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Abstract

We analyze the linear stability of a planar solidification front with sharp-interface

and phase-field models in two physical situations: (1) an isothermal system at the

melting point ;

.n the unperturbed state, and (2) constant-speed growth of a crystal

into its hypercooled melt. The parameters in the phase-field models are chosen to

scale with the nondimensional interface thickness so that in the limit of vanishing

interface-thickness, the sharp-interface model is recovered. Comparison of the results

from the two models shows the following trends as the interface between the melt and

solid is made thicker. (1) Perturbations to the plane front are stabilized as if the surface

energy of the interface was increased. (2) The planar front and its perturbations behave

as if the interfacial attachment kinetics was made faster, as long as the interface is

significantly smaller than the capillary length. If the interface thickness is on the order

of the capillary length, then the attachment kinetics may appear either slower or faster

than for sharp-interface models. Stability results under “heat trapping” conditions are

computed and only planar fronts whose speed increases with undercooling axe found

to be stable.

’Technology Administration, U.S. Department of Commerce, Washington, D.C.
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1. Introduction

The growth of a single-component crystal into its supercooled melt is often an unstable pro-

cess that leads to complex morphologies of the crystal-melt interface. Using sharp-interface

(or Stefan-type) models of solidification involves treating the crystal-melt interface as a zero-

thickness free boundary which must be found as part of the solution. This free boundary

may become quite complex geometrically, and numerical calculations that are based on ex-

plicit front-tracking of the interface position can be complicated. An alternative is to use a

phase-field model for solidification (see, for example, [1]). Phase-field models approximate

the crystal-melt interface as a smooth transition of finite width in the phase-field variable

^(x, <); the transition is from one value of </> representing the melt phase to another rep-

resenting the solid phase. The constant values assumed by the phase field far from the

interface each correspond to local minima in
(f)

of the bulk free energy. In this type of model

a nonlinear reaction-diffusion equation for the phase field is combined with the correspond-

ing equations for the other field variables, and the resulting coupled equations are solved

over the entire domain consisting of both solid and liquid phases. The regions of transition

from one bulk value of ^ to the other are identified as the crystal-melt interface, and no free

boundaries must be found explicitly. The fact that phase-field models may recover sharp

(zero-thickness) interface models of solidification in the limit of vanishing interface thickness

has been demonstrated by Caginalp [2].

Many investigations have been carried out to compare the two modeling approaches.

The critical nucleation radius for solidification and propagation of a planar front into an

undercooled melt have been investigated by Caginalp and Socolovsky [3]; they find that in

one-dimensional models, the interface may be a fairly large fraction of the domain size (say

20%) and still retain up to three-digit agreement with sharp-interface model results. The

critical nucleation radius has also been examined by Brattkus et al. [4] with the model used

by Kobayashi [5] from the perspective of a nonlinear boundary value problem. They found it

necessary for the interface thickness to be smaller than the critical nucleation radius in order

to get good agreement with sharp-interface predictions. The growth of a sphere modeled

with each approach was also considered by Wheeler et al. [6]; their good agreement for the

sphere served as justification for proceeding to computation of dendrites. A linear stability

analysis of a planar front growing into a hypercooled melt has recently been carried out by

Kupferman et al. [7]. In all of these cases, it is found that reasonable agreement between

the two methods can be obtained provided the interface thickness is taken small enough.

Recent computations using phase-field models to compute dendritic morphologies also

show the promise of this approach. Kobayashi [5] used a phase-field model to compute cel-

lular and dendritic crystal-melt interface shapes in two dimensions, and dendritic shapes

in three dimensions. Wheeler et al. [6] used a different phase-field model derived from ir-

reversible thermodynamics [8, 9] to model two-dimensional dendritic growth. They made
careful comparisons with sharp-interface theories for the Ivantsov solution, with marginal

stability theory, and with microscopic solvability theory; the degree of agreement depends

on the chosen parameter values. For example, the phase-field results appear to approach
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marginal stability theory for smaller undercoolings; the agreement with microscopic solv-

ability theory is better for smaller values of anisotropy. The comparison is clearly carried

out in the context of a difficult problem, in which even the sharp-interface results currently

constitute an area of active research.

In order to make meaningful comparisons between phase-field and sharp-interface mod-

els, it is necessary to note explicitly which parameters are being held fixed and which are

allowed to vary while making the comparison. Among the parameters that appear in the

phase-field model are several that have no immediate counterpart in a sharp interface model.

In particular, an isotropic phase-field model generally involves a gradient energy coefficient,

(e')
2

,
a double-well barrier height, 1/a', and a mobility parameter, M', related to the tempo-

ral relaxation of the phase field. By appealing to particular exact solutions to the phase-field

equations that represent one-dimensional stationary or constant-velocity traveling wave so-

lutions, it is possible to relate certain combinations of these phase-field parameters to more

traditional parameters such as the surface energy, 7 [
10], and the linear kinetic coefficient,

/z
[
11

],
that are often used in sharp interface treatments, together with a measure of the

thickness, 8
,
of the diffuse interface. In this framework [12], the dependence of the exact so-

lutions on interface thickness is such that the defining relations between the phase-field and

sharp-interface parameters are valid for any value of the diffuse interface thickness. With

this choice, it is also possible to show formally that in more general situations (e.g., non-

planar geometries with unsteady dynamics), a sharp-interface model may be recovered from

the phase-field model in the limit that the interface thickness 8 is much smaller than the

geometrical length scales in the problem, for fixed values of 7 and [2]. However, in these

more general circumstances, the predictions of the phase-field model and the sharp-interface

model will generally disagree to some extent for values of 8 that fall outside the range of

asymptotic agreement of the models, despite the fact that the phase-field parameters are

being constrained in an attempt to maintain common values of 7 and \l. It is suggestive

to compare the trends observed in the phase-field model as the interface thickness is varied

with trends that are observed in the sharp-interface model when 7 or /z are varied.

In this paper, we examine two cases in which the sharp-interface theory can be worked

out in explicit detail, in order to obtain quantitative comparisons between sharp interface

theory and phase-field theory. In the first situation, a planar front separates a crystal from

its melt at the melting temperature, Tm • The front is then perturbed with a small-amplitude

sinusoidal shape (following Mullins and Sekerka [13]), and the linear stability of the front

examined in the context of both sharp-interface and phase-field models of solidification. In

the second situation, the melt is hypercooled; that is, the bulk temperature of the melt is

cooled more than L/c below the melting point, where L is the latent heat released upon
solidification per unit volume and c is the specific heat of the melt at constant pressure.

Under these conditions, the planar crystal-melt interf" :e may then propagate with constant

speed. The linear stability of the interface is also exam ed in the context of sharp and diffuse

interface models. In making the comparisons, appropriate combinations of the parameters

that appear in the phase-field models are held fixed, resulting in given values of the usual

variables appearing in sharp-interface treatments. The diffuse-interface width can then be
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varied systematically for fixed values of the sharp-interface parameters.

Important issues that arise in phase-field modeling are how small the interface thickness

must be relative to the geometric length scales that occur in the problem, and also how

well the time-dependent dynamical aspects of the problem are described. Both concerns

are well-illustrated by dendritic growth phenomena, where the generation of secondary and

tertiary sidearms produce a wide range of length scales, and the dynamical features include

periodic emission of sidearms near the dendrite tip, and coarsening of the geometrical length

scales farther down the primary stem on longer time scales.

