
1978 Fortran
Compiler Validation System
User’s Guide
Version 2.1

Software Standards Validation Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Software Standards Validation Group

Building 225, Room A266
Gaithersburg, MD 20899

QC

100

.056

NO. 5287

NIST

NISTIR 5287

1978 Fortran
Compiler Validation System
User’s Guide
Version 2.1

Software Standards Validation Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technolo©^

Software Standards Validation Group

Building 225, Room A266
Gaithersburg, MD 20899

August 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Sooretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Umter Secretary for Teehnoloi^

NATIONAL INSTITUrE OF STANDARD
AND TECHNOLOGY
Arati Prabhaka^ Director

1

i

i

i

1

i)

i1

I

II

I

II

i

I

I

I

I

I

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Software Standards Validation Group

Building 225, Room A266

Gaithersburg, MD 20899

1978 FORTRAN
COMPILER VALIDATION SYSTEM

USER’S GUIDE

VERSION 2.1

August 1, 1993

package RELATION TYPES_ANDJ)ATA is

MAX PERSONS : constant integer 300;

NAME_LENGTH : constant integer 20;

subtype
... procedure division.

main-paragraph.

idefine HUIX_REL D200 open input RELATIONS.

FimT FIiEHENT3 j

Xm

functi^ Connected (Identa, Startpoint, Endpoint) : boolean
var

Index : 1 ..Identifier Length;

10780 let NAME$(CURRENT) - rtrim$(NAME$(CURRENT))
10790 if GENDER$(CURRENT) - MALES then

10800 print ...

0 51JFN U 51 F I^lsl R X Qt$ZC S ^LIST(I)=X

character^{BUrLEN)

do 100 i=^L50

caU compi*tn{i)

100 continoc

I

I

I

I

I

»

i

1978 FORTRAN
COMPILER VALIDATION SYSTEM

USER’S GUIDE

VERSION 2.1

August 1, 1993

Prepared by:

U. S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Computer Systems Laboratory

Software Standards Validation Group

Building 225, Room A266

Gaithersburg, MD 20899

(301) 975-3274

I

i

i

I

I

I

I

I

I

I

II

0

I

I

I

I

I

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Background 1

1.2 Purpose and Nature of Fortran Compiler Validation 1

1.3 Validation Services Availability 1

2. DESCRIPTION OF SYSTEM 3

2.1 Documentation 3

2.2 FCVS Library 3

2.3 Required Resources 3

3. FCVS LIBRARY DESCRIPTION 5

3.1 Tape Format 5

3.2 FCVS Library Categories 5

3.2.1 Control Records 5

3.2.2 Environment Files 6

3.2.3 Fortran Audit Routines 6

3.2.4 Data files 6

4. VALIDATION SYSTEM IMPLEMENTATION PROCEDURES 8

4.1 Install the FCVS Library 8

4.2 Bootstrap the FEXEC Routine 8

4.3 Selection of the Audit Routines 8

4.4 Compile and Execute the Audit Routines 8

4.5 Updating the Audit Routines 9

4.6 Compiler Evaluation 9

4.6.1

Syntax Errors 9

,6.2 Semantic Errors 9

5. FEXEC ROUTINE FUNCTIONS 10

5.1 File Requirements 10

5.2 Control its to the FEXEC Routine 10
^ 2.1 Mo^iitor Control Section 10

5.2.1.1 Identification Control Car:^* 13

5.2.1.2 List Control Card (*LIS' 13

5.2. 1.3 Option Card COPTl) 13

52.1.4 TPF Control Card (*IPF) 14

5.2. 1.5 Pro^am Selection Cards (P and M Cards) 14

52.1.6 Environment Control Card (*ENVIR) 15

52.1.7 Implementor-Unique Alphabet-Cards (X-Cards) 15

5.2. 1.8 Job Control Language Generation Cards 18

52.1.9 End-Monitor Control Card (*END-MONITOR) 20

522 Update Control Section 22

52.2.1 Begin-Update Control Card (*BEGIN-UPDATE) 22

522.2 Start Control Card (*START) 22

522.3 Routine Update Control Cards 22

522.4 End-Update Control Card (*END-UPDATE) 25

52.2.5 End-Input Control Card (*END-INPUT) 25

Mi

Page

5.3 Outputs from the FEXEC Routine 25

5.3.1 Source Programs File 25

5.3.2 Data Files 25

5.3.3 Printer File 25

A. ERROR MESSAGES FROM THE EXECUTIVE ROUTINE A-1

A. l Error Messages and Action Taken A-1

B. FTT.F REQUIREMENTS FOR FCVS B-1

B. l Logical Unit Chart for FEXEC B-1

B.2 Logical Unit Chart for Audit Routines B-1

C. LIST OF FORTRAN AUDIT ROUTINES C-1

C. l Subset Level Fortran C-1

C.2 Full Level Fortran C-2

D. FCVS PROGRAM INFORMATION D-1

D. l Subset Language Programs Part 1 D-1

D.1.1 FMOOl (Subset) D-1

D.1.2 FM002 (Subset) D-1

D.1.3 FM003 (Subset) D-2

D.1.4 FM004 (Subset) D-2

D.1.5 FM005 (Subset) D-3

D.1.6 FM006 (Subset) D-3

D.1.7 FM007 (Subset) D-4

D.1.8 FM008 (Subset) D-4

D.1.9 FM009 (Subset) D-5
D.1.10 FMOlO (Subset) D-5
D.1.11 FMOll (Subset) D-6
D.1.12 FM012 (Subset) D-6
D.1.13 FM013 (Subset) D-7
D.1.14 FM014 (Subset) D-7
D.L15 FM016 (Subset) D-7
D.L16 FM017 (Subset) D-8
D.1.17 FM018 (Subset) D-8
D.L18 FM019 (Subset) D-9
D.L 19 FM020 (Subset) D-9
D.L20 FM021 (Subset) D-10
D.L21 FM022 (Subset) D-10
D.1.22 FM023 (Subset) D-11

D.L23 FM024 (Subset) D-11

D.124 FM025 (Subset) D-12
D.L25 FM026 (Subset) D-12
D.L26 FM028 (Subset) D-13
D.1.27 FM030 (Subset) D-IS
D.L28 FM031 (Subset) D-14
D.129 FM032 (Subset) D-14
D.130 FM033 (Subset) D-15
D.131 FM034 (Subset) D-15

IV

Page

D.1.32 FM035 (Subset) D-16

D.1.33 FM036 (Subset) D-16

D.1.34 FM037 (Subset) D-17

D.1.35 FM038 (Subset) D-17

D.1.36 FM039 (Subset) D-18

D.1.37 FM040 (Subset) D-18

D.1.38 FM041 (Subset) D-19

D.1.39 FM042 (Subset) D-19

D.1.40 FM043 (Subset) D-20

D.1.41 FM044 (Subset) D-20

D.1.42 FM045 (Subset) D-21

D.1.43 FM050 (Subset) D-21

D.1.44 FM056 (Subset) D-22

D.1.45 FM060 (Subset) D-23

D.1.46 FM061 (Subset) D-23

D.1.47 FM062 (Subset) D-24

D.1.48 FM080 (Subset) D-24

D.1.49 FM097 (Subset) D-25

D.1.50 FM098 (Subset) D-25

D.1.51 FM099 (Subset) D-26

D.1.52 FMIOO (Subset) D-26

D.1.53 FMlOl (Subset) D-27

D.1.54 FM102 (Subset) D-28

D.1.55 FM103 (Suoset) D-29

D.1.56 FM104 (Subset) D-30

D.1.57 FM105 (Subset) D-31

D.1.58 FM106 (Subset) D-32

D.1.59 FM107 (Subset) D-33

D.1.60 FM108 (Subset) D-34

D.1.61 FM109 (Subset) D-35

D.1.62 FMllO (Subset) D-35

D.2 Subset Language Programs Part 2 D-36

D2A FMlll (Subset) D-36

D22 FM2G0 (Subset) D-37

D.2.3 FM201 (Subset) D-38

D.2.4 FM202 (Subset) D-38

D25 FM203 (Subset) D-39

D2.6 FM204 (Subset) D-39

D.2.7 FM205 (Subset) D-40

D2.8 FM25 ^Subset) D-40

D2.9 FM252 (Subset) D-^ ^

D.2.10 FM253 (Subset) D-
D.2.11 FM254 (Subset) D-42

D2.12 FM255 (Subset) D-42

D2A3 FM256 (Subset) D-42

D.2.14 FM257 (Subset) D-43

D.2. 15 FM258 (Subset) D-44

D.2.16 FM259 (Subset) D-44

D.2.17 FM260 (Subset) D-44

V

Page

D.2.18 FM261 (Subset) D-45

D.2.19 FM300 (Subset) D-45

D.2.20 FM301 (Subset) D-46

D.2.21 FM302 (Subset) D-46

D.2.22 FM306 (Subset) D-47

D.2.23 FM307 (Subset) D-47

D.2.24 FM308 (Subset) D-48

D.2.25 FM311 (Subset) D-48

D.2.26 FM317 (Subset) D-49

D.2.27 FM328 (Subset) D-49

D.2.28 FM351 (Subset) D-50

D.2.29 FM352 (Subset) D-50

D.2.30 FM353 (Subset) D-51

D.2.31 FM354 (Subset) D-51

D.2.32 FM355 (Subset) D-52

D.2.33 FM356 (Subset) D-52

D.2.34 FM357 (Subset) D-52

D.2.35 FM359 (Subset) D-53

D.2.36 FM360 (Subset) D-53

D.2.37 FM361 (Subset) D-54

D.2.38 FM362 (Subset) D-54

D.2.39 FM363 (Subset) D-54

D.2.40 FM364 (Subset) D-55

D.2.41 FM368 (Subset) D-55

D.2.42 FM369 (Subset) D-56

D.2.43 FM370 (Subset) D-56

D.2.44 FM371 (Subset) D-57

D.2.45 FM372 (Subset) D-57
D.2.46 FM373 (Subset) D-58

D.2.47 FM374 (Subset) D-58
D.2.48 FM375 (Subset) D-59

D.2.49 FM376 (Subset) D-59
D.2.50 FM377 (Subset) D-60

D2.51 FM378 (Subset) D-60
D2S2 FM379 (Subset) D-60

D.2.53 FM401 (Subset) D-61

D.2.54 FM402 (Subset) D-62

D.2^5 FM403 (Subset) D-62
D.2.56 FM404 (Subset) D-63

D2.57 FM405 (Subset) D-63

D.2.58 FM406 (Subset) D-64

D.2.59 FM407 (Subset) D-64
D^.60 FM411 (Subset) D-65
D2.61 FM413 (Subset) D-66

D3 Full Language Programs D-67
D.3.1 FM500 (Full) D-67
D32 FM503 (Full) D-67
D33 FM506 (Full) D-68
D3.4 FM509 (Full) D-68

VI

Page

D.3.5 FM514 (FuU) D-68

D.3.6 FM517 (FuU) D-68

D.3.7 FM520 (FuU) D-69

D.3.8 FM700 (FuU) D-70

D.3.9 FM701 (FuU) D-70

D.3.10 FM710 (FuU) D-71

D.3.11 FM711 (FuU) D-72

D.3.12 FM715 (FuU) D-72

D.3.13 FM718 (FuU) D-73

D.3.14 FM719 (FuU) D-74

D.3.15 FM722 (FuU) D-74

D.3.16 FM800 (FuU) D-74

D.3.17 FM801 (FuU) D-75

D.3.18 FM802 (FuU) D-75

D.3.19 FM803 (FuU) D-76

D.3.20 FM804 (FuU) D-76

D.3.21 FM805 (FuU) D-76

D.3.22 FM806 (FuU) D-77

D.3.23 FM807 (FuU) D-77

D.3.24 FM808 (FuU) D-78

D3.25 FM809 (FuU) D-78

D3.26 FM810 (FuU) D-79

D.3.27 FM811 (FuU) D-79

D.3.28 FM812 (FuU) D-80

D.339 FM813 (FuU) D-80

D3.30 FM814 (FuU) D-81

D331 FM815 (FuU) D-81

D332 FM816 (FuU) D-82

D333 FM817 (FuU) D-82

D334 FM818 (FuU) D-82

D335 FM819 (FuU) D-83

D336 FM820 (FuU) D-83

D337 FM821 (FuU) D-84

D338 FM822 (FuU) D-85
D339 FM823 (FuU) D-85

D3.40 FM824 (FuU) D-85

D3.41 FM825 (FuU) D-86
D3.42 FM826 (FuU) D-87
D3.43 FM827 (FuU) D-87
D3.44 FM828 (FuU) D-88
D3.45 FM829 (FuU) D-88
D3.46 FM830 (FuU) D-89
D3.47 FM831 (FuU) D-90
D3.48 FM832 (FuU) D-90
D3.49 FM833 (FuU) D-91
D330 FM834 (FuU) D-91

D331 FM900 (FuU) D-91

D332 FM901 (FuU) D-92
D333 FM903 (FuU) D-93

vii

Page

D.3.54 FM905 (FuU) D-93

D.3.55 FM906 (FuU) D-94

D.3.56 FM907 (FuU) D-95

D.3.57 FM908 (FuU) D-95

D.3.58 FM909 (FuU) D-96

D.3.59 FM910 (FuU) D-96

D.3.60 FM912 (FuU) D-97

D.3.61 FM914 (FuU) D-98

D.3.62 FM915 (FuU) D-99

D.3.63 FM916 (FuU) D-99

D.3.64 FM917 (FuU) D-lOO
D.3.65 FM919 (FuU) D-lOO
D.3.66 FM920 (FuU) D-101

D.3.67 FM921 (FuU) D-102
D.3.68 FM922 (FuU) D-102
D.3.69 FM923 (FuU) D-103

E. SUMMARY OF FEXEC CONTROL INPUTS E-1

LIST OF EXHIBITS

Page

1. File Structure of the FCVS Library 7

2. FEXEC Control Card Examples 12

3. X-Card Replacement 17

4. Example of JCL Generated From Alphabet-Cards 21
5. Update Control Card Examples 26

ix

II

ft

ft

ft

ft

ft

ft

ft

ft

II

II

II

ft

ft

ft

ft

ft

X

1. INTRODUCTION

The 1978 Fortran Compiler Validation System (FCVS78) is based on the technical specifications

contained in the American National Standard Programming Language Fortran, X3.9-1978, as adopted in

the Federal Information Processing Standard Publication (FIPS PUB 69-1). It is made up of audit

routines, their related data and an executive routine (FEXEC) which manages the audit routines and

prepares them for compilation. Each audit routine is a Fortran source program which includes many tests

and supporting procedures indicating the results of each of the tests. The audit routines making up

Version 2.1 of FCVS78 collectively contain features of the Subset and Full Language levels of ANSI
X3.9-1978 (FIPS PUB 69-1).

1.1 Background

The Software Standards Validation Group (SSVG) is in the Information Systems Engineering

Division of the Computer Systems Laboratory (CSL), National Institute of Standards and

Technology (NIST).

The validation of Fortran compilers by NIST is done in support of FIPS PUB 69-1, Federal

Standard Fortran. The test results for a Fortran compiler can be used by a Federal Agency to

confirm that a compiler meets the specifications of FIPS PUB 69-1, insofar as the FCVS78 tests

the language elements included in ANSI X3.9-1978.

1.2 Purpose and Nature of Fortran Ccaipiler Validation

The validation of a compiler, or any piece of software, determines the degree to which that

product conforms to the technical specifications on which it was based. The use of compilers that

have attained a high degree of conformance with their respective language standards (technical

specifications) enhances source program interchangeability within all ADP installations which use

that particular programming language.

The results of running the Fortran Compiler Validation System (FCVS) does not suggest the

degree to which the compiler is usable (i.e., capable of data processing applications), but the

degree to which individual language elements are usable. This gives some indication of possible

conversion areas which must be considered in order to implement a source program from another

computer system which was written according to FIPS PUB 69-1 specifications.

Thus, the FCVS can be used to test a Fortran compiler’s adherence to the standard language

syntax, and, where unambiguous, language semantics of the technical specifications upon which

the compiler is based. The latter, of course, is a more difficult area because of the lack of

appropriate mechanisms for precise semantic specifications. The Validation System does not

evaluate the implementation of a compiler nor its quantitative performance characteristics.

13 Validation Services Availability

Validation Services are available to the following;

vendors wishing to have a compiler validated for their own purposes;

1

vendors wishing to have a compiler validated in response to a Government request for

proposal;

Government agencies involved in a procurement;

Government agencies wishing to validate a compiler already in use; or

Other organizations, where the validation of a compiler benefits the Federal Government.

The results produced during an official validation are reviewed by NIST, which prepares a

Validation Summary Report (VSR). The initial dissemination is to the requestor and the vendor

who supports the compiler.

The VSR classifies a compiler according to each level of the Federal Standard Fortran for which

support is claimed.

To request validation services contact:

Manager
Software Standards Validation Group
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

(301) 975-3274 Telephone

(301) 948-6213 FAX

2

2. DESCRIPTION OF SYSTEM

The FCVS consists of Fortran audit routines, their related test data, and an executive routine (FEXEC)
which prepares the audit routines for compilation and execution. Each audit routine consists of series

of tests of Fortran language elements, and supporting procedures which indicate the result of executing

these tests. Because the routines were designed to run on any computer system purporting to support

Fortran, the assumptions used to write the audit tests are very restrictive. Only the simplest forms of GO
TO, Arithmetic IF, WRITE, and assignment statements are used to write the support code required for

each test. A description of each of the Fortran audit routines is contained in Appendix D.

A Source Programs file of audit routines with appropriate implementor-defined parameters inserted into

the source code is produced by FEXEC. FE^ffiC and its subroutine FEXSB are Fortran programs

included in source form in the FCVS Library. Once installed, FEXEC is used each time that an audit

routine or series of audit routines is selected from the FCVS Libraiy. Basic inputs to this process are the

FCVS Library (a file of all of the audit routines, the FEXEC, and related test data) and a series of

control inputs to select and/or update the audit routine source code.

A Fortran compiler, in a particular computer configuration/operating system environment, is tested by

the compilation and execution of each audit routine. If a compiler rejects some language element by

giving fatal diagnostic messages or terminating the compilation, then the FEXEC is used to eliminate the

source code containing that language element. The audit routine is then recompiled and executed.

Output reports (Test Results) produced by the execution of each routine indicate whether the code

generated by the compiler passed or failed each test of the routine. The Test Results together with the

compilation listings constitute the raw data from which NIST produces a Validation Summary Report

(VSR). The VSR itemizes the areas where the Fortran compiler being tested does not conform with the

1978 Fortran Standard specifications.

2— Documentation

The User juide presents the procedures that are required in order to use the Fortran Compiler

Validation System.

22 FCVS Library

The FCVS Library is a file on magnetic tape containing the FEXEC routine, the Fortran audit

routines and the associated test data files.

23 Required Resources

The following must exist in the computer system in order to validate the Fortran compiler with

the FCVS:

sufficient storage to compile and e ,ute programs of approximately 13G source lines of

Fortran code

an input device for FEXEC control input records

at least one magnetic tape drive for the FCVS Library

3

some form of line printer (at least 120 characters for the FEXEC report and 80 characters

for the audit routine reports)

at least two magnetic tape drives or a mass storage device must be available for processing

work files in the I/O statement tests.

4

3. FCVS LIBRARY DESCRIPTION

The FCVS Library is a file on magnetic tape containing the FEXEC, the Fortran audit routines and, the

associated test data files.

3.1 Tape Format

The physical characteristics of the magnetic tape containing the FCVS Library as distributed by

NIST are:

. unlabeled

. card image format - 80 characters per record

. blocking factor - 30 records per block

. code set - ASCII

. 9-track format

. 1600 BPI

. entire tape is one file; an end-of-file follows the last record on the tape

The ^CVS Library may need to be unblocked or converted to another character code before it

is used. Refer to section 4.1 for some things to consider when installing the FCVS Library.

32, FCVS Library Categories

The FCVS Library is divided into four categories and they are:

. control records

. environment files

. Fortran audit routines

. data files

3.2.1 Control Records

Control records are used for giving information to FEXEC and to separate the files on the FCVS
library. The structure or the FCVS library is shown in Exhibit 1. A ‘HEADER control record

signals the beginning of a file and a ‘END-OF control record signals the end of a file. Multiple

‘HEADER control records may precede a ‘END-OF control record. A ‘END-OF,POPFILE
control record is used to indicate the end cf the FCVS library. The different types of control

records are:

‘ *DATE***YYMMDD
“ *OWNER xxxxxx
* *AUDIT vw
‘ *HEADER,ENVIR,nnnnn
‘ *HEADER,FORTR,FMnnn
" *FILESl,FORTR,FMnnn X
‘ *HEADER , FORTR , FMnnn , SUBRTN , FMnnn
® *HEADER, DATA*, FMnnn
® *END-OF,xxxxx

(creation date of FCVS)
(id of the user of the FCVS)
(version of the FCVS)
(environment name)

(main audit routine name)
(files info)

(subroutine)

(data file indicator)

(end of file marker)

5

322 Environment Files

The beginning portion of the FCVS library contains several environment files. These files are

used to provide information to FEXEC. It uses the information for controlling, selecting, and

updating the audit routines. The environment file *HEADER,ENVIR,CHAR contains the

symbolic representation of the characters on the FCVS library. It may be printed using the *LIST
monitor control card with the ‘C’ option to verify if character conversion is required.

