
Security Considerations for
SQL-based Impiementations
of STEP

Lawrence E. Bassham
W. Timothy Polk

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

-Qe—
100

.U56

//5283

1993

NIST



I

1

j

i

I



NISTIR 5283

Security Considerations for
SQL-based Impiementations
of STEP

Lawrence E. Bassham
W. Timothy Polk

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MO 20899

October 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakai; Director





Contents

1 Introduction 1

1.1 Audience 1

1.2 The Standards 1

1.3 Using This Document 2

1.4 Security Considerations 3

2 SQL/STEP Architecture 5

2.1 SQL Functionality 5

2.2 SQL/STEP Implementation 5

2.3 Security Responsibilities: The SQL Component 7

2.4 Security Responsibilities: Non-SQL Components 7

2.4.1 Application Interface 7

2.4.2 SQL Interface to Physical Database 8

2.4.3 SQL Interface to Non-SQL DBMS 8

2.4.4 Interface to Remote Databases 9

3 Applicable Security Controls 11

3.1 Security Problems for implementing STEP 11

3.1.1 Access Control 11

3.1.2 Inference and Aggregation 12

3.1.3 Object Reuse 12

3.2 Assurance 13

3.3 Accountability 13

4 Security Policies 15

4.1 Role Based Security Policy 15

4.2 Mandatory Access Control Policy for Confidentiality 16

4.3 Mandatory Access Control Policy for Integrity 17

4.4 Summary 18

iii



I

i

IV



1 Introduction

The Database Language SQL (SQL) is a widely used language for accessing and

manipulating relational databases. As such, SQL can be of use in many different

operational environments, with correspondingly different needs for security. One
specific application of this standard is in Product Data Exchange using STEP^
(PDES).[PDE93a]

This paper examines the security implications of the versions of the SQL standard as

used to implement STEP. STEP does not imply any particular security policy, so a

variety of security policies are examined. The paper has been written as a companion

document to NIST’s general SQL security document. Security Issues in the Database

Language SQL [PB93], and references that document frequently.

1.1 Audience

This paper is intended for designers of systems and databases that use SQL in imple-

menting STEP. With [PB93], this paper will help to evaluate the security controls of

SQL with respect to different security policies. This evaluation should help determine

the types of controls and mechanisms that will be required from the SQL processor(s),

as well as other components of the system (such as operating system (OS) controls,

network protocols, and identification and authentication mechanisms).

1.2 The Standards

SQL has been adopted by both national and international standards organizations.

It is the nature of standards to specify some features as required and other features

as prohibited. Additional features may also be included in implementations, provided

they do not conflict with elements specified in the standard. This allows for product

differentiation. Certain security-relevant features are required in an SQL-compliant

database management system (DBMS). Other security features are not specified by

SQL, but may appear in particular products. The exact functionality of an SQL-

compliant DBMS varies according to which version of the SQL standard is selected

and what unspecified features are included. In addition, many products are not fully

compliant, so further variation is possible.

^Standard for the Exchange of Product Model Data, an emerging international standard. The
goal is a complete, unambiguous, computer-readable definition of the physical and functional char-

acteristics of a product throughout its life cycle. [NIP91]

1



1 INTRODUCTION

The basic SQL definition is ANSI X3. 135-1989, Database Language - SQL with In-

tegrity Enhancement [ANS89a], and will be referred to as SQL’89. The functionality of

SQL’89 includes schema definition, data manipulation, and transaction management.

SQL’89 and ANSI X3. 168-1989, Database Language - Embedded SQL [ANS89b], form

the basis for the Federal Information Processing Standard (FIPS) 127-1 [FIP90].

ANSI X3. 135-1992 [ANS92] describes an enhanced SQL, known as SQL’92. The

enhancements include schema manipulation, dynamic creation and execution of SQL
statements, and network environment features for connection and session management

[C092][DD92]. The FIPS 127-2 [FIP93] is based upon X3. 135-1992.

Finally, a third version of SQL, referred to in this paper as SQL3, is currently un-

der development in ANSI and is expected to be approved in 1994 or 1995. SQL3

enhancements will include the ability to define, create and manipulate user-defined

data types in addition to tables.

ISO/IEC Draft International Standards 9579-1 [ISO90a] and 9579-2 [ISO90b] define

the Remote Database Access (RDA) protocol. RDA provides a method for intercon-

necting database management systems. ISO/IEC 9579-1 describes the generic model;

ISO/IEC 9579-2 presents the SQL specialization information.

