and

methodologies which a SEE can reinforce. To assess and evaluate SEEs, the evaluator must

define those software development activities the customer organization expects the SEE to

support. A partial list of the types of activities a SEE may support follows:

a) Project Management

b) Process Control

c) Data Collection on the Software Development Process

d) Requirements Collection and Analysis

e) Design

f) Code Generation and Documentation

g) Test, Verification and Validation

h) Migration and Maintenance of Final Product

Better management of projects and processes is important to the growth of a software

development organization’s abilities as an organization. For example, for an organization to meet

the level 3 requirements and higher of the Software Engineering Institute (SEI) Capability

Maturity Model (CMM) [20], the organization must begin collecting information on its projects

and using that information for planning, scheduling and process improvement. These tests fall

within project management and process control activities as listed above. An organization must

also begin developing a software engineering process, using that process in its projects and

collecting data about that process. Various other tasks supporting process evolution and

improvement also fall within the scope of project management and process control such as

quality assurance.

The remaining software development activities listed relate to the technical activities of

the software development life cycle. While specific software engineering methodologies interleave

these activities differently, the basic activities are similar for most methodologies. These are the

collection and analysis of requirements; the generation of an initial design with gradual

refinements; the generation and refinement of code with accompanying documentation; the test,

verification and validation of that code and the maintenance of the code with accompanying

documentation. Clearly, the product of each activity is useful in pursuing the rest of the life cycle

and should be available to later activities in the software development process. A good SEE can

monitor the software development projects and make these products available as needed.

3



2.2 Development of Software Engineering Environments

SEEs are the result of the growth of software projects over the last 25 years, the need to

relate products of different stages of the software development life cycle, the growing number

of software development artifacts (code libraries, etc.) available for reuse and the proliferation

of CASE tools. Software developers and engineers initially began using CASE tools to automate

some software development activities. As software projects have continued to grow, and the use

of CASE tools for many phases of the software life cycle has proliferated, software developers

have a growing need for integrated CASE tools combined into SEEs. Because SEEs could

support management of software engineering processes and all phases of the software engineering

lifecycle, SEE technology could improve the productivity, efficiency and quality of software

development.

SEE technology may prove especially useful in controlling the management of software

development. In parallel with the growing interest in CASE tools, there is a growing awareness

that the software industry needs better methods of managing the software engineering process

[14]. Because a SEE can incorporate tools from different portions of the software lifecycle as

well as management tools, a SEE can enforce or reinforce the use of a software methodology.

SEE technology can reinforce a methodology by incorporating management tools to collect data

on the software development process as it proceeds. SEEs can also coordinate the software

development process by configuring the environment and enforcing the use of specific policies.

If management tools are part of the engineering environment, they become much easier to use.

Using tools to better manage the software development process can potentially lead to process

improvement, better management and quality control.

To meet these long term objectives for SEE use, future CASE tools and SEEs must be

interoperable. This software change reflects the hardware changes organizations have undergone

in shifting from single source mainframe environments to networks of workstations from multiple

vendors. The best workstation for a particular job or available at a particular time is often

different from others currently in use. For similar reasons, the best software for a project or

available at a specific time may not always come from the same vendors. This proliferation of

software and hardware platforms has fueled the push for interoperable software especially CASE
tools, SEEs and other software representing a substantial investment in capital and training time.

CASE tools and SEEs must adapt to a wide range of software and hardware platforms and work

with other vendors’ software in order to compete in the evolving marketplace.

One means of supporting interoperability is the use of standard framework architectures.

SEE frameworks include the supporting capabilities available to all CASE tools running in a

particular environment. Primarily framework capabilities support inter-tool communication,

integrated operation and tool-user communication. If a tool developer can count on the

availability of capabilities from the SEE framework, the developer does not have to duplicate

those services in the tool. Standard framework architectures also isolate those parts of the SEE
which depend on specific hardware and software. If the CASE tools use only framework

capabilities or services as a platform, then only the framework software must be interoperable.

4



However, SEEs are not a panacea. Each software development organization must learn

to evaluate its own development needs and the SEEs currently on the market to find the best fit

between product and organization[17, 26]. The purpose of evaluating SEEs is to establish how
well different SEEs meet the customer organization’s needs. An organization’s needs include

providing support for both existing software development processes and long term organizational

goals for evolving processes. Therefore, a SEE assessment should include establishing what the

current capabilities of an individual SEE are and how difficult the SEE is to expand or upgrade

to meet expected future needs of the organization.

SEE technology can provide benefits to a software development organization only if the

technology reflects the needs of that organization. While CASE tools have received a great deal

of publicity, most organizations purchasing CASE tools do not use the tool after 6 months [16,

18]. This is largely due to a mismatch between tool functionality and organizational need. One
reason for this mismatch is that few software development organizations use a consistent software

development methodology. An organization should have a defined software development

methodology in place before seeking tool support for that methodology [16, 21, 26]. For an

organization to successfully use a SEE, it is even more important that the organization have a

software development methodology before choosing the components to form a SEE supporting

it. For a software development organization to successfully integrate a CASE tool into its

operation, management must commit to supporting both the CASE tool or SEE and its software

development methodology. For a SEE to be useful, it must match the organization’s needs since

a fully populated SEE can potentially play a role in all phases of the organization’s software

development process and the management of that process [26].

While there are many CASE tools on the market, a software development organization

will find few good tools that support any particular software development process, and there are

very few full software engineering environments or SEE frameworks. This SEE shortage is due

to the relatively new nature of the area and the long lead time required for the development of

complex software products. Also, standards for such products are rapidly evolving changing the

requirements for SEE products which further lengthens development time.

5



Section 3: Software Engineering Environment Characteristics

The important characteristics for assessing and evaluating a SEE are those affecting its

immediate usefulness to the software developer and its capacity for expansion and upgrading in

the long term. The usefulness of the SEE to the developer depends on whether the SEE provides

the functionality the customer needs, how that functionality is integrated, how tailorable the SEE
is to the customers needs and how well the SEE performs. The long term capacity of a SEE for

expansion and upgrading depends on the structure of the SEE and its adherence to the use of

standard interfaces which SEE vendors will continue to use in the future.

Therefore, the significant characteristics for the assessment and evaluation of SEEs are

the functionality, integration mechanisms, and structure of the SEE. The functionality of the SEE
refers to the range of current capabilities available for the SEE and the future expected

improvements and additions to the SEE. The SEE’s integration mechanisms determine how easily

the tools making up the SEE can work together and how easy it is to add new tools to the SEE
while maintaining the same ease of use. The structure of the SEE refers to how separable the

SEE framework providing the integration mechanisms is from the tools providing the

functionality of the SEE. If the framework and tools are separate, the tools are easier to adapt,

change or upgrade without affecting other parts of the SEE. How well the SEE performs its

intended functions will depend on the structure of the SEE, its integration mechanisms and what

kind of functionality it provides.

3.1 SEE Structure

Because a SEE is a complex software package providing a variety of capabilities in

various combinations, there is no one required architecture for a SEE. However, there are

implications for the integration, performance, interoperability and modification of a SEE
depending on how separable the SEE framework capabilities are from the rest of the SEE. The

SEE framework consists of "the [relatively] fixed infrastructure capabilities which provide support

for processes, objects, or user interfaces" [24] as defined in the National Institute of Standards

and Technology (NIST)/European Computer Manufacturers Association (ECMA) Reference

Model for Frameworks of Software Engineering Environments (NIST/ECMA Framework Model)

[24]. The SEE’s structure consists of these framework capabilities, their relationship to the rest

of the SEE, and the interface standards used to access them.

3.1.1 Frameworks: background and definitions

The SEE framework encapsulates the tools providing the capabilities for the tools to

communicate with each other and with the user. These communication capabilities are essential

for tool integration and process management. The framework can provide key integration

capabilities for the SEE allowing for the establishment and automatic enforcement of desired

relationships among the tools and software engineering activities. The framework can provide this

support through a repository for the software engineering process products, a set of standard

interfaces for using that repository, tools relating to the administration of the framework, and

6



tools for controlling and reinforcing management polices. A SEE can enforce a methodology

through connections between tools requiring developers to complete or test certain software

development products before using the next tool on those products. The SEE’s repository could

support requirements on the connections between tools and could automatically derive data about

the product of one tool for use in another. The SEE framework can potentially provide the

capabilities to support platform, process, presentation, data and control integration. The key

framework elements supporting tool integration and process management in a SEE are a

repository, a consistent user interface, inter-tool communication and SEE configuration

administration support.

A key framework element is the use of a repository with standard interface support and

agreed schemas for data generated and stored by all the tools in the SEE. Such a repository can

store the products of all the tools making them available to other SEE tools as necessary. This

retrieval process can support the software development process by reformatting the product of

one tool for the use of another, deriving information about the product of one tool for use in

another, automatically sending messages to tools about the status of a project and providing a

standard place to find particular types of data. Storage and retrieval of software development

artifacts can also include making those artifacts available for reuse on future projects. Similarly,

future projects can make use of automatically collected management or process information for

comparing projects.

Another key framework element is a user interface package with a standard interface and

conventions for screen layout and user interaction. A similar user interface across all the tools

reflecting an agreed model of user interaction makes using the tools much easier. The user can

apply knowledge gained using one tool to the other tools. Similarity of user interfaces can also

make the SEE appear to move from one tool to another easily.

A third key framework element is the inter-tool communications mechanism with standard

conventions for types of messages tools can send, actions tools can take in response to messages

or other types of communication between tools. The communications mechanism can support the

integration of new ii>ols. For example, the SEE can restrict intertool communication to messages

passed between tools or support broadcast messages available to any tool. Whatever the

mechanism for sending messages, the messages actually sent have to meet conventions that the

tools can process and act on.

A fourth key framework element is the use of tools supporting framework and

configuration administration for the SEE and for determining, controlling, measuring and

enforcing the use of software engineering processes. By providing for framework and

configuration administration to tailor a SEE to a given set of requirements, the SEE user can

create the best environment for his software development process. Similarly, by providing for

control and enforcement of software engineering processes, managers can gain control of project

planning and scheduling and have a better understanding of what processes work in a given

organization.

7



3.1.2 NISTIECMA Reference Model for Frameworks of SEEs

The NISTIECMA Reference Model for Frameworks of SEEs [24] (NIST/ECMA
Framework Model) provides a comprehensive description of SEE framework capabilities. The

NIST/ECMA Framework Model is "a conceptual (and functional) basis for describing and

comparing" SEE frameworks [24]. The NISTyCCMA Framework Model distinguishes between

the tools supporting development tasks and the framework encapsulating the tools and supporting

the developers use of those tools. The purpose of the NIST/ECMA Framework Model is not to

describe the capabilities of a full software engineering environment. The functionality of the

software development tools is not part of the model. Thus, the NIST/ECMA Framework Model

assumes a SEE consists of a framework surrounding software development tools supporting the

software engineering process.

Edition 3 of the NIST/ECMA Framework Model contains descriptions of functions or

capabilities termed services. There are 66 services grouped into 7 major service groups. The

major service groups contain services which support the use of a common resource, support a

particular user role or have some other feature in common. The definitions of these services and

groups are taken from the final draft of Edition 3 of the NIST/ECMA Model which NIST and

ECMA will publish in 1993. Sections A.4 and A.5 contain the definitions of all the NIST/ECMA
Framework Services. The major service group definitions follow:

Object Management Services - The general purpose of the object management services are the

definition, storage, maintenance, management, and accessing of object entities and the

relationships among them in a repository.

Process Management Services - The general purposes of the Process Management Services in

a SEE are the unambiguous definition and the computer-assisted perfomiance of software

development activities across total software life cycles. In addition to technical development

activities, these potentially include management, documentation, evaluation, assessment, policy

enforcement, business control, maintenance, and other activities.

Communication Services - This service provides a standard communication mechanism which

may be used for inter-tool and inter-service communication. The services depend upon the form

of communication mechanism provided: messages, process invocation and remote procedure call,

or data sharing.

User Interface Services - The user interface services define a standard user interface all tools

can access for user-tool communication with a consistent look and feel across the entire SEE.

Operating System Services - The set of underlying operating system and platfonn services

supporting the framework services.

Policy Enforcement Services - The reference model uses the term “policy enforcement” to

cover the similar functionality of security enforcement, integrity monitoring, and various object

8



management functions such as configuration management. The framework reference model

regards security as a service crossing many of the boundaries of the reference model’s major

service groups.

Framework Administration and Configuration Services - A SEE framework has to be

carefully administered because its precise configuration may be constantly changing to meet the

changing needs of the software development enterprise. These services support the framework

administrator’s activities in controlling the SEE.

The NIST/ECMA Framework Model is a comprehensive guide to the services that a SEE
framework can provide. Every SEE framework does not have to include every service. Particular

user communities or tools may not need every service. However, the failure to provide a

framework service has implications for the types of tools, tool functionality, and/or tool

integration that the SEE will support and may limit the capacity of the SEE in the long term.