3^3 Fortran Audit Routines

The Fortran audit routines are Fortran programs which are designed to test a Fortran compiler’s

compliance with ANS X3.9-1978. Each source image is an 80 character record. The audit routines

vary in size from 200 source lines to approximately 1300 source lines.

32.4 Data flies

Several audit routines require an external input data file which is located immediately after the
program on the FCVS library. Data files vary in size from 5 to approximately 30 records.

6

*DATE***YYMMDD
*OWNER (identity of validation to be performed with this Library)

*AUDIT vw (version number of audit routines)

HEADER, TPF

*END-OF,TPF

HEADER , ENVIR , nnnnn

END-OF , nnnnn

HEADER, FORTR, FMnnn
FILESl,FORTR,FMnnn X

Source images of Fortran audit routine main program

END-OF , FMnnn

HEADER , FORTR , FMnnn
FILESl, FORTR, FMnnn X

Source images of Fortran audit routine main program

HEADER, FORTR FMnnn, SUBRTN FMnnn

Source images for subroutine FMnnn

HEADER, DATA^ , FMnnn

Data records for main routine FMnnn

END-OF, FMimn

END-OF, POPFILE "last record on the FCVS Library tape"

End-of-File Mark.

EXHIBIT 1: File Structure of the FCVS Libraiy

7

4. VALIDATION SYSTEM IMPLEMENTATION PROCEDURES

Preparation for a Fortran validation requires consideration in three subject areas. First of all, the

character set of the FCVS Library must be compatible with the computer system on which the FCVS is

to be implemented. Conversion from ASCII to other character sets may be done if necessary by a system

utility, a text editor, or by a program in a language available on the system. Secondly, one must determine

which input/output devices are available on the system and how these devices are assigned and related

to a Fortran program. Appendix B, FILE REQUIREMENTS FOR FCVS, lists default file assignments

and I/O device types. The use of X-cards (see Section 5) can be used to override these defaults. The

third major area of consideration during preparation is to satisfy any unique requirements of the

computer system to be validated; e.g., blocking factors, how to store the executable form of the FEXEC
routine, how "job control language streams" can be used to automate the selection, compilation, and

execution of the audit routines, and how to handle the work files used by the audit routines for the I/O

tests.

4.1 Install the FCVS Library

The FCVS Library as distributed by NIST is on magnetic tape. The tape contains 30 records per

block with 80 character records. The Library can be copied onto disk or some other rapid access

storage medium in order to expedite the validation process. Also the FCVS Library may need to

be deblocked or converted to a character code other than ASCII. Please note that the FEXEC
as included on the FCVS Library is set up to read the FCVS library as an unblocked file, thus the

FCVS Library must either be deblocked or the FEXEC modified accordingly. Using an unblocked

FCVS Library is the recommended approach.

42 Bootstrap the FEXEC Routine

The source code for the FEXEC routine must be extracted from the FCVS Library. This can be

done in a number of ways; e.g., text editor, a tailored program written to extract the source code

or an old version of the FEXEC from a prior Fortran validation. The FEXEC routine is

identified with a *HEADER,FORTR,FEXEC record and terminated with a *END-OF,FEXEC
record.

43 Selection of the Audit Routines

Audit routines may be selected individually or in consecutive series from the FCVS Library by the

FEXEC. Section 5 describes the control inputs for selecting the audit routines. Appendix B
provides a list of audit routines and their associated file unit numbers for those audit routines

using input/output data files. Appendix C provides a complete list of the audit routines on the

FCVS Ubrary.

4.4 CompUe and Execute the Audit Routines

The method for compiling and executing the audit routines is completely dependent on the

computer system on which the FCVS is being implemented. The FEXEC routine can provide an

automatic generation of Job Control Language (JCL) for most systems. A skeleton of the JCL
to compile and execute the audit routines is fed as input to the FEXEC via the Monitor Section

8

of the FEXEC control cards file. The FEXEC in turn takes the selected audit programs and

builds a complete JCL stream which may then be submitted to the system to compile and execute

the selected audit routines.

45 Updating the Audit Routines

When necessary audit routines can be modified using FEXEC. The FEXEC controls for updating

the audit routines is described in Section 5, Routine Update Control Cards. It is recommended

that aU changes to the audit routines be made using the FEXEC routine instead of other methods

such as a system’s text editor. The advantage to using FEXEC is that it provides a report and

audit trail of changes made to the FCVS. Such a record of changes is required in order to

evaluate the results from running the FCVS and for producing the Validation Summary Report

for a compiler validation.

4.6 Compiler Evaluation

A compiler evaluation is done by analyzing the compilation listing and report results. The
compiler errors are divided into two groups, syntax errors and semantic errors.

4.6.1 SjTfitax Errors

Syntax errors are discrepancies found in the form or format of the source code, i.e. the syntactical

and lexical forms which are allowed in the Fortran language. If a compiler requires that additional

code be added in order for it to accept the language elements being tested, then this is considered

an error. The source code is added with the update capabilities of the FEXEC routine so that

a record of aU such required updates is maintained. By the same token, should a compiler reject

any of the source code in a Fortran audit routine, this is also considered a syntax error and the

test containing the language element which caused the error is deleted from the audit routine by

using the update capabilities of the FEffiC.

4.6.2 Semantic Errors

Semantic errors are discrepancies found in a compiler implementation during execution of the

audit routines. Errors of this tjpe are showi as failures in the Test Results which are produced

from execution of each of the audit routines. For this type of error the ’’computed" and ’’correct"

test results are shown on the Test Results report.

9

5. FEXEC ROUTINE FUNCTIONS

5.1 File Requirements

The following list shows what files are required for the FEXEC routine to select and update the

audit routines (see Appendix B.l for file assignments):

. FCVS Library one magnetic tape drive unless the entire file is copied onto a mass

storage device.

. control card input file - often the card reader or an on-line terminal device.

. printer file - usually the line printer.

. source programs file - the file of selected audit routines and job control language which

may be on magnetic tape, or mass storage.

. data file - a "scratch" magnetic tape or mass storage file which is used to store

and retrieve data that may be required by an audit routine. (This

file may not be needed if a E-card is used with DATA****
specified.)

. TPF merge file - a "scratch" magnetic tape or mass storage file which is used to

merge Temporary Program Fixes (TPF’s) with the user’s updates.

(TPF’s are NIST approved corrections to the FCVS78 which have

not been incorporated in the audit routines of the FCVS Library).

This file is not needed if TPF’s do not exist or the *TPF control

card is used with the N option.

5.2 Control Inputs to the FEXEC Routine

FEXEC Routine functions are controlled by submitting control cards to the FEXEC. These

control cards consists of two major groups. They are Monitor Control cards which are used to

direct the FEXEC in its operation and Update Control cards which are used to modify the source

programs contained on the FCVS Library.

The FEXEC Control Cards are used for the selection of audit routines, updating of audit routines

and merging of JCL to produce an output Job Stream. This Job Stream is called the Source

Program File. Monitor control cards precede the Update control cards. The order of the Monitor

control cards is completely up to the user, however, the Update control cards must be in

sequential order, by program number and by line sequence number within program.

A typical control stream to select one program, update the program, insert appropriate JCL for

a Univac 1108, and have all other options "defaulted" is shown in Exhibit 2.

52.1 Monitor Control Section

Monitor Control Cards consists of the following types of card images:

10

Identification Control Cards (*DATE, ^COMPILER, *PROJECT)

List Control Card (*LIST)

Option Card (*OPTl)

Temporary Program Fixes Control Card (*TPF)

Implementor-Unique Alphabet-Cards (X-Cards)

JCL Generation Alphabet-Cards (I-Cards, B-Cards, E-Cards, T-Cards, D-Cards)

Program Selection Cards (Plus-Cards, Minus Cards)

Environment Control Card (*ENVIR)

END-MONITOR Control Card

11

FEXEC Control Card Action Desired Inot part of the card)

X-020 102=6 The number 6 is "assigned" to 102 so all WRITE (102,

nnn)... statements will address logical unit number 6

I-Ol @RUN 82UCLG, 99S0050D, 99S0030 Job Control Language

B-01 @FOR,IS TPF$.A,TPF$.B to

E-01 @MAP,I TPF$.C,TPF$.D be

E-02 IN TPF$.
E-03 @XQT TPF$.D
E-04 @ERS TPF$.
T-01 @FIN

included

in the

SOURCE PROGRAMS
file

PFMOOl Select program FMOOl

*END-MONITOR End of the MONITOR Control Cards

*BEGIN-UPDATE Beginning of the UPDATE Control Cards

START, FMO01 Updates to program FMOOl

=00155 Add the following source lines after line 00155

C INSERTED LINES CAN BE FIRST, LAST, OR
C CAN GO BETWEEN EXISTING LINES OF A PROGRAM. .

.

=00500C00900 Change lines 500 thru 900 into Comments

=01700,01800 Delete lines 01700 thru 01800

IVONOl = IVONOl - 1 Replaces deleted lines 01700 and 01800

=02000,02000 Delete line 02000

END-UPDATE End of UPDATE Control Cards

END-INPUT End input control stream

EXHIBIT 2: FEXEC Control Card Examples

S^.l.l Identification Control Cards

(*DATE, ^COMPILER, and ^PROJECT)

The identification control cards (*DATE, *COMPILER, *PROJECT) can be used to override or

supply information about the environment to FEXEC. This information is listed in the audit

routine report heading. The format of the identification control cards are:

a. *DATE (date of validation - 1 to 17 characters beginning in column 8)

b. *COMPILER (compiler ID - 1 to 20 characters beginning in column 12)

c. ^PROJECT (project code - 1 to 13 characters beginning in column 11)

5^.1^ List Control Card (‘LIST)

The LIST control card (*LIST) determines the amount and what is printed on the execution

report of FEXEC. The format is:

*LIST option- 1,option-2, ...

The allowable options are:

U - Print all updates, replacements, and statistics.

P - Print the selected source programs after updates and replacements have been

made and print the statistics.

S - Print statistics (number of inputs, outputs, insertions, and deletions) for each

selected program (Default).

T - Print Temporary Program Fixes (TPF) that are on the FCVS library, if any.

E - Print each selection record retrieved from an environmental entry as it is processed

(see *ENVIR).

C - Print environmental entry *HEADER,ENVIR,CHAR to verify that the symbolic

character representations on the FCVS library matches that of the system it’s being

implemented on.

The P, U, and S operands are mutually exclusive. There can be more than one *LIST card

present in the Monitor Control Inputs section and each *LIST card can contain multiple entries.

5,2.13 Option Card (•OPTl)

For those audit routines which use data files, source code is include^; for printing (dumping) the

contents of the data files. This source code is coded as comments in the audit routines but can

be changed to executable code. The Option card (*OPTl) specifies whether or not the optional

file dump code in the audit routines should be executed or left as comments. The format of the

*OPTl control card is:

13

. *OPTl D

To leave the file dump code as comments, do NOT specify an *OPTl card. To execute the dump
code, use the *OPTl card.

52.1A TPF Control Card (*TPF)

The TPF control card (*TPF) specifies whether or not the Temporary Program Fixes (TPF’s), if

any, on the FCVS Library are to be incorporated into the programs (audit routines or FE)^C
itself) on the FCVS Library. The default is that they wiU be incorporated unless specified

otherwise by the TPF control card. When the TPF’s are selected they are merged with any user’s

updates supplied through the Update Control section of the FEXEC control card file.

TPF’s are updates for the FCVS Library which have been issued by NIST after release of the

current FCVS78 version. These TPF’s are stored as Environment entries (following the

*HEADER,ENVIR,TPF record) on the front of the FCVS Library and are applied to the FCVS
programs (if selected) by FEXEC as the programs are read from the FCVS Library. The *TPF
options are:

. *TPFY (include aU TPFs)

*TPF N (exclude TPFs) - default if no *TPF control card is specified)

Program Selection Cards (P and M Cards)

a. Plus-Cards

Plus-Cards are used to select one or a sequential series of programs, subprograms, and
data files from the FCVS Library and output them to the Source Programs file. The two
forms of the Plus-Card are:

. PFMnnn (Select program FMnnn)

. PFMnnn,PFMnnn (Select a series)

Some examples are:

. PFMOOl (Select only FMOOl)

. PFM100,PFM108 (Select FMIOO thru FM108)

Selection of any main program will automatically include any and all subroutines,

subprograms and data files associated with it.

b. Minus-Card

A Minus-card causes a program set which was previously selected by an earlier control

card to be deleted from the selection list. The two forms of the Minus-Card are:

. MFMnnn (exclude program FMnnn)

. MFMnnn,MFMnnn (exclude a series)

14

This command logically removes the program name from the list of programs to be

selected. If the program name being removed is a main program, any associated

subroutines or program data will also not be selected. A Minus-card will not suppress the

selection of a subroutine or subprogram if the main program is requested to be selected.

One use of the Minus-card is if a user wanted to select the full level Fortran test set

(FMOOl thru FM923), but only had storage space for programs FM500 through FM923.

The control card sequence would be;

. *ENVIR F (select full level)

. MFM001,MFM^ 9 (exclude FMOOl - FM499)

After programs FM500 through FM923 were compiled and executed, the user could then

extract programs FMOOl through FM499 using the "*ENVIR S" control card.

52,1.6 Environment Control Card (*ENVIR)

The Environment control card (*ENVIR) is used to simulate the inclusion of a group of Plus-cards

in the Monitor Control section. The *ENVIR options are;

. ^ENVIR F (select both the full and subset level Fortran audit routines)

. *Er^VIR S (select only the subset level Fortran audit routines)

The FCVS Library contains 272 audit routines which are divided into two levels. Appendix C
explaii\r the differences between the two levels and lists by name the audit routines included in

each level.

Multiple *ENVIR control cards are not permitted.

52.1.7 Implementor-Unique Alphabet-Cards (X-Cards)

Implementor-unique alphabet-cards (X-cards) allow replacement of the default logical unit

numbers assigned to the input/output files used by the FCVS programs. The format of the

X-Card is:

. X-kkO (Source code column 8 thru 80)

. X-kkl (Additional source code if required)

where:

. kk = a unique two digit number which corresponds to the "CXkkO" or "CXkkl" card

images coded in the FCVS programs

The source statement specified on the X-Card must be a syntactically correct Fortran statement.

The X-kkO X-Card is for assigning a logical unit number to an integer variable. (The variable

name used in the assignment statement must be the letter "I" followed by the number kk.) The
X-kkl X-Card is an additional (optional) card, having the same kk number as X-kkO, which may
be used to include additional source statements (such as an OPEN statement) associated with the

X-kkO card. There are provisions for up to twenty, two-card sets of X-cards that can be replaced

15

in the source program. The X-cards may not be needed if the operating system can use the

default logical unit numbers coded in the audit routines. Appendix B.2 provides a complete list

of the default unit numbers used.

In Exhibit 4, which shows how the X-card replacement is used, the following action takes place:

When the output Source Programs File is written by the FEXEC, columns 8-73 of the

X-kkO and X-kkl cards in the Monitor Control Inputs become columns 7-72 in the CxkkO

and Cxkkl card images in the source program respectively.

The first six columns are "blanked" in the output source line when an X-Card replacement

takes place.

X-cards X-190, X-191, X-200 and X-201 are special function replacement cards and are used for

changing the size of the file names used by the FILE specifier. X-Cards X-190 and X-200 are

used to replace the assignment statement which assigns the file name to a variable; X-Cards X-191

and X-201 are used to replace the CHARACTER statement which sets the size of the variable.

The variable CDIR is a fixed variable name for Direct access files and is used to store file name
"CDIR" which is also a fixed name; the variable CSEQ is a fixed variable name for Sequential

access files and is used to store the file-name "CSEQ" which is also a fixed name. These variables

are used in the FILE specifiers for the OPEN and INQUIRE statements.

The two X-cards, X-190 and X-191, are used to replace the following two statements respectively:

. CHARACTER*15 CSEQ

. CSEQ = ' CSEQ'

The two X-cards, X-200 and X-201, are used to replace the following two statements respectively:

. CHARACTER* 15 CDIR

. CDIR = ' CDIR'

FILE specifier names, CSEQ and CDIR, must not be changed. Only the size of the character
string for the name should be changed.

16

Program before X-card replacement

101 = 5
CXOlO THIS CARD IS REPLACED IF X-010 CARD IS USED
CXOll THIS CARD IS REPLACED IF X-011 CARD IS USED

READ (101,77501) ILIST

X-card replacements placed in Monitor Control section

X-010 101 10
X-011 CALL OPEN (101)
*END-MONITOR
*END-INPUT

Program after X-card replacement bv FEXEC

101 = 5
101 = 10
CALL OPEN (101)

(replaces CXOlO)
(replaces CXOll)

READ (101,77501) ILIST

EXHIBIT 3: X-Card Replacement

17

52.1.8 Job Control Language Generation Cards

(I, B, E, T, and D Cards)

The Job Control Language Generation Cards (alphabet-cards) are used to describe a skeleton of

the Job Control Language (JCL) necessary to compile and execute the audit routines. An example

of generated JCL from the alphabet-cards (I-Cards, B-Cards, E-Cards, T-Cards) to compile and

execute programs FM700 through FM703 is shown in Exhibit 4.

a. Initial and Terminal Alphabet-Cards (I and T Cards)

Initial alphabet-cards (I-cards) are generated and placed in the Source Program File prior

to any programs being selected. After all the requested programs have been selected the

terminal alphabet-card (T-cards) are generated and placed in the Source Program file.

The format of the I and T alphabet-cards are:

. I-kk (Job Control Language statement columns 8 thru 80)

. T-kk (Job Control Language statement columns 8 thru 80)

where:

. kk = a unique two-digit number for the respective I or T card. T-cards may range from

01 thru 05. I-cards have no limit.

b. Beginning and Ending Alphabet-Cards (B & E Cards)

Beginning alphabet-cards (B-cards) are generated and placed before each selected program

which is written to the Source Program File. After each selected program Ending

alphabet-cards (E-cards) are generated and placed in the Source Program File. A program

name substitution option is available with the B and E cards for placing a unique name on

the generated JCL. This option can be used for making each job unique, or for uniquely

naming files associated with the source and object programs. In addition there is an

indicator column which is used to control when a particular B or E card is to generate a

JCL record. The format of the B and E alphabet cards are:

B-klanmy (Job Control Language statement columns 8 thru 80)

E-kkmmy (Job Control Language statement columns 8 thru 80)

E-kk data****

where:

kk = a unique two-digit number for the respective B or E card. A maximum of

10 B and E cards is permitted.

mm = optional two-digit number ranging between 01 and 69, which is the starting

positioning of the 5-character program name to be substituted into the generated

JCL card.

y = optional control character (J or T that causes certain JCL to be generated at

specific times. If the value for y is blank then the control card is generated before

18

and after each main source program selected but not for subroutines. If the value

for y is the letter "J" then the control card is generated before the first selected

program or after the last selected program.

If the value for y is the letter "T' then the control card is generated only before/

after a subroutine program.

DATA**** = Special E-card which triggers the generation of the D-cards in the

respective location among the E-cards.

When the JCL is generated as shown in Exhibit 4, the character in column 8 of the input

monitor control card to FEXEC becomes the character in column 1 of the generated JCL
instruction. Column 80 of the input monitor control card becomes column 73 of the

generated card which is written to the Source Program File. When name substitution is

elected for a B-card or E-card, remember that the number in columns 5-6 represents the

first column in the generated instruction where substitution is to take place. Hence, if a

B-card contains a JCL image (beginning in card column 8) and the field where name

substitution is to take place shows on the card as column 23, the substitution position is

actually column 16 (or 23 minus 7) and so "16" must be placed in columns 5-6 of the

B-card.

c. Data Alphabet-Card (D-card)

The Data alphabet-cards (D-cards) are used to place JCL before and after a external data

file. Audit routines FMllO, FMlll, FM403, FM404, FM900, FM901, FM903, FM906,

AND FM923 all require external input data. The external input data file needed is located

after the audit routine on the FCVS library. It’s identified with a

HEADER,DATA,FMnnn recori, where FMnnn is the audit routine name, and precedes

the *END-OF,FMnnn record for me audit routine.