STEP is defined by the multi-part international standard ISO 10303. ISO 10303

is in development within ISO/TC 184/SC4. STEP includes generic parts for data

specification[PDE92] (EXPRESS Language), file structure[PDE93b], and conformance

testing[PDE93c]. STEP also includes Integrated Resources (IRs), which describe data

exchange specific applications. Application Protocols (APs) define data exchange for

specific applications and are defined in terms of the IRs and generic parts. The ini-

tial release of STEP contained twelve parts; a number of additional parts are under

development. The twelve parts include an Overview, the three generic parts, six IRs

and two APs.

Note that PDES is not a standard. PDES stands for Product Data Exchange Using

STEP. PDES “refers to the United States contributing effort to this standardization

process” [FCF93].

1.3 Using This Document

This paper will be most useful to people who are familiar with SQL or relational

database management systems. The reader is also assumed to have a basic knowledge

of computer security or to have previously read [PB93]. Finally, the document also

assumes some familiarity with STEP, although it is not required.

2



1.4 Security Considerations

SQL is a general purpose tool that could be used to implement STEP in various ways.

Section 2, SQL/STEP Architecture, presents a basic architecture for an SQL-based

implementation of STEP. This section examines security considerations that are of

increased importance for this architecture.

Section 3 identifies controls and mechanisms that can be used to address the concerns

described in Section 2. These controls are organized according to an augmented

Trusted Computer System Evaluation Criteria (TCSEC) model presented in [PB93].

This model reflects the Trusted Database Interpretation (TDI) [TDI91] and National

Computer Security Center (NCSC) Technical Report 79-91, Integrity In Automated

Information Systems [TR791]. The Interpreted Requirements presented in the TDI
provide the basis for discussions of labels and audit in database. Additions to the

model from TR 79-91 include the definitions of data integrity and systems integrity.

STEP itself does not imply any particular implementation form or security policy.

Certain policies are more easily implemented with the SQL/STEP architecture than

others. In Section 4, three broad classes of security policies are briefly described,

accompanied by a comparison of particular requirements with the facilities of SQL.

The policy classes are: a role based policy, a mandatory access control policy for

confidentiality, and a mandatory access control policy for integrity.

1.4 Security Considerations

The basic security requirements are the preservation of confidentiality and integrity

while maintaining availability. There are a number of specific threats within these

categories that merit special consideration with respect to database security.

Inference and aggregation are usually considered threats to mandatory access control

policies, but they are threats in any environment. There are also a number of DBMS
specific security issues, such as referential integrity and polyinstantiation. Classic OS
problems such as deadlock and transaction completion must also be considered.

The following definitions will be used in this document:

• inference: derivation of new information from known information. The inference

problem is that of users deducing unauthorized information from the legitimate

information they acquire. [Thu92]

• aggregation: The result of assembling or combining distinct units of data when
handling sensitive information. Aggregation of data at one sensitivity level may
result in the total data being designated at a higher sensitivity level. [Rob91]

3



1 INTRODUCTION

• polyinstantiation - A database design technique utilizing simultaneous existence

of multiple data objects with the same name, differentiated by their access class,

to hide the existence of high data^ from low users^ .[Cam90] Polyinstantiation

allows a relation to contain multiple rows with the same primary key; the mul-

tiple instances are distinguished by their security levels. [SFD92]

• referential integrity - foreign keys must reference existing primary keys.[Cam90]

It is important to maintain the integrity between the referencing values (foreign

key values) and the referenced key values (primary key values). [DJ92]

• entity integrity - A tuple in a relation cannot have a null value for any of the

primary key attributes. [DJ92]

^Data that should only be available to users with a high security level.

^ Users with a low security level

4



2 SQL/STEP Architecture

SQL is not a part of STEP, but is a tool that can be used in the implementation of

STEP. This section begins with a brief description of SQL’s functionality. Secondly,

two models of an SQL/STEP implementation are presented. Finally, the security

problems associated with each component of the models are highlighted.

2.1 SQL Functionality

SQL defines standard facilities for relational database management systems. It de-

scribes facilities to perform four specific functions;

• define the structure of the database and the type of database elements by cre-

ating schema definitions;

• retrieve data from a database with a standard query interface;

• modify the contents of a database by adding, modifying or deleting tables or

components; and

• the ability to define and manage SQL transactions.