3,1.3 Implications of framework choices

The structure of the SEE determines whether the user can add new tools to the framework

easily, which tools the user can add and the extent of the integration possible among the tools.

The SEE structure consists of the relationship of the framework capabilities to the rest of the SEE
and the interface standards used to access the framework. Using a framework separable from the

tools allows for the addition of tools to the system, with minimal system disruption, as new tools

or upgraded tools appear in the marketplace. If the framework capabilities are not separate from

the tool functions, the user will find it difficult to add, replace or upgrade tools. The changed or

added tool must provide the framework services needed to integrate it with the existing tools

instead of relying on the provided framework services.

Similarly, using standard, non-proprietary interfaces to the framework capabilities can

enhance the range of tool choices in the long term. Proprietary interfaces to a SEE limit its future

extension or evolution to products available from the specific supplier(s) owning or licensing that

interface. If those software vendors leave the market, the customer cannot upgrade his system.

Choosing products meeting an open standard allows the customer greater flexibility because any

vendor can make tools to that standard. Because no one standard has achieved industry

dominance, the customer must consider the competing standards carefully since the standard

chosen determines what tools he can add to the SEE in the future.

3.2 SEE Functionality

Because a SEE is a complex software package providing a variety of capabilities in

various combinations, there is no one set of functions a SEE must provide. Different software

development organizations should tailor their SEEs with different levels and types of support for

different phases of their software engineering process. The maturity of the organizations’ process

and the type of software under development are just some of the criteria influencing the software

development organization’s tool selections.

9



3.2.1 Populated frameworks: background and definitions

Populated frameworks are SEE frameworks with tools added to support at least some of

an organization’s software development activities. A full SEE supports the entire software

development process including all the software development activities and the management of

those activities. There are no full SEEs at the present time and most software development

organizations do not need and do not have a mature software development process that could use

the functionality of a full SEE.

Populated frameworks contain the tailored set of tools an organization needs to perform

its software development process. In order to populate a framework with useful tools, the

software development organization must be able to assess its own software development process

and activities well enough to define the support these activities can successfully use [26]. These

tools provide the functionality of the SEE.

3.2.2 NGCR PSESWG Model of Project Support Environments

A comprehensive listing of SEE functions is provided in the Next Generation Computer

Resources Program (NGCR) Project Support Environment Standards Working Group (PSESWG)
Reference Model for Project Support Environments (PSE) (PSESWG Model) [25]. The US
Navy’s NGCR Program is intended to fulfill the US Navy’s need for standard computer resources

through the selection of interface standards. NGCR established the PSESWG to examine interface

standardization within project support environments. PSESWG ’s long term goal is the

identification of a profile of industry accepted interface standards for PSEs that the Navy can use.

These standards will reflect the Navy’s need to support a wide range of project development

activities within a single environment and will guide Navy procurement of PSEs.

To further its goal of selecting compatible interface standards, PSESWG developed a

reference model for PSEs. PSEs are environments supporting the engineering, development and

maintenance of computer-based systems. These systems could contain a mix of hardware and

software components. Most definitions of SEEs limit SEE functions to those supporting software

development and processes in the software lifecycle. Another difference between the PSESWG
Model and most SEEs is that the PSESWG Model describes a PSE for mission critical systems;

therefore, the PSESWG Model includes capabilities not necessary for the development of most

software. While the mission of NGCR PSESWG was to support Navy activities, its work benefits

all SEE customers by providing a standard reference model.

The PSESWG Model includes the functions of a full SEE. It is "a conceptual description

of the functionality provided by a [PSE] ... bounded neither by a particular application domain

or lifecycle paradigm." [p. 5, 25] Like the NIST/ECMA Framework Model, which PSESWG
incorporates, this model defines capabilities for describing and comparing SEEs and SEE
components. The two models take the same approach to describing the capabilities associated

with components of SEEs differing primarily in scope. The NIST/ECMA Framework Model

describes SEE frameworks while PSESWG describes full SEEs putting the NIST/ECMA

10



Framework Model into a broader context.

The PSESWG Model describes the functions or capabilities of a PSE as services in a

similar manner to the NIST/ECMA Framework Model. Both reference models contain services

clustered in service groups. The primary difference between the service descriptions in the

PSESWG and the NIST/ECMA Models is in the granularity of those descriptions. The

NIST/ECMA Framework Model is more fine-grained than the PSESWG Model. The

NIST/ECMA Framework Model typically describes a major SEE component or tool using a

service group. The PSESWG Model typically describes a major SEE component or tool with a

single service while PSESWG service groups typically correspond to related collections of tools

or toolsets.

The PSESWG Model divides a PSE into 5 major service groups related to the role of the

user of those services and the function of the services. These service groups follow:

- Technical Engineering Services - used by project developers

- Technical Management Services - used by senior project personnel/project leaders

- Project Management Services - used by project managers/planners

- Support Services - for all users

- Framework Services - used by system administrators and by the tools

The definitions of the 5 major service groups and the sub-groups contained in each follow. These

definitions paraphrase the ones in the NGCR PSESWG Reference Model for Project Support

Environments, Version 1 [25]. Appendix A contains descriptions of all the PSESWG Model

services.

The Technical Engineering Services support the actual specification, design,

implementation and maintenance of systems. This service group contains three major sub-

groupings: system engineering services, software engineering services and life-cycle process

engineering services. The system engineering services includes the tool capabilities used to

develop systems including substantial hardware as well as software components. The software

engineering services include the capabilities associated with most current CASE (Computer Aided

Software Engineering) tools. The life-cycle process engineering services are those capabilities

supporting the definition and use of good software development processes. While tools providir

process support do not yet exist, the goal of including the life-cycle process support services .

.

to show the need for these tools and to show how they would be part of future PSEs or SEEs.

Descriptions of all the services defined as part of the technical management services are given

in Section A.l.

The Technical Management Services support the senior project personnel in collecting

data necessary for the management of the product. There are 4 services within this service group:

the configuration management service, the change management service, the reuse management

service, and the metrics service. The configuration management service identifies, documents and

controls the functional and physical characteristics of the work product of the PSE to ensure the

11



traceability and reproducability of the product. The change management service supports the

creation, evaluation and tracking of change requests used to modify a work product of the PSE
under configuration control. The reuse management service supports the storage, examination and

reuse of project assets such as components of the requirements, design, code or test cases used

in a previous project. The capabilities of current tools in the reuse area are very limited but there

is a great deal of research on this subject. The metrics service supports the collection and analysis

of data about the work product of the PSE. Section A.2 contains a more detailed description of

these services.

The Project Management Services support management by providing the capabilities

necessary for the management of the resources used in generating the work product of the PSE.

The project management services consists of 4 services; the scheduling service, the estimating

service, the risk analysis service and the tracking service. The scheduling service provides the

capabilities needed to schedule the resources and tasks used to generate the project. The

scheduling service supports the application of chronological constraints to a project. The

estimating service supports qualification, analysis and prediction of project cost and resource

needs. The estimating service supports the application of resource constraints to a project. The

risk analysis service supports the comparison and analysis of actual data about the development

of the project with projected values and of actual data about the work product with expected

values. The tracing service supports the correlation of estimated cost and schedule data with

actual project performance. Section A.3 contains a more detailed description of these services.

The Support Services are those services providing capabilities that all the users need at

some time. This service group contains 5 major services or service groups: the common support

services, the publishing service, the presentation preparation service, the user communication

services, and the administration services. The common support services define the capabilities

for manipulating standard representations of various types of data such as textual or numeric data.

The publishing service provides the capability to create and print documents. The presentation

preparation service provides the capability to create materials for presentations. The user

communication services support interaction between PSE users. The administrative services

provide the capabilities for the user to interact with the PSE as a whole, to configure the PSE,

and to tailor the PSE to specific needs. The complete list of definitions for the services contained

in the support services group are given in Section A.4.

The Framework Services support the tools populating the PSE and provide the

infrastructure connecting those tools to each other and to the user. The framework provides the

integration mechanisms for the PSE. The definitions for the framework services are taken from

the NIST/ECMA Reference Model for Frameworks of Software Engineering Environments [24]

and the Draft Guide to the POSDC Open Systems Environment [10]. The framework services

group contains 8 service groups: operating system services, object management services, policy

enforcement services, communication services, user interface services, user command interface

services, and network services. The operating system services define those capabilities typically

associated with an operating system. The object management services define those capabilities

associated with the definition, storage, maintenance, management, and access of objects. For a

12



PSE, these objects include the components of the work product or information about the work

product. Policy enforcement services support the application of security and integrity constraints

to objects. The process management services support the definition and performance of product

development activities. The communication services define the inter-tool or inter-service

communication capabilities. The user interface services define a set of capabilities for tools to

use for communicating with the user and can provide presentation integration. The user command
interface services provide a common interpreter for a user to interact with an environment. The

network services provide for the transfer of information within a distributed environment. The

definitions for the services contained in these subgroups are in Section A. 5.

3.2.3 Constraints on functionality choices

While the purpose of the SEE is to provide increased software development support to

users, the choice of frameworks, interface standards and integration standards will have a long

term effect restricting the choice of functionality easily available to the SEE customer. The choice

of framework limits the tools to those the framework supports. If the framework cannot provide

the necessary platform for a tool, the tool is unavailable. The choice of interface and integration

standards limits the tools to those compliant to the standards. If the customer wants non-

compliant tools, he must obtain special purpose interfaces for the selected tools.

3.3 SEE Integration

The purpose of combining tools into SEEs is to provide the functionality that individual

tools used separately do not possess such as seamless support for products across all phases of

the software life cycle. Integration is the glue allowing tools and other SEE components to

combine. Integrated SEEs (ISEEs) are collections of CASE tools connected by one or more

integration methods. How to define, describe and measure integration in SEEs is a subject of

controversy.

However, to assess SEEs, the evaluator must consider how well candidate SEE tools and

frameworks interact. Two SEEs supporting identical life cycle functions but integrated to a

different extent are very different SEEs. If the SEE does not provide strong integration, the user

could end up wasting valuable time substituting his efforts for some of the missing integration

capability. This failure could lead to abandonment of the SEE. The variety of SEE integration

definitions and measurement techniques confuses the potential SEE buyer since conflicting claims

about what is necessary for good SEE integration abound.

3.3.1 Integration definitions

One method of categorizing integration strategies is as vertical or horizontal integration

strategies. This categorization relates to the function of the tools. Vertical integration means that

the SEE integrates tools over a restricted class of functions operating over a short period of the

software lifecycle. For example, the SEE may integrate tools only if they are used in the same

or adjacent life cycle phases. Tools can share information only if it is necessary to complete a

13



specific phase or go to the next phase of the life cycle. Horizontal integration means the tools

are integrated across the multiple phases of the life cycle. For example, a configuration

management tool is a horizontally integrated tool if it creates versions of the product of any life

cycle phase and produces consistent versions of the code and documentation making up a specific

version of the product under development.

Another categorization of integration strategies is to describe them in terms of the function

or purpose of integrating the tools. ISEE researchers [3, 6, 27, 28] have identified five

interrelated types of tool integration based on the shared functionality or the shared product of

the integrated tools. These integration types are platform integration, presentation integration, data

integration, control integration, and process integration. Wasserman [28] has also defined different

levels of integration describing the extent of the integration for some of the different types. An
actual tool integration method or model used in an ISEE should support more than one of these

types, but may provide different levels of support for different types of integration.

Platform integration is the integration mechanism allowing SEEs to interoperate. The

platform integration mechanism allows all users of a SEE in a workstation environment to receive

the same view of the SEE. Wasserman [28] defines platform integration as "the set of services

that provide network and operating system transparency to these applications." The SEE
framework should provide or supplement a good operating system providing these services

insulating the CASE tools from the hardware and software platforms.

Presentation integration is the integration mechanism enforcing consistency on the user

interfaces of all CASE tools in the SEE. A consistent set of user interface conventions makes use

of the CASE tools easier. Platform integration supports presentation integration since using the

same window system or window manager clearly overlaps with the interoperability needed for

platform integration. Part of providing interoperability is providing a set of services linking the

user interface requirements of the CASE tools and the windowing system available as part of the

software platform.

Data integration is the integration mechanism allowing tools to share information. Tools

can work together only if they can exchange information. Researchers [27] have primarily

suggested three methods for data integration. These are the direct transfer method which transfers

information through pipes or other mechanisms, the use of a common interface package to

modify transferred information, or the use of a shared repository to indirectly share information.

Sharing information also requires that tools agree on a standard format for sending and

interpreting the information from the other tools. Use of a shared repository requires a set of

shared schemas and conventions for locating various SEE products within the repository,

information contained in the SEE products, and interpreting information in the repository.

Control integration is the process tools use to exchange and enact or execute "events."