During FEXEC execution, selection of an audit routine causes any associated data file to

be extracted along with the audit routine. A D-01 monitor control card if specified will

generate a JCL record whi:h win be placed before each external input data ffle. A D-02

monitor control card if specified will generate a JCL record which will be placed after each

external input file. The external input data files may be written to a scratch work file and

each file will be separated with an end of file record. They may also be written to the

Source Program file, in-line with the selected audit routines and the other generated

alphabet-cards. To specify the in-line location for the placement of the data file an E-card

is used with the special indicator *DATA*****. So during E-card generation if the special

indicator is found the E-card is suppresseu and the data file is put in it’s place. A program

name substitution option is also available for D-cards to place a unique name on the

generated JCL. This option can be used for making each data file unique, or for any

purpose a user may require. The format of the D-card is:

D'V’'-nm (Job Control language statement colum.i d thru 80)

where:

kk = 01 or 02

19

I

mm optional two-digit number ranging between 01 and 69, which is the starting

positioning of the 5-character program name to be substituted into the generated

JCL card.

An example of using D-cards is :

D-01 //SYSIN DD * (optional)

E-nn DATA**** (nn = two-digit no.)

D-02 (optional)

The D-01 card, if present, is released in front of the data, and the D-02 card, if present,

is released behind the data.

If an E-card with the special indicator "DATA***" is not used, FEXEC will write the data

to the scratch file assigned to 111 (see Appendix B.l).

52.1.9 End-Monitor Control Card (*END-MONITOR)

The End-Monitor control card terminates the processing of the Monitor Control Inputs section.

The format is:

*END-MONITOR

20

Programs to be selected bv FEXEC

FM700
FM701
FM702
FM703

a stand-alone program

the first program in a sequence set of three

a "main" program which receives a data file form FM701
a subroutine called from FM702

The FCVS Library *HEADER images Alphabet-Cards

*HEADER,FORTR,FM700 I-Ol @RUN 82UCLG, 99S003 0D, 99S0050
*HEADER, FORTR, FM701 B-0120J@MSG, N THIS BEGINS XXXXX
*HEADER,FORTR,FM701,SUBPRG,FM702 B-0221 @FOR,IS

TPF$. A , TPF$. XXXXX
*HEADER,FORTR,FM701,SUBRTN,FM703 B-0321T@FOR, IS

TPF$. B , TPFS . XXXXX
E-01 @MAP,I TPF$.C,TPF$.ABS
E-02 IN TPF$.
E-03 @XQT TPF$.ABS
E-04 @ERS TPF$

.

E-0519J@MSG,N THIS ENDS XXXXX
T-01 0FIN

The resultant generated Source Programs File

(continuation of column on the left)

©RUN 82UCLG,99S0030D,99S0050
@MSG,N THIS BEGINS FM700
©FOR, IS TPF$.A,TPF$.FM700
source images for FM700

©MAP, I TPF$.C,TPF$.ABS
IN TPF$.

©XQT TPF$.ABS
©ERS TPF$

.

©MSG,N THIS ENDS FM700
©MSG,N THIS BEGINS FM701
©FOR, IS TPF$.A,TPF$.FM701
source images for FM701

©FOR, IS TPF$.B,TPF$.FM702
source images for FM702

©FOR, IS TPF$.B,TPF$.FM703
source images for FM703

©MAP, I TPF$.C,TPF$.ABS
IN TPF$.

©XQT TPF$.ABS
©ERS TPF$

.

©MSG,N THIS ENDS FM701
©FIN

EXHIBIT 4: Example of JCL Generated From Alphabet-Cards

21

522 Update Control Section

The Update Control Section consists of the following types of card images:

. *BEGIN-UPDATE Control Card

. *START Control Card

. Update Control Cards

. Replacement

. Addition

. Delete a card image(s)

. Change to a Comment Line

. Delete a test(s)

. *END-UPDATE Control Card

. *END-INPUT Control Card

522.1 Begin-Update Control Card (•BEGIN-UPDATE)

The Begin-Update Control card signals the beginning of the update section and follows the

*END-MONITOR control card. This control card is not required if there are no programs to be

modified. The format is:

. *BEGIN-UPDATE

5222 Start Control Card (‘START)

Any audit routine that is to be updated by the FEXEC routine must be selected and have a

‘START control card followed by the appropriate update cards. If more than one routine is to

be updated, then the updates must be submitted in the same order as the programs appear in the

FCVS Library. The reason for this is that the routines are processed sequentially. The format

is:

. *START,FMnnn (FMnnn audit routine name)

5223 Routine Update Control Cards

Update control cards follow the ‘START card for the routine that is to be updated. Source

images can be added, replaced, deleted, or changed to comment lines. Also, whole tests may be

deleted with one control card.

All update control cards begin with an equal sign "=" in column 1 followed by a five-digit number
in columns 2 thru 6, an update type designator in column 7 and an optional five-digit number in

columns 8 thru 12. The five-digit number may be either a line number or a test number
depending on the update type designator specified.

The allowable update type designators are ‘C’, or ‘T. A ‘C’ in column 7 changes the specified

source line(s) to comments; a deletes the specified source line(s); and a ‘T causes the specified

test number(s) to be deleted (i.e., code for the test changed to comments and source code inserted

which causes the test to be noted as ‘DELETED’ on the test results report).

22

Program source code which follows an update control card must be in the standard source

statement format i.e., label beginning in column 1, continuation in column 6 and Fortran statement

in columns 7 through 72. When using the update control cards, refer to the sequence numbers

in columns 73-77 of the source line for specifying the source lines which are to be updated.

When deleting a test (‘T’ in column 7) or a series of tests, it is suggested that the test deletion

update cards be entered as the first
’ = ’ update control card(s) in the set for the audit routine to

be updated. They may also be placed in-line with the other update control cards, but caution must

be used. When test number update cards are intermixed with line number update cards the source

line numbers of these two update types must not overlap otherwise the updates may not be

properly applied.

The delete test option should be used to delete test code that is not supported and will cause the

compiler to produce fatal compile errors or that will not permit the program to execute to a

normal end. Currently the delete test option is only supported for those programs that contain

a CTnnn* label at the beginning of each test. The following paragraphs describe the different

types of updating permitted with FEXEC.

a. Addition of Source Images

To add card images before the first source line of the program, put the card images

immediately after the *START card and before any update control cards.

b. Insert a card image

To insert card images the following sequence would be used:

=nnnnn
(card images to be inserted)

The card images would be inserted after the text for source line nnnnn.

c. Replace a card image

To replace a card image the following sequence would be used:

= nnnnn,nnnnn
(new card image to replaces old card)

If the sequence numbers match, the card image is replaced. (Should there not be a card

numbered nnnnn on the FCVS Library for that source program selected, the card will be
inserted),

d. Replace a series of card images

To replace a series of card images the following sequence would be used:

- nnnnn,mmmmm
(replacement card images)

Card images nmmn through mmmmm wiU be replaced with the new card images specified

after the update control card.

23

e. Delete a card image

To delete a card image the following update control card would be used:

= nnnnn,nnnnn

Source line nnnnn is deleted. If there is no corresponding card, an error message is

issued.

f. Delete a series of card images

To delete a series of card images the following update control card would be used:

= nnnnn,mmmmm

The card images from nnnnn through and including mmmmm are deleted.

g. Changing a single line to a comment

To change a source line to comments the following control card would be used:

=nnnnnC

Source line number nnnnn is changed to a comment line (C is placed in column 1).

h. Changing a series of lines to comments

To change a series of source lines to comments the following update control card would

be used:

=nnnnnCmmmmm

The card images nnnnn though and including mmmmm will have a C inserted in column
1 .

i. Delete a Test

To delete a test the following control card would be used:

=iiiiiT

Test number iiiii is deleted. This will cause all source lines between Test 1 and Test 2 to

be changed to comments and test delete code to be inserted at the beginning of the test.

j. Delete a Test series

To delete a series of consecutive tests the following update control card would be used:

=iimTiiiii

Test numbers iiiii through and including test number
jjjjj are deleted.

24

Exhibit 5 shows some examples of the different types of update control cards and their functions.

522A End-Update Control Card (*END-UPDATE)

The End-Update control card is required if any updates were supplied and signals the end of the

update section. The format is:

*END-UPDATE

522.5 End-Input Control Card (*END-INPUT)

The End-Input control card indicates the end of all FEXEC Control Card inputs. It is the last

card in the input deck and is required even if no update cards are supplied. ITie format is:

*END-INPUT

Failure to include the *END-INPUT card will cause FEXEC to terminate with an I/O error.

53 Outputs from the FEXEC Routine

53.1 Source Programs File

The source programs that are output by the FEXEC routine are sequentially written onto the

logical unit specified as 104 in the source code of the FEXEC. The programs will be separated by

whatever iob control language was specified for generation through use of I-cards, B-cards,

E-cards, ' cards and T-cards. A file mark terminates the file. The FCVS user must decide which

of the devices available on his system would best be used as the Source Programs file. This file

must then be input to the operating system, usually via a batch input procedure.

533 Data

Data are read from the FCVS Library for routines which have card input and are written in

a sepa:Liite file (not the Source Programs file) when the special indicator "DATA****" is not

specified. If the special indicator is used, the data follows in-line with the source program and is

written to the Source Programs file.

The file used for data files when the special indicator is not specified is logical unit 111 used by

the FEXEC.

533 Printer File

Depending upon the *LIST option chosen in the Monitor Control Inputs to the FEXEC routine,

the printer listing will vary in size and content.

25

*BEGIN-UPDATE Begin Update section input

*START, FMnnn
C FSTC
=01000

101 =

102 =
=01100,01100
=01150,01150

Begin updates for program FMnnn
Add new text at beginning of program

Insert text after line 01000

5 Text to be inserted

6

Delete a card image

Replace a card image

GO TO 25 New card image to replace line 01150

=00002T

=00004T00006

=01180,01190
CONTINUE

Test 2 is deleted (source code changed to comments) and delete code

inserted

Tests 4 through 6 are deleted (source code changed to comments) and

delete code inserted for test 4 through 6

Replace a series of card images

New card images to replace lines 01180 and 01190

IVPASS=IVPASS+1 and 01190

012 OOC Change Line to comment
=01400001600
=19000,19200
*START, FMnnn

Change series of lines to comments
Delete a series of lines

*END-UPDATE
*END-INPUT

EXHIBIT 5: Update Control Card Examples

26

APPENDIX A
ERROR MESSAGES FROM THE EXECUTIVE ROUTINE

A. ERROR MESSAGES FROM THE EXECUTIVE ROUTINE

The following description of messages and actions taken documents possible error situations with regard

to the FEXEC Routine. In every case, the message is shown as an error number below the control record

or input card which caused the error situation.

A.l Error Messages and Action Taken

No. Explanation Action Taken

1 UNRECOGNIZABLE MONITOR CONTROL CARD Card is skipped

2 ERROR IN OPTl CARD Card is skipped

3 ERROR IN PFMnnn CONTROL CARD Card is skipped

4 ERROR IN X-nn CONTROL CARD Card is skipped

5 UNRECOGNIZABLE * RECORD ON SOURCE FILE Skip untU next valid * record

is read

6 ERROR IN *HEADER RECORD - SOURCE FILE Skip until next valid * record

is read

7 ERROR IN *START CONTROL CARD Update cards skipped until

next * card read

8 ERROR IN UPDATE CARD - CANT RECOGNIZE Card is skipped

9 UNRECOGNIZABLE INPUT CARD Card is skipped

10 ERRORm PROGRAM NAME IN ‘HEADER ON
SOURCE FIUE Program is skipped

11 ERROR m *UST CARD Card is skipped

12 ERROR IN CX RECORD ON SOURCE FILE Record is skipped

13 ERROR IN *END.OF,FMnnn RECORD ON SOURCE
FILE Record is skipped

14 ERROR ON UPDATE CONTROL CARD Skip to next * card

15 ERROR IN UPDATE SEQUENCE Skip to next correct sequence

card

16 ERROR IN B-CARD NUMBER OR NUMBER
EXCEEDS TABLE SIZE Card is skipped

A- 1

17 ERROR IN E-CARD NUMBER OR NUMBER
EXCEEDS TABLE SIZE Card is skipped

18 ERROR IN I-CARD NUMBER OR NUMBER
EXCEEDS TABLE SIZE Card is skipped

19 ERROR IN T-CARD NUMBER OR NUMBER
EXCEEDS TABLE SIZE Card is skipped

20 ERROR IN D-CARD NUMBER OR NUMBER
EXCEEDS TABLE SIZE Card is skipped

21 ERROR IN NAME SUBSTITUTION POSITION
DESIGNATOR (COLUMNS 5-6)

Name substitution is

skipped

22 ERROR IN NAME SUBSTITUTION POSITION
DESIGNATOR (COLUMNS 5-6) OF E-CARD

Name substitution is

skipped

23 ONLY ONE CARD OF THIS TYPE MAY BE
SPECIFIED

Card is skipped

24 MONITOR CARD SPECIFIED WITHOUT OPTION Card is skipped

25 INVALID OPTION SPECIFIED Card is skipped

26 INVALID PROGRAM NUMBER Card is not processed

A-2

APPENDIX B
FILE REQUIREMENTS FOR FCVS

/

B. FILE REQUIREMENTS FOR FCVS

Appendix B lists the X-cards, default logical unit numbers (LUN), associated routines and the use of the

files in the Fortran Compiler Validation System.

Logical Unit Chart for FEXEC

X-card Default LUN Routine Use

X-010 101 = 5 FEXEC Input control file

X-020 102 = 6 Output print file

X-040 104 = 7 Input FCVS Library file

X-100 no = 8 Output Source program file

X-110 111 = 9 Output optional data file

X-120 112 = 10 I/O work file for TPF’s

Logical Unit Chart for Audit Routines

X-card Default LUN Routine Use

X-010 101 = 5 FMllO
FMlll
FM403
FM404
FM900
FM901
FM906
FM903
FM923

Input data file (access sequential)

X-020 102 = 6
*4c4e** Output print file for all audit routines

X-040 104 = 8 FM411 I/O work file (sequential, unformatted)

X-050 105 = 14 FM915
FM920

I/O work file (sequential, unformatted)

X-060 106 = 7 FMIOO
FM104
FM107

I/O work file (sequential, formatted)

X-070 107 = 7 FMlOl I/O work file (sequential, formatted)

X-080 108 = 7 FM102
FM105
FM108
FM401

I/O work file (sequential, formatted)

108 = 14 FM914
X-090 109 = 7 FM103

FM106
FM402

I/O work file (sequential, formatted)

109 = 14 FM919
X-100 no = 24 FM407 I/O work file (direct, unformatted)

B-

1

no = 9 FM413
no = 24 FM910

FM921
X-110 111 = 25 FM910 I/O work file (direct, unformatted)

X-120 112 = 14 FM917 I/O work file (direct, unformatted)

X-130 113 = 24 FM912 I/O work file (direct, formatted, record length 80,

record count 142)

X-140 114 = 14 FM916 I/O work file (direct, formatted)

X-150 115 = 14 FM922 I/O work file (sequential, formatted)

X-190 FM919 Replacement card for statement

FM920
FM922

CHARACTER*15 CSEQ

X-191 FM919 Replacement card for statement

FM920
FM922

CSEQ = ’ CSEQ’

X-200 FM910 Replacement card for statement

FM912
FM921

CHARACTER* 15 CDIR

X-201 FM910 Replacement card for statement

FM912
FM921

CDIR = ’ CDIR’

B-2

APPENDIX C
LIST OF FORTRAN AUDIT ROUTINES

C. LIST OF FORTRAN AUDIT ROUTINES

The Fortran Compiler Validation System (FCVS) consists of 272 audit routines used to test a compiler

with regard to ANS X3.9-1978. The audit routines are divided into two levels. Subset Level Fortran audit

routines is used to test the subset language as specified in ANS X3.9-1978 and described on the lefthand

pages of the standard. Full Level Fortran audit routines, which includes the Subset Level, is used to test

the full language as specified in ANS X3.9-1978 and described on the righthand pages of the standard.

C.l Subset Level Fortran

The Subset Level Fortran test suite consists of 123 main routines and 44 related subroutines or

function subprograms.

Main Program Related Subprograms or Subroutines

FMOOl thru FM014

FM016 thruFM025

FM026

FIV1028

FM030 thruFM045

FM050

FM056

FM060 thruFM062

FM080

FM097 thru FMlll

FM200 thruFM205

FM251 thruFM260

FM261

FM300 inru FM301

FM302

FM306 thniFM307

FM027

FM029

FM051, FM052, FM053, FM054, FM055

FM057, FM058, FM059

FM081, FM082, FM083

FM262, FM263, FM264

FM303, FM304, FM305

C- 1

FM308 FM309, FM310

FM311 FM312, FM313, FM314, FM315, FM316

FM317 FM318, FM319,FM320,FM321,FM322,FM323, FM324, FM325,

FM326, FM327

FM328

FM351 thru FM357

FM359 thru FM364

FM368 thru FM379

FM401 thru FM406

FM329, FM330, FM331, FM332, FM333, FM334, FM335

FM407

FM411

FM413

FM408

C2, Full Level Fortran

The Full Level Fortran test suite includes the Subset Level Fortran test suite and the following

70 main routines and 35 related subroutines or function subprograms.

Main Program Related Subprograms or Subroutines

FM500 FM501, FM502

FM503 FM504, FM505

FM506 FM507, FM508

FM509 FM510, FM511, FM512, FM513

FM514 FM515, FM516

FM517

FM520

FM700

FM518, FM519

FM701

FM710

FM702, FM703, FM704, FM705, FM706, FM707, FM708, FM709

C-2

FM711

FM715

FM718

FM719

FM722

FM800

FM900

FM903

FM905

FM910

FM912

FM914

FM712, FM713, FM714

FM716, FM717

FM720, FM721

FM723, FM724, FM725

thru FM834

thru FM901

FM904

thru FM909

FM911

FM913

thru FM923

APPENDIX D
FCVS PROGRAM INFORMATION

D. FCVS PROGRAM INFORMATION

D.l Subset Language Programs Part 1

D.1.1 FMOOl (Subset)

a. Features Tested

This routine contains the pro - edures which are used throughout the Fortran Compiler

Validation System. The output report headings for the elementary routines are printed,

followed by three tests which contain the source lines for the pass, fail and delete

procedures for testing langu ge features. The run summary lines are printed at the end

of the routine.

If this routine does not compile and execute correctly, then no other routines are run.

There is no use in trying to validate a Fortran compiler which cannot handle such basic

statements.

ANS >3.9-1978 References: 3.2.1, 3.4, 3.6, 5. 1.1.1, 10.1, 11.1, 11.4, 11.11, 12.9.5.2, 12.9.5.2.3,

13.5.3.2, 13.5.9.1, 13.5.11

b. Special Considerations

There are 3 ‘PA,jS/FAIL’ tests. The report should show that Test 1 PASSed, Test 2

FAILed and Test 3 DELETED.

Related Functions, Subroutines or Programs: None

X-Nur"^rs: 02

D.13 FM002 (Subset)

a. Features Tested

This routine tests comment Unes which contain valid Fortran statements. Comment lines

should not affect the execution c :he program in any way.

ANS X3.9-1978 References: 3.2.1

b. Special Considerations

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-

1

D.13 FM003 (Subset)

a. Features Tested

This routine contains the basic CONTINUE tests. These tests insure that execution of a

CONTINUE statement causes continuation of the normal program execution sequence.

Only the statements in the basic assumptions are included in these tests. CONTINUE
tests are contained in later routines as part of the tests for other language features such

as the DO statement tests.

ANS X3.9-1978 Reference: 3.6, 11.11

b. Special Considerations

There are 8 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.4 FM004 (Subset)

a. Features Tested

This program tests the basic arithmetic IF statement and the basic unconditional GO TO
statement.

ANS X3.9-1978 Reference: 3.6, 11.1, 11.4

b. Special Considerations

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-2

D.IJ FM005 (Subset)

a. Features Tested

This routine tests the basic assumptions regarding the simple formatted WRITE statement

of the form:

WRITE (U,F) or WRITE (U,F) L

where U is a logical unit number, F is a format statement label, and L is a list of integer

variables.

The format statement contains nH Hollerith field descriptors, nX blank field descriptors,

and Iw numeric field descriptors.

This routine also tests whether the first character of a format record for printer output

determines vertical spacing as follows:

blank - one line, and 1 - advance to first line of next page.

ANS X3.9-1978 Reference: 12.8.2, 12.9.5.2, 12.9.5.2.3, 13.5.2, 13.5.9.1

b. Special Considerations

There are 17 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.6 FM006 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable - integer constant

ir eger variable * integer variable

An integer constant is written as a nonempty string of digits. The constant is the digit

string interpreted as a decimal number. The integer constant may be unsigned, positive

or negative.

An integer datum is always an exact representation of an integer value. It may assume
positive, negative and zero values. It may only assume integral values.