In the present study using linear stability theory, we consider the dispersion relations

for the sharp-interface model and phase-field models, which provide a direct quantitative

dynamical comparison of the temporal growth rates for perturbations to the system. The

issue of the resolution of geometrical length scales by a diffuse interface arises in the large-

wavenumber limit of the dispersion relations for the phase-field models, when the wavelength

of the perturbations becomes comparable to the interface thickness. One can also consider

how thin an interface must be to accurately compute growth rates for long wavelength per-

turbations; for example, is it necessary to resolve the capillary length, even if it is much
shorter than the perturbation wavelength? In addition, for the case of growth into a hyper-

cooled melt, the thermal field exhibits a characteristic boundary-layer thickness k/V, where

/c is the liquid thermal diffusivity and V is the interface velocity. For a given diffuse-interface

thickness, at very high growth rates this length scale becomes comparable to the interface

width, and the issue of resolution can again be addressed.

A number of variations of phase-field formulations are possible, differing in detail but

apparently leading to qualitatively similar results in general. We consider two formulations

here: one, which was developed by Langer [1] and studied extensively by Caginalp [2], which

is based on a relatively simple free energy functional, and another more recent model which

is derived from a more involved thermodynamic basis [9]. Both models have similar sharp-

interface limits, and have been used successfully in numerical computations.

2. Isothermal case

In this section we consider a stationary system under conditions that allow an isothermal

base state, in which the solid and liquid phases are separated by a planar crystal-melt

interface; the temperature of the system is the bulk melting point Tm- Since we compute

the linear stability of a one-dimensional system representing a planar crystal-melt interface,

our approach differs from previous work in which the spectrum was computed for isothermal

perturbations to an isothermal kink [14], and for perturbations to a uniform phase field

[15]. For ease of presentation we discuss two-dimensional perturbations to the system, with

the understanding that, since the system is isotropic, linear stability results carry over to

the three-dimensional case if the wavenumber is interpreted as the modulus of the three-

dimensional wavevector.
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2.1 Sharp interface

We first recall the linear stability results for a sharp crystal-melt interface in an isothermal

system, including the effects of capillarity and interface kinetics. The interface is assumed

to have the form z' = h'(x',t'), where z
1
is the coordinate normal to the mean position of

the interface, x 1

is the coordinate along the mean position of the interface, and t
1

is time; the

unperturbed planar interface is located at z
1 = 0. The solid occupies the region z

1 < h‘ and

the liquid is in z' > h'

.

We assume equal thermophysical properties in the melt and solid.

We consider the simple unperturbed solution to the problem with uniform temperature

T' = Tm and the stationary flat interface h' = 0; we examine the linear stability of this state.

For the stability problem, it is convenient to nondimensionalize length with d 0 = cTmT/L,

which is a scaled capillary length, and time with dg/zc; here k is the thermal diffusivity,

Y = 1/L is the capillary length and 7 is the surface free energy of the interface. Temperature

relative to the melting point is measured in units of L/ c.

After nondimensionalization, the linearized perturbation equations in the bulk are

8Tl

dt

at the interface we have

8Tq
= V 2Tl ,

z > 0 and —f = V 2TS ,
z < 0;

ot

1 dh _ d2h

dTL dTs
dz dz

Tl = Ts ,

dh

'dt'

where

H =
/^TmT

K

(2 . 1 )

(
2 .2 )

(2.3)

(2.4)

(2.5)

Here [i
1
is the attachment kinetics parameter; we may think of /x as a ratio of characteristic

kinetic and thermal speeds. The perturbation temperatures are required to decay to zero

far from the interface.

For nickel, the dimensionless kinetic coefficient is roughly \l = 0.05 and the representative

value of the length scale is d0 = 7(10
-8

)
cm. For many situations in solidification, however,

the effects of attachment kinetics are found to be insignificant and are neglected by letting

f.
1

1 tend to infinity, so larger values of the parameter fx are of interest as well.

The solutions in the bulk are given by

Tl = Toexp[at ikx — Xz\, Ts = Toexp[at + ikx + Az], (2-6)

and the interface is given by

h = H exp[<7< -f- ikx]. (2-7)

Here A = %/a + k2
,
and the branch of the complex square root is assumed chosen so that the

real part of A is positive. Substitution into the interfacial conditions results in the dispersion

relation

(2.8)
/
L(J

cr + ^ + fik
2 = 0.
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By using the relation a = A 2 — k2
,
this equation may be converted to a polynomial in

A = A(a, k ):

/(A) = A3 + |A 2 + - 1)A - |
k
2 = 0. (2.9)

The condition that the real part of A should be positive usually rules out two of the three

roots, leading to a single value for a. It is easy to solve this equation numerically for

the growth rate a = a (fc); this is the discrete spectrum, representing the mode which is

responsible for interface instability in more general situations. There exist other solutions

to the bulk equations with negative growth rates of the form

cr[k) — —k2 — p
2

for any positive value of p\ the corresponding temperature fields have the form

Tl = T0 exp[ai -f ikx + ipz] + T\ expfai — ikx — ipz
],

(
2 . 10

)

(
2 . 11 )

and

Ts = T2 exp [at + ikx + ipz] -f T3 exp [at — ikx — ipz
],

and the interface shape is

h = H0 exp [at + ikx
]

,

(
2 .12

)

(2.13)

where
-(r0 + Ti)

0
(*

2 + <^)’
T2 = To +

<?Ho

2ip
’ (2.14)

These solutions make up the continuous spectrum, and represent stable modes. They do

not decay in the far-field; however, the analog to modes of this type may be observed in

numerical calculations performed in a truncated domain. Combinations of these modes,

formed by taking To and T\ to be suitable functions of p and integrating over />, do exhibit

decay in the far-field.

The growth rate of the discrete mode given by Eq. (2.8) is always negative except for

a(0) = 0. Figure 1 displays results for several values of the attachment kinetics parameter

p. Asymptotic expressions for a in the limit k >> 1 can easily be obtained. We find that for

p< 1,
2

m*2 +
2vn^* + 0(1) - (2.15)

For p > 1,

CT = -i2 +
4(/-i)

3+ °(r1 )- (2.16)

S’i Ts
II

h—

4

' = -*2
+ ^*4/3 + 0(*)- (2.17)

Eq. (2.16) implies that the growth rate becomes independent of the kinetics parameter p
to leading order for p > 1; this will be useful for interpreting the differences in behavior

between sharp-interface and phase-field models. For k 'Cl we find that a ~ —2k3
.
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2.2 Phase-Field Model

Langer’s phase-field model [1,2] may be stated in nondimensional form as

where

1 d<f)

M~dt
= e

2V 2

^ + ^(1 -
(f>

2

) + au
,

du 1 d<f>

dt + 2 dt
u ,

(2.18)

(2.19)

(PM 1

M =
a'K,

a'L 2
e
/

v/ a'

2cTm * do
(
2 .20

)

subject to u = 0 and
(f>
— ±1 as z —> ±oo. We have once again nondimensionalized lengths

with do, time with d\/K, and the temperature as u =
(
T

'

— Tm)/(L/c). Here (e')
2

is the

gradient energy coefficient, M 1
is a relaxation parameter, and a' is a parameter related to the

barrier height in the double-well potential. In the sharp- interface limit, the parameters (e')
2

,

M'
,
and a' may be related to the diffuse-interface thickness, the interfacial surface tension,

and the interface kinetic coefficient [2]. In this model the phase-field variable
<f)

varies over

the range —1 <
(f>
< 1, with

(f)
= — 1 representing the solid phase and

<f>
— 1 representing the

liquid phase.