Events can be the starting or ending of particular jobs or tasks. The tool receiving the notification

can then be directed to or automatically start a new task. One method of passing event

information is through the use of a messaging facility. For example, the Object Management

14



Group (OMG) has developed a standard for the Object Request Broker (ORB) which passes

control integration messages. Tools indicate to the ORB that they can receive and send specific

types of messages. The ORB transfers the messages provided to it among the tools registered to

send and receive them.

Process integration is the integration of the software development tools with tools

supporting the software engineering process. Integrating these two types of tools requires the

other types of integration as well as new integration methods. Process integration is a new area

with very few products, standards for products, or definitions of what products should be. Process

integration requires that tools support the user’s defined process by relating tools involved in the

same process step, exchanging process event information among tools and imposing process

required constraints on the use of tools or the products of tools. In the future, SEE process

integration mechanisms may be layered on top of control and data integration mechanisms.

Thomas and Nejmeh [27] provide an alternative way of describing types of integration.

They view integration as the definition of relationships between pairs of tools. Each relationship

is of one of Wasserman’s types: process, presentation, control or data integration with associated

properties. The "value" associated with each property is the extent to which the relationship or

integration method meets the integration goal associated with that property. For example, the

properties of a control integration relationship are provision and use. The provision property of

a control integration relationship is the extent to which a tool’s services meet the goal of being

used by other tools in the environment. Similarly, the use property defines the extent to which

a tool uses the services provided by other tools in the environment. The data integration

properties are interoperability or the amount of work needed for a tool to manipulate data

produced by another tool; nonredundancy or the amount of duplicated or derivable data managed

by a tool; data consistency or how well the tools cooperate to maintain semantic constraints on

the data; data exchange or how much work is required to make nonpersistent data usable by

other tools; and synchronization or how well tools communicate changes in the data. The process

integration properties are process step or how well tools combine to support a process step; event

or how well tools agree on the events required by a process; and constraint or how well tools

enforce a constraint. The presentation integration properties are appearance and behavior or the

extent to which tools use similar screen appearances and interaction behavior and interaction

paradigm or the similarity between tools’ metaphors and models.

These varying ways of describing tool integration have an impact on SEE assessment.

Integration is the key element in a SEE which transforms the SEE from a collection of related

tools into a programming environment providing a range of useful functions in support of

software development. To compare SEEs, the evaluator must select a method of defining and

rating integration between tools and collections of tools. For the assessment method presented

in this report we will rely primarily on Wasserman’s definitions of types of integration [28] for

describing significant integration areas and capabilities.

3.3.2 Frameworks and integration

15



While the NIST/ECMA Framework Model does not address integration issues directly,

many of the NIST/ECMA framework services are those capabilities required to support tool

integration. The NIST/ECMA Framework Model defines services supporting inter-tool, platform-

tool and user-tool communication and operation. These services insulate the tools from each other

and from the hardware and software platforms, allowing easy upgrading and interoperability.

Integration measures define how tools should work together to support specific SEE functions.

The framework services define specific capabilities while integration measures define the overall

capacity of the SEE to support integration in a particular area.

The NIST/ECMA and PSESWG framework services describe key SEE elements

supporting the five integration areas defined in [28]. While the framework services do not

describe integration measures and the integration measures do not refer to specific framework

services, it is possible to pair types of integration with the key framework services allowing a

SEE to support that type of integration. One pairing of framework services and integration areas

follows in Table 1.

Integration Type Primary Supporting Reference

Model Service Groups

Platform Operating System Services

Networking Services

Process Process Management Services

Policy Enforcement Services

Control Communication Services

Data Object Management Services

Presentation User Interface Services

User Command Interface Services

Table 1: Reference Model Service Groups Supporting Integration Types

While the service groups do not correspond as neatly to specific integration areas as Table 1

suggests, the integration areas are not completely separable either. A SEE framework component

can easily straddle several service groups and integration areas. For example, a data repository

for a SEE can support data, platform and control integration and can provide operating system,

object management and process management services. However, the table does list the services

most closely related to or most likely to provide most of the support for the specific integration

areas independent of specific architectural considerations.

3.3.3 Defining the extent of SEE integration

The extent to which a SEE supports a specific type of integration is not an easily

16



measurable quantity; however, methods for classifying the extent of integration or levels of

different integration types exist. Brown and McDermid [6] have proposed five levels of tool

integration which are carrier, lexical, syntactic, semantic and method. An example of carrier level

integration is the direct transfer method of data integration. Carrier level integration provides a

file format that is readable by each tool. This is the minimal form of integration between tools.

Lexical integration exists in tightly coupled tool families using a common schema among

themselves. Like carrier level integration, lexical level integration requires that tools contain the

information necessary to interpret any information passed to them. Syntactic level integration

introduces common representations or database schema languages which all tools use. Semantic

level integration introduces common schemas or conventions for providing shared meaning in

inter-tool communication. Method level integration enforces process required interactions on the

tools. Currently there are no products or standards supporting method level integration.

Wasserman [28] provides specific definitions of levels of integration for control,

presentation and data integration. These level definitions provide area specific definitions for the

first four levels of Brown and McDermid’s abstract integration levels [6]. Table 2 provides

Wasserman’s definition of specific capabilities at different integration levels for data, control and

presentation integration and how they can be related to Brown and McDermaid’s abstract

definitions of level integration.

Integration Type Carrier Lexical Syntactic Semantic

Data explicit message

passing

using shared files use of the same

database

use of the same

object base

Control explicit message

passing

daemons triggers message

servers

Presentation use of the same

window system

use of the same

window manger

use of the same

toolkit

standard semantics

for the toolkit

Table 2: Definitions of Integration Levels [28]

Wasserman defines tool integration in a SEE by its position in a three-dimensional space in

which each dimension defines the extent to which the SEE integrates the tools in terms of

presentation, control or data.

3.3.4 SEE integration standards

A user can tailor a good SEE through his choice of tools with which to populate the SEE,

but the integration or interface standards used in the SEE framework determine the future options

of the buying organization. If the integration standards are open and non-proprietary, the

customer has potentially a large number of vendors to choose from providing better product value

and selection. Proprietary integration standards limit tool selection to tools from only one or a

small consortium of vendors. Table 3 below provides the current standards available for

integrating tools in a SEE. Standards in bold are non-proprietary. Currently, there are no precise

17



definitions of what process integration requires and what a standard for process integration would

be.

Integration Type Carrier Lexical Syntactic Semantic

Presentation X Window System X Window Manager X Lib MOTIF
OpenLook

XVT

Data POSIX CAIS-A PCTE PCTE + Agreed

UNIX ATIS Schemas

Control Intermpts BMS
CORBA
Tooltalk

Process Not defined Not Defined Not Defined Not Defined

Platform POSIX
UNIX

Table 3: Standards/Products Supporting SEE Integration

18



Section 4. Software Engineering Environment Assessment Methodology

The purpose of assessing a SEE is to describe accurately with reference to an accepted

model the extent of the SEE’s capacity to support and integrate a range of CASE tools. Assessing

SEEs requires defining SEE capabilities and the means of characterizing those capabilities. This

assessment method will use the definitions for SEE framework capabilities in the NIST/ECMA
Framework Model [24], the definitions for SEE capabilities in the PSESWG Model [25] and the

integration definitions from [3, 6, 27, 28]. NIST, ECMA, and PSESWG have defined capabilities

for SEEs and SEE frameworks in general terms. The goal of these models is a single set of

defined capabilities for comparing these products and defining needed interfaces between

capabilities. NIST, ECMA and PSESWG have also provided mapping guidelines [19, 24, 25] for

relating SEEs to the reference models. Because no standard architecture exists for SEEs and SEE
capabilities can be spread across a number of different tools in different configurations, this

assessment strategy describes SEEs and SEE interfaces in terms of abstract services rather than

a specific architecture or integration strategy.

While there is no reference model comparable to the NIST/ECMA or PSESWG models

for SEE integration, definitions of levels and types of integration exist in [3, 6, 27, 28] which are

valuable for classifying the integration found in SEEs or parts of SEEs. These classifications are

useful for defining how well the customer should expect the components of the SEEs to work

together. SEE integration is measurable and comparable in two ways by the type of integration

mechanisms present (e.g., data, presentation, etc.) and by the extent of the integration (e.g.,

shared formats).

4.1 Overview of Software Engineering Environment Assessment Process

This SEE assessment process reflects the view of SEEs as frameworks populated with

tools and focuses on assessing three significant characteristics of the SEE: its structure,

integration capacity and functionality. It is how the structure and integration mechanisms connect

the tools and framework to achieve a range of functionality that defines the usefulness and

capacity for future expansion of the SEE. The SEE structure defines the potential capacity of the

SEE to support tools or integration mechanisms. The SEE functionality defines what the SEE can

immediately do for the user. SEE integration is the glue which connects the tools and a

framework into a single SEE. Describing SEE capabilities using defined, accepted terminology

is key to describing what customer organizations need, what the marketplace can supply, and

what gaps exist between the two. The steps of the assessment method and the results of each step

follow in Figure 1:

19



1) Identify candidate SEE frameworks

Result: List of candidate frameworks and documentation describing

their capabilities

2) Map framework capabilities to NIST/ECMA Framework Model

Establish how separable the framework and tools are

Identify any gaps in the framework

Result: Mapping of each SEE framework to the NIST/ECMA Framework Model

Report analyzing each mapping

3) Identify interfaces between framework and tools

Identify standards used for those interfaces

Identify any other integration protocols used

Result: List of interface and integration standards and protocols

that each SEE framework supports

4) Identify tools compatible to framework/integration standards

Result: List of candidate tools compatible to each SEE framework

5) Map tool options to PSESWG Reference Model

Establish range of tool function available

Establish range of tools available for each function

Result: Mapping of each SEE compatible tool and tool set to PSESWG Model

List of tools by type available for each SEE framework

Analysis of range of tools of each type available for each SEE

Figure 1: SEE Assessment Process

This assessment process establishes the capacity of the SEE framework to support

integrated tools and the range and capabilities of the tools supported by each type of SEE
framework. The rest of this section describes the assessment process in greater detail.

4.2 Identify Candidate SEE Frameworks

The SEE assessor (e.g., the individual or group performing the SEE assessment) can

identify candidate environments by investigating the vendor literature, SEE surveys and other

published evaluations [i.e., 14, 15], and contacting vendors directly. Obtaining information on the

candidate SEEs sufficient to assess the SEE frameworks requires getting detailed information

from the vendors, from other users of the SEE and, if possible, from hands-on testing of the

SEES.

The result of this step of the SEE assessment process is a list of the candidate SEE
environments and documentation describing those environments’ capabilities.

4.3 Map Framework Capabilities to NIST/ECMA Framework Model

4.3.1 Purpose of reference model mappings

20



Because one of the purposes of developing the NIST/ECMA and PSESWG reference

models is to provide a mechanism for defining the capabilities of specific SEEs, the reference

models are useful for comparing and assessing SEEs. By mapping actual SEEs to the reference

models, it is possible to define what capabilities the SEE possesses. Figure 2a shows how
mapping the SEE to the reference model can indicate which groups of services the SEE includes.

Defining the capabilities of SEEs and comparing SEEs directly is difficult because they are

complex software systems with varying internal structure providing a variety of different services

in various configurations. The reference model allows the assessor to relate specific portions of

SEEs to a set of criteria defined in terms of the service rather than a particular architecture which

may not apply. Figure 2b illustrates how several SEEs can map to overlapping sets of services.

One purpose of mapping SEEs to the NIST/ECMA Framework Model services is to

indicate which framework services are not present in a SEE. The lack of a framework service

indicates possible limits on the future usefulness of the system. While this lack could be

deliberate if the ability is not necessary in the SEE’s intended market, a missing framework

service indicates a possible limitation on the extent of integration or cooperation among SEE
components or between components and the customer and may limit the future SEE expansion.

It is important for the customer to realize the long term implications of missing any firamework

services. Alternatively, the customer may conclude that lacking a particular service is not

important for his software development activities. In Figure 2a, the missing services are

highlighted with an ’X’.

Figure 2: Mapping Illustrations

(Note: Figure adapted from those in [29])

21



4.3.2 Using the mapping guidelines

The mapping process requires the assessor to understand the reference model and the SEE
product. The mapping process maps the services from the NIST/ECMA Framework Model to the

capabilities of the target SEE product. The NIST/ECMA Framework Model is fine-grained and

one reference model service may be a subset of one SEE framework component. Figure 3a

illustrates this type of mapping. Alternatively, one framework service may be scattered among

several SEE components. Figure 3b illustrates this type of mapping. [19] provides guidelines for

mapping SEEs and SEE components to the NIST/ECMA Framework Model.