This routine also contains tests which check on the use of at least 16 bits for representing

integer data values. The constant values 32767 and -32766 are used in these tests.

ANS X3.9-1978 Reference: 43, 43.1, 10.1

D-3

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.7 FM007 (Subset)

a. Features Tested

This routine tests the use of DATA initialization statements. DATA initialization

statements are used to define initial values for integer variables. The DATA statements

contain unsigned, positive signed, and negative signed integer constants. The last DATA
statement in the routine contains the form

J * integer constant

which indicates the constant is to be specified J times.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 9

b. Special Considerations

There are 20 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers; 02

D.1.8 FM008 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where arithmetic expression is formed with the arithmetic operator + , integer constants

and positive integer variables. Some of the tests use parentheses to group elements in an

arithmetic expression.

ANS X3.9-1978 Reference: 43, 43.1, 6.1, 10.1

D-4

b. Special Considerations

There are 35 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.9 FM009 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator +, integer

constants and positive integer variables. Some of the tests use parentheses to group

elements in the arithmetic expression

ANS X3.9-1978 REFERENCE: 4.3, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.10 FMOlO (Subset)

a. Features Tested

This routine tests reference format of Fortran statements and statement numbers. The
use of the BLANK character is tested both within the statement number field and within

the Fortran statements themselves. Leading zero is tested for statements and integer

constants. Variable names which look very much like Fortran reserved words are tested

in arithmetic assignment statements. Naming conventions used throughout the FCVS are

tested also in arithmetic assignment statements.

ANS X3.9-1978 Reference: 2.5, 3.1.6, 322 , 3.4

D-5

b. Special Considerations

There are 3 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.11 FMOll (Subset)

a. Features Tested

This routine is a test of BLANK characters (section 3.1.6) which should have no meaning

when embedded in Fortran reserved words.

ANS X3.9-1978 Reference: 3.1.6

b. Special Considerations

There are 7 ‘PASS/FAIL tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.12 FM012 (Subset)

a. Features Tested

This routine tests the Fortran DO statement from its simplest form to the more
abbreviated forms. Various increments are used and branching by various methods is

tested for passing control out of the DO range and returning (extended range). Nested

DO statements using various terminating statements are also tested by this routine.

ANS X3.9-1978 Reference: 11.10, 11.10.3, 11.11

b. Special Considerations

There are 15 ‘PASS/FAIL’ tests. The report should show that Test 123 is omitted.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-6

D.1.13 FM013 (Subset)

a. Features Tested

This routine tests the Fortran assigned GO TO statement as described in Section 10.3 and

Section 11.3. First a statement label is assigned to an integer variable in the ASSIGN
statement. Second, a branch is made in an assigned GO TO statement using the integer

variable as the branch controller in a list of possible statement numbers to be branched

to.

ANS X3.9-1978 Reference: 10.3, 11.3

b. Special Considerations

There are 5 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.14 FM014 (Subset)

a. Features Tested

This routine tests the Fortran computed GO TO statement. Because the form of the

computed GO TO is so straightforward, the tests mainly relate to the range of possible

statement numbers which are used.

w X3.9-1978 Reference: 11.2

b. Special Considerations

There are 4 ‘PASS/FAIL’ tests.

Related Funaions, Subroutines or Programs: None

X-Numbers: 02

D.1.15 FM016 (Subset)

a. Features Tested

This routine begins a series of tests of the Fortran logical IF statement in all of the various

forms. The following logical operands are used for this routine - logical constants, logical

variables, logical array elements, and arithmetic expressions with various relational

operators. Both the true and false branches are tested in the series of tests.

ANS X3.9-1978 Reference: 4.7.1, 6, 6.1, 63, 6.4, 6.6, 10, 103, 113

D-7

b. Special Considerations

There are 31 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.16 FM017 (Subset)

a. Features Tested

This routine continues tests of the Fortran logical IF statement in all of the various forms.

The following logical operands are used for this routine - logical constants, logical

variables, logical array elements, and arithmetic expressions with various relational

operators. Both the TRUE and FALSE branches are tested in the series of tests.

ANS X3.9-1978 Reference: 4.7.1, 6, 6.1, 6.3, 6.4, 6.6, 10, 10.2, 11.5

b. Special Considerations

There are 30 ’PASS/FAIL’ tests

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.17 FM018 (Subset)

a. Features Tested

This routine continues tests of the Fortran logical IF statement in all of the various forms.

The following logical operands are used for this routine - logical constants, logical

variables, logical array elements, and arithmetic expressions with various relational

operators. Both the TRUE and FALSE branches are tested in the series of tests.

ANS X3.9-1976 Reference: 4.7.1, 6, 6.1, 6.3, 6.4, 6.6, 10, 10.2, 11.5

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-8

D.1.18 FM019 (Subset)

a. Features Tested

This routine continues tests of the Fortran logical IF statement by testing various forms

of relational expressions with arithmetic expressions. Positive and negative signs are used

in conjunction with parentheses. Combinations of logical .AND. .OR. .NOT. are used

to test the more complex expressions.

ANS X3.9-1978 Reference: 4.7.1, 6, 11.5

b. Special Considerations

There are 23 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.19 FM020 (Subset)

a. Features Tested

This routine tests the Fortran in-line statement function of type logical and integer.

Integer constants, logical constants, integer variables, logical variables, integer arithmetic

expressions are all used to test the statement function definition and the value returned

for the statement function when it is used in the main body of the program.

ANS X3.9-1978 Reference: 8.4.1, 15.3.2, 15.4, 15.4.1, 15.4.2, 15.5.2

b. Special Considerations

This program assumes that the compiler supports the Intrinsic Functions SQRT and

FLOAT.

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-9

D.1^0 FM021 (Subset)

a. Features Tested

This routine tests the Fortran data initialization statement. Integer, real, and logical data

types are tested using unsigned constants, signed constants, and logical constants. Integer,

real logical, and mixed type arrays are also tested.

ANS X3.9-1978 Reference: 4.1.3, 4.4.3, 9

b. Special Considerations

There are 39 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.i:21 FM022 (Subset)

a. Features Tested

This routine tests arrays with fixed dimension and size limits set either in a blank common
or dimension statement. The values of the array elements are set in various ways such as

simple assignment statements, set to the values of other array elements (either positive or

negative), set by integer to real or real to integer conversion, set by arithmetic expressions,

or set by use of the equivalence statement.

ANS X3.9-1978 Reference: 8, 8.1, 8.2, 8.3, 8.4, 9

b. Special Considerations

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 10

D.122 FM023 (Subset)

a. Features Tested

Two DIMENSIONed arrays are used in this routine. This routine tests arrays with fixed

dimension and size limits of the array elements set either in a blank COMMON or

DIMENSION statement. The values of the elements are set in various ways such as

simple assignment statements, set to the values of other array elements (either positive or

negative), set by integer to real or real to integer conversion, set by arithmetic expressions,

or set by use of the EQUIVALENCE statement.

ANS X3.9-1978 Reference: 8, 8.1, 8.2, 8.3, 8.4, 9

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1:J3 FM024 (Subset)

a. Features Tested

Three dimensioned arrays are used in this routine. This routine tests arrays with fixed

dimension and size limits set either in a blank common or dimension statement. The
values of the array elements are set in various ways such as simple assignment statements,

set to the values of other array elements (either positive or negative), set by integer to real

or real to integer conversion, set by arithmetic expressions, or set by use of the equivalence

statement.

ANS X3.9-1978 Reference: 8, 8.1, 8.2, 8.3, 8.4, 9

b. Special Considerations

"
:2cre are 8 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers*. 02

D- 11

D.124 FM025 (Subset)

a. Features Tested

This routine tests IF statements, DO loops, assigned and computed GO TO statements in

conjunction with array elements specified in COMMON or DIMENSION statements.

One, two, and three dimensioned arrays are used. The subscripts are integer constants or

sometimes integer variables when the elements are in loops and aU arrays have fixed size

limits. Integer, real, and logical arrays are used with the type sometimes specified with the

explicit type statement.

ANS X3.9-1978 Reference: 8, 8.1, 8.3, 8.4, 9, 11.2, 11.3, 11.10

b. Special Considerations

There are 11 ‘PASS/FAIL’ tests. The report should show that tests 663 and 664 have been

omitted.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1^5 FM026 (Subset)

a. Features Tested

This routine contains the basic subroutine reference tests. The subroutine FS027 is called

by this program. The subroutine FS027 increments the calling argument by 1 and returns

to the calling program.

Execution of a subroutine reference results in an association of actual arguments with aU

appearances of dummy arguments in the defining sub program. Following these

associations execution of the first executable statement of the defining subprogram is

undertaken.

ANS X3.9-1978 Reference: 15.6.2

b. Special Considerations

There are 4 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM027

X-Numbers; 02

D- 12

D.126 FM028 (Subset)

a. Features Tested

This routine contains external function reference tests. The function subprogram FF029

is called by this program. The function subprogram FF029 increments the calling

argument by 1 and returns the incremented value to the calling program as the function

value.

The external function FF029 is referenced by using its reference as a primary in an

arithmetic expression. Execution of the function reference results in an association of

actual arguments with aU appearances of dummy arguments in the defining subprogram.

Following these associations, execution of the first executable statement of the defining

subprogram is undertaken.

ANS X3.9-1978 Reference: 15.5.2

b. Special Considerations

There are 4 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM029

X-Numbers: 02

D.1^7 FM030 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression ' formed with the arithmetic operator (-) integer

constants and integer variables.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 10.1

b. Special Consideratic^iS

There are 35 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 13

D.1J8 FM031 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form;

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator integer constants

and integer variables. Some of the tests use parentheses to group elements in an

arithmetic expression. The integer variables contain positive and negative values.

ANS X3.9-1978 Reference: 43, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1^9 FM032 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator (-) integer

constants, and integer variables. Some of the tests use parentheses to group elements in

an arithmetic expression.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 14

D.130 FM033 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form;

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator and integer

constants. Some of the tests use parentheses to group elements in the expression and to

allow the use oi negative constants following the operator.

ANS X3.9-1978 Reference: 43, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 35 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers: 02

D.131 FM034 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator (*), integer

variables and integer constants. Some of the tests use parentheses to group elements in

the arithmetic expression and to permit the use of negative constants following the (*)

operator. The integer variables contain positive and negative values.

ANS X3.9-1978 Reference: 43, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 35 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 15

D.132 FM035 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator (*), integer

variables, and an integer constant. The integer variables contain positive and negative

values. Some of the tests use parentheses to group elements in the arithmetic expressions.

Parentheses are also used to enclose negative constants.

ANS X3-1978 Reference: 4.3, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 32 ‘PASS/FAIL’ tests:

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.133 FM036 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression formed with the arithmetic operator and integer constants.

Both positive and negative integer constants are used in the arithmetic expression.

Some of the tests require no truncation of the result while other tests require truncation

before the result is stored in the integer variable. The standard states ‘The value of an

integer factor or term is the nearest integer whose magnitude does not exceed the

magnitude of the mathematical value represented by that factor or term.’

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 29 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 16

D.134 FM037 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator / and three integer

constants. Both positive and negative integer constants are used in the arithmetic

expression.

Some of the tests require no truncation of the result while other tests require truncation

before the result is stored in the integer variable. The Standard states, ‘The value of an

integer factor or term is the nearest integer whose magnitude does not exceed the

magnitude of the mathematical value represented by that factor or term. The associative

and commutative laws do not apply in the evaluation of integer terms containing division,

hence evaluation of such terms must effectively proceed from left to right.’

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 29 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.135 FM038 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator /, integer constants

and an integer variable. Both positive and negative values are used for the integer

constants and the integer variable.

Some of the tests require no truncation of the result while other tests require truncation

before the result is stored in the integer variable. Parentheses are used to group elements

in the arithmetic expressions with three operands. The use of parentheses to group the

last two operands overrides the evaluation from left to right of integer terms which contain

division. The second division must be performed first.

ANS X3.9-1978 Reference: 43, 4.3.1, 6.1, 6.6, 10.1

D- 17

b. Special Considerations

There are 32 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.136 FM039 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator /, integer constants

and an integer variable. Both positive and negative values are used for the integer

constants and the integer variable.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.137 FM040 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = arithmetic expression

where the arithmetic expression is formed with the arithmetic operator /, integer variables

and an integer constant. Both positive and negative values are used for the integer

variables and the integer constant.

ANS X3.9-1978 Reference: 4.3, 43.1, 6.1, 6.6, 10.1

D- 18

b. Special Considerations

There are 33 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1J8 FM041 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = primary ** primary

where the first of two primaries is an integer variable or an integer constant and the

second primary is an integer variable.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 10.1

b. Special Considerations

Tliere are 34 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.139 FM042 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

integer variable = primary primary

where the first of two primaries is an integer variable or an integer constant and the

second primary is an integer variable.

ANS X3.9-1978 Reference: 43, 4.3.1, 6.1, 10.1

b. Special Considerations

There are 34 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D- 19

D.1.40 FM043 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

INTEGER VAR. = INTEGER VAR. <OPl>
INTEGER VAR. <OP2> INTEGER VAR.

where <OPl> and <OP2> are arithmetic operators, but <OPl> is not the same as

<OP2>. All combinations of parenthetical associations are also exercised.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 36 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.41 FM044 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

INTEGER VAR. = INTEGER VAR. <OPl>
INTEGER VAR. <OP2> INTEGER VAR.

where <OPl> and <OP2> are arithmetic operators.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-20

D.1.42 FM045 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements containing integer variables connected

by a series of arithmetic operators. Different combinations of parenthetical notation are

exercised.

ANS X3.9-1978 Reference: 4.3, 4.3.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.43 FM050 (Subset)

a. Features Tested

This routine contains basic subroutine and function reference tests. Four subroutines and

one funct'on are called or referenced. FS051 is called to test the calling and passing of

arguments through unlabeled COMMON. No arguments are specified in the call line.

FS052 is identical to FS051 except that several returns are used. FS053 utilizes many
arguments on the CALL statement and many RETURN statements in the subroutine

body. FF054 is a function subroutine in which many arguments and RETURN statements

are used. And finally FS055 passes a one dimensional array back to FM050.

ANS X3.9-1978 Reference: 15.5.2, 15.6.2

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM051, FM052, FM053, FM054, FM055

X-Numbers: 02

D-21

D.1.44 FM056 (Subset)

a. Features Tested

FM056 is a main program which tests the argument passing linkage of a 2 level nested

subroutine and an external function reference. The main program FM056 calls subroutine

FS057 passing one argument. Subroutine FS057 calls subroutine FS058 passing two

arguments. Subroutine FS058 references external function FF059 passing 3 arguments.

Function FF059 adds the values of the 3 arguments together. Subroutines FS057 and

FS058 then merely return the result to FM056 in the first argument.

The values of the arguments that are passed to each subprogram and function, and

returned to the calling or referencing program are saved in an integer array. FM056 then

uses these values to test the compiler’s argument passing capabilities.

ANS X3.9-1978 Reference; 15.6.2

b. Special Considerations

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM057, FM058, FM059

X-Numbers: 02

D-22

D.1.45 FM060 (Subset)

a. Features Tested

This routine contains basic arithmetic IF statement tests for the format:

IF (E) Kl, K2, K3

where E is a simple real expression of the form:

Real Variable

Real Variable - Real Constant

Real Variable + Real Constant

and Kl, K2 and K3 are statement labels.

The routine FM060 also tests arithmetic assignment statements of the form.

Real Variable = Real Constant

Real Variable = Real Variable

Real Variable = -Real Variable

The real constants and real variables contain both positive and negative values.

ANS X3.9-1978 Reference: 4.4, 4.4.1, 6.1, 10.1, 11.4

b. Special Considerations

There are 31 ‘PASS/FAIL’ tests.

Related Functions. Subroutines or Programs: None

X-Numbers: 02

D.1.46 FM061 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements of the form:

Integer variable = Real constant

Integer variable = Real variable

Real variable = Integer variable

Real variable = Integer constant

The constants and variables contain both positive and negative values.

ANS X3.9-1978 Reference: 4.4, 4.4.1, 6.1, 6.6, 10.1, 11.4

D-23

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.47 FM062 (Subset)

a. Features Tested

This routine tests arithmetic assignment statements where an arithmetic expression formed

from real variables and constants connected by arithmetic operators is assigned to a real

variable. In cases involving the exponentiation operator, real values are raised to integer

powers only.

ANS X3.9-1978 Reference: 4.4, 4.4.1, 6.1, 6.6, 10.1

b. Special Considerations

There are 31 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.48 FM080 (Subset)

a. Features Tested

This routine contains external function reference tests. The function subprograms called

by this routine are FF081, FF082 and FF083. The function subprograms are defined as

FF081 = integer, FF082 = real, FF083 = implicit real. The function sub program dummy
arguments must agree in order, number and type with the corresponding actual arguments

of the main program. The arguments of the function subprograms will correspond to

actual argument list references of variable-name, array-name, array-element-name and

expression respectively.

This routine will test the value of the function and the function arguments returned

following the function reference call.

ANS X3.9-1978 Reference: 2.6, 15.5.2, 172

D-24

b. Special Considerations

There are 17 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM081, FM082, FM083

X-Numbers: 02

D.1.49 FM097 (Subset)

a. Features Tested

This routine tests intrinsic functions where the function type is real and the arguments are

either integer or real. The real and integer variables and the real and integer constants

contain both positive and negative values. The intrinsic functions tested by FM097 are

ABS, AINT, AMOD, AMAXO, AMAXl AMINO, AMINl, FLOAT, SIGN and DIM.

ANS X3.9-1978 Reference: 4.1.2, 15.3, 15.3.2

b. Special Considerations

There are 32 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.50 FM098 (Subset)

a. Features Tested

This routine tests intrinsic functions where the function type is integer and the arguments

are either integer or real. The real and integer variables and the real and integer

constants contain both positive and negative values. The intrinsic functions tested by

FM098 are lABS, INT, MOD, MAXO, MAXI, MINO, MINI, IFIX, ISIGN and IDIM.

ANS X3.9-1978 Reference: 4.1.2, 15.3, 15.3.2

b. Special Considerations

There are 32 ‘PASS/FAIL’ tests.

Related Functions, Sub outines or Programs: None

X-Numbers: 02

D-25

D.1.51 FM099 (Subset)

a. Features Tested

This routine tests various mathematical functions where both the function type and

arguments are real. The real variables and constants contain both positive and negative

values. The functions tested in FM099 are EXP, ALOG, ALOGIO, SIN, COS, TANK,
SORT, ATAN and ATAN2.

ANS X3.9-1978 Reference; 8.7, 15.5.2

b. Special Considerations

There are 26 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1^2 FMIOO (Subset)

a. Features Tested

This routine is a test of the I format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer variable and integer array element or array name
references. ALL READ and WRITE statements are done with format statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every fourth record is checked during the Read Test Section plug the last two records and

the end of file on the last record.

The line continuation in column 6 is used in READ, WRITE, and format statements. For

both syntax and semantic tests, all statements should be checked visually for the proper

functioning of the continuation line.

ANS X3.9-1978 Reference; 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1, 13.5.9.1

D-26

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 106 to tape, then

reassign LUN 106 to disk.

There are 11 ‘PASS/FAIL’ tests. The report should show the message ‘FILE 106

CREATED WITH 31 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs; None

X-Numbers: 02, 06

D.1J3 FMlOl (Subset)

a. Features Tested

This routine is a test of the F format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are real variables and real array elements or array name
references. All READ and WRITE statements are done with format statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-impUed lists are used in conjunction with a one dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every fourth record is checked during the READ Test Section plus the last two records

and the end of file on the last record.

The line continuation in column 6 is used in READ, WRITE, and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visually for the

:per functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 132.1

b. Special (Considerations

This test routine should be executed twice. The first time, assign LUN 107 to tape, then

reassign LUN 107 to disk.

There are 11 ‘PASS/FAIL’ tests. The report should show the message ‘FILE 107

CREATED WITH 31 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 07

D-27

D.1.54 FM102 (Subset)

a. Features Tested

This routine is a test of the A format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are alphanumeric integers and array elements or array name
references. All READ and WRITE statements are done with FORMAT statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every record is read and checked for accuracy and the end of file on record 31 is also

checked. During the read and check process the file is rewound twice. The first pass

checks the odd numbered records and the second pass checks the even numbered records.

The line continuation in column 6 is used in READ, WRITE and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visuaUy for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 108 to tape, then

reassign LUN 108 to disk.

There are 32 ‘PASS/FAIL’ tests. The report should show the message FILE 108

CREATED WITH 31 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 08

D-28

D.1^5 FM103 (Subset)

a. Features Tested

This routine is a test of the X format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer or real variables, integer array elements or array

name references. READ and WRITE statements are done with FORMAT statements.

The routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one-dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every record is read and checked for accuracy and the end of file on record 31 is also

checked. During the read and check process the file is rewound twice. The first pass

checks the odd numbered records and the second pass checks the even numbered records.

The line continuation in column 6 is used in READ, WRITE, and FORMAT statements.

For both syntax and semantic tests, aU statements should be checked visually for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 109 to tape, then

reassign LUN 109 to disk.

There are 32 TASS/FATL’ tests. TTie report should show the message ‘FILE 109

CREATED WITH 31 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 09

D-29

D.1.56 FM104 (Subset)

a. Features Tested

This routine is a test of the / format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer variable and integer array element or array name
references. All READ and WRITE statements are done with FORMAT statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every record is read and checked during the Read Test Section for values of data items

and the end of file on the last record is also checked.

The line continuation in column 6 is used in READ, WRITE and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visually for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1, 13.5.9.1

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 106 to tape, then

reassign LUN 106 to disk.

There are 8 TASS/FATL’ tests. The report should show the message ‘FILE 106

CREATED WITH 28 SEQUENTIAL RECORDS’

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 06

D -30

D.1.57 FM105 (Subset)

a. Features Tested

FM105 tests repeated () format fields and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer variable and integer array element or array name
references. All READ and WRITE statements are done with FORMAT statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

Routine FM105 is exactly like routine FM104 except that format numbers 77751 and 77752

have been changed to use three (3) repeated fields, i.e.,... 3(/ ...) this should stiU make
the routine write and then read four (4) 80 character records for each single WRITE or

READ statement. Other format conversions used are the X and I format fields. Because

of the number of characters to be written or read in each set of four records, the entire

repeated field is used.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every record is read and checked during the Read Test Section for values of data items

ano the end of file on the last record is also checked.

The line continuation in columi. 6 is used in READ, WRITE, and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visually for the

proper functioning of the continuation Une.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1, 13.5.9.1

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 108 to tape, then

reassign LUN 108 to disk.

There are 8 ‘PASS/FAIL’ tests. The report should show the message FILE 108

CREATED WITH 28 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 08

D-31

D.1.58 FM106 (Subset)

a. Features Tested

This routine is a test of the E format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are real variables and real array elements or array name
references. All READ and WRITE statements are done with FORMAT statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every fourth record is checked during the Read Test Section plus the last two records and

the end of file on the last record.

The line continuation in column 6 is used in READ, WRITE and FORMAT statements

For both syntax and semantic tests, all statements should be checked visually for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1

b. Special Considerations

This test routine should be executed twice. The first time, assign LUN 109 to tape, then

reassign LUN 109 to disk.

There are 11 ‘PASS/FAIL’ tests. The report should show the message ‘FILE 109

CREATED WITH 124 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 09

D-32

D.1^9 FM107 (Subset)

a. Features Tested

This routine is a test of the I format and is tape and printer oriented. The routine can

also be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer variable and integer array element or array name
references. All READ and WRITE statements are done with FORMAT statements. The
routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

The major purpose of this routine is to test whether the last set of parentheses will be

repeated in a FORMAT statement if the number of data items in the input/output list is

greater than the number of field specifications within the FORMAT statement. In addition

the use of two and three dimensioned arrays is tested in the implied-DO lists in both the

WRITE and READ sections.

This routine writes a single sequential file which is rewound and read sequentially forward.

Every fourth record is checked during the Read Test Section plus the last two records and

the end of file on the last record.

The line continuation in column 6 is used in READ, WRITE, and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visually for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1

b. Specia. Considerations

This test routine should be executed twice. The first time, assign LUN 106 to tape, then

reassigr LUN 106 to disk.

There are 11 ‘PASS/FAIL’ tests. The report should show the message ‘FILE 106

CREATED WITH 137 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 06

)

D-33

D.1.60 FM108 (Subset)

a. Features Tested

This routine is a test of the X format and is tape and printer oriented. The routine can

not be used for disk. Both the READ and WRITE statements are tested. Variables in

the input and output lists are integer or real variables, integer array elements, or array

name references. READ and WRITE statements are done with FORMAT statements.

The routine has an optional section of code to dump the file after it has been written. DO
loops and DO-implied lists are used in conjunction with a one dimensional integer array

for the dump section.

With the exception of the record preambles on each record, aU of the I,F, and A-fields

have a minus sign (-) in the leftmost character position of each field.

This routine writes a single sequential file which is rewound and read sequentially forward

and then read sequentially backward by using the BACKSPACE command. The forward

read is used to check all of the odd records and the read "reverse" is used to check all of

the even numbered records. The ENDFILE command is also used after the write section,

but because the result of attempting to read or read beyond the end file mark is not

possible to predict for all machines, the endfile mark is never actually read.

The line continuation in column 6 is used in READ, WRITE, and FORMAT statements.

For both syntax and semantic tests, all statements should be checked visually for the

proper functioning of the continuation line.

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 132.1

b. Special Considerations

This test routine should be executed using LUN 108 assigned to tape.

There are 31 ‘PASS/FAIL’ tests. The report should show the message ‘FILE 108

CREATED WITH 31 SEQUENTIAL RECORDS’.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 08

D.34

D.1.61 FM109 (Subset)

a. Features Tested

This routine tests the basic options regarding the simple formatted WRITE statement of

the form:

WRITE(U, F) or WRITE (U,F) L

where U is a logical unit number, F is a FORMAT statement number, and L is an output

list. The FORMAT specifications contain nH - Hollerith descriptions, nX blank field

descriptions, and Iw n, eric integer descriptions.

This routine tests whether the first character ^ a FORMAT record for printer output

determines vertical spacing as follows:

1 - advance to the first line at the top of the next page

0 - advance two lines before printing

+ - do not advance before printing the next line

blank - advance one line before printing

ANS X3.9-1978 Reference: 8, 9, 11.10, 12, 12.8.2, 12.9.5.2, 13, 13.2.1

b. Special Considerations

There are 22 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.1.62 FMllO (Subset)

a. Features Tested

This program tests additional features of READ and WRITE statements, formatted

records, and format statements for integer and real data types.

ANS X3.9-1978 Reference: 12.8, 13

D-35

D2.1

b. Special Considerations

Correctness of the statements is determined by a comparison of pairs of lines in the output

fUe.

There are 40 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

A visual inspection of the test results is required.

There are 1 1 visual tests.

Related Functions, Subroutines or Programs; None

X-Numbers; 01, 02.

Subset Language Programs Part 2

FMlll (Subset)

a. Features Tested

This program tests additional features of READ and WRITE statements, formatted

records, format statements for integer and real data types and character constants as

format specifiers.

ANS X3.9-1978 Reference: 12.1.1, 12.8, 13.1.1, 13.2.1, 13.3, 13.5.2, 13.5.9, 13.5.9.1

b. Special Considerations

Correctness of the statements is determined by a comparison of lines in the output file.

There are 8 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

The standard does not specify the form of zero on output, so that the exponent may or

may not be present; if present it need not be E+00, however it may not be E-00.

A visual inspection of the test results is required.

There are 4 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 01, 02

D-36

DJ22 FM200 (Subset)

a. Features Tested

The routine FM200 is the first audit routine to contain a PROGRAM statement. The
following features from Section 3., "Characters, Lines and Execution Sequence" are tested

in this routine:

(1) Asterisk in column 1 to designate a comment line.

(2) Use of non-Fortran characters within a comment line.

(3) Statement labels on nonexecutable statements.

(4) Digit 0 in column 6 of an initial line.

(5) Continuation Lines - Maximum nine continuation lines (660 characters).

(6) Blank characters within statements.

(7) Blank comment line, blank characters in columns 1-72.

ANS X3.9-1978 Reference: 3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3, 3.4, 14.1

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-37

D23 FM201 (Subset)

a. Features Tested

The routine FM201 verifies that;

(1) The value of a signed zero is the same as the value of an unsigned zero for integer

and real variables. The integer constants 0, + 0, and -0 are tested in the routines

FM018 and FM019.

(2) A basic real constant may be written with more digits than a processor will use to

approximate the value of the constant.

(3) An IMPLICIT statement can be used to change the default implicit integer and

real typing.

(4) The implicit integer and real typing of an IMPLICIT statement may be overridden

by the appearance of a variable name in a type-statement.

ANS X3.9-1978 Reference: 4.1.3, 4.4.1, 6.1.5, 8.4, 8.5

b. Special Considerations

There are 22 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2A FM202 (Subset)

a. Features Tested

The routine FM202 is the first routine to test character data types. CHARACTER
type-statements specify character variables of length one and length two. The tests in this

routine determine that the following language features function correctly.

(1) Character assignment statements.

(2) The representation of an apostrophe in a character constant is two consecutive

apostrophes with no intervening blanks.

(3) Character relational expressions.

ANS X3.9-1978 Reference: 4.8, 4.8.1, 6.2, 6.3.4, 63.5, 8.43, 10.4

D-38

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers; 02

B2S FM203 (Subset)

a. Features Tested

The routine FM203 continues the testing of character data types which was started in

FM202. The CHARACTER type-statements specify character variables and

one-dimensional character arrays of length one and length two.

ANS X3.9-1978 Reference: 4.8, 4.8.1, 6.2, 6.3.4, 6.3.5, 8.4.2, 10.4

b. Special Considerations

There are 30 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D.2.6 FM204 (Subset)

a. Features Tested

The routine FM204 continues the testing of character variables and character arrays of

length one. The character features tested in FM202 and FM203 are used in the tests in

this routine. The following character features are tested:

(1) Initial definition of character entities of length one by specifying them in a DATA
statement.

(2) The subset Fortran language collating sequence.

(3) The intrinsic function ICHAR.

ANS X3.9-1978 Reference: 3.1.5, 4.8, 6.2, 63.4, 6.3.5, 8.4.2, 9.4, 10.4, 15.3, 15.10

D.39

b. Special Considerations

In addition to the 26 ‘PASS/FAIL’ tests, the report should show 2 visual tests. The visual

tests list the Fortran character set in ascending sequence and the ICHAR intrinsic function

values for the Fortran character set.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2.7 FM205 (Subset)

a. Features Tested

The routine FM205 tests character constants, character variables, and character array

elements with a maximum length of 57 characters.

ANS X3.9-1978 Reference: 4.8, 4.8.1, 6.2, 6.3.4, 6.3.5, 8.4.2, 10.4

b. Special Considerations

There are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D^.8 FM251 (Subset)

a. Features Tested

This program tests the IMPLICIT statement for declaring variables as type LOGICAL.
The type of a variable (logical, integer, or real) is set by both IMPLICIT statements and

also by explicit TYPE statements. Tests are made to check that explicit TYPE statements

override the type set by an IMPLICIT statement for the variables listed.

ANS X3.9-1978 Reference: 4.7, 8.4.1, 8.5

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-40

D^.9 FM252 (Subset)

a. Features Tested

This program tests redefinition of Statement Labels with the ASSIGN statement in

conjunction with the assigned GO TO statement. The optional comma in the syntax of the

assigned GO TO is tested. The range of statement labels (from 00001 to 99999) is tested

using the ASSIGN statement and the assigned GO TO statement. It also tests the optional

comma in the syntax of the computed GO TO statement and has tests on the range of the

index in the computed GO TO.

ANS X3.9-1978 Reference: 10.3, 11.2, 11.3

b. Special Considerations

There are 11 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D^.10 FM253 (Subset)

a. Features Tested

This routine is a test of the IF-block. Tests within this routine are for the syntax of the

basic IF () THEN through END IF block structure.

There is also a series of tests to check the hierarchy and order of evaluation in expressions

that contain a combination of arithmetic, relational, and logical operators.

ANS X3.9-1978 Reference: 11.6, 11.6.1, 11.6.2, 11.6.3

b. Specml Considerations

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-41

D2.11 FM254 (Subset)

a. Features Tested

This routine is a test of the ELSE IF-block. Tests within this routine are for the syntax

of the basic ELSE IF statement and ELSE IF-block structure.

ANS X3.9-1978 Reference: 11.7, 11.7.1, 11.7.2

b. Special Considerations

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2.12 FM255 (Subset)

a. Features Tested

This routine is a test of the ELSE statement. Tests within this routine are for the syntax

of the basic ELSE statement and ELSE block structures. The END IF statement is used

in all block IF structures for the routines FM253, FM254, and FM255. For each block IF

statement, there must be a corresponding END IF statement in the same program unit.

ANS X3.9-1978 Reference: 11.8, 11.8.1, 11.8.2, 11.9

b. Special Considerations

There are 16 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2.13 FM256 (Subset)

a. Features Tested

This routine is a test of the DO statement. The DO is tested both outside and inside the

block-IF structure. Tests are made of the DO-variable when the DO becomes inactive.

Other tests check loop and incrementation processing. The DO-loop execution is tested

for those conditions which make the DO-loop inactive.

ANSX3.9-1978 Reference: 11.10, 11.10.1, 11.10.2, 11.103, 11.10.4, 11.103, 11.10.6, 11.10.7

D-42

b. Special Considerations

There are 24 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2.14 FM257 (Subset)

a. Features Tested

This routine is a test of the PAUSE and STOP statements. These statements can now be

followed by a string of not more than five digits, or a character constant.

AFS X3.9-1f^78 Reference: 11.12, 11.13

b. Special Cc oerations

Th "ollowing series of tests check the various forms of the PAUSE statement. In each

cas ;he word PAUSE (followed by a str.ng of characters as noted in each test

description), should be displayed on the operators console. For each test the operator

need only do whatever is necessary to tell the system to continue the execution of the

routine. The string forms are as described in Section 11.13.

(1) Test 001 checks the PAUSE statement that is not followed by a string of anything

except blanks. Only the word PAUSE should be displayed.

(2) Test 002 should display the word PAUSE followed by a single character zero (0).

(3) Test 003 should display the word PAUSE followed by a string of five zeros (00000).

(4) Test 004 should display the word PAUSE followed by the string of five characters

(19283).

(5) Test 005 should display the word PAUSE followed by the string of four nines

(9999).

(6) Test 006 is for the STOP statement.

Since the STOP statement can only be executed once in a program unit, various formats

of the STOP statement will be checked for syntax only by the use of a computed GO TO
statement. Once the STOP statement has been executed, then the routine FM257 should

no longer execute. Any continuation is considered as a failure of this test.

.e report should show 5 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-43

D2.15 FM258 (Subset)

a. Features Tested

Tests Block IF statements; specifically checking proper action with IF (e) THEN, ELSE,

ELSEIF, and ENDIF. Also tested, for correct compilation and execution, is the case of

the empty block.

ANS X3.9-1978 Reference: 11.6 - 11.9

b. Special Considerations

At the end of the control structure, (following ENDIF), the expected value of the test

variable is subtracted from the actual value. A zero indicates a successful test. A visual

inspection of the test results is required. There are 8 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D2.16 FM259 (Subset)

a. Features Tested

Tests Block IF statements; specifically checking proper action of GOTO, COMPUTED
GOTO, ASSIGNed GOTO, and DO statements.

ANS X3.9-1978 Reference: 11.1 - 113, 11.6 - 11.10

b. Special Considerations

The proper branching of the Block IF is tested for all cases. At the end of the control

structure, (following ENDIF), the expected value of the test variable is subtracted from the

actual value. Each test generates one or several results. For a successful test, all results

should be zero.

There are 3 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.17 FM260 (Subset)

a. Features Tested

Tests Block IF statements; specifically checking proper action with IF (e) THEN, ELSE,
ELSEIF, and ENDIF.

ANS X3.9-1978 Reference: 11.1 - 113; 11.6 - 11.10

D-44

b. Special Considerations

The proper branching of the Block IF is tested for all cases. At the end of the control

structure, (following ENDIF), the expected value of the test variable is subtracted from the

actual value. Each test generates one or several results. For a successful test, aU results

should be zero.

There are 2 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

2.18 FM261 (Subset)

a. Features Tested

Tests Block IF with CALL statement; specifically with CALL both external to and internal

to BLOCK IF. The RETURN statement is also tested with BLOCK IF.

ANS X3.9-1978 Reference: 11.6 - 11.9; 15.6

b. Special Considerations

FM261 is the main program which calls subroutines SN262 and SN263 and references

Integer Function IF264.

There are 2 visual tests.

Related Functions, Subroutines or Programs: FM262, FM263, FM264

X-Numbers used: 02

D.2.19 FM300 (Subset)

a. Features Tested

FM300 tests the use of the EQUIVALENCE statement to equate storage U' s s of

variables, arrays and array elements. Only integer, real, logical and character dat*. jypes

are tested. No attempt is made to test data of different types that are equated with the

EQUIVALENCE statement. The subset level features of the EQUIVALENCE statement

are also tested in routines FM022, FM023 and FM024.

ANS X3.9-1978 Reference: 8.1, 82, 9

D-45

b. Special Considerations

There are 19 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers; 02

T>220 FM301 (Subset)

a. Features Tested

This routine tests the use of the type-statement to explicitly define the data type for

variables, arrays and statement functions. Only integer, real, logical and character data

types are tested in this routine. Integer and real variables and arrays are tested in a

manner which both confirms and overrides the implicit typing of the data entities.

ANS X3.9-1978 Reference: 4.1, 8.4, 8.5, 15.4

b. Special Considerations

There are 19 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D221 FM302 (Subset)

a. Features Tested

This routine tests the subset level features of the COMMON specification statement.

Integer, real and logical variables and arrays are passed back-and- forth between the main

program, external functions and subroutines. Both named and unnamed (blank) common
are tested. Specific tests are included for renaming entities in common between program

units, the passing of data through common by equivalence association, and the specifying

of unnamed common of different lengths in different program units. The subset level

features of the COMMON statement are also tested in FM022 through FM025, FM050
and FM056.

ANS X3.9-1978 Reference: 8.2, 83, 153, 15.6 15.9.4

b. Special Considerations

There are 16 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM303, FM304, FM305

X-Numbers: 02

D-46

D222 FM306 (Subset)

a. Features Tested

This routine tests the use of the subset level features of the IMPLICIT specification

statement. The default implied integer and real typing is either confirmed or overridden

to specify integer, real and logical typing. All 26 alphabetic letters are used to indicate the

implicit typing. Variable and array entities are used to test the actual typing. The subset

level features of the IMPLICIT statement are also tested in routine FM201 and FM251.

ANS X3.9-1978 Reference: 4.1.2, 8.5

b. Special Considerations

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D223 FM307 (Subset)

a. Features Tested

This routine tests intrinsic functions where the function type is real and the arguments are

either integer or real. The function NINT is an exception and has an integer function

type. The real or integer arguments consist of positive, negative and unsigned constants,

variables and array element values. Each intrinsic function is tested with three or four

different combinations of actual arguments. The arguments were chosen to test not only

the various combinations of data usages, but also to test the range of argument and

function values where appropriate. The intrinsic functions tested in this routine are

REAL, ANINT, MINT, TAl ASIN, ACOS, SINH, COSH.

ANS X3.9-1978 Reference: 15 15.92, 15.9.3, 15.10.1

b. Special Considerations

There are 31 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-47

D224 FM308 (Subset)

a. Features Tested

This routine tests intrinsic functions where the actual arguments consist of intrinsic

function references, external function references, statement function references, and

expressions involving operators. The argument and function types of aU intrinsic functions

tested are either integer or real. The INTRINSIC and EXTERNAL specification

statements are specified in order to allow intrinsic and external functions to be used as

actual arguments. The IMPLICIT statement and type-statement are tested to ensure

that they do not change the type of an intrinsic function. The COMMON statement is

used to pass data entities to an external function. The DATA statement is used to ensure

that initially defined entities can be used as actual arguments. The EQUIVALENCE
statement is used to equate a variable used as an actual argument. The intrinsic functions

tested in this routine are INT, IFIX, FLOAT, REAL, AINT, ANINT, NINT, LABS, ABS,
MOD, AMOD, ISIGN, SIGN, IDIM, DIM, MAXO, AMAXO, MAXI, AMINl, MINI,
SORT, EXP, ALOG, SIN, COS, TAN, ASIN, ACOS, ATAN, SINK, COSH AND TANK.

ANS X3.9-1978 Reference: 8.2, 8.3, 8.4, 8.5, 8.7, 8.8, 9, 15.3, 15.4, 15.5, 15.5.2, 15.9.2,

15.9.3, 15.10.1

b. Special Considerations

There are 32 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM309, FM310

X-Numbers: 02

D225 FM311 (Subset)

a. Features Tested

This routine tests the use of the Fortran in-line statement function of types integer, real

and logical. Specific features tested include:

(1) Real statement functions using real constants and variables in the expression and
as actual arguments.

(2) Statement functions which require conversion of the expression to real and integer

typing.

(3) The use of variables, array elements, external references, and initially defined

entities in the expression.

(4) Various definitions and uses of the dummy arguments.

(5) Actual arguments consisting of expressions, intrinsic function references, and
external function references.