The dimensionless parameter e represents the ratio of the diffuse interface thickness to

the scaled capillary length d0 . While in order to recover the sharp-interface problem it is

natural to examine the limit e —> 0, it should also be noted that the capillary length itself is

of atomic scale, and this limit is more of a mathematical abstraction than a physically-based

approximation. In this sense the limit e —> 0 therefore differs in some respects from the sharp

interface limits used in other situations, in which the diffuse- interface thickness is taken to

be small compared to macroscopic length scales in the problem, such as a container size or

the radius of curvature of a nonplanar interface. The sharp-interface problem for a planar

geometry in an infinite domain admits no such geometrical length scale.

Performing the asymptotic analysis in the fashion described by Caginalp [2], we find that

to recover the sharp-interface model from the phase-field problem the appropriate scaling

for the phase-field parameters is to take a = e/3, and M — /z/e
2

. We now choose these

expressions for M and a in Eq. (2.18) for all values of e, which allows us to vary the interface

thickness while holding fixed the other physical parameters corresponding to the sharp-

interface model. We shall return to this point in later sections.

A simple one- dimensional solution to the isothermal problem exists; it is given by

u(z) = 0 and (j){z) = tanh

Here we have chosen the solution which vanishes at the origin z = 0, where for small e there

is a rapid transition from solid to liquid.

We may perturb this base state as follows

(2 .21
)

u = 0 + u(z) exp[ifcx + erf], $ = </>(z) + c/)(z) exp[ikx + erf];
(
2 . 22

)
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the linearized equations for the perturbations are given by

e\D 2 - k
2
)j> + ieu + i(l - 3<p)<£ - -aj> = 0, (2.23)

O Z* fJL

(D 2 — k
2
)u — a(u + -</>) = 0, (2.24)

Zi

with the far field boundary conditions

<^, u —* 0, z —» ±oo. (2.25)

We seek the growth rate a = a(k,fi,e) as an eigenvalue for these equations.

2.2.1 Numerical Solutions

The linearized problem given by Eqs. (2.23)-(2.25) is on an infinite domain and has variable

coefficients that change rapidly in space when e -C 1. The above problem is symmetric

about the origin and so we need only solve the problem on the interval 0 < z < oo. By
testing a number of numerical schemes for treating the fax-field boundary conditions, we

determined that an accurate approach was to truncate the domain at a sufficiently large

distance, rather than employing a coordinate transformation that maps the infinite interval

to a finite interval. At the far-field boundary, the phase field is set to zero, and decay

conditions are given for the thermal field. This choice is motivated by the expectation that

the significant variation of the phase field is confined to an 0(e) vicinity of the interface,

whereas outside of this region the asymptotic form of the perturbed thermal field is similar

to that for the sharp interface problem. We have solved the resulting problem using two

approaches. The first is to solve a boundary value problem using the FORTRAN subroutine

SUPORT [16]; the growth rate a is treated as a parameter that is varied in order to satisfy

the boundary conditions in the manner described by Keller [17]. In this method, the far-field

boundary condition for the perturbation temperature in the melt is replaced by Du = 1 and

then a is iterated until the correct boundary condition is satisfied. The second approach is

to use a pseudospectral discretization in space, followed by a numerical solution of the full

matrix eigenvalue problem (See Appendix A). This procedure determines many eigenmodes

for the discrete problem, and the eigenvalue with largest real part gives the growth rate

corresponding to the most dangerous mode. Note that this second approach is effective in

this problem because the symmetry about the origin allows us to split the domain and turn

the transition in the phase field into a boundary layer. If the domain is not split in this

manner, the accuracy of the pseudospectral approach is degraded due to the rapid changes

in the solution in the interior of the domain [18].

Some results of the numerical solution of the problem for fi = 1 and different values of e

are displayed in Figure 2, where the curve for e = 0 gives the corresponding sharp-interface

results. The value fi = 1 is large enough that the results correspond to the large-// regime

and are insensitive to further increases in //. The growth rates are all nonpositive; the growth

rates from the phase-field model, however, lie below those of the sharp-interface model in
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general. For a given wavenumber in the indicated range, the magnitude of a increases with

e, and the system becomes more stable. This effect is analogous to the effect of increasing

the value of /z in the sharp-interface model (cf. Figure 1 ). Since /z is proportional to 7 and

fj,

1

1
in this sense increasing the interface thickness is analogous to either an effective increase

in the surface tension, as suggested by the results of Brattkus et al. [4], or to effectively

faster attachment kinetics, over this range of wavenumber. Note that the interface thickness

is smaller than the wavelength of the perturbation if ek < 2t, which is true for the indicated

range of wavenumbers. For a given value of e, the deviation from the corresponding sharp-

interface results increases with wavenumber over the indicated range. The results of the

phase-field model for a given value of e might be expected to deviate significantly when the

wavelength becomes comparable to the interface thickness; this will be discussed in more

detail in Section 2.2.3 below.

2.2.2 Asymptotic behavior for e «C 1

It is possible to apply the method of matched asymptotic expansions to the linearized problem

given by Eqs. (2.23)-(2.25) to compute the correction to the sharp-interface growth rate that

results from the phase-field model in the limit where the thickness of the front vanishes for

a given value of k. The result of the asymptotic analysis is of the form

o(k,e) ~ o0(k)[l + eo[(k)], (2.26)

where

t/i\ _ 2 + <jq(A:)/(12Aq)

^ }

2/n + l/\o-ao(k)/(2\*y

Ao = \J
o'

0

+ k2
,

(2.28)

and oo{k) satisfies the sharp interface dispersion relation given in Eq. (2.8).

This asymptotic behavior of the growth rate is verified in
,
where we compare the

numerically-determined values of 0 with the asymptotic results by plotting the quantity

o - Qq

e<70 cTj
(2.29)

as a function of e for various wavenumbers. As expected, 5 converges to unity as e tends to

zero; the agreement is best for smaller wavenumbers, and the value of e required to achieve

a given accuracy decreases rapidly as the wavenumber is increased.

The quantity eo[ gives the size of the relative error (<7 — <T 0 )/cr0 to leading order in e; the

value of o[ is shown in Figure 4. The dependence of o[ on wavenumber varies considerably

with /z, and for large values of /z the sign of the correction reverses for the wavenumbers

k > 1.5. The correction to the growth rate tends to different constants depending on the

value of ^z. This implies that for large k
,
there is a small constant shift in the growth rate

obtained from the sharp-interface model. Though the result stays close to the sharp interface

growth rate, the asymptotic representation of the solution breaks down because the solution
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to the linearized phase-field equations changes to a different behavior in the large k regime.

We consider k >> 1 in the next section.

Figure 3 shows that a[ —

>

0 for A; <C 1; larger values of e are allowed to obtain a given

accuracy. Expanding Eq. (2.27) for small k shows that cr^ ~ llA:/6, so that the relative error

is small if ek is small; that is, if the interface width is small compared to the perturbation

wavelength. This is confirmed directly from numerical calculations; for example, for fx = 1,

k = 0.01, and e = 10, the relative error is 18.2%, while the asymptotic result predicts 18.3%.

2.2.3 Asymptotic behavior for k 1

When the wavelength of the perturbation to the front becomes of the order of the interface

thickness or smaller, we no longer expect the phase-field model to give much physical infor-

mation, but we wish to investigate how the behavior of the solutions changes in this regime.