Each of these components has associated security threats. Schema definition is related

to the problems of inference and aggregation. Data retrieval tasks must conform to

confidentiality policies. Data modification must conform to integrity policy.

2.2 SQL/STEP Implementation

SQL is a general purpose tool that could be applied to STEP in many ways. To

perform the security analysis, it is necessary to assume some architecture for an

SQL/STEP implementation. Figure 1 depicts one model, which can be designed

with any SQL standard. Figure 2 depicts a second model, which requires SQL’92 or

SQL3 along with RDA.

The first model shows an application interfacing with an SQL processor, which in-

terfaces with a physical database on a local system. This model can be implemented

with any version of SQL.

5



2 SQL/STEP ARCHITECTURE

STEP ap Dlication

1

SQL Processor

OS

1

SQL
database

v ^

Figure 1: STEP/SQL Model 1

Figure 2; STEP/SQL Model 2

6



2.3 Security Responsibilities: The SQL Component

The second model expands the first to include remote databases, as well as the inte-

gration of non-SQL databases. SQL’92 and SQL3 have the required functionality for

this model. ^ This is a simplification of the model presented in [GS92].

2.3 Security Responsibilities: The SQL Component

There are valid security considerations for each of the four areas of SQL functionality.

• Database Schema: The database schema must be well designed to ensure that

aggregation and inference are not threats.

• Transaction Management: The SQL processor must prevent denial of service

due to deadlock. The SQL processor must provide appropriate transaction

management features: incomplete transactions can result in loss of external

consistency, i.e., the tables and elements are not “synchronized.”

• Modification: The SQL processor is responsible for maintaining access control

for SQL level objects. The SQL processor is responsible for enforcing external

consistency issues, such as type checking and ranges.

• Retrieval: The SQL processor is responsible for maintaining access control for

SQL level objects.

2.4 Security Responsibilities: Non-SQL Components

Many aspects of security in a STEP environment will take place outside the SQL
processor. This section outlines these responsibilities in the following areas: appli-

cation interface, SQL interface to the physical database, SQL interface to non-SQL

DBMS’s, and interface to remote databases.

2.4.1 Application Interface

The interface between the SQL processor and STEP applications may utilize the

embedded SQL language or the STEP Data Access Interface (SDAI) interface. The
application must supply accurate information regarding the identity of the user to the

SQL processor. This places two requirements on the system: appropriate selection

“^An implementation of SQL’89 with a proprietary client-server model may also resemble this

model. It is not possible to evaluate the security of such an implementation without details of its

architecture.

7



2 SQL/STEP ARCHITECTURE

and management of identification and authentication (I&A) controls and control of

this critical attribute’s propagation.

If the I&A control is weak or poorly managed, there is little assurance of accuracy

for this attribute. Consider passwords where the account name and password are

identical (a.k.a., “joe accounts”). If a STEP application accesses SQL for such an

account, there is an increased probability that the actual user is not the authorized

account user. Identity-based controls become useless.

Some systems include programs or features that allow users to modify their identity.

The UNIX operating system, for example, includes the file attributes suid, which

re-sets the user id, and sgid^ which re-sets the group id. Termination of the program

is supposed to cause the old user and group ids to resume. However, mis-use of these

features may allow a user to continue to masquerade as the other user, executing

STEP/SQL programs with unauthorized privileges.

2.4.2 SQL Interface to Physical Database

The OS provides the basic services that enable the SQL processor to store, retrieve,

and modify data on the system. The OS is responsible for guaranteeing the integrity

of the data and preventing denial of service.

The OS must also prevent data from being accessed outside the SQL processor. Such

action can result in loss of integrity (improper modification) or confidentiality (by

circumventing SQL’s internal access controls).

2.4.3 SQL Interface to Non-SQL DBMS

This is unspecified in SQL’89. SQL’92 introduces the concepts of the SQL server

and the SQL processor. By matching an SQL server with a non-SQL processor,

SQL queries may be performed on non-conforming databases, provided the non-SQL

processor is willing to provide an SQL view of its services and data.[GS92]

The interface between processor and server must be protected. Other processes on

the system could eavesdrop, insert incorrect information, or perhaps even delete in-

formation. Clearly, these actions would result in loss of integrity or confidentiality.

8



2.4 Security Responsibilities: Non-SQL Components

2.4.4 Interface to Remote Databases

The RDA protocol is designed as an interface between a local SQL server and a remote

SQL processor. The use of RDA on an open network may expose the system to many
threats, including eavesdropping, packet replay, and host spoofing. These threats can

be minimized by employing encryption techniques and strong authentication mea-

sures. RDA has built-in facilities which allow for the exchange of authentication

data.