D-48

(6)
Confirming and overriding the typing of statement functions and dummy
arguments.

(7) Use of statement functions and dummy arguments in the main program and in

external function and subroutine subprograms.

ANS X3.9-1978 8.3, 8.4, 8.5, 8.7, 8.8, 9, 15.3, 15.4, 15.5, 15.6, 15.9.1, 15.9.2, 15.9.3

b. Special Considerations

There ar 37 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM312, FM313, FM314, FM315, FM316

X-Numbers: 02

D226 FM317 (Subset)

a. Features Tested

This routine tests subset level features of external function subprograms. Tests are

designed to check the association of all permissible forms of actual arguments with

variable, array and procedure name dummy arguments.

ANS X3.9-1978 Reference: 2.8, 5.12.2, 5.5, 8.1, 8.3, 8.4, 8.7, 8.8, 15.2, 15.3, 15.5, 15.6, 15.9

b. Special Considerations

There are 32 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM318, FM319, FM320, FM321, FM322,
FM323, FM324, FM325, FM326, FM327

X-Numbers: 02

D227 FM328 (Subset)

a. Features Tested

This routine tests subset level features of subroutine subprograms. Tests are designed to

check the association of all permissible forms of actua -guments with variable, array and

procedure name dummy arguments.

All data passed to the referenced subprograms are passed via arguments values, while

results returned to FM328 are returned via variables in nair n d common.

ANS X3.9-1978 Reference: 2.8, 5.122, 5.5, 8.1, 83, 8.4, 8.7, 8.8, 152, 153, 153, 15.6, 15.9

D-49

b. Special Considerations

There are 22 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM329, FM330, FM331, FM332, FM333,

FM334, FM335

X-Numbers: 02

B22S FM351 (Subset)

a. Features Tested

FM351 contains tests for compound arithmetic expressions which necessitate the

application of the rules for arithmetic operator precedence. These tests include ones

which exercise the:

(1) Use of all arithmetic operator types in the same statement.

(2) Use of parentheses to override default precedence.

(3) Use of all classes of primary operands.

(4) Use of nested function references.

(5) Use of mixed data types.

ANS X3.9-1978 Reference: 6.1, 6.5, 6.6

b. Special Considerations

There are 25 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D229 FM352 (Subset)

a. Features Tested

FM352 contains tests for basic relational expressions involving operands of real data type.

In each test, not only the relational expression is tested, but the trichotomy law of

mathematical relationships is also tested (e.g., ifA .LT. B, then A can not be .GT. B, and

A can not be .EQ. B).

ANS X3.9-1978 Reference: 4.4, 63, 6.5

D-50

b. Special Considerations

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D230 FM353 (Subset)

a. Features Tested

This segment tests the intrinsic functions INT and IFIX, which convert real arguments into

integer values.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 14 visual tests. AH results should be zero for the test segment to be successful.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D231 FM354 (Sui^set)

a. Features Tested

This program tests the intrinsic functions FLOAT and REAL, which convert integer

expressions into real values.

ANS X3.9-1978 Reference: 153, 15.10

b. Special Considerations

There are 14 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-51

D232 FM355 (Subset)

a. Features Tested

This program tests the intrinsic functions AINT, ANINT, and MINT. AINT truncates a

real expression to a real number. ANINT rounds a real expression to the nearest whole

number. NINT rounds a real expression to the nearest integer.

ANS X3.9-1978 Reference; 15.3, 15.10

b. Special Considerations

This program assumes the FLOAT function works properly.

There are 48 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D233 FM356 (Subset)

a. Features Tested

This program tests the intrinsic function ABS which returns the absolute value of any real

expression, and the intrinsic function LABS which returns the absolute value of any integer

expression. ABS returns a real number and LABS returns an integer.

ANS X3.9.1978 Reference: 153, 15.10

b. Special Considerations

There are 10 ‘PASS/FALL’ tests

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D334 FM357 (Subset)

a. Features Tested

This program tests the remaindering functions AMOD and MOD. AMOD accepts any

two real repressions and returns a real value. MOD accepts any two integer expressions

and returns an integer.

ANS X3.9-1978 Reference: 153, 15.10

D-52

b. Special Considerations

There are 22 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D235 FM359 (Subset)

a. Features Tested

This program tests the intrinsic functions SIGN, and ISIGN. SIGN accepts two real

expressions and returns a real value. ISIGN accepts two integer expressions and returns

an integer value.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 22 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D2J6 FM360 (Subset)

a. F eatures Tested

This program tests the intrinsic functions DIM and EDIM. DIM accepts two real

expressions and returns the real value that is the positive difference of the two arguments.

IDIM is similarly defined for integers.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 14 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02.

D-53

D237 FM361 (Subset)

a. Features Tested

This program tests the intrinsic functions AMAXO AMAXl, MAXO, AND MAXI.
AMAXO accepts a sequence of at least two integer arguments. AMAXl accepts a

sequence of at least two real arguments. MAXO accepts a sequence of at least two integer

arguments. MAXI accepts a sequence of at least two real arguments. Each function

returns the largest value from the respective sequence.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 48 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D338 FM362 (Subset)

a. Features Tested

This program tests the intrinsic functions AMINO, AMINl, MINO, and MINI. AMINO
accepts a sequence of at least two integer arguments. AMINl accepts a sequence of at

least two real arguments. MINO accepts a sequence of at least two integer arguments.

MINI accepts a sequence of at least two real arguments. Each function returns the

smallest value from the respective sequence.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 47 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D239 FM363 (Subset)

a. Features Tested

This program tests 23 intrinsic functions. The intrinsic functions should be able to accept

as arguments any expression of the type specified in the intrinsic functions table (ANS
REF - 15.10).

ANS X3.9-1978 Reference: 153, 15.10

D-54

b. Special Considerations

This program assumes the following segments are working: XINT, XREAL, XAINT,

XABS, XAMOD, XSIGN, XDIM, XMAX, XMIN.

There are 14 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

B2A0 FM364 (Subset)

a. Features Tested

This program tests intrinsic functions INT, IFIX, FLOAT, REAL, AINT, NINT, ANINT,
ABS, lABS, AMOD, MOD, SIGN, ISIGN, IDIM, DIM, AMAXO, AMAXl, MAXO,
MAXI, AMINO, AMINl, MINO, MINI, in mixed mode arithmetic expressions.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 14 ‘PASS/FAIL’ tests.

Related Functions, Subroutines, or Programs: None

X-Numbers used: 02

D^.41 FM368 (Subset)

a. Features Tested

This program tests the intrinsic function SORT, which is the square root function applied

to real arguments.

The arguments are non-negative real constants, variables and expressions. Two special

cases are 0 and 1, since they are fixed points of the function.

ANS X3.9-1978 Reference: 15.3, Table 5.

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-55

D2A2 FM369 (Subset)

a. Features Tested

This program tests the intrinsic function EXP which is the exponential function applied to

real arguments.

ANS X3.9-1978 Reference: 15.3, Table 5.

b. Special Considerations

The computed values are compared with the correct values. The arguments used are real

constants, variables, and expressions. The real constants used are zero, one, values close

to one, and values close to 1/e. The results contain real values, representing the result of

each test of EXP. The values returned are expected to have a maximum relative error no

greater than 0.00005. The expected results are the number ‘e’ (approximately = 2.72)

raised to the value of the argument.

There are 19 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers used: 02

D^.43 FM370 (Subset)

a. Features Tested

This segment tests the function ALOG, which is the natural logarithm applied to REAL
arguments.

The arguments used are positive real constants, variables, and expressions. Special values

to be tested are one, values close to e, values close to one and values close to zero.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

There are 16 ‘PASS/FADL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers used: 02

D-56

D2A4 FM371 (Subset)

a. Features Tested

This segment tests the function ALOGIO, which is the colon logarithm function applied

to REAL arguments.

The arguments used are positive real constants, variables, and expressions. Special values

to be tested are one, values close to 10, values close to one and values close to zero.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

There are 15 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

145 FM372 (Subset)

a. Features Tested

This segment tests the function SIN, which is the sine function applied to real arguments.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The computed values are compared with the correct values. The arguments used are real

constants, variables, and expressions. Special values to be tested are zero, values close to

pi values close to 2*pi, values close to pi/2, and close to 3*pi/2, and values of large

magnitude. Tlie expected results are the real sine of the argument. The results contain

real values, representing the result of each test of SIN.

There are 17 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-57

D2A6 FM373 (Subset)

a. Features Tested

This program tests the intrinsic function COS, which is the cosine function applied to real

arguments.

ANS X3.9-1978 Reference; 15.3., Table 5.

b. Special Considerations

The arguments used are real constants, variables and expressions. Special constants used

are zero, values near pi and near 2*pi, values near pi/2 and near 3*pi/2, and values of

large magnitude. The results contain real values, representing the result of each test of

COS.

There are 18 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D2A7 FM374 (Subset)

a. Features Tested

This program tests the intrinsic function TAN, which is the tangent function applied to real

arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations.

Special constants used are zero, values near odd multiples of pi, values near multiples of

pi/2, and values of large magnitude. The results contain real values, representing the

result of each test of TAN.

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-58

D^.48 FM375 (Subset)

a. Features Tested

This segment tests the functions ASIN and ACOS, which are the arcsine function and the

arccosine function applied to REAL arguments.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

Special values to be tested are -1 and 1 to check principal values at endpoints, and

comparisons of ASIN and ACOS to test their relationship. The expected results are the

principal values of the arcsine and arccosine of the argument.

The first set of results contains real values, representing the results of each test of ASIN.

The second set of results contains similar results for each test of ACOS.

There are 12 ‘PASS/FAIL’ tests.

Re’aied Functions, Subroutines or Programs: None

X-Numbers used: 02

D2A9 FM376 (Subset)

a. Features Tested

This program r . the intrinsic functions ATAN and ATAN2, which are, respectively, the

arctangent anc ^ v o-argument arctangent function applied to real arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

Special constants tested are large argument values for ATAN, values of the form (0,

positive) and (0, negative) for ATAN2, values near but not equal to zero for ATAN2, and

comparison ofATAN and ATAN2. The first set of results contain real values, representing

the result of each test of ATAN. The second set of results contains real values

representing the result of each test of ATAN2. The program assumes the intrinsic

function SQRT is working.

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-59

D2.50 FM377 (Subset)

a. Features Tested

This program tests the intrinsic functions SINK and COSH, which are, respectively, the

hyperbolic sine and hyperbolic cosine functions applied to real arguments.

ANS X3.9-1978 Reference; 15.3, Table 5

b. Special Considerations

There are 15 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

FM378 (Subset)

a. Features Tested

This program tests the intrinsic function TANH, which is the hyperbolic tangent function

applied to real arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The arguments used are real constants, variables, and expressions. Special constants tested

are zero and values of large magnitude. The results contain real vdues, representing the

result of each test of TANH. The expected results are the hyperbolic tangents of the

arguments.

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D2J52 FM379 (Subset)

a. Features Tested

This program tests intrinsic functions used in important trigonometric identities. The
intrinsic functions tested are ALOG, EXP, SIN, COS, ASIN, ACOS, TAN, ATAN,
ATAN2, SQRT, ALOG 10, ALOG, SINK, TANH, and COSH. The tests are applicable

for real arguments.

ANS X3.9-1978 Reference: 153., Table 5.

D-60

b. Special Considerations

The results contain real values, representing the result of evaluating each side of the

trigonometric identity and then forming the difference between the two sides.

There are 10 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

1 53 FM401 (Subset)

a. Features Tested

This routine tests for proper editing of logical data by the L edit descriptor of the Format

specification. The L e -jit descriptc. is first tested for proper editing on output by directing

the edited result to a print file.

Next a file which is connected for sequential access is created with logical data fields and

then repositioned to the first record in the file. The file is then read using the same edit

descriptors as were used to create the file, and the internal data representation as a result

of reading the logical data is checked.

The following L editing tests are made to see that:

(1) the value T and F is produced on output when the internal datum is true and false

respectively,

(2) the i^:Jue of the input list item is true and false when the input field is T and F
respectively,

''3) the values .T, .F, T, F, .TRUE., .FALSE., .T, and .F are acceptable logical data

forms for input fields,

(4) the input values T and F may followed by additional characters in the field,

(5 the repeatable edit descriptor for L editing functions correctly,

(6y the fields containing logical data can be written using one L edit descriptor and

read using a different form of the L edit descriptor.

ANS X3.9-1978 4.7, 13.1.1, 13.5.10

D-61

b. Special Considerations

This test routine should be executed using LUN 108 assigned to disk.

In addition to the 22 ‘PASS/FAIL’ tests, the report should show 7 tests (tests 1 - 7) that

must be visually verified.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 08

D2^4 FM402 (Subset)

a. Features Tested

This routine tests the A(w) (w is the size of field in characters) edit descriptor of the

format specification both with and without the optional w. The A edit descriptor is used

with an input/output list item of type character. IF a field width w is not specified with

the A edit descriptor, the number of characters in the field is the length of the character

input/output list item. This routine first tests for proper editing of character data on

output by directing the edited result to a print file.

Next an external file connected for sequential access is created with character data.

Finally, the file is rewound and read with the A(w) edit descriptor and checked for proper

editing on input.

ANS X3.9-1978 Reference: 3.1, 4.8, 8.4.2, 10.4, 13.5.11

b. Special Considerations

This test routine should be executed using LUN 109 assigned to disk.

In addition to the 20 ‘PASS/FAIL’ tests, the report should show 14 tests (tests 1 - 14) that

must be visually verified.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 09

D2S5 FM403 (Subset)

a. Features Tested

This program tests simple formats and formatted data transfer statements in external

sequential I/O. The tests in this program are performed on integer, real, and logical data

types.

ANS X3.9-1978 Reference: 12.9.52, 133, 133.9

D-62

b. Special Considerations

There are 27 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 59 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 01, 02

D2^6 FM404 (Subset)

a. Features Tested

This segment tests simple formats and formatted data transfer statements in external

sequential I/O. The tests in this segment are performed on character data types.

ANS X3.9-1978 Reference: 12.9.5.2, 13.3, 13.5.11

b. Special Considerations

There are 6 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 5 visual tests.

Related Functions, Subroutines or Programs: None

X-I i umbers used: 01, 02

D2 FM405 (Subset)

a. Features Tested

This program tests Internal file Input with data types Integer, Real, Logical, and Character,

and with all legal Edit descriptors.

ANS X3.9-1978 Reference: 12.2.5

b. Special Considerations

There are 15 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02

D-63

D2.58 FM406 (Subset)

a. Features Tested

This program tests internal file output. Data types tested are integer, real, logical, and

character. All the legal edit descriptors are used. Internal file output is produced by the

WRITE statement. Variables are initialized with Predetermined values and then, via the

WRITE statement, the values are moved from the data variable list to the internal file.

ANS X3.9-1978 Reference; 12.2.5

b. Special Considerations

Computed values with absolute value less than one are permitted to contain either a

leading zero or a leading blank. Computed values requiring "E" format may be expressed

as aE+nn or a+Onn, where a represents the mantissa, and nn represents the exponential

power. A leading plus sign is also permitted for computed values which are positive.

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

FM407 (Subset)

a. Features Tested

This segment tests unformatted READs and WRITEs to direct access files. Only

INTEGER, REAL, LOGICAL, and CHARACTER data types are tested in this segment.

The primary purpose of this segment is to test that the direct access write and read

operations positions the file to the proper record number. Subroutine SN408 is called to

initialize four arrays of ten elements each. The arrays are of type INTEGER, REAL,
LOGICAL, and CHARACTER. Ten unformatted records are written, in sequential

order, to a direct access file. Each record contains an element from each of the arrays.

Next these records are read, first in sequential order, and then in non-sequential order,

and are compared to the values that were written. Finally, ten records will be written in

non-sequential order, read back in both sequential and non-sequential order, and

compared to the values that were written.

ANS X3.9-1978 Reference: 12.10.1

D-64

b. Special Considerations

A default number (number 24) is used, and must be changed using the X-Card (X-100 110

= nn) if the unit is not capable of being opened as a direct, unformatted file.

There are 4 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM408

X-Numbers used: 02, 10

D2.60 FM411 (Subset)

a. Features Tested

This routine tests for proper processing of unformatted records with a file connected for

sequential access. Unformatted records may be read or written only by unformatted

input/output statements. This routine tests several syntactical variations of the

unformatted read and write statements as well as the file positioning statements

BACKSPACE, ENDFTLE and REWIND. In addition unformatted records may have both

character and noncharacter data. This data is transferred without editing between the

current record and entities specified by the input/output list items. This routine both reads

and writes records containing data of logical, real and integer type with I/O list items

represented as variable names, array element names and array names.

ANS X3.9.1978 Reference: 4.1, 12.1.2, 12.2.1, 12.2.4, 12.2.4.1, 12.3.3, 12.7.2, 12.8, 12.8.1,

12.8.2, 12.8.2.1, 12.8.2.2, 12.8.2.3, 12.9.5.1, 12.10.4, 12.10.4.1, 12.10.4.2, 12.10.4.3

b. Special Considerations

This test routine should be executed using LUN 104 assigned to disk.

There are 35 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 04

D-65

D2.61 FM413 (Subset)

a. Features Tested

This routine tests for proper processing of unformatted records in files connected for

direct access. For the subset language a file connected for direct access must have

unformatted records. This routine first tests several syntactical variations of the read and

write statements used in creating and accessing records of the file. The open statement

is used to connect the file to a unit and establish its connection for direct access. The first

series of tests create and access the records of the fUe in record number sequence and the

last series of tests create and access records of the file in random order. Unformatted

records may have both character and noncharacter data and this data is transferred

without editing between the current record and the entities specified by the input/output

list. This routine both reads and writes records containing the data types of integer, real

and logical with I/O list items represented as variable names, array element names and

array names.

ANS X3.9-1978 Reference: 4.1, 12.1.2, 12.2.4, 12.2.4.2, 12.3.3, 12.7.2, 12.8, 12.8.1, 12.8.2,

12.8.2.1, 12.8.2.2, 12.8.2.3, 12.9.5.1, 12.10.1

b. Special Considerations

This test routine should be executed using LUN 110 assigned to disk.

There are 35 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 02, 10

D-66

DJ Full Language Programs

D3.1 FM500 (FuU)

a. Features Tested

Test BLOCK DATA SUBPROGRAM features; including: IMPLICIT, PARAMETER,
and SAVE.

FM500 is a main program that CALLs a subroutine, SN251. SN251 determines if the

BLOCK DATA program, AN251 correctly initialized all of the variables.

ANS X3.9-1978 Reference: 5.1.1, 8.6, 8.7, 8.9, 9.1, 16.1, 16.2

b. Special Considerations

There are 28 ‘PASS/FAIL’ tests and 9 visual tests.

Related Functions, Subroutines or Programs: FM501, FM502

X-Numbers: 02

FM503 (Full)

a. Features Tested

This program tests internal data forms of BLOCK DATA subprograms. A subroutine

SN505 is cai.ed to check that the unnamed BLOCK DATA subprogram correctly

initialized the variables.

ANS X3.9-1978 Reference: 16.1, 16.2

b. Special Considerations

There are 8 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM504, FM505

X-Numbers used: 02

D-67

D33 FM506 (FuU)

a. Features Tested

This program tests the ability of BLOCK DATA subprograms to correctly handle odd and

even lengths of character variables juxtaposed within a single COMMON block without

alignment problems. A subroutine (SN508) is called to check that the BLOCK DATA
subprogram (AN507) correctly initialized the variables.

ANS X3.9-1978 Reference: 16.1, 16.2

b. Special Considerations

There are 4 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM507, FM508

X-Numbers used: 92

D3.4 FM509 (Full)

a. Features Tested

This program tests subroutine subprograms and function subprograms with multiple

entries, the ENTRY statement, substring names as arguments, and array element

substrings as arguments.

ANS X3.9-1978 Reference: 15.6.1, 15.7, 15.9.2, 15.9.3.2, 15.9.3.3

b. Special Considerations

There are 16 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM510, FM511, FM512, FM513.

X-Numbers used: 02

D33 FM514 (Full)

a. Features Tested

This program tests the subroutine statement with asterisks as dummy arguments, and tests

the use of alternate return specifiers as actual arguments for a subroutine.

ANS X3.9-1978 Reference: 15.6.1, 15.93.5, 15.6.2.3

D-68

b. Special Considerations

There ARE 2 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; FM515, FM516

X-Numbers used: 02

FM517 (FuU)

a. Features Tested

This program tests the F.:::,rURN (e) statement, where "e" is an integer expression.

ANS X3.9-1978 Reference: 15.8.1, 15.8.3

b. Special Considerations

The first set of results contain integer values representing the result of each test of the

RETURN (e) statement where "e" is an integer expression.

The second set of results contain integer values representing the result of each test of the

RETURN (e) statement where "e" has a value which is out range.