We now let e be fixed, and k —> oo, and examine the solutions to the linearized perturbation

equations in this limit. We pose the expansions for /z bounded less than unity

(7 — Eq&2 + E 2 + • • • , (2.30)

$ = $o(z) + ^$ 2 (z) + (2.31)

U = Uo(z) + ^U2(z) + ... . (2.32)

Substitution into the linearized equations Eqs. (2.23)-(2.25) yields to leading order that

%
-2(l + S„)

$0 '
“dE°- ^ (2.33)

At next order, we find that

e
2
Z>

2
$o - Q(z)$o = 0, (2.34)

where

«W = -5[l- 3^)]+
6(1?So)

+
e '2

(2.35)

This is an eigenvalue problem for E 2 ;
the problem has some analogy with the motion of a

particle in a potential well given by the first two terms of Q(z
)
and an

last term in Q. A solution of the form

energy given by the

= sect2
{£) ’ (2.36)

V»
/z
2

6e(l “ y)
(2.37)

may be found; further terms in the series may also be constructed by continuing the proce-

dure.

Numerical solution of Eq. (2.34) shows that this is the first eigenfunction and eigenvalue;

higher modes have sign changes near the origin and do not exhibit decay for large \z\. We
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believe these modes to be analogs to the continuous spectrum of the sharp interface model on

an infinite domain. In the limit e —> 0, the expansion for k 1 breaks down. Compare the

expansion in this limit with the sharp- interface expansion for A: >> 1 and
fj,
< 1, Eq. (2.15).

It is now clear how the two limits e —> 0, A; fixed and k >> 1, e fixed do not interchange.

A similar approach may be employed for /i bounded above unity. We make a change of

variable z = kz
,
so that D2 —> D 2 /k2 where D = d/dz

;
we pose the expansions

<j = Yjok
2 + £2 + . .

.

,

(2.38)

* = + •)> (2-39)

U = U0(i) + ji
U2(i) + ... . (2.40)

At leading order, we find that £o — — 1, and that

U0 = (2.41)

At 0(1), we find that

6e(/i — 1)’

a bit of algebra at 0(k2
)
yields the equation

f 3e(/x — 1) > 2 ,
H

-

D

2 +
2e2 (/z - 1)

e
2 £o

$o = 0.

(2.42)

(2.43)

Again we find that the first two terms for the growth rate axe de c^rmined by an outer problem;

the leading order eigenfunctions are determined as well. Solutions to Eq. (2.43) were obtained

numerically using a pseudospectral discretization in space, and again solving the resulting

matrix eigenvalue problem for the function values at the collocation points. The solutions

to the asymptotic problem again correspond to the first eigenvalue and eigenfunction.

2.3 T cussion

A summ :y of the numerical and asymptotic results is presented in Figures 5 and 6. In these

figures the numerical results are compared to the asymptotic results; we find that for smaller

wavenumbers, the asymptotics for e < 1, A: = 0(1) are a reasonable approximation to the

numerically computed results, while for larger values of k
,
th° asymptotic results in the limit

k > 1, e = 0(1) are a goon approximation. The numerics esults illustrate the transition

between the types of behavior. The “rolling off” of the diffuse interface results for larger k is

an indication that the interface no longer resolves the short-wavelength perturbations, and is

now qualitatively aifferent than the sharp-interface model ualitatively similar results are

obtained when the phase-field model I of Wang et al. [9] is c ilyzed in the same manner. We
believe this departure to be generic for large wavenumber perturbations in diffuse interface

models. We note that from Figure 2-4, it is apparent that long waves are much easier to

resolve; this is true in the sense of being in the asymptotic regime where sharp-interface

asymptotics is valid.
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3. Hypercooled case

If the melt is cooled by more than L/c below the melting point, the melt is said to be

hypercooled and the solid phase may grow at constant speed [19]. Sharp interface models

of solidification have constant speed solutions for undercoolings larger than L/c [19]. For

these large undercoolings, there is no time-dependent buildup of heat ahead of the front

as it propagates and the growth of the solid phase is limited by attachment kinetics. This

situation is difficult to achieve experimentally for metals (for example [20,21]), but it has been

achieved for the molecular material white phosphorus (P 4 )
in a directional apparatus [19].

Several theories of the linear and nonlinear stability of the planar sharp interface have been

developed [22-27]. Generally, the planar front is unstable to long waves; however, when the

undercooling is sufficiently large, the planar front is restabilized according to linear theory.

For our purposes, the theory is well understood in that the roles of the material parameters

are known and can provide for a good comparison between sharp-interface and phase-field

modeling approaches. The phase-field model we will employ is model I of Wang et al. [9].

Several investigations near supercooling of L/c have been carried out for phase-field

models. Collins and Levine [28] computed plane front solutions for Langer’s phase-field

model. Schofield and Oxtoby [29] examined essentially the same model at exactly L/c

undercooling and found that constant velocity solutions only exist for sufficiently low thermal

diffusivities; Lowen et al. [30, 31] examined the same situation for a piecewise parabolic

free energy (the “parabolic” model), and found similar behavior. Lowen and Bechhoefer

[31] computed constant speed solutions for other supercoolings near L/c analytically and

found that constant speed solutions could exist at smaller supercoolings than L/c. A time-

dependent computational approach was used to find these constant speed solutions in [32];

Umantsev [33] has computed the same type of solution for a different phase-field model

similar to that of model II in Wang et al. [9]. The stability of these constant-speed solutions

had been examined only for planar perturbations by Umantsev [33]; our work will be more

general in that we allow corrugations to the planar front. Recently a stability calculation

has been carried out for a parabolic phase-field model [7]; their results will be discussed with

the results of the present work.

3.1 Sharp Interface Model

We begin by summarizing sharp interface results in our notation. A pure crystal grows into

a hypercooled melt; that is, the far field temperature in the melt is given by T < Tm — L/c.

We write the governing equations in a frame moving with speed Vo in the positive-z direction;

we also replace the far-field boundary conditions with

Tl —> T^, 2 — oo, and Ts —

>

+ L/c, z —> — oo. (3.1)

We again nondimensionalize lengths with d0 — Tm^c/

L

and time with c, but the temper-

ature is now scaled with Tm — Too- After nondimensionalization, the base state (a function
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of z only) becomes

(3.2)

,-Vz

Tql — — 1 + Tos — — 1 + —

;

the constant pulling speed is given by the nondimensional Peclet number as

V = n(A-l), (3.3)

where

V = Vodo/K, A= C
^
Tm ~ Too

\ (3.4)

and fi is defined as before.

The linear disturbance equations in the bulk are just the diffusion equations with drift

at z = 0 we have

+ V1T = w2Tl
’
z > 0;

dt dz
(3.5)

dTs dTs 2

dt
+V

dz
=VTs

’
Z<0: (3.6)

1 dh dT0L 1 d2h

nA dt
L

dz A dx 2 ' (3.7)

(dTL 8TS 92Tol,\ dh

[dz dz ' dz2
) dt ’

(3.8)

n +^

h

= ts .

dz
(3.9)

The perturbation temperatures must decay to zero far from the interface.