Figure 3: Correspondence of Services and SEE Components

(Note: Figure adapted from those in [29])

The NIST/ECMA Framework Model services describe complex capabilities in detail and

from a variety of viewpoints (e.g. conceptual, operational). The framework model provides a

structure for these descriptions by defining them in terms of dimensions. Each dimension defines

a view of the service. Mapping SEE product capabilities to the dimensions generates more precise

descriptions of the SEE product’s capacity to provide the service by structuring the description

of the capacity in the SEE. The definitions of the dimensions follow:

Conceptual - This dimension describes the semantics (i.e., functionality) of a service without

reference to either how it is implemented or to the ways in which it may be made available to

other services or to users. The reference models do not define a language or a notation for

creating the conceptual description.

Operations - This dimension defines the set of operations that implement the functionality

22



described by the conceptual dimension. It does not include the explicit format (see external

dimension) or the implementation details (see internal dimension) of that functionality.

Rules - Rules associated with the objects and operations of a service constrain the states the

objects may reach and the changes to states that operations may make. Pre- or post-conditions

or restrictions on the use of objects or operations are examples of rules. In addition, some

services may provide the ability to define additional rules and associate them with that service.

For example, a service may ensure a manager manages no more than five programmers or

disallow the redefinition of access controls.

Types - This dimension describes the possible types of objects (or data model) used by that

service, information about these types (metadata), as well as the objects (instances of these types)

used in the service. Type information may also be found in at least three other places: objects

needed by the “operations,” objects needed in the “implementation,” and objects provided

externally for use in other services. It may be useful in some cases to make a distinction between

instances, types, and information about types (metadata).

External - This dimension discusses how the service is made available for use. Other framework

components, tools (or application programs), or users may use the service. For example, a query

service for an information repository may provide a procedural interface, an embedded query

language, or a full tool for user support.

Internal - This dimension discusses implementation issues. In general, a good design separates

implementation issues from the functionality provided. Services available to tools executing

within the SEE might be supplied by a specific framework implementation, by the underlying

native operating system upon which the framework executes, or by other tools executing within

the framework. In all of these cases, these services are considered to be supplied by the

framework and the internal dimension describes the underlying implementation.

Relationship to Other Services - This dimension describes how one service might interact with

another service; this may include examples of typical service interactions.

Examples - This dimension contains specific examples of the service for illustration.

To map the framework services, the assessor must go through each framework service and

look for an equivalent SEE framework capability. The assessor must then restructure the

description of that capability to match the dimensions. However, it is not enough to note that the

SEE framework possesses the capacity associated with a service; the assessor must note what

SEE component provides the framework service. The relative locations and possible

recombination of SEE services are important to SEE assessment.

The assessor may encounter several types of problems in mapping SEEs to the framework

model. First, the capabilities associated with a single framework service may be scattered among

several SEE components as Figure 3b illustrated. This scattering is important since the user will

23



have difficulty updating or replacing a service which the SEE does not provide in one place.

Second, CASE tools may duplicate some of the framework services. This duplication limits how
well the SEE can integrate that tool and may result in problems if the framework changes. Third,

a SEE component may include several very different SEE services as Figure 3a illustrated. This

is a problem if the services need separate updating. Fourth, the framework may include optional

components which the assessor will have to carefully identify as such and identify possible

different configurations of the framework. The specific choice of tools to combine into the final

SEE will change the outcome of the mapping; therefore, each tool or SEE component must be

mapped to the reference models separately. These mappings can then be combined into

configurations reflecting possible tool configurations. Generally, the assessor must be careful in

mapping services and SEE capabilities because the two will not provide an exact correspondence.

This lack of obvious correspondence requires the assessor performing the mapping to use his

judgement about service/capability correspondence.

Appendix C provides more information on performing mappings drawn from [19, 24, 25].

4.3.3 Results of the mapping process

The results of mapping the NIST/ECMA Framework Model to the SEE frameworks

should be a series of mappings showing

1) each possible SEE framework configuration

2) what services each configuration provides

3) which SEE components provide which SEE framework services

4) what SEE framework services are not provided in each configuration.

This information provides a good indication of how separable the SEE framework and tools are,

how replaceable or upgradable components of the SEE framework are, and what limitations the

framework has with respect to providing needed integration services.

4.4 Identify Interfaces Between Framework and Tools

Once the assessor has the SEE mappings, the assessor can identify the framework

interfaces. These interfaces consist of the connections between the framework and the tools and

should meet accepted standards. The SEE’s framework capabilities determine what types of

integration the SEE framework supports and the SEE’s interface standards define the extent of

the integration possible in each area. For example, a SEE framework may contain a data

repository, but the interface to that repository, whether it is ATIS, PCTE or some new standard,

defines how the tools can use the repository. The framework interfaces also define which tools

are compatible to and can use the framework.

If the framework interfaces are hard to identify, the framework is tightly coupled with the

CASE tools and the framework and tools are not easily separable components. If the framework

and tools are not easily separable then buying tools to expand the SEE or change its

24



configuration is difficult or impossible. The SEE is limited to those capabilities supplied by one

or a small group of vendors.

The result of this step of the assessment process is a list of the interfaces and interface

standards used to connect tools to the SEE framework or to each other. If the interface standards

are not publicly available, the entire SEE must be obtained from a single source and only limited

variations of the SEE’s capabilities may be obtainable.

4.5 Identify Tools Compatible to Framework/Integration Standards

Once the assessor has established the interfaces for the candidate SEE’s framework

components, the assessor can go back to the vendors and the literature and find all those tools

which are available for the SEE’s interface standards. As some standards become accepted, the

tool vendors and SEE framework vendors will tend to write tools for those standards. SEEs

designed for proprietary framework standards will always be limited to the tools available from

the owners of that standard.

The result of this step of the assessment should be a list of tools available which work

to specified interface standards.

4.6 Map Tool Options to PSESWG Reference Model

The assessor at this point in the process has a record of each SEE’s frameworks

capabilities and interface standards and can match those interface standards to lists of standards

compliant tools. The assessor needs to know the functionality available for a SEE with a specific

set of interface standards. The PSESWG Model [25] provides a list of the capabilities a PSE may
provide. Since a SEE is a specific type of PSE, the PSESWG Model defines the capabilities a

SEE might provide. Section 3.2 provides an overview of the PSESWG Model and Appendix A
provides a description of the PSESWG Model services.

Mapping all the tools compatible to a SEE framework to the PSESWG Reference Model

shows all possible ways the user can configure the SEE and the range of functionality available

for the SEE. There may be several tools which correspond to a specific service or there may be

no tools corresponding to a particular service. Many services described in PSESWG are not

necessary for every PSE and the assessor cannot expect every SEE to provide every service;

however, the mapping will show what tool capabilities are available for a particular SEE
framework. Figure 4 illustrates mapping the SEE tools to the PSESWG Reference Model.

25



The reference model mapping will not indicate anything about the relationship of tools

of the same type to each other. While two tools may provide the same basic service, they may
provide it very differently or support different integration standards. For example, an ANSI C
Compiler and a LISP Interpreter will both provide the capabilities of PSESWG’s Software

Generation Service, but they cannot substitute for each other. The assessor can compare tools of

the same type using one of the models of tool assessment and evaluation available. Appendix B
provides two examples of tool evaluation methods, and Appendix D provides sources of criteria

for assessing individual tools. The SEE assessment process assesses only the general capabilities

of the SEE, not the details of the individual tools.

The results of mapping the PSESWG Model to the SEEs should be a list of the tools

compatible to each SEE grouped according to the functions those tools provide as defined in the

PSESWG Reference Model.

4.7 Results of Assessment Process

The result of the overall assessment process for each identified SEE framework is an

assessment of the SEE in three areas provided by information generated during the process. These

areas and the information follow in Figure 5:

26



1) Structure: Mapping of the SEE framework to the NIST/ECMA Framework Model including

a) identification of possible SEE frameworks built from available components

b) identification of the capabilities provided

c) identification of the capabilities not provided

d) analysis of how separable framework components are from the tools

2) Functionality: Mapping of the tools available for the SEE to the PSESWG Reference Model

a) identification of the options available for populating the SEE
b) identification of the range of functionality provided for the SEE
c) identification of functionality not available for the SEE

3) Integration: Identification of interfaces and interface standards for the framework

a) identification of standards compliance

b) analysis of the extent of integration supported by framework

Figure 5: Results of Assessment Process

To summarize, the purpose of assessing a SEE is to describe accurately with reference to an

accepted model what the capacity of a SEE is to support and integrate a range of CASE tools.

This assessment process describes the SEE’s structure by mapping the SEE framework to the

NIST/ECMA Framework Model to isolate and define the framework capabilities of the SEE. The

assessment process describes the integration possible in the SEE by identifying the type and

extent of framework interfaces for the SEE. Finally, the assessment process describes the

functionality which the customer can add to the SEE by mapping the tools available for the SEE
to the PSESWG Reference Model.

27



Section 5: Software Engineering Environment Evaluation Methodology

As was stated earlier, the purpose of evaluating a SEE is to establish how well a SEE
meets the customer organization’s needs. Those needs include both immediate functional needs

in support of existing practice and long term organizational goals for evolving practices. A SEE
supports a strategy for satisfying both. For an organization to find a SEE evaluation useful, the

evaluation must relate the organization’s existing and desired practices to the SEE’s capabilities.

Therefore, a SEE evaluation should include establishing what the using organizations needs are,

what capabilities individual SEEs have and how well these SEEs can be expanded or upgraded

in the future to meet expected future needs of the organization [26].

5.1 Overview of the Software Engineering Environment Evaluation Process

The evaluation process builds on the assessment process by examining the SEE
capabilities in greater detail and relating them to the customer organization’s needs. The

assessment process considers three characteristics of SEEs: structure, integration and

functionality. The evaluation process broadens this examination of SEEs by establishing what

characteristics are important to the SEE customer and applies this information to testing the SEEs
for their applicability to the customers needs. The evaluation process uses the assessment process

as a starting point to initially assess the capabilities of available SEEs. The evaluation process

tailors that assessment to a particular organization. An overview of the steps of the evaluation

process and what each step produces follows in Figure 6:

1) Establish customer requirements

Define customer’s software engineering methodology

Define how customer wants SEE to support methodology

Define how customer expects SEE to change with evolving methodology

Result: Statement of how customer expects the SEE to support current

and evolving software development methodology in organization

2) Select criteria for evaluating candidate SEE components from customer’s requirements

Define test plan for criteria

Result: List of criteria for evaluating SEEs matching customer’s requirements

and plan for testing each criteria

3) Use Assessments to Select Candidate SEEs

Result: Assessments of SEEs defining SEE structure, integration and

range of possible functionality

4) Execute test plan on candidate SEEs

Result: Report of how candidate SEEs meet each criteria

5) Analyze test plan results

Result: Analysis of how well candidate SEEs are likely to

meet customer organization’s requirements and ranking

of candidate SEEs

Figure 6: SEE Evaluation Process

28



This model draws on IEEE 1209, Recommended Practice for Tool Evaluation [23], the Draft ISO

Recommended Practice for Tool Evaluation and Selection [11] and the STSC model of tool

evaluation [14]. Appendix B describes these models of tool evaluation.

5.2 Establish Customer Requirements

5.2.1. Prerequisites for effective SEE use

In order for an organization to effectively use a full SEE or a SEE supporting a large part

of the software development process, the organization must have a commitment to using a

software development methodology and have a clear role for the SEE in support of that process.

This requires the organization to have a clear definition of what its software development process

is. Many organizations do not have this knowledge [26]. A SEE supporting a software

development process which is new to an organization or not strongly supported by management

will not provide the desired productivity gains. Instead, the SEE will probably be abandoned [16].

New tools and methodologies will not by themselves bring order to a chaotic software

development process and will not help in on-going projects which are time critical [26]. The SEI

CMM Model does not take into account an organization’s tool usage for establishing its software

development maturity level until level 4 [20]. This late consideration reflects the need for

organizations to establish good practice before selecting tool support. Learning a new
methodology and learning to use CASE tools are both time and capital intensive efforts requiring

long term management commitment [16, 20, 26].

Because a new SEE represents a substantial organizational commitment in capital and

training time, a SEE should be usable over a long period of time. Tools, hardware, software

development methodology and organizational practices will change during that time. Therefore,

the organization should have long-term goals for the evolution of their software development

activities and a sense of where the larger software engineering community and SEE market is

heading. If the organization does not select a SEE with a view to its future needs in software

development support, the SEE could become obsolete as the organization changes or new

technology emerges. The SEE chosen should be one that can be upgraded with new tools to meet

the organization’s evolving needs.

5.2.2 Define how customer expects the SEE to support processes

The customer must establish what SEE functions he can effectively use to support the

software engineering process and software development methodologies of his organization. As

a prerequisite to this evaluation process, the customer organization must establish what the

software development process and methodologies of the organization are and what corporate

goals exist for evolving the process. Only with that information can the customer decide on the

role the SEE will have in support of the process and methodology and decide what SEE
capabilities the organization needs. How the organization views the SEE’s role in its software

development process affects current requirements for a SEE and expectations about how the SEE
will evolve in combination with the process [26].