In short, the security achieved will be dependent upon the implementation. Stating

that RDA is in use does not reveal anything about the security of the system.

9



2 SQL/STEP ARCHITECTURE

10



3 Applicable Security Controls

SQL processors are required to have certain features in the areas of security policy

and assurance that will readily apply to the security needs of implementations of

STEP. There are additional security-relevant features in these areas that may also be

present; however, they are not required for SQL compliance.

The SQL standard does not include specific requirements for accountability, but many
relevant features could be included in compliant products. These include the abil-

ity to use advanced authentication mechanisms (such as smart cards) or audit trail

generation.

3.1 Security Problems for implementing STEP

There are a number of security problems that are likely to be accentuated with STEP.

The basic intent is to reliably exchange product data. In most cases, that exchange

is intended to be limited to known partners. This implies a number of problems

regarding authentication of host and user, inference, and aggregation. The system

is inherently distributed. As a result, auditing is also a difficult problem. Finally,

assurance is difficult in such an environment. SQL is well suited to address some

of these problems. Others are outside the realm of SQL entirely. The following

subsections will examine these areas and suggest how they might be addressed to suit

a STEP environment.

3.1.1 Access Control

SQL processors are required to enforce discretionary access controls. The controls

have a granularity of tables or views and include a variety of privileges: INSERT]
DELETE] SELECT] UPDATE] and REFERENCES. Privileges may be allowed to

propagate, or they may be static.®

Further controls may be imposed upon access to columns within a table by granting

access privileges to views rather than the table itself. If the view and table are directly

linked, modifications to the view will also modify the table.

SQL does not specify mandatory access controls. However, they can be supported

in a variety of ways (see [PB93]). With a minor modification of the SQL semantics,

polyinstantiation can be supported in the following way:

®The schema designer has the option of permitting users to share their privileges.

11



3 APPLICABLE SECURITY CONTROLS

All primary keys implicitly include the security label. All searches, etc.

implicitly include a clause selecting the row with the highest security level

that is dominated by the user’s security level.

Note that this works nicely for levels of security, but is complex if categories are

supported.

3.1.2 Inference and Aggregation

Inference and aggregation are not addressed in the SQL specifications, but can be

addressed through add-on tools. These security problems are generally the result of

security flaws in the design of the schema of the database. The SQL specifications do

not address security flaws in schema design.

There is a flaw in the SQL’89 specification that can allow a user with DELETE or

UPDATE privileges to interrogate a database and determine the values of rows in a

table even if they do not have SELECT privilege. There is a simple work-around;

users with DELETE or UPDATE privileges can be limited to accessing a view with

appropriate fields. This flaw is eliminated in SQL’92.

3.1.3 Object Reuse

Object reuse is defined in [Rob91] as;

The reassignment to some subject of a medium (e.g., page frame, disk

sector, magnetic tape) that contained one or more objects. To be securely

reassigned, such media must contain no residual data from the previously

contained object(s).

Object reuse can pose a major disclosure threat. There are no requirements for

object reuse in the SQL specifications. In addition, object reuse cannot be addressed

through the SQL processor alone. Object reuse must also be addressed through the

OS features.

Object reuse can be addressed in SQL by specifying default values for all columns

that are not part of the primary key. This will ensure that no data is recovered

accidentaly by creation of new records being placed upon old records. It may be

possible to obtain that information in other ways, though.

12



3.2 Assurance

The OS must ensure that processes outside of the SQL processor cannot obtain storage

areas used by SQL without erasure of all data. This requires that the OS enforce

separation of data areas and erase data by overwriting when an object is relinquished

by a process.

3.2 Assurance

The SQL specification requires SQL processors to maintain serializability of transac-

tions. Other transaction management features are also included, such as ROLLBACK
and COMMIT statements. These statements help ensure integrity of the database.®

3.3 Accountability

SQL does not specify any accountability features. Identification and authentication

is implicitly required for the access control features, but implementation is entirely

unspecified. This means that any authentication requirements could be supported.

For instance, an SQL-compliant processor might re-authenticate for each transaction

using a smart card. It might also obtain the identity from the OS and assume that

it was correct for the duration of the session.