The solutions are given by

Tl = T\ exp[oi + ikx + Alz], (3.10)

Ts = T2 exp[crt -f ikx + As-z], (3.11)

and

h = Hi exp[er< + ikx]] (3.12)

here

V - V * \v 2

Al = - A, As = —— + A, and A - W— + a + k2
. (3.13)

Substitution into the interfacial conditions and eliminating the explicit a dependence results

in the dispersion relation

A3 + fA
2 +L-l)i2 -^-^h-|42

+^ = 0. (3.14)
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This equation is easily seen to reduce to the isothermal case by setting V = 0. The modes

corresponding to the solution of this equation are the discrete part of the spectrum. Solutions

to the bulk equations also exist with

V2

a = k
2 — p

2
, 0 < p < oo;

4
(3.15)

these modes are the continuous spectrum. Again these modes do not satisfy the decay

boundary conditions, but they can be important in interpreting numerical results on a finite

domain.

It is easy to solve this equation numerically for the growth rate a = cr( A:). Long waves are

found to be unstable, while short waves are stabilized by capillarity. The restabilization of the

planar front at high speed, or absolute stability [22-27], is readily seen as the nondimensional

speed V increases. As V increases, the band of unstable wavenumbers shrinks and for V > 1,

there are no wavenumbers with positive growth rate. This result has been examined by a

number of authors. [22-25, 27] A simple result sufficient for our purposes is that for k <C 1

and V a bounded amount (with respect to k
)
away from 0 and 1, we have

u ~
1 -V
V

k
2

. (3.16)

Sharp interface results will be compared with phase-field results in the next section.

3.2 Phase-Field Model

A phase-field model of Wang et al. [9] (their model I) may be nondimensionalized with the

length scale do, the time scale d^/K, and the temperature relative to Tm in units of the

undercooling Tm — T shifting to a reference frame moving with speed Vo in the positive-

z

direction, we obtain

dt dz
M ap'{<l))u - y^p"(<£) + e

2V 2
</> (3.17)

where

du -,du 1 . ( d<f> _ dc/)\ _3__p_ + _pW =vV

<%M' a"L(Tu -Tm ) e"va"M = —-— , a = L—: e -
-

a"K do ’

(3.18)

(3.19)

and

=
<f>

3
(
10 - 15<^> + 6c/)

2
). (3.20)

Here (

e

") 2
is a gradient entropy coefficient and 1/a" is related to the barrier height (see [9]

for more detail). We require that u = —1, 4> = 1 as z —> oo and u = us, <f>
— 0 as z—> —oo;

here us is a constant to be determined.
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As done previously, we may take the limit e —> 0 to recover the sharp-interface model.

After an analysis similar to that done by Caginalp [2] (all details are omitted), the appropriate

scales are a = aeA, M = ^/e2
,
A = 0(1) where a = l/(6\/2)- We now choose the

parameters in the phase-field model to follow this scaling, regardless of the size of e; that is

we fix and A, while e varies.

The phase-field parameters may be related to the physical parameters of the sharp-

interface models in the following way. We choose the physical interface thickness 8 to be

6 = e"Va". (3.21)

Redimensionalizing results in the following expressions for the phase-field parameters in

terms of the sharp-interface model parameters:

e
n Q-Tm

0.

7
and M' = v'TMa i

L 8' (3.22)

From these relations, it is clear that varying only e in the nondimensional parameters is

equivalent to varying the physical interface thickness 8 while holding the other physical

parameters fixed.

3.2.1 The plane front

We may look for one-dimensional solutions to the hypercooled problem. We must solve the

time-independent, one-dimensional form of Eq. (3.17) and Eq. (3.18) subject to the boundary

conditions

(f)
—> 0, u —> us as z —» —oo and <j>

—> 1, u —> — 1 as z oo. (3.23)

The solution must be calculated numerically in general. It is convenient to integrate the

thermal equation once (from z to oo) to obtain

uz +V « + -^pW (3.24)

From this first integral, it is clear that as z —» — oo that the solid temperature becomes

identical to the sharp-interface model, i.e. us = — 1 + 1/A [19], even when the interface has

a finite width.

For the purposes of numerical approximation, we truncate the domain. We may minimize

the error involved by applying boundary conditions on the phase field that enforce the same

decay as would occur in the infinite domain. This is accomplished by linearizing around the

phase field values of zero and unity to find the decay to these states, and imposing boundary

conditions to enforce this decay. The result for the solid far from the interface (

z

= — zi )
is

(f>z — \+<j) = 0;

in the melt far from the interface (z = zj), we have

<t>z
~ A-(<£ — 1) = 0,

(3.25)

(3.26)
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where

^ = "
2^ n(0

1

+
2^ (3.27)

The different decay rates are a consequence of the asymmetry in the hypercooled case. The

above boundary value problem involving the second order equation for the phase field, the

first order temperature equation, the asymptotic boundary conditions on the ends of the

domain \z\ < zl and the single temperature boundary condition of u(—zl) = — 1 + 1/A

is solved using the package COLNEW [34]. We have also used the appropriate Dirichlet

conditions at the boundaries. We can easily converge to results independent of the boundary

conditions and the domain length when e and A are not too large.

This boundary value problem is a nonlinear eigenvalue problem (for the heteroclinic orbit

in phase space that connects the fixed points (</>, c/)z ,u) = (0,0,— 1 4- 1/A) and (</>, </>2 ,u) =

(1,0, —1); similar solutions to a different phase-field model have been given by Umantsev [33]

in his Figure 2. We seek the eigenvalue V = V(e,fx, A). In order to find the nondimensional

speed V we fix the value of the phase field at the origin as </>(0) = 1/2 and solve the boundary

value problems arising for positive and negative z separately. In general, the slope of the

phase field at the origin will not be continuous, and we use the difference of the slopes as

a residual for iterating on V. Both DNSQ [35] and DFZERO [36,37] have been used for

root finders in the iteration. A representative solution is shown in Figures 7 and 8; in these

figures, the characteristic length of the thermal field is larger than the layer thickness in the

phase field. For a fixed e, we find that for smaller Peclet numbers the decay length of the

thermal field is much longer than the layer thickness and for large Peclet numbers the two

fields have the same characteristic length. This behavior has been pointed out by Umantsev

[33].

Figures 9-11 display results for the propagation of the plane front into the melt. The

constant speed solutions indicated by the curves deviate from the sharp-interface results as

e increases. Constant speed solutions are found for undercoolings smaller than unity when

the interface attachment kinetics parameter fx and nondimensional interface thickness e are

large enough; we have chosen a very large value of the kinetics parameter fx = 10 in Figure

9 for ease of demonstration. Such solutions have been found by previous workers [31-33];

we shall come back to a comparison with their findings. For smaller values of the kinetics

parameter [x the constant speed solutions deviate much less from the sharp-interface results

for comparable interface thicknesses; Figure 11 displays the magnified deviations from the

sharp interface results for fx = 0.05. No sub-unit-undercooling constant-speed solutions exist.

Constant-speed solutions below unit undercooling do occur, as shown in Figure 9, when
the quantity fxe increases through (approximately) unity; this was empirically determined

for 5 < fx < 20. Specifically, numerical calculations show that

\x'L
fxe = « 1.5

AC

(3.28)

The product fxe thus gives a ratio of kinetic to thermal speeds. When the thermal diffusion

speed becomes smaller than the kinetic speed, constant speed solutions for A < 1 may occur.
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This behavior is in qualitative agreement with the results of previous work [29-32]. We note,

however, that our work differs from theirs in the treatment of the nondimensional parameter

a; in their work, the equivalent parameter does not vary with e.