29



The NIST/ECMA and PSESWG Models provide a format for defining these functions.

The customer should specify desired functions in terms of the reference model services and attach

any specific requirements onto the appropriate service dimensions. The customer can also rate

the services or requirements on the service in terms of criticality to the organization’s goals. The

reference models are useful for defining service requirements because they provide standard

definitions of capabilities in a standard format without prejudging the evaluation process with the

definition of a specific architecture.

While the reference models can help the customer define functional requirements, the

customer must also define integration requirements for the SEE. The customer’s integration

requirements reflect his view of how the SEE should evolve with the software development

process. Specifically, if the customer wants the SEE to be an expandable integrated "open

system" allowing multiple vendors to supply products in the future, the SEE framework must

meet "open standards". The customer will want the SEE to conform to those integration standards

allowing him the greatest flexibility and room for evolving and expanding his SEE in the future;

otherwise, his commitment in time and money may be wasted if critical parts of the SEE become

obsolete.

The customer should define his integration requirements in terms of standards or product

compatibility. Using the five integration types [28] and five integration levels discussed in

Section 3.3, the customer can specify the minimum level of integration, the customer will accept

in any one area. By specifying actual standards or product compatibility, the customer is

providing his view of where industry is going.

Reference models are a starting point for describing customer requirements and

environment characteristics. The customer will have requirements on SEE function not captured

in the reference models, and the SEEs will have characteristics not in the models. For example,

the customer may have requirements about cost or future product support. Other possible

customer requirements not otherwise captured may include hardware or software compatibility

requirements, performance requirements or cost limitations.

5.2.3 Results of establishing customer requirements

Establishing the customer requirements should result in a written document defining

exactly what the customer expects from an SEE and how the customer expects to incorporate the

SEE into the organization including the following:

1) Organizational functions the SEE should support

2) Relationship of the SEE to the organization’s existing methodology

3) SEE capabilities in terms of reference model services and dimensions

4) SEE integration in terms of standards or types and levels

5) Labor and capital available to invest in purchase and training

6) Hardware and software compatibility requirements

7) Any additional requirements

30



If the evaluators know where and how an organization expects to use a SEE and what the

organization expects the SEE to do, the evaluators can have a better sense of what SEE functions

the organization needs. Knowing an organization’s current methods and expectations of a SEE
provides the evaluator with the information he needs to relate SEE capabilities to the customer

requirements. The evaluator can also judge if the market has any product matching the customers

expectations. Defining the organization’s requirements and the SEE capabilities in terms of the

reference model services and dimensions gives a set of standard definitions that the evaluator can

refer to when looking at the capabilities of candidate SEEs.

5.3 Select Criteria for Evaluation

5.3.1 Identify criteria

In the next step of the SEE evaluation process, the evaluator takes the customer’s

requirements and creates a list of criteria for evaluating the SEE reflecting those requirements.

By grouping both the customer requirements and the evaluation defined criteria using the

reference model services and dimensions, the evaluator can easily map the customer requirements

to the evaluation criteria providing a check that the customer and evaluator agree on the

important elements to look for in a SEE. Grouping criteria by service or service group is easier

than grouping criteria by type of tool since tools provide a variety of combinations of capabilities

and service choices should not imply an architecture. Because a candidate SEE is a complex

package of software tools providing a variety of capabilities, it is also easier to relate the tools

to criteria grouped by services. Taking the customer’s requirements as a starting point, the

evaluator must make sure that he has selected criteria which will check that the candidate SEEs
meet all the customer’s stated requirements and allow for comparison of the candidate SEEs.

There have been a number of published sets of detailed criteria for evaluating tools which

the SEE evaluator may find helpful. STSC has published sets of criteria for evaluating several

different types of tools including testing tools and design tools. IEEE 1209 and the draft ISO

guide include lists of criteria for evaluating different types of tools. Appendix D discusses these

and other criteria sources. However, there are no equivalent recognized lists of criteria for

integration. Currently, the source for integration criteria is the customer’s own requirements for

compatibility between the tools and the SEE. For evaluating individual tools the lack of

integration criteria is not as important an issue as it will be in the future when more SEEs are

available and customers are looking for tools compatible to their SEE.

Because the SEE industry is new and volatile, the customer’s stated requirements may not

provide enough criteria to illustrate important differences between competing SEEs. The

customer’s stated requirements may not include consideration of future industry direction or

likely adoption of competing standards. Because SEEs are new products, standards, especially

integration standards, are still evolving. The customer also may not have considered important

issues such as standards compliance and likely upgrades.

The evaluator should present a written description of the criteria for assessing SEEs to

31



the customer. The description should contain the following:

1) Criteria for each customer requirement on a SEE capability

2) Integration criteria mapped to the integration requirements

3) General criteria mapped to the general requirements

The evaluator should clearly define the criteria and demonstrate the relationship of the criteria

to the requirements.

5.3.2 Create test plan for criteria

Once the evaluator has selected the criteria, he must decide how to apply the criteria to

the candidate environments and how he should record the results of applying the criteria. How
the evaluator applies the criteria depends on what the criteria are. The STSC tool evaluation

studies [e.g., 14, 15] provide one suggested method for recording test results. The evaluator

should test some criteria, such as performance or integration criteria, by actually trying the SEE
or tools. The evaluator may be able to apply other criteria by reading the documentation and

other vendor literature. The results of applying the criteria might be a specific objective value

such as the languages supported by the tool or it might be a subjective value such as the

evaluator’s rating of the tool support available. Integration criteria should be tested by actually

testing if the tools can function cooperatively to the desired extent.

The evaluator should present the results of this step of the evaluation process as a written

test plan for evaluating the candidate SEEs with respect to the criteria. The test plan should

consist of the proposed mechanism for testing each criteria and the scale or values associated

with each criteria. For objective criteria, the proposed mechanism should be a repeatable

procedure always resulting in the same value (e.g., a benchmark test for performance of a

program on a given hardware and software platform). For subjective criteria, the proposed testing

mechanism should explicitly define how the evaluators will assign values to the criteria. The test

plan should distinguish among criteria which have to be tested on the full SEE, criteria which

can be tested on individual components and criteria which require only reading the

documentation.

5.3.3 Results of criteria selection step

The evaluator should present the results of criteria selection step in two parts. The first

is a list of criteria for evaluating candidate tools and environments sorted by service when

possible. The second is a mapping from the customer’s requirements to the criteria, showing that

the criteria cover the customer’s requirements.

5.4 Use Assessments to Identify Candidate SEEs

The evaluator must identify the frameworks and software development tools comprising

candidate SEE environments and describe them in terms of the reference models. A description

32



of the reference model services the SEE provides allows the evaluator to make some preliminary

selections of candidate SEEs to evaluate.

The assessment process provides lists of candidate frameworks and the tools which are

compatible to each framework. The assessment process describes each framework component or

tool in terms of the reference model services it provides and the integration mechanisms it uses.

The evaluator should have organized the customer’s requirements and the evaluation criteria in

terms of the reference model services, the type of integration required and any general criteria.

Each candidate SEE consists of the minimal set of framework components and tools providing

the required services. To identify the candidate SEE environments, the evaluator must identify

which tools and frameworks are compatible and which tools perform the same functions. If a

number of tools conform to the same standards, the customer may be able to combine the tools

in a number of different candidate SEEs. For example, there may be several different design tools

which all work with the same SEE repository. All the different configurations are separate

candidate SEEs. Figure 7 illustrates the mapping of the candidate SEEs to minimally provide the

set of required services. An ’R’ indicates a required service in the diagram.

Figure 7: Identifying a Candidate SEE

The framework components and tools making up a candidate SEE may be from one or several

vendors. To ensure that all the pieces can function as a SEE, it is important for the evaluator to

at least see the combination demonstrated and preferably test it himself. Use of the same

integration standards is not a guarantee of compatibility.

33



The result of this step is the list of candidate SEEs and their components for evaluation.

The evaluation process identifies the candidate SEEs by identifying unique combinations of

compatible SEE frameworks and tools apparently providing the required services at a minimum
level. Because the same SEE component or tool may be part of several candidate SEEs, the

evaluator should do as much independent tool testing as possible and only test the tool as part

of the SEE when absolutely necessary. By separating the testing of each tool, many of the

evaluation results for each tool are available for reuse.

5.5 Execute Plan for Testing Criteria on Candidate SEEs

After identifying the candidate SEEs, the evaluator can execute the test plan developed

in step 2 of the evaluation process on each candidate SEE. Only one evaluator is necessary for

evaluating objective criteria since an easily checked, repeatable procedure exists. However,

several evaluators should apply specific standards to test the subjective criteria.

Like the customer requirements and the evaluation criteria, the evaluators should structure

the test plan in terms of the reference model services. For any specific SEE component, the

criteria and test plan applicable to that component depend on the services that the component

provides. Since a candidate SEE is a SEE providing all of the services mentioned in the

customer’s requirements, each criterion will be tested on at least one component of each

candidate SEE. Because SEE components may be part of more than one SEE, the evaluators

should maintain the results of testing each component separately, assembling the various

component tests into overall SEE evaluations as appropriate. The algorithm for testing SEEs
follows in Figure 8:

for each candidate SEE
execute tests for criteria on candidate SEE as a whole

for each SEE component

if it has been tested before, retrieve past test

else

find the services it maps to

find the criteria applying to those services

find the test plan(s) for those criteria

execute the test plan

save the results

collect all SEE component testing results together

Figure 8: Algorithm for Applying Criteria to Candidate SEEs

Because both the SEE components and the criteria relate to the reference model services, the

evaluator can use the reference model services to select the tests applicable to specific SEE
components. The test plan should also separate tests for individual tools and for the full SEE. For

example, performance for the full SEE may differ substantially from the performance of an

individual component.

34



The results of this step are a series of matrices listing the value for each criterion for each

candidate SEE or SEE component.

5.6 Analyze Results of Testing Criteria

The record of the results of executing the test plan provides only the raw data. The

evaluator must interpret this data for the customer. The customer needs to know how well each

candidate SEE satisfies his requirements, how well it can support his software development

methodology, what inherent limitations in each SEE exist, how those limitations will affect the

SEEs long term usefulness and how the SEE compares to other SEEs.

While the raw data resulting from testing the criteria provides the details of how the SEE
satisfies the requirements, the customer needs to have a broader view before buying a product.

He needs a tailored summary of the results highlighting what is important to the customer. For

example, the customer needs to know about available tool support for the SEE which would

support his software development methodology. The customer also needs to know about any

inherent limitations of the framework uncovered in the assessment process limiting the integration

possible in the SEE. Finally, the customer needs to know how each candidate SEE compares to

the others.

The results of this step should be an easily understood summary of how each candidate

SEE relates to the actual needs of the customer organization, how the SEEs compare, what their

inherent limitations are and which SEE provides the best fit to the customer’s software

development process. The summary should reinforce the data generated in the previous step.

5.7 Results of the Evaluation Process

The results of the evaluation process are a series of documents transforming the

customer’s needs into testable criteria and transforming the results of testing SEEs into a usable

form for the customer. The results of the evaluation process follow in Figure 9:

1) Description of customer’s software development methodology and expected role of SEE

2) Customer requirements for SEE

3) Evaluation criteria for testing whether the SEEs meet the requirements

4) Test plan for evaluating SEEs with respect to the criteria

5) Results of ea.:’h test on each SEE

6) Summary reL mg results generated in 5 back to requirements from 1

Figure 9: Results of Evaluation Process

To summariz; the purpose of evaluating SEEs is to establish how well a SEE meets the

customer organization’s needs. By providing the information on how the evaluator transforms

information about the customers needs into testable criteria and what the results of testing the

criteria are, the customer can see how the evaluator justified the conclusions. In addition, by

35



organizing the requirements, criteria for testing and description of the SEEs in terms of the

reference model services and integration criteria, tracing information related to a defined

capability is easier.

5.8 Performing Evaluations

All watchers of the CASE tool marketplace stress the rapidly evolving nature of that

market. There are new products or updated products coming out frequently. In the SEE area,

there are few SEE frameworks actually available, but many in the development stage. There are

also vendors marketing groups of compatible tools or toolsets which do not use a framework.

How these products can be extended in the future is unclear. It is also unclear how compatible

many of the planned SEE frameworks and tools for frameworks actually will be.

Because of this volatility, SEE evaluations and assessments reflecting the state of the

marketplace must be completed quickly or risk being obsolete before use. Alternatively, the

customer may wish to perform periodic surveys of the available products and not invest in

extensive evaluations or assessments until the technology is more mature.