There are 5 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM518, FM519

X-Numbers used: 02

DJ.7 FM520 (Full)

a. Features Tested

This program tests integer and real arithmetic expressions using only symbolic names of

arithmetic constants. The PARAMETER statement is us^d to give the constants symbolic

names.

ANS X3.9-1978 Reference: 6.1, 6.1.3, 6.6.3, 8.6

b. Special Considerations

Tl are 30 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Pro^ams: None

X-Numbers: 02

D-69

D3.8 FM700 (FuU)

a. Features Tested

This program tests the DATA statement with variable names, array names, array element

names, substring names, and implied-DO lists.

The clist of the DATA statement may contain a symbolic name of a constant. If necessary,

the clist constant is converted to the type of the nlist entity according to the rules for

arithmetic conversion. Each subscript expression in an implied-DO list may contain

implied-DO variables of the list that has the subscript expression within its range.

ANS X3.9-1978 Reference: 9.1, 9.2, 9.3

b. Special Considerations

There are 23 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.9 FM701 (FuU)

a. Features Tested

This program tests values of dimension bounds in array declarators.

The bounds presented may be integer constants, integer variables, or integer arithmetic

expressions. The value of either the lower or upper dimension bound may be positive,

zero, or negative. However, the value of the upper bound must be greater than or equal

to the value of the lower bound.

Each array declarator is either an actual array declarator or a dummy array declarator.

A dummy array declarator may be either a constant array declarator, an adjustable array

declarator, or an assumed-size array declarator, A dummy array declarator may appear

only in a function or subroutine subprogram.

ANS X3.9-1978 Reference: 5.1. 1.1, 5.1. 1.2

D-70

b. Special Considerations

Each array is initialized in a DATA statement and may be passed as a dummy array to a

subroutine, which may reassign values to certain selected array elements. For each array

declarator, the value of a particular array element or a simple combination of two array

elements is compared with the expected value.

Tests 1 through 16 and 26 through 35 use integer arrays and result in integer values. Tests

17 through 25 use character arrays and result in character values.

There are 35 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM702, FM703, FM704, FM705, FM706,

FM707, FM708, FM709

X-Numbers used: 02

D3.10 FM710 (FuU)

a. Features Tested

This program tests subscript expressions, subscript values, character substring names, and

substring expressions.

The subscript exp.essions may contain array element references and function references.

Subscript vdues are tested to determine if array elements may be properly identified by

array element name.

Either the left, ijst character position or the rightmi^c- character position of a character

substring may be explicitly specified or implied. Substring expressions may contain array

element references and function references.

ANS X3.9-1978 Reference: 5.4.2, 5.4.3, 5.7.1, 5.7.2

b. Special Considerations

The first set of results contains integers representing the result of each subscript expression

test. Test 3 tests the ability of the processor to handle the range of an implied-DO list

corresponding to a part of an array in a WRITE statement. The test is successful if the

computed line agrees with the correct line displayed.

The second set of results contain'' 'Jharacter strings representing the result of each

character substring test. This progra.'ii assumes the intrinsic functions INT and LABS are

working.

There are 18 ‘PASS/FAIL’ tests and one visual test.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-71

D3.11 FM711 (FuU)

a. Features Tested

This program tests adjustable arrays and adjustable dimensions where the lower and/or

upper bounds are arguments and/or in common.

Also tested is the use of array names. Specific tests involve the ability to use an array

element name as a unit identifier for an internal file in an I/O statement, the ability to use

an array name as a format identifier in an I/O statement, and the ability to use an array

name in a SAVE statement.

ANS X3.9-1978 Reference: 5.5.1, 5.6

b. Special Considerations

The first set of results contains integer values representing the result of each test of the

adjustable arrays.

Test 3 results in an integer value representing the result of a test of the ability to use an

array element name as a unit identifier for an internal file in an I/O statement. Test 4

results in a character value representing the result of a test of the ability to use an array

name as a format identifier in an I/O statement. Test 5 results in an integer value

representing the result of a test of the ability to use an array name in a SAVE statement.

There are 5 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM712, FM713, FM714

X-Numbers used: 02

D3.12 FM715 (FuU)

a. Features Tested

This program tests character expressions and concatenation operations.

The simplest form of a character expression is a character constant, symbolic name of a

character constant, character variable reference, character array element reference,

character substring reference, or character function reference. More complicated character

expressions may be formed by using one or more character operands together with

concatenation operators and parentheses.

ANS X3.9-1978 Reference: 6.2, 6.2.1, 6.2.2, 6.2.2.2, 6.6.5

D-72

b. Special Considerations

The first set of results contains character or integer values representing the result of each

test of character expressions. A character value is resulted if an assignment statement is

used. An integer value is resulted if a relational expression in an IF statement is used.

The second set of results contains character or integer values, representing the result of

each test of concatenation operations. A character value is resulted if an assignment

statement is used. An integer value is resulted if a relationa. expression in an IF

statement is used.

This program assumes the intrinsic function LEN is working.

There are 34 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM716, FM717

X-Numbers used: 02

D3.13 FM718 (FuU)

a. Features Tested

This program tests logical expressions and lor al operators.

The simplest form of a logical expression is a logical constant, symbolic name of a logical

constant, logical variable reference, logical array reference, logical function reference, or

relational expression. More complicated logical expressions may be formed by using one

or more logical operands together with logical onerators and parentheses.

The pre ence of the logical operators, from highest to lowest, is as follows: .NOT.,

AMD., .Oi^, EQV. or .NEQV..

ANS X3.9-1978 Reference: 6.4, 6.4.2, 6.4.3, 6.4.4

b. Special Considerations

The set of results contains logical or integer values, representing tl ^sult of each test of

logical expressions. A logical value is resulted if an assignment siaiement is used An
integer value is results if a logical IF statement is used.

There are 29 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-73

D3.14 FM719 (Full)

a. Features Tested

This program tests the DO statement using real DO variables and double precision DO
variables. Also tested are active and inactive DO-loops, and DO statements with mixed

integer, real, double precision, and complex variables.

ANS X3.9-1978 Reference: 11.10, 11.10.2, 11.10.3, 15.6, 15.7, 15.8

b. Special Considerations

This program assumes that the ENTRY statement for subroutines is supported.

There are 14 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM720 FM721

X-Numbers used: 02

D3.15 FM722 (Full)

a. Features Tested

This routine tests the TYPE STATEMENT for declaring variables, arrays, constants,

functions, and dummy procedures as type DOUBLE PRECISION and COMPLEX. Tests

are made to check that explicit TYPE STATEMENTS override the implicit type integer

designation by the first letter of the variable name.

ANS X3.9-1978 Reference: 4.1, 4.1.2, 8.4.1., 8.6

b. Special Considerations

This program assumes that the PARAMETER statement is supported.

There are 12 ‘PASS/FAIL’ tests.

Related Function, Subroutines or Programs: FM723, FM724, FM725

X-Numbers used: 02

D3.16 FM800 (Full)

a. Features Tested

This program tests the intrinsic function IDINT which converts double precision

expressions into integer values.

ANS X3.9-1978 Reference: 153, 15.10

D-74

b. Special Considerations

There are 12 ’PASS/FAIL’ tests

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.17 FM801 (FuU)

a. Features Tested

This program tests the intrinsic functions DINT, DNINT, and IDNINT. DINT truncates

a double precision expression to an integer number. DNINT rounds a double precision

expression to the nearest whole number. IDNINT rounds a double precision expression

to the nearest integer.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

This program assumes the FLOAT function works properly.

There are 45 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

DJ.18 FM802 (FuU)

a. Features Tested

This program tests the intrinsic function DABS which returns the absolute value of a

double precision expression. The number returned is again a double precision number.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 6 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers used: 02

D3.19 FM803 (Full)

a. Features Tested

This program tests the intrinsic function CABS which returns the absolute value of any

complex expression. CABS returns a real number.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 9 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D320 FM804 (Full)

a. Features Tested

This program tests the intrinsic function DMOD the double precision remaindering

function. The number returned is again a double precision number.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 11 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers used: 02

D3^1 FM805 (Full)

a. Features Tested

This program tests the intrinsic functions DDIM and DPROD. DDIM accepts two double

precision expressions and returns the double precision value which is the positive

difference of the two arguments. DPROD accepts two real expressions and returns the

double precision value which is the product of the two arguments.

ANS X3.9-1978 Reference: 153, 15.10

D-76

b. Special Considerations

Because the standard does not indicate whether the result of DPROD(Rl,R2) should yield

the identical result as for DBLE(R1)*DBLE(R2) or REAL(R1)*REAL(R2), the maximum
relative error for real numbers is adopted for the second set of results and is no greater

than .00005.

There are 18 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D322 FM806 (FuU)

a. Features Tested

This program tests the intrinsic function DMAXl which accepts a sequence of at least two

double precision arguments, and returns the largest value from this sequence.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

The maximum number of arguments presented to DMAXl will be five.

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

DJ23 FM807 (FuU)

a. Features Tested

This program tests the intrinsic function DMINl which accepts a sequence of at least two

double precision arguments, and returns the smallest value from this sequence.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-77

D324 FM808 (FuU)

a. Features Tested

This program tests the intrinsic function DELE which converts any arithmetic expression

into a double precision value. DELE should be able to accept as an argument any real

expression; including real constants and variables, and should be able to return the double

precision value to any environment which allows a double precision data object.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

There are 8 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D325 FM809 (Full)

a. Features Tested

Test the intrinsic functions CMPLX, AIMAG and CONJG. CMPLX accepts two real

expressions and converts them to a complex number. AIMAG accepts a complex
expression and returns its imaginary part. CONJG accepts a complex expression and
converts it to its complex conjugate.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

The output consists of three sets of results representing the tests for CMPLX, AIMAG,
and CONJG, respectively.

There are 25 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-78

T>326 FM810 (Full)

a. Features Tested

This program tests the intrinsic functions IDINT, SNGL, DINT, DNINT, DABS, DMOD,
DSIGN, DDIM, DPROD, DMAXI, DMINI, and DBLE in expressions involving integer,

real, double precision, and mixed mode arithmetic.

ANS X3.9-1978 Reference: 15.3, 15.10, 6.1.4

b. Special Considerations

This program assumes the following segments are working: XINT, XREAL, XAINT,

XABS, XAMOD, XSIGN, XDIM, XMAX, XMIN, YIDINT, YSNGL, YDINT, YDABS,
YCABS, YDMOD, YDSIGN, YDMAXl, YDMINl, YDBLE, YCONJG.

There are 10 ‘PASS/FAIL’ tests

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3^7 FM811 (Full)

a. Features Tested

Test occurrences in mixed mode expressions of the following intrinsic functions of the full

language: IDINT, SNGL, DINT, DNINT, DABS, CABS, DMOD, DSIGN, DDIM,
DPROD, DMAXI, DMINI, DBLE, CMPLX, AIMAG, and CONJG. The intrinsic

functions should be able to accept as arguments any expression of the type specified in the

intrinsic function table (ANS REF - 15.10).

ANS X3.9-1978 Reference: 15.3, 15.10, 6.1.4

b. Special Considerations

This program assumes the following segments are working: XINT, XREAL, XAINT,
XABS, XAMOD, XSIGN, XDIM, XMAX, XMI' ' YIDINT, YSNGL, YDINT, YDABS,
YCABS, YDMOD, YDSIGN, YDMAXl, YDMlAl, YDBLE, YCONJG.

There are 10 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used; 02

D-79

D32S FM812 (FuU)

a. Features Tested

This segment tests the function DSQRT, which is the square root function applied to

DOUBLE PRECISION arguments.

The arguments used are non-negative double precision constants, variables and

expressions.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D329 FM813 (FuU)

a. Features Tested

This program tests the intrinsic function CSQRT, which is the square root function applied

to complex arguments.

The arguments used are complex constants, variables and expressions. Special complex

constants used are zero, positive real numbers, negative real numbers and purely imaginary

numbers.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

There are 13 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-80

D330 FM814 (Full)

a. Features Tested

This program tests the intrinsic function DEXP which is the exponential function applied

to double precision arguments.

The arguments used are double precision constants, variables and expressions. The double

precision constants used are zero, one, values close to one, and values close to 1/e.

ANS X3.9-1978 Reference: 15.3, Table 5.

b. Special Considerations

The expected results are the number ‘e’ (approximately = 2.72) raised to the value of the

argument.

There are 19 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3J1 FM815 (Full)

a. Features Tested

..Tiis program tests the intrinsic function CEXP, which is the exponential function applied

to complex arguments.

The arguments used are complex constants, variables, and expressions. Special complex

constants used are zero: purely real numbers, and purely imaginary numbers. The results

contain complex values, consisting of a real and an imaginary part representing the result

of each test of CEXP.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

This program assumes that the intrinsic functions AIMAG and CABS are working.

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-81

D332 FM816 (Full)

a. Features Tested

This program tests the intrinsic function DLOG which is the natural logarithm function

applied to double precision arguments.

The arguments used are positive double precision constants, variables, and expressions.

Special values to be tested are one, values close to e, values close to one and values close

to zero.

ANS X3.9-1978 Reference: 15.3.

b. Special Considerations

There are 16 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D333 FM817 (Full)

a. Features Tested

This program tests the intrinsic function CLOG, which is the natural logarithm function

applied to complex arguments.

The arguments used are complex constants, variables, and expressions. Special complex

constants used are positive real numbers, and negative real numbers.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

There are 11 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D334 FM818 (Full)

a. Features Tested

This segment tests the function DLOG 10, which is the common logarithm function applied

to double precision arguments.

ANS X3.9-1978 Reference: 153, Table 5

D-82

b. Special Considerations

The computed values are compared with the correct values. The arguments used are

positive double precision constants, variables, and expressions. Special values to be tested

are one, values close to 10, values close to one and values close to zero. The expected

results are the common logarithms of the arguments. The results contain double precision

values, representing the result of each test of DLOGIO.

There are 15 TASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3J5 FM819 (FuU)

a. Features Tested

This segment tests the function DSIN, which is the sine function applied to double

precision arguments.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The computed values are compared with the correct values. The arguments used are

double precision constants, variables, and expressions. Special values to be tested are zero,

values close to pi, values close to 2*pi, values close to pi/2, and close to 3*pi/2, and values

of large magnitude. The expected results are the double precision sine of the argument.

The results contain double precision values, representing the result of each test of DSIN.

There ' 19 ‘PASf FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

DJ36 FM820 (Full)

a. Features Tested

This program tests the intrinsic functions CSIN and CCOS, which are the sine function

and the cosine function applied to complex arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

D-83

b. Special Considerations

The computed values are compared with the correct values. The arguments used are

complex constants, variables, and expressions. Special complex constants used are zero,

values on the real line, and values with a zero real part. The first set of results contain

complex values, consisting of a real and an imaginary part, representing the result of each

test of CSIN. The second set of results also contain complex values with a real and

imaginary part, representing the result of each test of CCOS. All values returned are

expected to have a maximum relative error no greater than 0.00005 for each part. The

expected results are the complex sine and cosine of the arguments. It is assumed that the

intrinsic function CABS is working.

There are 18 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D337 FM821 (FuU)

a. Features Tested

This program tests the intrinsic function DCOS, which is the cosine function applied to

double precision arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The computed values are compared with the correct values. The arguments used are

double precision constants, variables, and expressions. Special double precision constants

used are zero, values near pi and near 2*pi, values near pi/2 and near 3*pi/2, and values

of large magnitude. The results contain double precision values, representing the result

of each test ofDCOS. The values returned are expected to have a maximum relative error

no greater than 0.0000000005. The expected results are the double precision cosines of

the arguments.

There are 19 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-84

D338 FM822 (FuU)

a. Features Tested

This program tests the intrinsic function DTAN, which is the tangent function applied to

double precision arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The computed values are compared with the correct values. The arguments used are

double precision constants, variables, and expressions. Special constants used are zero,

values near odd multiples of pi, values near multiples of pi/2 ,and values of large

magnitude. The results contain double precision values, representing the result of each

test of DTAN. The expected results are the tangents of the arguments.

There are 14 ‘PASS/FAJL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D339 FM823 (FuU)

a. Features Tested

This segment tests the functions DASIN and DACOS, which are the arcsine function and

the arccosine function applied to double precision arguments.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The tests will present the DASIN and DACOS functions with double precision constants,

variables and expressions as arguments. The magnitude of these values must not exceed

1. Special values to be tested are -1 and 1 to check principal values at endpoints, and

comparisons of DASIN and DACOS to test their relationship. The expected results are

the principal values of the arcsine and arccosine of the argument. The computed 's

are compared with the expected values. The first set of results contains double preci...on

values, representing the results of each test of DASIN. The second set of results contains

similar results for each test of DACOS.

There are 12 ‘F voS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-85

D3.40 FM824 (Full)

a. Features Tested

This program tests the intrinsic functions DATAN and DATAN2, which are, respectively,

the arctangent and two-argument arctangent function applied to double precision

arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The arguments used are double precision constants, variables, and expressions. Special

double precision constants tested are large argument values for DATAN, values of the

form (0, positive) and (0, negative) for DATAN2, values near but not equal to zero for

DATAN2, and comparison of DATAN and DATAN2. The first set of results contain

double precision values, representing the result of each test of DATAN. The second set

of results also contains double precision values, representing the result of each test of

DATAN2. The expected results are the arctangent of the arguments. The program

assumes the intrinsic function DSQRT is working.

There are 13 TASS/FAJL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.41 FM825 (Full)

a. Features Tested

This program tests the intrinsic functions DSINH and DCOSH, which are, respectively, the

hyperbolic sine and hyperbolic cosine functions applied to double precision arguments.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The first set of results contains double precision values, representing the results of each

test of DSINH. The second set of results contains similar results for each test of DCOSH.
The expected results are, respectively, the hyperbolic sines and hyperbolic cosines applied

to double precision arguments.

There are 16 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-86

D3.42 FM826 (Full)

a. Features Tested

This program tests the intrinsic function DTANH, which is the hyperbolic tangent function

applied to double precision arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The arguments used are double precision constants, variables, and expressions. Special

double precision constants tested are zero and values of large magnitude. The results

contain double precision values, representing the result of each test of DTANH. The

expected results are the hyperbolic tangents of the arguments.

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.43 FM827 (Full)

a. Features Tested

This program tests intrinsic functions used in important trigonometric identities. The
intrinsic functions tested are DLOG, DSIN, DCOS, DASIN, DACOS, DTAN, DATAN,
DATAN2, DSQRT, DLOGIO, DLOG, DSINH, DEXP, DTANH, and DCOSH. The tests

are applicable for double precision arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The arguments used are double precision constants, variables, and expressions. The results

contain double precision values, representing the result of evaluating each side of the

trigonometric identity and then forming the difference between the two sides.

There are 10 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-87

D3.44 FM828 (Full)

a. Features Tested

This program tests intrinsic functions used in important trigonometric identities. The

intrinsic functions tested are CSQRT, ATMAG, CABS, CONJG, ATAN2, CEXP, CLOG,
EXP, AMOD, CMPLX, COS, SIN, CCOS, and COS. The tests are applicable for complex

arguments.

ANS X3.9-1978 Reference: 15.3., Table 5.

b. Special Considerations

The results contain complex values, consisting of a real and/or an imaginary part,

representing the result of evaluating each side of the trigonometric identity and then

forming the difference between the two sides.

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.45 FM829 (Full)

a. Features Tested

This program tests the type conversion generic functions INT, REAL, DBLE, and

CMPLX. The data types of the arguments are chosen so as not to duplicate previous

testing.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The first and fifth sets of results contain integer values, representing the results of each

test of INT. The second and sixth sets of results contain real values, representing the

results of each test of REAL. The third and seventh sets of results contain double

precision values, representing the results of each test of DBLE. DBLE converts its

argument to double precision type. If the argument is double precision as in Test 15, the

returned double precision value is the same as the argument itself and is expected to have

a maximum relative error no greater than .0000000005. If the argument is an integer or

real as in Tests 13, 14, 30, and 31, DBLE results in a double precision value with as much
precision of the significant part of the argument as possible. The returned values are

expected to have a maximum relative error no greater than .00005. If the argument is

complex as in Tests 16 and 32, DBLE results in a double precision value with as much
precision of the significant part of the real portion of the complex argument as possible.

D-88

The returned values are expected to have a maximum relative error no greater than

.00005. The fourth and eighth sets of results contain complex values, with a real and an

imaginary part, representing the results of each test of CMPLX. The complex values

returned are expected to have a maximum relative error no greater than .00005 for each

part. The expected results are the type conversions of the arguments.