We also note that when the front propagates at constant speed for an undercooling less

than unity, the solid formed is superheated [31,32]. Superheated solid was not observed with

the growth of white phosphorus (P4 )
into its hypercooled melt [19] For P 4 ,we estimate //. =

0.066 based on [19,38] and references therein; thus our model would not predict superheated

solid. Lowen et al. [31,32] have discussed the possibility of this behavior for solution growth.

3.2.2 Linear Theory

We perturb the transition layer as follows:

<j) = }{z) + $(z)etkx+a\ and u = u(z) + U{z)eikx+at . (3.29)

The linearized perturbation equations are

e
2(D 2 - k

2
)§ - + aAe

v ' 120
p”(4>)u$ + p’(4>)u\ - - [<7$ - VD§] = 0, (3.30)

A4

(D2 - k
2)U — all + VDU - i - Vp"($)$x* - Vp'§)D$] = 0, .^1 ^

subject to $, U —>• 0 as |zj| —>• oo; here D = d/dz.

Based on experience with the isothermal model, we truncate the domain rather than

map. The truncation of the domain is a little more complicated than for the isothermal

model; the approach here is to linearize around the states 0 = 0,1 and impose the boundary

conditions at ±zj such that the appropriate decay is recovered. These boundary conditions

are, on z = zi,

on z = — zi ,
we have

Here

and

A]

- A (
_
#)$ = 0, and Uz - A (_

T)
C/ - 0; (3.32)

- A (

+
$)$ = 0, and Uz - A (

+
T)

[/ - 0. (3.33)

-HMcn
1II 6)

+
l
+k2+ h' (3.34)

^T) = -? ±\/(!)
+*+*'• (3.35)

Note that the bo^ ndary conditions for the temperatures are only approximated for
(f>

near

zero and one, anc o the temperature need not be too close to its final value; in effect, we are

only integrating tnrough the layer in <j). This is expected to help with the typically slower

decay of the thermal field.
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3.2.3 Numerical Solution Schemes

We employ two methods of solving the problem numerically. The first is a finite difference

approximation, where the maximum eigenvalue of a matrix from the discrete problem yields

the growth rate of the perturbations. The second is a shooting method, where the growth

rate is found as an eigenvalue in a boundary value problem; the problem is solved using the

routine SUPORT. The two approaches are complementary; the finite-difference method can

find the first few modes, and the results of this approach may be used as good guesses for

the more accurate boundary-value-problem approach.

In the finite difference approach, we use second-order accurate central differences for first

and second derivatives at the interior points. For the boundary conditions we use a forward

or backward approximation. The boundary conditions pose a problem because they contain

functions of the eigenvalue a when the decay conditions are applied on the truncated domain.

We can only eliminate one of the radicals at a time via substitution; we choose to retain

the decay conditions on the thermal field, because the decay is typically slower for that field

in the parameter range of interest. We then further approximate the linearized problem

with the Dirichlet conditions for the phase $ = 0 on z = ±zj. Using the approach outlined

in [39], we employ a scheme in which the size of the discrete system is roughly doubled

in order to put the equations in standard generalized eigenvalue form (see Appendix B for

details). Solving the algebraic generalized eigenvalue problem yields more than just the first

eigenvalue and eigenmode, and this may be of value in discovering nearby modes; it may
also yield good starting values for our more accurate, second approach.

In the second approach, we use Keller’s method [17] as a means of iterating with a in

order to satisfy all of the boundary conditions in the problem. In this approach, we replace

the decay condition in the melt with the condition Du —
1, and then iterate with cr until

the decay condition is satisfied. This method has the advantage of high accuracy, but its

convergence to the result is often very sensitive to the initial guess. The decay boundary

conditions at each end of the domain present no difficulty as well. For simplicity, we apply the

Dirichlet conditions $ = 0 on the boundaries as in the finite difference implementation. It is

possible to compute the solution to a given error tolerance with either the decay or Dirichlet

conditions on 0 in the base state, and so we believe this to be a reasonable approximation.

3.2.4 Linear Theory Results

The growth rate of the perturbations to the planar front propagating into a hypercooled melt

are displayed in Figure 12. By decreasing e, the growth rates can be made as close as one likes

to the sharp interface results, although under extreme conditions accurate computations can

be rather difficult to carry out. Long waves are again unstable and short waves are stable.

The growth rates of the long waves are increased. We find this to be consistent with the

interface attachment kinetics being apparently more rapid. The growth rates for the two

models cross at some wavenumber for a < 0, and the phase-field growth rates are lower (more

negative) thereafter for larger k. We find this consistent with an apparently higher surface

energy for the phase-field models. This is born out by the comparison of the absolute stability
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limit shown in Figure 13; the absolute stability limit occurs at lower undercoolings and higher

speeds than for the sharp-interface model as the thickness of the interface increases. One

instance of distinguishing the different restabilizations of the interface is illustrated in Figure

14; this determination is approximate because the numerical error becomes more important

in finding accurate solutions for very small wavenumbers.

We may compute the marginally stable wavenumber k0 > 0 for which a = 0; the results

for two different approaches is shown in Table 1. This case was chosen based on choosing a

representative growth speed of 2000 cm/s for a nickel dendrite [41] with //. = 0.05. The sharp

interface result is listed in the first line; in the second line we match the undercooling and in

the third we match the speed. It is apparent that most of the modification of the marginal

wavenumber, and most likely in the rest of the linear theory, is due to the modification of the

base state. It is possible to use ko in marginal stability theory for the tip of a growing dendrite

[40] (when the speeds are matched); based on the small error observed in the calculations, one

would expect the difference in the predictions for the sharp- and diffuse-interface theories to

be very similar. Note that the comparison that is made for the purposes of marginal stability

theory is for fixed speed V\ alternatively, one can also compare the results with the bulk

undercooling fixed. We note that in either case further increase in e over the values shown

in Table 1 results in a complex growth rate.

In Figure 15, we illustrate linear stability results for fi
= 10, e = 0.25; for these parameter

values, constant-speed solutions exist for undercoolings less than unity. The growth rates

for the first two modes are shown above, below and at the limit point; similar behavior is

seen for other parameter values. We find that the part of the base state that has negative

slope in the (A,'P)-plane is indeed unstable; the modes may be real or complex depending

on the parameters.

It is interesting to note the double-zero in the growth rate at the limit point as illustrated

in Figure 15, at the point labeled b. We note that the eigenfunctions for the two modes are

rather similar for the parameters we have studied. The growth rate as a function of V
for fixed k = 0.1, n = 10, e = 0.25 is shown in Figure 16; the longer the wavelength

of the perturbation, the larger the value of V required before that mode restabilizes. All

wavenumbers are stable above the limit point, save k = 0 which is neutrally stable. Note

that in Figure 15, at the point a in the (V, A)-plane, there is a possible Hopf bifurcation

for a fixed k « 0.063; if such a bifurcation occurs, there is a good possibility that it is of

Takens-Bogdanov type [42]. The nonlinear analysis of the equations to substantiate this

possibility are beyond the scope of this paper.