SQL does not specify any auditing requirements. Products will vary widely in their

ability to generate audit records and the granularity of the objects at which auditing

occurs.

®SQL’92 allows the user to relax the serializability requirements when in read-only mode. This

may affect the integrity of the transaction’s result, but will not affect the integrity of the database.

13



3 APPLICABLE SECURITY CONTROLS

14



4 Security Policies

An SQL-compliant DBMS can be used to implement STEP with adequate support for

most security policies. However, not all SQL-compliant DBMS’s will be appropriate

for every security policy. The appropriate security policy must be determined before

the system acquisition phase begins. It may be possible to augment OS mechanisms

with add-on tools, but if the SQL processor is inappropriate it may need to be replaced

entirely.

As noted previously, STEP does not imply any specific security policy. In this section,

we assume a number of different security policies and try to demonstrate the ability

of SQL to enforce these policies. The security policies examined are: a role based

policy, a mandatory access control policy for confidentiality, and mandatory access

control policy for integrity.

4.1 Role Based Security Policy

In a role based security policy, privileges are assigned according to the person’s role(s),

or job functions, in an organization. As a simple example, consider a system with

manufacturing information for computer peripherals, specifically one containing de-

sign specifications for an optical mouse. This system would have the following users:

a database administrator, a functional design engineer, an ergonomic design engineer,

and systems staff. Different jobs require different access to the DBMS. The database

administrator needs to design the schema, assign privileges, and review audit trails.

The functional design engineer needs access to specifications regarding the mechani-

cal functions of the mouse. The ergonomic design engineer needs access to physical

design requirements. The systems staff make backups and create applications.

SQL’89 specifies powerful discretionary access control (DAC) features. These controls

provide access to DBMS tables and views, restricting access to specified actions. The

actions themselves are more constrained than typically provided by the OS. Use of

views can help control access to columns within tables.

SQL’92 makes minor enhancements, such as removing the “bad semantics” associated

with the DELETE and UPDATE commands (see Sec 3.1.2). This allowed users to

gather data by inference. For additional details, see [PB93, pg. 22]. SQL’92 also

specifies the syntax and semantics of the REVOKE statement.

SQL-3 may improve upon the administration of access rights to database objects

through the use of roles [PB93, Sec 3.1.3]. This will greatly simplify the database

administrator’s job.

15



4 SECURITY POLICIES

These controls should be augmented by appropriate authentication mechanisms, au-

diting, and inference detection tools. Authentication mechanisms may be provided

by the STEP implementiation. If the STEP implementiation requires frequent re-

authentication (e.g., for each transaction), the SQL processor must support this.

Audit trails may be protected by the OS, but they must be generated by the SQL
processor^. Inference detection tools are an add-on tool for schema design.

Any SQL-compliant processor can be applied to enforcement of a role-

based security policy. The basic DAC features are sufficient, if not ideal. SQL’92

has significant enhancements for this task, but SQL3 may be most appropriate if the

final specification includes role-based access controls. For any version of SQL, role-

based security requires that the OS provide adequate authentication mechanisms

and protect SQL data and audit trails from modification outside the SQL processor.

An SQL-compliant processor will augment these features with strong DAC features

appropriate for role-based policies. The SQL process should include one additional

feature: audit trail generation by the SQL processor. It will also be necessary to

perform procedures to detect opportunities for inference; this is best performed with

automated inference detection tools.

4.2 Mandatory Access Control Policy for Confidentiality

The majority of mandatory access control (MAC) models specify a security policy for

the enforcement of a level and category-based mandatory security policy. In such a

policy, each object has two security attributes: a security level (such as SECRET or

SENSITIVE) and an optional set of categories. Categories specify “need-to-know”

areas, with the level specifying minimum clearance requirements. These security

attributes are often called the label.

The primary concerns in such a policy are enforcing access rights and maintaining

appropriate labels as new objects are created. The policy is often described as “read

down, write up”. A user may read an object with a lower level; an object will

be written with the highest level of any objects involved. For example, a user with

SECRET clearance can read SENSITIVE objects. If that user uses a SECRET object

and a SENSITIVE object as input, the output of the process will be labeled as

SECRET.

SQL can be used when a MAC policy is required, but not every SQL
processor is suited to the task. SQL has no built in feature for handling labels,

however nothing in the standard prevents an implementation from using and main-

^SQL does not require audit trail generation. This must be added as a value-added enhancement
to the SQL processor.