36



Section 6. Conclusions

Defining assessment and evaluation processes for SEEs, SEE frameworks and CASE tools

at this time is a difficult task because the market for these products and the products themselves

are still evolving. While the problem of integrating CASE tools into SEEs is well recognized, the

solution integration standards and methods have not been agreed on. The customer in this market

needs to recognize its volatility and assess products for future viability in addition to present

needs.

This guide has presented a general approach to SEE assessment and evaluation focusing

on accurately defining the integration and functional capabilities of candidate SEEs and the

requirements of the customer. The assessment process concentrates on accurately representing

the functional and integration capabilities of SEEs in terms of the NIST/ECMA Framework

Model, the NGCR PSESWG Model and accepted integration definitions. The evaluation process

builds on the assessment process by representing the customer’s requirements in terms of the

same definitions and relating the customers requirements to the capabilities of the candidate

SEEs. Thus, the evaluation process builds on the assessment process.

This is a general approach to SEE assessment and evaluation only. The approaches should

be tested by actually applying them to a real organization’s needs and a group of candidate

software engineering environments.

37



Section 7. References

[1] Berk, Kevin, Dean Barrow, and Todd Steadman. Project Management Tools Report. Software

Technology Support Center, March, 1992.

[2] Bowler, Odean, John Grotzky, Mark Nielson, Susan Nilson and Jim Van Buren. Requirements

Analysis and Design Tools Report. Software Technology Support Center, April 1992.

[3] Brown, Alan W. An Approach Toward the Selection of Data Interface Standards. Draft

Technical Report from Next Generation Computer Resources Project, 1992.

[4] Brown, Alan W., David J. Carney, Peter H. Feiler, Patricia A. Obemdorf and Marvin V.

Zelkowitz. Issues in the Definition of a Project Support Environment Reference Model in Annual

Report of the SEI, 1993.

[5] Brown, Alan W., Anthony N. Earl and John A. McDermid. Software Engineering

Environments: Automated Supportfor Software Engineering. New York, McGraw-Hill Book Co.,

1992.

[6] Brown, Alan W. and John A. McDermid. Learning from IPSE’s Mistake. In IEEE Software,

Vol. 9, No.2, March 1992.

[7] Chen, Minder and Ronald J. Norman. "A Framework for Integrated CASE" from IEEE
Software Vol. 9, No. 2, March, 1992.

[8] Chikofsky, Elliot J., David A. Martin and Hugh Chang. "Assessing the State of Tools

Assessment" from IEEE Software, Vol. 9, No.3, May, 1992.

[9] Crosby, Davie, Gary Petersen and Reed Sorenson. Documentation Tools Report. Software

Technology Support Center, March, 1992.

[10] Draft Guide to the POSIX Open Systems Environments. IEEE Std. P1003.0. 1992.

[11] Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25,

1992.

[12] Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems Inc., 1993.

[13] Firth, Robert, Vicky Mosley, Richard Pethia, Lauren Roberts, and William Wood. A Guide

to the Classification and Assessment of Software Engineering Tools. Carnegie Mellon University

Software Engineering Institute, Technical Report #CMU/SEI-87-TR-10

38



[14] Hanrahan, Bob, Ron Peterson, Judi Peterson and Dennis Barney. Software Engineering

Environment Report. Software Technology Support Center, March, 1992.

[15] Horgan, Joseph R. and Aditya P. Mathur. "Assessing Testing Tools in Research and

Education" from IEEE Software, Vol. 9, No.3, May, 1992.

[16] Kemerer, Chris F. "How the Learning Curve Affects CASE Tool Adoption" from IEEE
Software, Vol. 9, No.3, May, 1992.

[17] McGary, F. and R. Pajushi. "Towards Understanding Software - 15 Years at the SEI" from

the 15th NASA/6th SEC Software Engineering Workshop, Nov. 1990. SEI TR 90-006.

[18] Mosley, Vicky. "How to Assess Tools Efficiently and Quantitatively" from IEEE Software,

Vol. 9, No.3, May, 1992.

[19] NIST Framework Model Mapping Guidelines, Version 1.2. (Draft) National Institute of

Standards and Technology, 1991.

[20] Paulk, Marc C., Bill Curtis, et al. Capability Maturity Model for Software. Carnegie Mellon

University Software Engineering Institute, CMU/SEI-91-TR-24, 1991.

[21] Poston, Robert M. and Michael P. Sexton. "Evaluating and Selecting Testing Tools" from

IEEE Software, Vol. 9, No.3, May, 1992.

[22] Price, Gordon, Bryce Ragland, Daren Murdock and Eric Hidden. Source Code Static

Analysis Tools Report. Software Technology Support Center, April 1992.

[23] Recommended Practice for the Evaluation and Selection of CASE Tools. IEEE Standard

1209, 1993.

[24] Reference Model for Frameworks of Software Engineering Environments, Edition 3. (Draft)

National Institute of Standards and Technology, 1993.

[25] Reference Model for Project Support Environments, Version 1. Technical Report, NAWC-
ADWAR,-93023-70, 1992.

[26] Smith, Dennis, Cliff Huff, Ed Morris, and Paul Zarrella. Software Engineering Environment

Evaluation Issues. Carnegie Mellon University Software Engineering Institute, Technical Report,

1993.

[27] Thomas, Ian and Brian A. Nejmeh. "Definitions of Tool Integration for Environments" from

IEEE Software, Vol. 9, No.2, March, 1992.

[28] Wasserman, Anthony I. "Tool Integration in Software Engineering Environments" from

39



Lecture Notes in Computer Science: Software Engineering Environments ed. by Fred Long. New
York: Springer-Verlag, 1989.

[29] 2^1kowitz, Marvin V. "Use of an Environment Classification Model" ACM/IEEE 15th

International Conference on Software Engineering. Baltimore, MD, May 1993 (to appear).

40



Appendix A: Definitions of NGCR PSESWG Reference Model Services and
NIST/ECMA Framework Model Services

This appendix contains a list of the services and service groups definitions found in the NGCR
PSESWG Reference Model for Project Support Environments [25] and the NIST/ECMA
Reference Model of Frameworks of Software Engineering Environments [24]. Because the NGCR
PSESWG Model incorporates the NIST/ECMA Framework Model, the organization of the service

definitions reflects that of the NGCR PSESWG Model. The definitions given paraphrase those

in [6]. The number in parenthesis after the definition refers to the section of the NGCR PSESWG
Model defining the service or service group.

A.l Technical Engineering Services

System Engineering Services (4.1) - These services support projects involving substantial

development or maintenance of hardware and software components. These services integrate the

results of and provide consistency between the more specialized engineering services (i.e.,

software engineering services).

System Requirements Engineering Service (4.1.1) - This service provides the capabilities to

capture, model, analyze, represent and refine the system requirements for a system containing

some combination of software, hardware, facilities, people and data. This service creates and

manipulates representations of system requirements.

System Design and Allocation Service (4.1.2) - This service provides the capabilities to create

an architectural design of a system’s components including the interrelationships of system

components, the partitioning of system functionality, and constraints between hardware and

software.

System Simulation and Modeling Service (4.1.3) - The ability to model (or prototype) a system

concept in its entirety before implementation takes place.

System Static Analysis Service (4.1.4) - This service provides for the static analysis of system

designs and components in order to determine the attributes of the system.

System Testing Service (4.1.5) - This service supports the testing of systems to insure that all

specifications have been met and that systems are operationally effective and suitable for intended

use.

System Integration Service (4.1.6) - This service supports the integration of the different pieces

of a project into a single product.

System Re-Engineering Service (4.1.7) - This services supports the modification of an existing

41



design as a response to a changed set of requirements.

Host-Target Connection Service (4.1.8) - This service ensures the ability of a host PSE to

communicate with a target system for the purpose of software downloading, system test or debug,

and system monitoring.

Target Monitoring Service (4.1.9) - This service provides the ability of the host PSE to receive

and interpret specified execution and performance information from an operational target system.

Traceability Service (4.1.10) - This service supports the recording of relationships between

artifacts of the development process.

Software Engineering Services (4.2) - These services support the specification, implementation,

debugging and maintenance of software.

Software Requirements Engineering Service (4.2.1) - This service provides the capabilities to

capture, represent, analyze and refine those system requirements allocated to software

components. This service creates and manipulates representations of requirements.

Software Design Service (4.2.2) - This service provides the capability to create a design of the

software components of a system or subsystem.

Software Simulation and Modeling Service (4.2.3) - The ability to model (or prototype) a

software design before full implementation takes place.

Software Verification Service (4.2.4) - This service supports the formal verification of software

against its formal specifications for the purpose of locating errors.

Software Generation Service (4.2.5) - This service provides semi-automatic production of

software using existing components or templates.

Software Compilation Service (4.2.6) - This service supports the translation and linking of

software components written in various programming languages.

Software Static Analysis Service (4.2.7) - This service provides for the static analysis or source

code analysis of software components.

Software Debugging Service (4.2.8) - This service supports the location and repair of software

errors in individual software components by controlled or monitored execution of code.

Software Testing Service (4.2.9) - This service supports the testing of software systems.

Software Build Service (4.2.10) - This service supports the integration of separately developed

42



software components into a single system.

Software Reverse Engineering Service (4.2.11) - This service provides the capabilities to

capture design information from source or object code and produce structure charts, call graphs

and other design documentation.

Software Re-Engineering Service (4.2.12) - This service is used to modify an existing design

to conform to a new set of requirements.

Software Traceability Service (4.2.13) - This service supports the recording of relationships

between artifacts of the software development process.

Life-Cycle Process Engineering Services (4.3) - These services support projects in achieving

discipline and control over their life-cycle development processes and individual process steps.

Process Definition Service (4.3.1) - This service provides the capabilities for projects to create,

maintain, tailor, adapt and validate definitions of processes in formal, semiformal and informal

forms.

Process Library Service (4.3.2) - This service supports reuse capabilities for processes.

Process Exchange Service (4.3.3) - This service supports the interchange of process definitions

between projects and PSEs.

Process Usage Service (4.3.4) - This service supports the execution of a project’s defined and

installed process.

A.2 Technical Management Services

Configuration Management Service (5.1) - This service supports the identification,

documentation and control of the functional and physical characteristics of configuration items

to ensure traceability and reproducabiltiy of a project’s end products.

Change Management Servic' ^5.2) - This service supports the creation, evaluation, and tracking

of change requests generatec response to errors, omissions or required enhancements to a

product.

Reuse Management Service (5.3) - This service supports the storage, inspection, and reuse of

assets related to many stages of en^ .eering processes.

Metrics Service (5.4) - This service supports the collection and organization of qualitative data

43



about the PSE’s processes and products.

A.3 Project Management Services

Scheduling Service (6.1) - This service supports the handling of data according to a set of

chronological constraints relevant to a project.

Estimating Service (6.2) - This service supports quantification, analysis and prediction of project

cost and resource needs.

Risk Analysis Service (6.3) - This service supports those planning activities that consider

elements related to the success or failure of a project.

Tracking Service - This service supports correlation of estimated cost and schedule data with

actual performance of a project.

A.4 Support Services

Common Support Services (7.1) - These services support standard representations for

communication among PSE customers.

Text Processing Service (7.1.1) - This service provides the ability to create and manipulate

textual information within the PSE.

Numeric Processing Service (7.1.2) - This service provides the ability to create and manipulate

numeric information.

Figure Processing Service (7.1.3) - This service provides the ability to create and manipulate

graphic, image or documentation figures.

Audio and Video Processing Service (7.1.4) - This service provides the ability to capture, create

and manipulate data from audio-or video-based sources.

Calendar and Reminder Service (7.1.5) - This service provides the means for a user to keep

an electronic schedule of meetings, deadlines, and similar important dates and times.

Annotation Service (7.1.6) - This service provides for associating comments with existing

objects.

44



Publishing Service (7.2) - This service provides the capabilities necessary to create and print

documents.

Presentation Preparation Service (7.3) - This service provides the capabilities necessary to

produce materials for presentation.

User Communication Services (7.4) - These services support interaction between PSE users.

Mail Service (7.4.1) - This service provides for passing notes between computer system users.

Bulletin Board Service (7.4.2) - This service supports the capabilities normally associated with

an electronic bulletin board.

Conferencing Service (7.4.3) - This service supports interactive synchronous communication

among users.

PSE Administration Services (7.5) - These services support the administration of the PSE.

Framework Administration and Configuration Services (7.5.1) - A SEE framework has to be

carefully administered because its precise configuration may be constantly changing to meet the

changing needs of the software development enterprise. These services provide for general

framework administration. (These services taken from the NIST/ECMA Framework Model [24])

Tool Registration Service (7.5.1.a) - This service provides a means for incorporating new tools

into an environment based on the framework in such a way that different framework components

coordinate effectively with the new tool.

Resource Registration and Mapping Service (7.5.1.b) - This service provides the means for

managing, modelling and controlling the physical resources of the environment.

Metrication Service (7.5.1.C) - This service provides the ability to collect technical measurement

information of importance to the administration of the framework.