3.3 Discussion

The phase-field model we use has plane front solutions similar in some respects to other

phase-field models. In particular, the convergence of the phase-field model to the sharp

interface model for vanishingly thin interfaces, and the existence of constant speed solutions

below unit undercooling are two of the similarities. Lowen and Bechhoefer [31] gave a physical

argument suggesting that the states where V increases with decreasing A are unstable. Such
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states were found to be unstable to planar perturbations by Umantsev [33] in a different

model; the upper branch where the speed increases with increasing undercooling was found

to be stable against planar perturbations. We have computed the stability of the plane front

against sinusoidal perturbations; on the upper branch, we find neutral stability for a planar

perturbation. Because of the large value of /x required to access constant speed solutions

below unit undercooling, any states that appear linearly stable in the regime A < 1 seem

unlikely to occur physically for a thermal problem, as discussed in [31], and such states have

not been observed in P4 [19]. Umantsev has given this growth of the superheated solid at

constant speed the name “heat trapping” [33], making an analogy with solute trapping in

the rapid directional solidification of an alloy (see, for example, [43]).

The observed differences between the phase-field and sharp-interface models may be

explained by analogy with sharp interface results with an increased surface energy 7 and an

increased attachment kinetics parameter fi\ provided that the diffuse interface thickness in

the phase-field model is smaller than about 10% of the capillary length d0 . This is based on

a number of facts. Planar fronts calculated from Model I of Wang et al. [9] traveled faster

than their sharp interface counterparts for e < 0.1, approximately. For thicker interfaces,

fronts slower than those of the sharp-interface model for the same /x and A can occur (see

Figures 10 and 11). For the hypercooled case, the growth rates a of the unstable modes of

the phase-field model with small wavenumber are increased over the corresponding sharp-

interface wavenumbers (see Figure 12); based on the asymptotic form of the growth rate for

the sharp-interface model Eq. (3.16), this seems reasonable.

For large enough wavenumbers the phase-field growth rates are lower (more stable) than

the sharp-interface results, and so in this capillarity-dominated regime, it appears that the

thick interface has a higher apparent surface energy. This conclusion is in agreement with

recent results obtained by Brattkus et al. [4]. They studied the effect of thickening the

interface on the critical nucleation radius of a seed in an undercooled melt; their static

calculation provided a good comparison for apparent surface energy. They found that the

sharp-interface model required a higher surface energy to have the same nucleation radius

as a seed in the phase-field model; the phase-field model thus had a higher apparent surface

energy in two dimensions. We note that in [4], it was found that for a small regime in

the three-dimensional case there was an apparent reduction in the surface energy; given the

isotropic nature of our work, no such trend in the linear problems we have studied. The
linear theory of our work also shows that absolute stability also occurs (though modified)

for the planar interface in the phase-field model; absolute stability was also observed in the

parabolic model studied in [7].

The constant speed solutions of Kupferman et al. [7], for a model with a piecewise-

parabolic potential, grow faster than a linear relationship with undercooling, yet all emanate

from unit undercooling with positive slope, like the sharp-interface model (their Figure 6 ).

Apparently, in their parabolic model, the interface attachment kinetics become faster relative

to sharp interface behavior with increasing undercooling according to planar state results.

Their computed growth rates also show that short waves are more stable in their phase-field

model than in the sharp-interface model for the range of data they present (their Figure 7);
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thus the surface energy is apparently increased for their model as well; the linear theory

results for small wavenumbers show a stabilization of the long waves; this suggests that the

attachment kinetics are apparently slower according to their linear theory. We see either

stabilization or destabilization of long waves.

Interpretation of the apparent increase in the surface energy of the diffuse interface seems

straightforward. The interface is harder to corrugate when it takes on some thickness; level

curves of <j) must be distorted and this takes some of the free energy of the system. In the

limit of vanishing thickness of the interface this distortion vanishes. The behavior of the

apparent attachment kinetics is more complicated; there does not seem to be any single

trend as the interface thickness increases in the base state.

4. Conclusion

We have computed plane-front, constant-speed solutions to sharp and diffuse interface models

for solidification of a hypercooled melt. We have undertaken an investigation of what happens

quantitatively to morphological instability results when the crystal-melt interface thickness

is allowed to be nonzero.

The stability of an isothermal plane front against sinusoidal perturbations was considered

in order to contrast some of the behavior of phase-field and sharp-interface models. We
investigate the limits e «C 1, k fixed and k 1, e fixed, and showed how the two regimes

compared with numerical solutions to the problem. We found an apparent increase in the

product of the surface energy and attachment kinetics coefficients. The large k behavior of

the diffuse-interface model deviated qualitatively from the sharp-interface model. When k is

not large, the interface thickness need only be small compared to the perturbation wavelength

to obtain a small error in the perturbation growth rate relative to sharp-interface theory.

The base state and linear stability results for growth of a crystal into its hypercooled melt

indicated that as tong as the interface was not too diffuse, then the attachment kinetics were

apparently enhanced and the surface energy of the interface apparently increased by the use

of phase-field models. For thicker fronts, the kinetics may be faster or slower. Based on our

calculations, it appears that one must require the thickness of the front to be comparable to

or smaller than the capillary length d0 in order to get good agreement with sharp- interface

theories in both the base state and the linear stability results. For small /i, an interface

thickness comparable to the capillary lenght appears to give acceptable results; for a large

/i, an interface thickness significantly smaller than the capillary length is required in order

to mimic sharp-interface results.
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Appendix A. Pseudospectral Discretization

We discretize the derivatives in the z direction using the standard Chebyshev pseudospectral

method (see, e.g., [44,45]). It is convenient for this method to rescale z as

z = \(t + l)*i (A.l)

in order to map the domain on the half interval 0 < z < z* to —1 < £ < 1. We then

have d/dz = (2/zi)d/d£. We take advantage of the symmetry of the linearized equations to

solve the problem over the half interval so that the region of rapid change in the coefficients

occurs at the boundary of the interval; this alleviates the Gibbs phenomenon which occurs

if the rapid transition occurs in the interior of the domain [18]. At z = 0 we have d(f)/ dz =
du/dz = 0, and at z = z; we have = u = 0.

We use the points = cosjTr/n for j = 0,1,..., n, so that the “interface” is located

at = — 1. At the collocation points we use the Chebyshev derivative matrix D{j [45],

which has the property that at the collocation points the derivative g
!

- of an n-th degree

polynomial <?(£) is given exactly in terms of its collocation values gk by the expression

9i = E Djkgk . (A.2)

fc=0

Higher derivatives are represented by powers of the matrix Dij. We write <?' = Djkgk

and thereby let the sum over the repeated index k be implied.

At the interior points in the melt £j, j = 1, . .

.

,n — 1, we have the discrete equations

e
2
(£>!

3

2
> - k%)^ - + 1(1 - = 0, (A.3)

(
Di?

~
fc
2
kj)“i - <rfij(ui + ^i) = 0, (A.4)

where i and j range from 1 to n. The boundary conditions become Dnj (f)j
— DnjUj — 0; note

that <^0 = uq = 0. The discrete equations then have the form

Ax = <tBx, (A. 5)

which is algebraic generalized eigenvalue problem.
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Appendix B. Finite-Difference Discretization

We use central differences for the second order spatial derivatives and for the first order

derivatives we use a central difference with twice the step size to discretize Eqs. (3.30), (3.