16



4.3 Mandatory Access Control Policy for Integrity

taining this information. First, an appropriate MAC implementation of SQL for the

target OS is required. If the target OS is a MAC system, the Trusted Computing Base

(TCB) subset architecture and Trusted Subject architecture can be used. If the target

OS is not a MAC system, the integrity lock architecture is required®. Add-on tools for

detection and elimination of inference and aggregation are required. Authentication

and auditing requirements are identical to those for role-based systems.

4.3 Mandatory Access Control Policy for Integrity

The Clark-Wilson framework[CW89], the most complete model for integrity, specifies

an access control policy which depends upon the user’s identity, the program to be

executed, and the set of data files that will be accessed. The critical programs are

called trusted 'processes., or TPs, and the data files are known as constrained data

items, or CDIs. Few systems support such complex access control decisions.

The complexity of the access control decision closes the confidentiality loophole asso-

ciated with the DAC policies. With DAC policies, user A may disclose information

intended solely for user B. User B can then copy that information and make it avail-

able to anyone. In the Clark-Wilson framework it is possible to permit users to access

an object, without allowing them to copy it. The TP determines the access privileges

of any output files (implicitly or explicitly), so disclosure can be tightly controlled.

These access controls would interact with the SQL discretionary controls. Deter-

mining the net effect of this combination would not be straightforward, but there is

nothing to preclude such a combination.

Clark-Wilson also requires a variety of data integrity checks on both objects and the

aggregate data set. (These are known as internal and external consistency.) The
most important of these is the Integrity Verification Procedure (IVP). The IVP is a

critical feature of the Clark-Wilson framework, ensuring the consistency of CDIs as

a whole.

All SQL-compliant processors include mechanisms and controls to maintain integrity.

The most significant of these controls are integrity constraints and transaction man-

agement features. The integrity constraints enforce simple integrity rules (such as

data type or value of a column). Transaction management ensures that the database

moves from one consistent state to another.

SQL’92 includes significant enhancements in such mechanisms, such as domains, trig-

gers, and check constraints. Domains can be used to restrict data values; triggers can

be useful in auditing and warning mechanisms. Most significantly, the Clark-Wilson

®These architectures are discussed more in [PB93].

17



4 SECURITY POLICIES

Integrity Verification Procedure (IVP) can be implemented for a table by using the

enhanced check constraint. The IVP is a critical feature of the Clark-Wilson frame-

work, ensuring the consistency of GDIs as a whole.

An SQL-compliant processor can be used to great advantage when imple-

menting the Clark-Wilson framework on a system. Doing so requires an OS
that includes: direct support for Clark-Wilson type access controls; appropriate au-

thentication mechanisms; and appropriate auditing mechanisms. An SQL-compliant

processor will augment these features with: integrity constraints for internal and

external consistency; and transaction management features. Several additional fea-

tures are required; the SQL processor must generate audit records and handle re-

authentication if desired.

4.4 Summary

Any SQL-compliant system will include adequate controls to enforce role-based secu-

rity policies. SQL’92 and SQL3 include additional features that improve support (in

comparison to SQL’89). In particular, the current draft of SQL3 includes substan-

tial enhancements for specification of roles. This will greatly simplify the database

administrator’s job.

Since the basic controls enforce role-based policies, there are minimal demands placed

upon the OS. The system must restrict access to the database and audit trail outside

the DBMS. The system may also contribute identification and authentication mecha-

nisms, although these could be embedded in the DBMS. If the system’s architecture

employs fault tolerance, it may contribute in the area of assurance as well.

The features required by the SQL specification are not sufficient to enforce mandatory

policies. Whether oriented towards integrity or confidentiality, mandatory policies are

not addressed by the basic SQL access control mechanisms. These mechanisms may
be enforced by the OS, or by enhanced implementations of SQL.

Appropriate access control mechanisms are not sufficient for enforcing mandatory

security policies. These policies place additional requirements on the DBMS and OS
beyond those specified for role-based policies.

If the security policy specifies mandatory access for confidentiality, tools are required

to address inference and aggregation. These tools are not specified by the SQL
specifications.

For integrity policies, additional burdens are placed upon the applications themselves

to perform range and type checks upon the data values and external consistency checks

18



4.4 Summary

on the tables of data. These types of tests are supported directly by features specified

within SQL. These mechanisms were significantly enhanced in SQL’92 (compared to

SQL’89).