User Administration Service (7.5.1.d) - This service provides the ability to add users to an

environment, to characterize their modes of operation and roles (including security privileges),

and to make available to them the resources which they require.

Self-Configuration Management Service (7.5.1.e) - This service supports the existence of many

simultaneous coresident configurations of a framework implementation.

Tool Installation and Customization Service (7.5.2) - This service supports the installation,

45



testing and registration of tools into a PSE.

PSE User and Role Management Service (7.5.3) - This service provides the ability to make

users of a PSE known to the system.

PSE Resource Management Service (7.5.4) - This service provides the ability to monitor, add,

change or delete resources available to a PSE.

PSE Status Monitoring Service (7.5.5) - This service provides the ability to monitor and control

the actions taking place.

PSE Diagnostic Service (7.5.6) - This service provides the capabilities for the PSE to perform

self-testing and diagnosis of error conditions.

PSE Interchange Service (7.5.7) - This service supports communication and data sharing

between PSEs.

PSE User Access Service (7.5.8) - This service provides the capability of monitoring who is

accessing resources and provides control over access to the PSE.

A.5 Framework Services

Operating System Services (8.1) - These services support what are generally considered

operating system capabilities. (These services taken from IEEE P1003.0 [10])

Process Creation and Deletion Service (8.1.a) - This service supports the creation and deletion

of system processes.

Process Attribute Service (8.1.b) - This service provides the ability to determine attributes of

system processes.

Node Internal Communication and Synchronization Services (8.1.c) - This service handles

supports the accessing and manipulation of data at the operating system level.

Generalized Input and Output Services (8.1.d) - This service provides access to device drivers.

File-Oriented Services (8.1.e) - This service provides for the organization and manipulation of

files.

Event, Error and Exception Management Services (8.1.f) - This service provides the ability

to handle asynchronous events in a system

46



Time Services (S.l.g) - This service provides for the manipulation of system timers.

Memory Management Services (S.l.h) - This service provides for the allocation of virtual and

fixed memory in a system.

Logical Naming Services (8.1. i)
- This service renames system resources by logical names rather

than physical names.

Resource Management Services (S.l.j) - These services provide for general system

management.

Object Management Services (8.2) - The general purpose of the object management grouping

is the definition, storage, maintenance, management, and access of object entities and the

relationships among them. (These services taken from the NIST/ECMA Framework Model [24])

Metadata Service (8.2.a) - This service provides definition, control, and maintenance of

metadata (e.g., schemas), typically according to a supported data model.

Data Storage Service (8.2.b) - This service provides definition, control, and maintenance of

objects, typically according to previously defined schemas and type definitions.

Relationship Service (8.2.c) - This service provides the capability for defining and maintaining

relationships between objects in the object management system. It may be an intrinsic part of

the data r lei or it may be a separate service.

Name Service (8.2.d) - This service supports naming objects and associated data and maintains

relationships between surrogates and names.

Distribution and Location Service (8.2.e) - This service provides capabilities that support

management and access of distributed objects.

Data Transaction Service (8.2.0 - This service provides capabilities to define and enact

transactions.

Concurrency Service (8.2.g) - This service provides capabilities that ensure reliable concurrent

access (by users or processes) to the object management system.

Operating System (OS) Process Support Service (8.2.h) - This service provides the ability to

define OS processes (i.e., active objects) and access them using the same mechanisms used for

objects, i.e., integration of process and object management.

Archive Service (8.2.i) - This service allows on-line information to be transferred to off-line

media and vice-versa.

47



Backup Service (8.2.j) - This service restores the development environment to a consistent state

after any media failure.

Derivation Service (8.2.k) - This service supports definition and enactment of derivation rules

among objects, relationships or values (e.g., computed attributes, derived objects).

Replication and Synchronization Service (8.2.1) - This service provides for the explicit

replication of objects in a distributed environment and the management of the consistency of

redundant copies.

Access Control and Security Service (8.2.ni) - This service provides for the definition and

enforcement of rules by which access to SEE objects (e.g., data, tools) may be granted to or

withheld from user and tools.

Function Attachment Service (8.2.n) - This service provides for the attachment or relation of

functions or operations to object types, as well as the attachment and relation of operations to

individual instances of objects.

Common and Canonical Schema Service (8.2.o) - This service provides mechanisms for

integrating tools into a SEE by providing a means to create common (logical) definitions of the

objects (and operations) these tools may share from the underlying objects in the OMS.

Version Service (8.2.p) - This service provides capabilities for managing data from earlier states

of objects in the OMS. Change throughout development has to be managed in a SEE, and the

inclusion of versioning is one of the means of achieving this.

Composite Object Service (8.2.q) - This service creates, manages, accesses, and deletes

composite objects, i.e., objects composed of other objects. It may be an intrinsic part of the data

model or a separate service.

Query Service (8.2.r) - This service is an extension to the data storage service’s “read”

operation. It provides capabilities to retrieve sets of objects according to defined properties and

values.

State Monitoring and Triggering Service (8.2.s) - This service enables the specification and

enaction of database states, state transformations, and actions to be taken should these states

occur or persist.

Sub-Environment Service (8.2.t) - This service enables the definition, access, and manipulation

of a subset of the object management model (e.g., types, relationship types, operations if any)

or related instances (e.g., actual objects).

Data Interchange Service (8.2.u) - This service offers two-way translation between data

repositories in different SEEs.

48



Policy Enforcement Service (8.3) - The reference model uses the term “policy enforcement”

to cover the similar functionality of security enforcement, integrity monitoring, and various object

management functions such as configuration management. The SEE reference model regards

security as a service that crosses many of the boundaries of the reference model divisions. (These

services taken from the NIST/ECMA Framework Model [24])

Mandatory Confidentiality Service (8.3.a) - This service provides a means of implementing

those policies established by an administrator concerning access to the information contained in

an object.

Discretionary Confidentiality Service (8.3.b) - This service provides a means of implementing

those policies established by a user concerning access to the information contained in an object

and becomes largely a matter of personal privacy.

Mandatory Integrity Service (8.3.c) - This service provides assurance that a system object

maintains (or at least tracks) the “purity” or “goodness” of an object by recording exactly what

has been done to the object and how it was done.

Discretionary Integrity Service (8.3.d) - This service provides for controls implemented by all

write, modify, and append permission functions defined for discretionary access controls.

Mandatory Conformity Service (8.3.e) - This service provides a means of automating

operational models.

Discretionary Conformity Service (8.3.f) - This service provides a means for individual users

to structure their own work environment. Under the right conditions, it could turn out to be the

equivalent of “canned procedures” or “command scripts.”

Process Management Services (8.4) - The general purposes of the Process Management Services

in a SEE are the unambiguous definition and the computer-assisted performance of software

development activities across total software lifecycles. In addition to technical development

activities, these potentially include management, documentation, evaluation, assessment,

policy-enforcement, business control, maintenance, and other activities. (These services taken

from the NIST/ECMA Framework Model [24])

Process Definition Service (8.4.a) - This service provides a means of defining new process

assets which may be complete processes, subprocesses or process architectures for a process

library.

Process Enactment Service (8.4.b) - This service provides a means of enacting processes using

human or machine process agents.

49



Process Visibility and Scoping Service (8.4.c) - This service provides a means for several

enacting process elements to cooperate to achieve the goals of a larger process. Logically, the

extent of such cooperation is part of the definition of processes and may be provided by

integrated visibility and scoping features with the process definition service.

Process State Service (8.4.d) - This service provides a means of maintaining the changing

"process state". Certain changes in the enactment state of a process may be defined as “events”

and may act as conditions or constraints affecting other processes.

Process Control Service (8.4.e) - This service provides a means of recording, measuring,

controlling, managing or constraining the enacted processes.

Process Resource Management Service (8.4.f) - This service provides a means of assigning

process agents to enact various processes and process elements, and this is typically done under

constraints of time, budget, manpower assignments, equipment suites, and process definition

technology (e.g., the formality or completeness of the installed process description language may
be insufficiently unambiguous for totally automated enactment).

Communication Service (8.5) - This service provides a standard communication mechanism

which may be used for inter-tool and inter-service communication. The services depend upon the

form of communication mechanism provided: messages, process invocation and remote procedure

call, or data sharing. (This service taken from the NIST/ECMA Framework Model [24])

User Interface Service (8.6) - The subject of user interfaces is an extremely complex issue

which is far more general than integration frameworks. Nevertheless, a consistent User Interface

Service may be adopted for a complete framework. (These services taken from the NIST/ECMA
Framework Model [24])

User Interface Metadata Service (8.6.a) - This service provides for describing the objects used

by the User Interface Services.

Session Service (8.6.b) - This service provides the functionality needed to initiate and monitor

a session between the user and the environment.

Security Service (8.6.c) - This service provides the security constraints needed by the UI.

Profile Service (8.6.d) - This service provides the tool-to-session transformations needed to run

multiple tools on multiple UI devices.

User Interface Name and Location Service (8.6.e) - This service permits the framework to

manage multi-user and multi-platform environments. It permits various sessions to communicate

with various tools and various display devices.

50



Application Interface Service (8.6.f) - This service provides most of the data transfer

capabilities into and out of the tools and environment to the end user.

Dialog Service (8.6.g) - This service provides for integrity constraints between the user and the

framework.

Presentation Service (8.6.h) - This service provides for low-level manipulation of display

devices by the user interface.

Internationalization Service (8.6.i) - This service provides capabilities concerned with different

national interests.

User Assistance Service (8.6.j) - This service provides a consistent feedback from various tools

to the user for help and error reporting.

User Command Interface Services (8.7) - These services provide the functionality of a

traditional shell. (These services taken from IEEE P1003.0 [10])

Netvt'ork Services (8.8) - These services provide for the transfer of information among processes

within a distributed environment. (These services taken from IEEE P1003.0 [10])

Directory Services (8.8.a) - This service allows for the names and addresses of objects to be

accessed by an application.

Application to System Services (8.8.b) - This service provides support to an application but not

directly controlled by it.

Application to Application Services (8.8.c) - This service supports the actual reading and

writing of data across the network.

Data Representation Services (8.8.d) - This service provides data conversion.

Distributed System Services (8.8.e) - This service allows for the identification and use of

resources in a distributed system.

Network Management Services (8.8.f) - This service manages the network objects and

relationships.

Modem/dialup Services (8.8.g) - This service provides vendors’ assistance to users.

51



Appendix B: Models of Tool Assessment and Evaluation

While no organization has published a model of SEE assessment, several groups have

published models or criteria for software engineering tool assessment, and one (STSC) has

published a model of SEE framework assessment. Two tool assessment models follow providing

background information on recognized tool assessment methods since a full SEE contains tools

and the closest models to work from in designing a SEE assessment method are those in tool

assessment The first model described is the model presented in the ISO and IEEE proposed

standards of tool assessment. The second is the model employed by the Software Technology

Support Center (STSC) for its annual assessment of software engineering tools. There are many

similarities between the models, both emphasize tailoring the model and the criteria for assessing

the SEE tools to meet the needs of the actual users of the tools and both emphasize a sharp

division between evaluation and selection of tools in the assessment process.

B.l IEEE and ISO Recommended Tool Evaluation and Selection Processes

IEEE has developed and ISO is developing very similar recommended practices for tool

evaluation and selection. The tool evaluation and selection models presented in the IEEE and ISO

documents emphasizes generality and flexibility. The lEEE/ISO model is intended for use in

evaluating and selecting any type of CASE tool. To enhance the model’s flexibility, there is a

sharp division between the evaluation and selection processes allowing the application of the two

processes separately or as a unified sequence. When an organization applies the two processes

as a sequence, the evaluator performs the evaluation process and immediately passes the

information to a selector who uses the selection process to select a tool for purchase. When the

two processes do not have an immediate connection, the evaluation process generates data

maintainable for future use and the selection process uses previously generated data.

B.1.1 Evaluation process

The purpose of the evaluation process is to assess candidate tools for performing a

particular function with respect to selected criteria. Both the IEEE and ISO documents contain

lists of suggested criteria including both objective and subjective criteria. The list is not meant

to be exhaustive nor are all the criteria applicable to all the tools. The lEEE/ISO model assumes

the evaluator will augment the criteria as necessary with criteria related to the functions the

buying organization needs from the tool. Choosing good criteria and standards against which to

measure the criteria requires that the evaluator exercise his judgement and expertise. The result

of the evaluation process is a record of the evaluation of each tool with respect to each criteria

as measured against a specified standard using a specified method. The steps of the evaluation

process follow:

52



1) Prepare an evaluation task definition statement including

the purpose of the evaluation

the scope of the evaluation

any assumptions and constraints

2) Identify the evaluation criteria

3) Identify the candidate CASE tools

4) Evaluate the candidate CASE tools

5) Report Results including

tool information

evaluation background

evaluation approach

evaluation steps

specific results

summary

The evaluation task definition statement defines the users needs and constraints to the evaluators.