31), and thermal conditions in (3.32) and (3.33). For the boundary conditions we use a

forward or backward approximation with a single grid step. The boundary conditions pose

a problem because they contain functions of the eigenvalue a when the decay conditions are

applied on the truncated domain. We define

st = + a + k2
,

which allows us to rewrite the problem as

(B.l)

e
2(D2 - k

2
)§ - + aAe [p"(<£)u$ + p'{j>)U\ - —

[(4 - V 2
/i - k2

)§ - VD$\ = 0,
J-Zj\j jji

(B.2)

D2U - (4 - V2/i)U + VDU - i
[p'W)(4 - V

2
/i - k2

)$ - Vp"(4>)4>z$ - Pp'(i)M] = 0,

(B.3)

subject to $ = 0 at z = ±zj, and

Uz - (~V2
14 - sT)U = 0,z = z,,

V

,

- (~V2
/i + sT)U = 0, z = -z,.

(B.4)

(B.5)

The grid is given by Zj = —zi -f (j — 1)A z so that z\ = —zi and Zn = zi ,
and <E*j = 3>(zj).

The discrete equations become

3tUu + Un

stUi -f U-

+ = +
(A.)

‘(s-i)-
U2

Un-

1

(Az)

= 0,

= 0,

e

(4 - - *
2
)*; - V

(Az)

$j+

1

- *j-

1

(B.6)

(B.7)

2(Az) (Az):
($;+i + $j- 1

- 2$j) +

+ <^2$, - aAe [p"(h)*i*j+P\h)Uj

(4 - V2
/i )U, - (Ui+1 + Uj-i - 2Uj) - V

U^~ +

(B.8)

(Azy 2(Az)

1

A Ah)(4 - v74 - *’)*,- - ViKteh&i -
'(h)
If 7

2(Az)
= 0. (B.9)

Here we have $ 2) • ••, $n-i and C7i , ..., t/n for a total of 2n — 2 unknowns. We can define the

vector

X = [$ 2> Uu ..., Pn]

T
,

(B.10)
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where the superscript T denotes the transpose, and then the above equations may be written

as

(s
2

tP + stQ + R)X = 0, (B.ll)

where P, Q, R are matrices which are determined from Eqs. (B.6)-(B.9). The first two rows

of P are zero, and the remaining submatrix we call P. In Q , Q( 1, 2n — 2) = Q{2,n — 1) = 1

and all the remaining elements are zero. Note that R is not tridiagonal.

As discussed in [39], we can rewrite the singular quadratic problem for st with the change

of variable Y = [XT
,
st(PX)t

]

t to put the equation in standard generalized eigenproblem

form

AY = sTBY, (B.12)

where A and B are given by

02x2n-4 ^

hn-4:

\ p

( -R

\ 02n-4

02n-4 /

02n-2 ^

hn-4 /

(B.13)

(B.14)

This system may then be solved for its eigenvalues (sy) and eigenvectors, and the largest

eigenvalue and corresponding eigenvector are typically of interest. The advantage here is

that the new system is easily solved with standard packages, while the price to be paid is

that the system size is nearly doubled.
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e V A k0

0 1.5 x 10~3 1.03 0.0270033

1.0 1.5559 x 10"3 1.03 0.0275115

4.0 1.5 x 10~3 1.02535 0.0272539

Table 1: Marginally-stable wavenumber kQ for sharp-interface results (e = 0) com-

pared two ways with phase-field results. In the second line, the bulk undercooling is

held fixed. In the third line, the speed of the planar front is held fixed.
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Figure 1: Sharp-interface linear- stability growth rates a as a function of the

wavenumber k are shown for several values of the attachment kinetics param-

eter /i. The results change imperceptibly from the fi = 10 case for larger
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a
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)

k

Figure 2: Linear theory growth rates for the isothermal planar front are shown

for different values of the nondimensional thickness of the front e. Here fi — 1

.
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)

Figure 3: Convergence of the asymptotic results for the phase-field model

to the sharp-interface stability results for the isothermal planar front as the

interface thickness tends to zero, for various values of the wavenumber, k. The
quantity s(k

)
is defined by Eq. (2.29).
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k

Figure 4: The correction to the sharp interface growth rate a[, given by

Eq. (2.27), is shown as a function of the wavenumber k for several values

of the nondimensional attachment kinetics parameter fi.
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Figure 5: A comparison of numerical and asymptotic results for /i = 0.05.

The leading order behavior (—fik
2
)

is subtracted off in order to emphasize the

differences in behavior. The solid curve corresponding to e = 0 is the sharp

interface result. The curves with triangles corresponding to finite e approach

the horizontal curves representing the k >> 1 asymptotic results. The curve

e «C 1 is the asymptotic result in the limit e —> 0, k fixed, evaluated at e = 0.1.
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tr(k)

k

Figure 6: A comparison of numerical and asymptotic results for fi — 10.

The leading order behavior (—k2
)

is subtracted off in order to emphasize the

differences in behavior. The solid curve corresponding to e = 0 is the sharp

interface result. The curves with triangles corresponding to finite e approach

the horizontal curves representing the k 1 asymptotic results. The curve

e < 1 is the asymptotic result in the limit e —» 0, k fixed, evaluated at

e = 0.1. The numerical solution for e = 0.1 approaches a constant value that

is not shown on the graph for larger values of k.
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z

Figure 7: Computed base states showing phase field <f>{z) as a function of the

spatial variable z.
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0.0

Figure 8: Computed base states showing the temperature field u(z) as a func-

tion of the spatial variable z. The phase field result in the solid curve; the

dashed curve is the sharp interface result.
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A

Figure 9: Computed base states several values 0^ the nondimensional inter-

face thickness e for fi = 10.0; fo ns high rate of attachment and sufficiently

large e, the model we use displays constant-speed growth for sub-unit under-

coolings as seen in other phase field models [29-33].
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Figure 10: Computed base states for several values of the nondimensional

interface thickness e for \l — 0.05.
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Figure 11: Deviation from the sharp interface base states for several values of

the nondimensional interface thickness e for \l — 0.05. The speed of the front

is reduced if the thickness of the front and the undercooling are large. Here

Ps is the sharp interface front speed given by Ps = //(A — 1).
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k

Figure 12: Growth rates a as function of wavenumber k for sharp interface

and phase-field models. The curve for e = 0 is the sharp-interface result; the

curves for e = 0 and e = 0.025 are practically indistinguishable.
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Figure 13: Stable and unstable regimes in sharp-interface (e — 0) and phase-

field models (e ^ 0). The dashed (solid) curves denote unstable (stable) planar

fronts. The curves for e = 0 and e = 0.01 are nearly indistinguishable.
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n= 1.0, A=1 .99 \
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£ = 0.01
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k
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Figure 14: Growth rates cr as a function of wavenumber k near absolute sta-

bility. Increasing the undercooling to A — 1.995 stabilized the planar front

in the phase-field model; the undercooling must be larger than A = 2.0 to

stabilize the planar front in the sharp interface model.

42



Figure 15: The stability results for /x = 10 and e = 0.25 for the three in-

dicated conditions; the curve on the left represents the planar front. Each

inset figure is the corresponding plot of the growth rate a vs. wavenumber

k for those conditions; the range of the horizontal axes is 0 < k < 0.11 in

each case. The real (imaginary) part of the growth rate, aT (<7;), is given

by the solid dashed) curve. The conditio for the three insets are: (a)

V = 1.001, A = 0.955, |crr ,
cTj| < 0.2; (b) V = .386, A - 0.952, \cr ,(ri\ < 0.1;

(c) V = 1.686, A = 0.954, |<7r ,er<| < 0.07.
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p

Figure 16: The growth rates a of the first two modes are plotted against the

nondimensional growth speed V for fixed k — O.L The real part ar is the solid

curve and the dashed curves are the imaginary parts <7^.
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