SQL is most suited to enforcement of role-based policies. It includes sig-

nificant features to support mandatory policies for integrity, but omits

appropriate access control. SQL does not address mandatory access con-

trol for confidentiality, but does not preclude integration of appropriate

controls.

19



4 SECURITY POLICIES

20



REFERENCES

References

[ANS89a] Database language - SQL with integrity inhancements. American National

Standard X3.135, American National Standards Institute, 1989.

[ANS89b] Database language - embedded SQL. American National Standard X3.168,

American National Standards Institute, 1989.

[ANS92] Database language SQL. American National Standard X3. 135-1992, Amer-

ican National Standards Institute, 1992.

[Cam90] John Campbell. A brief tutorial on trusted database management systems

(executive summary). In 13th National Computer Security Conference

Proceedings^ 1990.

[C092] S.J. Cannan and G.A.M. Otten. SQL - The Standard Handbook. McGraw-
Hill Book Co., Berkshire SL6 2QL England, October 1992.

[CW89] David Clark and David Wilson. A comparison of commercial and military

computer security policies. In Report of the Invitational Workshop on In-

tegrity Policy in Computer Information Systems (WIPCIS). NIST Special

Publication 500-160, 1989.

[DD92] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-

Wesley Publishing, Reading, MA 01867 USA, October 1992.

[DJ92] Vinti M. Doshi and Sushil Jajodia. Enforcing entity and referential in-

tegrity in multilevel secure databases. In 15th National Computer Security

Conference Proceedings, 1992.

[FCF93] Allison Barnard Feeney, Stephen Nowland Clark, and James E. Fowler.

Requirements for an application protocol development environment. NIS-

TIR 5197, National Institute of Standards and Technology, May 1993.

[FIP90] Database language SQL. Federal Information Processing Standard 127-1,

National Institute of Standards and Technology, 1990.

[FIP93] Database language SQL. Federal Information Processing Standard 127-2,

National Institute of Standards and Technology, June 1993.

[GS92] Leonard Gallagher and Joan Sullivan. Database language SQL: Integrator

of CALS data repositories. NISTIR 4902, National Institute of Standards

and Technology, September 1992.

[ISO90a] Remote database access - part 1: Generic model. ISO/JTC1/SC21 N4282,

Information Processing Systems - Open Systems Interconnect, 1990.

21



REFERENCES

[ISO90b]

[NIP91]

[PB93]

[PDE92]

[PDE93a]

[PDE93b]

[PDE93c]

[Rob91]

[SFD92]

[TDI91]

[Thu92]

[TR791]

Remote database access - part 2: SQL specialization. ISO/JTC1/SC21
N4281, Information Processing Systems - Open Systems Interconnect,

1990.

National initiative for product data exchange. Implementation plan, De-

partment of Commerce/Department of Defense, November 1991.

W. Timothy Polk and Lawrence E. Bassham III. Security issues in the

database language SQL. Special Publication 800-8, National Institute of

Standards and Technology, August 1993.

Industrial automation systems and integration - product data represen-

tation and exchange - part 11: Description methods: The express lan-

guagereference manual. Draft International Standard ISO/IEC 10303-11,

ISO/IEC, 1992.

Industrial automation systems and integration - product data representa-

tion and exchange - part 1: Overview and fundamental principles. Draft

International Standard ISO/IEC 10303-1, ISO/IEC, 1993.

Industrial automation systems and integration - product data representa-

tion and exchange - part 21: Clear text encoding of the exchange structure.

Draft International Standard ISO/IEC 10303-21, ISO/IEC, 1993.

Industrial automation systems and integration - product data representa-

tion and exchange - part 31: Framework for conformance testing. Draft

International Standard ISO/IEC 10303-31, ISO/IEC, 1993.

Edward Roback. Glossary of computer security terminology. NISTIR 4659,

National Institute of Standards and Technology, September 1991.

Linda M. Schlipper, Jarrellann Filsinger, and Vinti M. Doshi. A multi-

level secure database management system benchmark. In 15th National

Computer Security Conference Proceedings, 1992.

Trusted database management system interpretation. NCSC-TG 021, Na-

tional Computer Security Center, April 1991.

Bhavani Thuraisingham. Knowledge-based inference control in a multilevel

secure database management system. In 15th National Computer Security

Conference Proceedings, 1992.

Integrity in automated information systems. C Technical Report 79-91,

National Computer Security Center, September 1991.

22



I

I

‘

!

}

i'

<.

t

t

t

I

i

i

s

i

I

I