This is an extremely important document since the user requirements determine how the evaluator

performs his job. As part of the process of selecting criteria to match the user’s requirements and

differentiate among the tools’ capabilities, the evaluator must establish a test plan for applying

the chosen criteria to the candidate tools and the possible set of resulting values for each criteria.

Once the evaluator has identified candidate CASE tools and has a test plan for applying

the criteria, the evaluator applies the criteria to the candidate CASE tools and reports the results.

How the evaluator applies the criteria depends on the user and evaluator’s definitions of the

requirements and the evaluator’s test plan. For objective criteria, the evaluator should establish

a repeatable procedure. If the criteria is subjective, more than one evaluator should apply the

criteria to the CASE tool to attempt to get a consensus opinion. Once the evaluator obtains his

results, he reports them in a formal manner to the user, and forwards the results as necessary to

the selector.

B.1.2 Selection process

The purpose of the selection process is to identify the best CASE tool for the user’s needs

from among the evaluated candidate CASE tools. The selection process assumes that all the

relevant candidate CASE tools have gone through the evaluation process and the results are

available; however, the selection process does not assume that the evaluation was performed

solely for the purpose of a making a selection at a particular time. The steps of the selection

process follow:

53



1) Prepare a selection task definition statement including

the purpose of the selection

the scope of the selection

any assumptions and constraints

2) Identify and weight selection criteria

3) Identify candidate CASE tools

4) Get evaluation results

5) Apply weighted selection criteria to evaluation results

6) Iteration

7) Recommend selection

Once again, the user must begin the process by deciding what are the needs, assumptions and

constraints and their relative importance for the desired CASE tool. If the user has absolute

constraints of the CASE tool (e.g., in terms of price or support for a particular software

development methodology), the user must make this clear to the selector. The selector uses the

selection task definition statement to identify and weight criteria reflecting the user’s

requirements.

The selector can use the existing evaluations of CASE tools to decide which CASE tools

are potentially appropriate to the user’s need, select their evaluation results and apply weights

to the criteria to rate the candidate tools. However, both the IEEE and ISO documents emphasize

two potential problems with using a preexisting evaluation. First, the evaluations could be out

of date either because vendors have released new versions of tools or new tools have come on

the market Second, since the evaluations may not have been performed for this particular

selection, the evaluations may not have applied the needed criteria to the tools.

Even if the evaluation process is reentered to rectify shortcomings, the selection process

may not produce any tool meeting minimal user needs. The user may realize the evaluation or

selection task definition statements do not accurately reflect the software development needs of

the organization in acquiring the tool. Alternatively, the user may find that the criteria and

weights on the criteria do not adequately reflect the requirements. As long as the user does not

require the use of new criteria the selection process iterates until the user and selector agree on

the weighted criteria for the process. When they agree on the weights and criteria, presumably,

the user and selector will agree that the selection was the best available on the market at the

time. If the user requires the use of criteria which were not part of the original evaluation criteria,

the evaluator must restart the evaluation process.

Both the IEEE and ISO recommended practices for tool evaluation and selection

emphasize the separation of the two processes, the equal importance and complexity of the two

processes and the selection and weighting of criteria reflective of user needs and goals.

B.2 Software Technology Support Center (STSC) Model

STSC developed its Test and Evaluation (T&E) process for CASE tools with the long

54



term goal of improving software development for Air Force Systems by helping software

developers make appropriate tool selections. The immediate purpose of publishing the T&E
process and the STSC’s tool evaluations obtained from this process are to give software

professionals better information for making choices by increasing comparability, consistency and

repeatability of software tool evaluations. In the longer term, STSC intends that its model make
the tool evaluation process more efficient through evaluation reuse and that it facilitate feedback

to software tool developers. The results of the process are the information used to perform the

assessment and the formally reported results of applying the criteria and executing the test plan

on the tools. To enhance the reusability of the evaluation, the STSC reports the results in pre-

defined forms. The steps of the T&E process follow:

1) Analysis

identify and compile a long list of available tools

develop tool characteristics common to domain

develop a set of essential characteristics

compile short list of tools containing essential characteristics

2) Assessment

identify all short list tool’s functional characteristics through

vendor surveys

user interviews

documentation reviews

info!mal hands-on tests and demonstrations

record characteristics in Tool Capability Matrix (TCM)
obtain expert user critiques of short list tools

3) Evaluation Guidance

design a test plan for evaluating tools

develop tool-independent guidelines for evaluation each characteristic

consolidate test plan and evaluation guidelines into Test and Evaluation

Guideline (TEG)

4) Detailed Evaluation

develop tool-specific Test and Evaluation Procedures (TEP) from TEG
perform TEP
update TCM
record evaluations in Tool Evaluation Matrix (TEM)

produce tool evaluation report (TER)

5) Recommendation

accumulate user weights for characteristics

check that TCM and TEM are current

apply tool weights to tool characteristic scores

annotate TER’s with tool rank

develop Tool Comparison Report (TCR) with

tool information

assessments

critiques

55



evaluations

6) Selection

The first step of the T&E process is an analysis of both the user’s needs in a specific

CASE tool domain and the characteristics of the CASE tools in that domain. The T&E process

differs from the IEEE and ISO processes by building up a list of criteria from examining

available CASE tools for a particular set of tasks and determining what characteristics apply to

or distinguish them. Once the T&E process establishes the important characteristics of CASE
tools for specific tasks, the potential user, for the STSC the Air Force, can identify those criteria

from the characteristics which are important for the user’s needs. Only those tools possessing the

available tool characteristics that the user deemed essential in the first phase need further

consideration. This process emphasizes availability of the tools over absolute user requirements.

In order to provide more detailed evaluations of tools which met the essential

characteristics, the T&E process requires the development of guidelines and a formal test plan

in the third phase. These documents define specific methods for formally testing the tool

characteristics. The evaluator executes the test plan according to the guidelines in the fourth

phase. The STSC intends the test plan to be a standard method for evaluating tools in a specific

CASE tool domain customized by guidelines indicating the user’s important criteria.

Once the evaluator has executed the test plan and raw scores are available for the

characteristics, the evaluator in consultation with the user performs the fifth and sixth phases of

the process. The evaluator obtains information from the user about the relative importance of the

tool criteria and applies weights to the criteria. These weights are in turn applied to the raw

scores obtained from the evaluation. The evaluator ranks the tools and the user can make a

selection from that ranking.

The STSC model differs from the IEEE and ISO models of tool assessment in that the

results of the assessment are more than the tool evaluations and recommendations. The STSC
process artifacts are defined characteristics of tools in the CASE tool domain, criteria reflecting

user needs in that domain, default weights on those criteria, domain specific weights on the

criteria, a test plan for evaluating tools in that domain, and guidelines for executing the test plan

in that domain reflecting a particular buying organizations requirements. These process artifacts

are available for reuse in later evaluations.

56



Appendix C: Mapping Guidelines

The approach to SEE assessment and evaluation used in this paper rely heavily on

mapping the candidate SEEs and the user’s requirements to the reference models. There is a set

of mapping guidelines [16] and published examples of SEE mappings to an early edition of the

NIST/ECMA Framework Model [e.g., 4]. There is a notation for describing mappings published

in [16], but it is too cumbersome for analyzing the resulting documents.

From experience in performing mappings some specific guidelines follow:

1) Services and SEE capabilities, especially framework capabilities rarely correspond exactly.

One service may correspond to more than one SEE capability or component, or one SEE
capability or component may correspond to several services.

2) A SEE may only partially provide a service. It is important that the notation selected account

for partial or incomplete services and define the extent of the provided service.

3) A SEE capability designed to work with another capability does not automatically supply that

other capability. For example, if a data dictionary in a SEE provides a capability to represent

metadata describing what is in an information repository, it provides the metadata service. The

data dictionary does not automatically provide the data storage service just because metadata can

be stored and retrieved.

4) If a SEE does not provide a framework service, the information should be highlighted. A
missing framework service indicates a limitation on the extent of SEE integration possible or a

limitation on the supported SEE functions.

5) If a reference model service and a SEE capability have the same name, they do not necessarily

provide the same functionality and should not automatically be mapped. This may seem a trivial

point, but it can easily be overlooked. Terminology in the SEE area is not well-defined or

established.

6) Service dimensions are different views of the same service. Each view presents new

information on the SEE capability but doesn’t change the basic function of the capability.

Information describing a capability can map to a service dimension, but the capability itself maps

to a service. Each dimension in a provided service exists in a SEE product, but information for

some of the dimensions may be unavailable.

In mapping SEE capabilities to reference model services, the assessor must note where

the SEE capabilities and reference model services do not correspond well and where the assessor

must exercise his judgement. Especially, if the assessor is working from documentation or

specifications, the exact nature of the capability provided may be unclear. Whenever the assessor

has to exercise judgement in establishing correspondence, the reasons for that judgement should

57



be noted.

The most important result of a mapping often is not necessarily an identification of the

services provided, but identification of the services that are missing. Especially for framework

services, missing services mean possible limitations on the capacity of the SEE especially its

capacity to integrate tools. It may not be possible to expand the framework later with new groups

of capabilities. If a framework has been in use for some time and the vendor adds new
capabilities, the tools relying on the old framework may not be compatible. Even if adding the

capabilities is possible, the tool vendors will not have designed tools for that framework with the

capability in place and will not expect to use it. Missing tools are less important since, especially

with open systems, tools can be added to a framework later as needed.

58



Appendix D: Criteria Sources

The following are sources for criteria. These criteria sources are organized by the applicable

reference model services. The documents often overlap several services but predominately relate

to one service or service group. A category for general criteria is added to include criteria which

do not refer to capabilities found in the reference models.

D.l Technical Engineering Services Criteria Sources:

All Services:

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

System Engineering Services (4.1):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

System Requirements Engineering Service (4.1.1):

Requirements Analysis and Design Tools Report. STSC: April, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

System Design and Allocation Service (4.1.2):

Requirements Analysis and Design Tools Report. STSC: April, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

System Simulation and Modeling Service (4.1.3):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

System Static Analysis Service (4.1.4):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

Source Code Static Analysis Tools Report. STSC: April, 1992.

59



System Testing Service (4.1.5):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.3)

System Re-Engineering Service (4.1.7):

Re-Engineering Tools Report. STSC: April, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Traceability Service (4.1.10):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Software Engineering Services (4.2):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

Software Requirements Engineering Service (4.2.1):

Requirements Analysis and Design Tools Report. STSC: April, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Software Design Service (4.2.2):

Requirements Analysis and Design Tools Report. STSC: April, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Software Simulation and Modeling Service (4.2.3):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

60



Software Generation Service (4.2.5):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

Software Compilation Service (4.2.6):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

Software Static Analysis Service (4.2.7):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Source Code Static Analysis Tools Report. STSC: April, 1992.

Software Debugging Service (4.2.8):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

Software Testing Service (4.2.9):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.3)

Software Build Service (4.2.10):

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

Software Reverse Engineering Service (4.2.11):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

Re-Engineering Tools Report. STSC: April, 1992.

Software Re-Engineering Service (4.2.12):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.2)

61



Re-Engineering Tools Report. STSC: April, 1992.

Software Traceability Service (4.2.13):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.2.1)

Life-Cycle Process Engineering Services (4.3):

Smith, Dennis, et al. Software Engineering Environments Evaluation Issues. SEI Technical

Report, 1993.

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

D.2 Technical Management Services Criteria Sources

Configuration Management Service (5.1):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.4.2)

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

Change Management Service (5.2):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.4.2)

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

Reuse Management Service (5.3):

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

62



D.3 Project Management Services Criteria Sources

All Services:

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9.1.1)

Project Management Tools Report. STSC: March, 1992.

D.4 Support Services Criteria Sources

Common Support Services (7.1):

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9. 1.4.1)

Documentation Tools Report. STSC: March, 1992.

Publishing Service (7.2):

Documentation Tools Report. STSC: March, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Fh-oject 7.25, 1993.

(Section 9. 1.4.1)

D.5 Framework Services Criteria Sources

All Services:

Software Engineering Environments Report. STSC: March, 1992.

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

(Section 9.3)

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

Smith, Dennis, et al. Software Engineering Environments Evaluation Issues. SEI Technical

Report, 1993.

63



D.6 General Criteria Sources

Evaluation and Selection of CASE Tools. Draft ISO Recommended Practice, Project 7.25, 1993.

Evaluation Criteria for COTS Software Engineering Frameworks. Draft Report. International

Software Systems, Inc., 1993.

Smith, Dennis, et al. Software Engineering Environments Evaluation Issues. SEI Technical

Report, 1993.

D.7 Criteria Sources for Management Readiness to Adopt SEE Technology

Smith, Dennis, et al. Software Engineering Environments Evaluation Issues. SEI Technical

Report, 1993.

64