There are 35 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.46 FM830 (FuU)

a. Features Tested

This program tests arithmetic expressions containing generic functions. The generic

functions tested are AINT, ANINT, NINT, SQRT, EXP, LOG, and LOG 10. The data

types of the arguments are chosen so as not to duplicate previous testing.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The computed values are compared with the expected values. The first result is an integer

value, representing the result of a test of NINT. The second set of results contains double

precision values, representing the results of tests with the functions AINT, ANINT, SQRT,
EXP, LOG, LOG 10, and NINT. The double precision values returned are expected to

have a maximum relative error no greater than .0000000005. The third set of results

contains complex values, with a real and an imaginary part, representing the results of tests

with the functions SQRT, EXP, LOG, AINT, and NINT. The complex values returned are

expected to have a maximum relative error no greater than .00005 for each part. The
expected results are the arithmetic evaluations of the expressions, given the arguments

supplied.

There are 9 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-89

D3.47 FM831 (FuU)

a. Features Tested

This program tests arithmetic expressions containing generic functions. The generic

functions tested are ABS, MOD, SIGN, SIN, COS, TAN, SINH, and TANH. The data

types of the arguments are chosen so as not to duplicate previous testing.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The first result is an integer value, representing the result of a test of ABS and SIGN. The

second set of results contains double precision values, representing the results of tests with

the functions ABS, MOD, SIGN, SIN, COS, TAN, SINH, COSH, and TANH. The third

set of results contains complex values, with a real and an imaginary part, representing the

results of tests with the functions ABS, MOD, SIN, COS, and Ta!n.

There are 12 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3.48 FM832 (FuU)

a. Features Tested

This program tests generic functions using as arguments real values and their double

precision counterparts. The generic functions tested are SORT, EXP, LOG, LOGIO, COS,
SINH, TANH, ASIN, ATAN and ATAN2.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The expected results are the functions evaluated with single precision and then double

precision accuracy. Both sets of results are printed in double precision notation.

There are 20 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-90

D3.49 FM833 (FuU)

a. Features Tested

T. is program tests for equality between generic functions and their specific function

counterparts. The generic functions tested are SIGN, MAX, EXP, TANK, ASIN, ANINT,
MOD, ABS, SORT, LOG, SIN.

ANS X3.9-1978 Reference: 15.3, Table 5

b. Special Considerations

The first result is an integer value, representing the result of a test with SIGN. The

second result is a real value, representing the result of a test with MAX. The third set of

results contain double precision values, representing the results of each test of the generic

function. The fourth set of results contain complex values, with a real and an imaginary

part, representing the results of each test of the generic function.

There are 11 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs; None

X-Numbers used: 02

D330 FM834 (Full)

a. Features Tested

To test the handling of generic functions used as arguments to other generic functions.

The generic functions tested are ABS, MIN, MOD, SIGN, COS, SQRT, MAX, LOG,
LOG 10, EXP, SINK, TAN, ATAN, CMPLX.

ANS X3.9-1978 Reference: 15.3, 15.10

b. Special Considerations

The results of Tests I and 2 contain integers and represent the result of each test of the

generic functions used in integer expressions. The results of Tests 3 and 4 contain real

numbers and represent the result of each test of the generic functions used in real

expressions. The results of Tests :> and 6 contain double precision numbers and represent

the result of each test of the generic functions used in double precision expressions. The
result of Test 7 contains a complex number and represents the result of a test of the

generic functions used in the complex expression in Test 7.

There are 7 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-91

D3.51 FM900 (Full)

a. Features Tested

This segment tests simple formats and formatted data transfer statements in external

sequential I/O. The tests in this segment are performed on double precision and complex

data types.

Formatted reads are used to transfer values from the systems input file to local variables.

Formatted writes are used to transfer values from local variables to the systems output file.

ANS X3.9-1978 Reference: 12.9.5, 13.3, and 13.5

b. Special Considerations

There are 17 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 36 visual tests. The output consists of pairs of lines. The first line in each

group is the actual result. The second line is produced by the H-edit descriptor. This is

the expected result. A test is successful if the first line in the pair agrees with the second

line. The optional zero to the left of the decimal point and the form of the exponent may
differ, as permitted in the standard.

Related Functions, Subroutines or Programs: None

X-Numbers used: 01 and 02

DJ FM901 (FuU)

a. Features Tested

This segment tests simple formats and formatted data transfer statements in external

sequential I/O. The tests in this segment are performed on character data types. Read
and write on substrings are included in this segment.

ANS X3.9-1978 Reference: 12.9.5.2, 13.3, and 13J.11

b. Special Considerations

There are 5 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 4 visual tests.

Related Functions, Subroutines or I*rograms: None.

X-Numbers used: 01 and 02.

D-92

D3.53 FM903 (Full)

a. Features Tested

This segment tests additional features of READ and WRITE statements, formatted

records, and format statements for double precision and complex data types. This segment

also tests all forms of character expressions as format specifiers.

Formatted reads are used to transfer values from the systems input file to local variables.

Formatted writes are used to transfer values from local variables to systems output file.

The external subroutine SN904 is used to test that a character constant may be passed as

a parameter to a subroutine, and used as a format specifier.

ANS X3.9-1978 reference: 12.9.5.2; 13.1; 13.5

b. Special Considerations

There are 14 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments)

There are 13 visual tests.

Related Functions, Subroutines or Programs: FM904

X-Numbers used: 01, 02

D334 FM91 ^uU)

a. Features Tested

This segment tests list-direr‘ed output for integer, real, logical, and character data types.

A list-directed WRITE sta ement is used to move values from local variables to the

systems output file. The van., ales are initialized with predetermined data.

ANS X3.9-1978 Reference: 13.6, 12.4

b. Special Considerations

For each test, two lines are printed. The first line in each pair is the actual results

obtained by using a list-directed WRITE. The second line is the expected results obtained

from a formatted WRITE statement, using the H-edit descriptor. The actual results are

compared visually with the expected results in the printed output. The particular form of

the actual results produced depends on the processor being tested. Column spacing and

line breaks are processor dependent. For real numbers, either E or F format may be used

and the number of decimal places printed is processor dependent. A test is successful if

both lines in the pair agree, taking into account possible variations described above. If a

subset processor contains list-directed output for integer, real, and logical data types, this

segment may be used in a subset test to insure the proper behavior of the extension.

There are 10 visual tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D335 FM906 (Full)

a. Features Tested

This segment test list-directed input for double precision and complex data types. A
list-directed READ statement is used to move values from the systems input file to local

variables.

ANS X3.9-1978 Reference: 13.6, 12.4

b. Special Considerations

There are 12 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 01, 02

D-94

D3.56 FM907 (Full)

a. Features Tested

This segment tests list-directed output for double precision and complex data types. This

segment also tests list-directed output of expressions. A list-directed WRITE statement

is used to move values from local variables to the systems output file. The variables are

initialized with predetermined data.

.^S X3.9-1978 Reference; 13.6, 12.4

b. Special Considerations

For each test, two lines are printed. The first line in each pair is the actual results

obtained by using a list-directed WRITE. The second line is the expected results obtained

from a formatted WRITE statement, using the H-edit descriptor. The actual results are

compared visually with the expected results in the printed output. The particular form of

the actual results produced depends on the processor being tested. Column spacing and

line breaks are processor dependent. For double precision and complex numbers, either

E or F format may be used and the number of decimal places printed is processor

dependent. A test is successful if both lines in the pair agree, taking into account possible

variations described above.

There are 8 visual tests.

Related Functions, Subroutines or Programs; None

X-Numbers used; 02

D337 FM908 (FuU)

a. Features Tested

This se^ent tests Internal file Input for Full language concepts, with data types Double

Precision, Complex, Integer, Real, Logical, and Character, and with a sampling of Edit

descriptc" particularly those that are not allowed in the Subset. The Internal file forms

are both iiaracter arrays and strings. For Input, the READ statement is used, moving

data from the Internal files to a list of data variables. The file is initialized to a preset

character sequence. After the READ, the values in the data variables are compared to

the expected results.

ANS X3.9-1978 Reference; 12.2.5

b. Special Considerations

There are 54 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D-95

D3.58 FM909 (Full)

a. Features Tested

This program tests Liternal file output for Full language concepts. Data types tested are

double precision, complex, integer, real, logical, and character. A sampling of edit

descriptors are used, particularly those not allowed in the Subset. The internal fUe forms

used are both character arrays and strings. Internal file output is produced by the WRITE
statement. Variables are initialized with predetermined values and then, via the WRITE
statement, the values are moved from the data variable list to the internal file.

ANS X3.9-1978 Reference: 12.2.5

b. Special Considerations

Computed values with absolute value less than one are permitted to contain either a

leading zero or a leading blank. Computed values requiring "E" format may be expressed

as Ae+nn or a+Onn, where a represents the mantissa, and nn represents the exponential

power. Computed values requiring "D" format may be expressed as Ad + nn, Ae+nn, or

a+Onn. A leading plus sign is also permitted for computed values which are positive.

These additional options have been incorporated in the test code if the number of possible

combinations of results is ten or less. Where the number of possible results exceeds ten,

the computed value is compared with only one value, and, if the test fails, the number of

possible results are printed. The results contain character values, representing the result

of testing character data types.

There are 27 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02

D3^9 FM910 (Full)

a. Features Tested

This segment tests unformatted READs and WRTTEs with both direct and sequential

accesses to the same file. This segment tests COMPLEX and DOUBLE PRECISION
data types, in addition to INTEGER, REAL, LOGICAL, and CHARACTER. The
INQUIRE statement is also tested to ensure that the RECL and NEXTREC specifiers are

handled properly.

D-96

The primary purpose of this segment is to test if READ and WRITE operations with

direct and sequential access correctly position the file to the proper record number.

Subroutine SN911 is called to initialize six arrays of ten elements each. The arrays are of

type INTEGER, REAL, LOGICAL, CHARACTER, COMPLEX, and DOUBLE
PRECISION. A file is first opened for direct access, and ten records are written in

sequential order. Each record contains an element of each of the arrays. The file is

INQUIRE’d to see if sequential access is allowed. If so, the file is reopened for sequential

access, and ten records read Ln and compared to the values that were written. The file is

reopened for direct access, ana the records read in both sequential and non-sequential

order. The file is then reopened as a scratch file, and the tests repeated.

ANS X3.9-1978 Reference: 12.5

b. Special Considerations

The default unit numbers (24 and 25) are used, and mus; be changed if the units are not

capable of being opened as a direct, unformatted files.

There are 6 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM911

X-Numbers used: 02, 10, 11, 20

D3.60 FM912 (Full)

a. Features Tested

This segment tests formatted READs and WRITES with both direct and sequential

accesses to the same file. This segment tests DOUBLE PRECISION, INTEGER, REAL,
LOGIC and CHARACTER, data types. The INQUIRE statement is also tested to

ensure
'

the RECL and NEXTREC specifiers are handled properly.

The primary purpose of this segment is to test if READ and WRITE operations with

direct and sequential access correctly position the file to the proper record number.

Subroutine SN913 is called to initialize values for the arrays.

Each record contains an element of each of the arrays. The file is INQUIRE’d to see if

sequential access is allowed. I: o, the file is reopened for sequential access, and five

recc s read in and compared t*. .‘he values that were written. The file is reopened for

direct access, and the records read in both sequential and non-sequential order.

ANS X3.9-1978 Reference; 12.5

D-97

b. Special Considerations

This test routine should be executed using LUN 113 assigned to disk.

There are 26 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: FM913

X-Numbers used: 02, 13, 20

D3.61 FM914 (FuU)

a. Features Tested

This segment tests INQUIRE by unit on a sequential, formatted file. The INQUIRE
specifiers used are UNIT, EXIST, OPENED, NUMBER, ACCESS, SEQUENTIAL,
FORM, FORMATTED, BLANK, ERR, lOSTAT.

An OPEN statement is used to connect a unit for sequential, formatted access. Next, an

INQUIRE is performed, and the returned specifier values are compared to the expected

values. Finally, a CLOSE statement with STATUS = ‘DELETE’ is performed, so that the

unit may be reused in another test.

ANS X3.9-1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a sequential, formatted file.

Comparisons of the actual vs the expected values for the UNIT, EXIST, OPENED,
NUMBER, ACCESS, SEQUENTIAL, FORM, FORMATTED, BLANK, ERR and

lOSTAT specifiers of the INQUIRE are made and the results reported on the report as

one test. If any one of the comparisons fails, all the specifiers that appear in the failed

INQUIRE statement are printed, first with the actual values, and then with the expected

values.

There is 1 ‘PASS/FAIL’ test.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 08

D-98

D3.62 FM915 (FuU)

a. Features Tested

This segment tests INQUIRE by unit on a sequential, unformatted file. The INQUIRE
specifiers used are UNIT, EXIST, OPENED, NUMBER, ACCESS, SEQUENTIAL,
FORM, UNFORMATTED, ERR, and lOSTAT.

An OPEN statement is used to connect a unit for sequential, unformatted access. Next,

an INQUIRE is performed, and the returned specifier values are compared to the

expected values. Then, a record is written to the file, and another INQUIRE is performed

and tested. The file is then rewound and read, and a third INQUIRE is performed and

tested. Finally, a CLOSE statement with STATUS = ‘DELETE’ is performed, so that the

unit may be reused in another test.

ANS X3.9-1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a sequential, unformatted file.

There are 3 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 05

D3.63 FM916 (FuU)

a. Features Tested

This segment tests INQUIRE by unit on a direct-access, formatted file. The INQUIRE
specifiers used are UNIT, EXIST, OPENED, NUMBER, ACCESS, DIRECT, RECL,
NEXTREC, FORM, FORMATTED, BLANK, ERR, and lOSTAT.

An OPEN statement is used to connect a unit for a direct-access, formatted file. Next, an

INQUIRE is performed, and the returned specifier values are compared to the expected

values. Finally, a CLOSE statement with STATUS =‘DELETE’ is performed, so that the

unit may be reused in another test.

ANS X3.9-1978 Reference: 12.10.3

D-99

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a direct-access, formatted file.

There is 1 ‘PASS/FAIL’ test.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 14

D3.64 FM917 (FuU)

a. Features Tested

This segment tests INQUIRE by unit on a direct-access, unformatted file. The INQUIRE
specifiers used are UNIT, EXIST, OPENED, NUMBER, ACCESS, DIRECT, RECL,
NEXTREC, FORM, UNFORMATTED, ERR, and lOSTAT.

An OPEN statement is used to connect a unit for a direct-access, unformatted file. Next,

an INQUIRE is performed, and the returned specifier values are compared to the

expected values. Then, a record is written to the file, and another INQUIRE is performed

and tested. The record that was written is then read from the file, and a third INQUIRE
is performed and tested. Finally, a CLOSE statement with STATUS = ‘DELETE’ is

performed, so that the unit may be reused in another test.

ANS X3.9-1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a direct-access, unformatted file.

There are 3 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 12

D3.65 FM919 (Full)

a. Features Tested

This segment tests INQUIRE by file on a sequential, formatted file. The INQUIRE
specifiers used are FILE, EXIST, OPENED, NUMBER, ACCESS, SEQUENTIAL,
FORM, FORMATTED, BLANK, ERR, and lOSTAT.

An OPEN statement is used to open a sequential, formatted file. Next, an INQUIRE is

performed, and the returned speedier values are compared to the expected values. Finally,

D- 100

a CLOSE statement with STATUS = ’DELETE’ is performed so that the file may be

reused in another test.

ANS X3.9-1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a sequential, formatted file.

There is 1 ‘PASS/FAIL’ test.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 09, 19

D3.66 FM920 (Full)

a. Features Tested

This segment tests INQUIRE by file on a sequential, unformatted file. The INQUIRE
specifiers used are FILE, EXIST, OPENED, NUMBER, ACCESS, SEQUENTIAL,
FORM, UNFORMATTED, ERR, and lOSTAT.

An OPEN statement is used to open a sequential, unformatted file. Next, an INQUIRE
is performed, and the returned specifier values are compared to the expected values. A
record is then written to the file, and an INQUIRE performed and tested. Next, the file

is rewound, and the record just written is read fi'om the file. Again, an INQUIRE is

performed and tested. Finally, a CLOSE statement with STATUS = ‘DELETE’ is

performed so that the file may be reused in another test.

ANS X3.9.1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 14) is used, and must be changed if the unit is not capable

of being opened as a sequential, formatted file.

There are 3 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 05, 19

D3.67 FM921 (FuU)

a. Features Tested

This segment tests INQUIRE by file on a direct-access, unformatted file. The INQUIRE
specifiers used are FILE, EXIST, OPENED, NUMBER, ACCESS, DIRECT, RECL,
NEXTREC, FORM, UNFORMATTED, ERR, and lOSTAT.

An OPEN statement is used to open a direct-access, unformatted file. Next, an INQUIRE
is performed, and the returned specifier values are compared to the expected values. A
record is then written to the file, and another INQUIRE performed and tested. The record

just written is then read from the file, and a third INQUIRE is performed and tested.

Finally, a CLOSE statement with STATUS = ‘DELETE’ is performed so that the file may

be reused in another test.

ANS X3.9-1978 Reference: 12.10.3

b. Special Considerations

A default unit number (number 24) is used, and must be changed if the unit is not capable

of being opened as a direct-access, unformatted file.

There are 3 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 10, 20

D3.68 FM922 (FuU)

a. Features Tested

This program tests INQUIRE by file on a file that is not connected to a unit. The
INQUIRE specifiers used are FILE, lOSTAT, EXIST, OPENED, SEQUENTIAL,
FORMATTED and ERR.

First, an OPEN statement is used to connect a formatted sequential file to a unit. The file

is written, followed by an ENDFILE statement for the file and the file rewound. Then a

CLOSE statement with STATUS = ‘KEEP’ is performed to ensure that the file exists.

Next, an INQUIRE statement is executed and the tests made. The file is then opened and

closed with DELETE.

ANS X3.9-1978 Reference: 12.103

D- 102

b. Special Considerations

The file should exist but not be connected.

A default unit number (number 14) and file name (composed of 15 characters - 8 spaces

followed by the letters "SEQFELE") are assigned. The unit number and file name may be

changed if not valid in an OPEN statement connecting a file for sequential, formatted

access.

There is 1 ‘PASS/FAIL’ test.

Related Functions, Subroutines or Programs: None

X-Numbers used: 02, 15,

DJ.69 FM923 (Full)

a. Features Tested

This program tests list-directed input for integer, real, logical, and character data types.

ANS X3.9-1978 Reference: 12.4, 13.6

b. Special Considerations

There are 34 input records. The data can be selected off the population file or generated

by the user (the data records are listed in the source program as comments).

There are 28 ‘PASS/FAIL’ tests.

Related Functions, Subroutines or Programs: None

X-Numbers: 01, 02

D- 103

f- .-, i-v,'i '"
,

.i-'/f' '*lrV..5 , ^1?’

I

'

/
'^ : '' .' .-'

^
I';*’-

^

...rvy T '
; ;-r . r^'U't, ' - I

.

'

'•I

i\e ''/' 'ui

,

•

•
,

.1

t'v, !>'•./ t..

f
-j

)
.:

, 10 '‘
I'

, I

IS;:-; '4:

APPENDIX E
SUMMARY OF FEXEC CONTROL INPUTS

E. SUMMARY OF FEXEC CONTROL INPUTS

CARD FUNCTION

Select all subset audit routines

Select both full and subset audit routines

Select a program

Select a series of audit routines

Exclude a program

Exclude a series of programs

Override date supplied by FEXEC
Override compiler ID supplied by FEXEC
Override project code supplied by FEXEC
Optional code selection

Include all TPFs
Exclude TPFs
List FEXEC control and update information

(JCL) run initialization card

(JCL) card preceding program

(JCL) card preceding data

(JCL) card following data (if required)

(JCL) card following program

Include data for source programs

(JCL) run termination card

X-card (assign logical unit number)

X-19 CHARACTER*10 CSEQ
|

Override default file name
X-191 CSEQ = ' CSEQ*

j
used in the OPEN and INQUIRE

X-20 CHARACTER*5 CDIR
j
statements

X-201 CDIR = ' CDIR'
j

*ENVIR S

*ENVIR F
PFMnnn
PFMnnn , PFMnnn
MFMnnn
MFMnnn , MFMnnn
DATE
COMPILER
PROJECT
OPTl D
TPF Y
TPF N
LIST
I-kk
B-kk
D-Olnn
D-02nn
E-kk
E-kk
T-kk
X-kk

DATA****

102 = 6

END-MONITOR
BEGIN-UPDATE
START, FMnnn
=iiiiiT
=iiiiiTjjjjj
=nnnnn
=nnnnn , nnnnn
=nnnnn , mmininin

=nnnnnC
=nnnnnCinmminin

=nnnnn , minitiinin

END-UPDATE
END-INPUT

Terminate Monitor section input

Begin Update section input

Begin updates for program FMnnn
Delete Test mmmm
Delete a test series

Insert new source code after line iiiii

Dele:e a card image

Replace a series of card images

Change line to comment
Change series of lines to comments
Delete a series of lines

End Update section

End of all input

E-1

