
NISTIR 5272

NAT L INST OF STAND & TECH R I C

A111DM 2 A 7 5 1

5

I
NIST

PUBLICATIONS
September, 1993

Manufacturing
Systems
Integration

Control Entity

Interface Specificatio

—QC

100

. U56

1995

#5272
United States Department of Commerce
Technology Administration

National Institute of Standards and Technology

Manufacturing Engineering Laboratory

Gaithersburg, MD 20899

Sarah Wallace

M. K. Senehi

Ed Barkmeyer

Steven Ray

Evan K. Wallace

NIST

NISTIR 5272

September, 1993

Manufacturing
Systems
Integration

Control Entity

Interface Specification

Sarah Wallace

M. K. Senehi

Ed Barkmeyer

Steven Ray

Evan K. Wallace

U.S. Department of Commerce
Ronald H. Brown, Secretary

Technology Administration

Mary L. Good, Under Secretaryfor Technology

National Institute of Standards and Technology

Arati Prabhakar, Director

/ ¥ \m

^TESC*

Table Of Contents

1 Introduction 9

2 Background . 10

2.1 The MSI Project 10

2.2 Hierarchical Control 10

22.1 Control Hierarchy 10

22.2 Control Entities 11

22.3 The Physical Architecture ofa Control Hierarchy 12

2.3 Plans and Plan Decomposition 14

23.1 Types ofPlans 14

23.2 Plan Decomposition 15

2.4 The Planning Function 15

2.4.1 Planner Negotiation 15

2.4.2 Planner Recovery From Anomalous Situations 16

2.5 The Job Control Function 16

2.6 Detection and Recovery from Anomalous Situations 17

2.6.1 Human Monitoring and Intervention 1 7

2.6.2 Replanning 18

2.7 Communications Paradigm 19

2.7.1 The Natun ofa Control Entity Interface 19

2.7.2 Types ofMessages 19

2.7.3 Message Format 20

2.7.4 Types ofParameters 20

3 Production Plans 21

3. 1 Production Plans and their States 21

3.2 Steps and Their States 21

3.3 Checkpoints 23

4 Generic Data Objects24

4.1 Plan Identifier Object 24

4.2 Plan Parameter Object 24

4.3 Error Object 24

4.4 Acceptance Object 25

5 Planning Interface 26

5.1 The Planning Model 26

5.1.1 Planning Strategies 26

5.12 Scheduling an Operation 27

5.13 Rescheduling In-Execution Operations 27

5.2 Planner Administrative States 28

i

5.3

5.4

5.5

5 .5 ./

55.2

55.3

5.6

5.6.1

5.6.2

5.6.3

5.6.4

5.6.5

5.7

5.7.1

5.7.2

5.7.3

Covenant States

Complex Data Objects Used in the Planning Interface

Planner Administrative Requests —
Activate

Deactivate

Identify

Covenant Requests Issued By A Supervising Planner

Accept Bid

Remove Covenants

Report Covenants

Requestfor Bid

Update Covenant Constraints

Covenant Requests Issued By A Subordinate Planner

Break Covenants

Covenant Status

Covenants Broken

29

30

30

32

32

33

33

33

34

36

37

38

39

40

40

41

6 Job Control Interface 42

6.1

6.2

6.2.1

62.2

6.3

6.4

6.4.1

6.4.2

6.4.3

6.4.4

6.45

6.4.6

6.4.7

6.4.8

6.4.9

Job Controller Administrative States

Task States and Task Management States

Task States

Task Management States

Complex Data Objects Used in the Job Control Interface

Job Controller Administrative Requests

Activate

Administrative Status

Deactivate

Emergency Stop

Identify

Pause All Tasks

Report Administrative Status

Resume All Tasks

Terminate All Tasks

42

42

43

44

44

46

46

46

47

.48

.48

.49

.51

.51

.52

6.5

6.5.7

65.2

65.3

65.4

655
65.6

65.7

Task Requests Issued By A Supervising Job Controller •„ 53

Abort Task 53

Defer Task 54

Execute Task 56

Pause Task 57

Report Tasks 59

Resume Task 60

Terminate Task 61

t.6 Task Requests Issued By A Subordinate Job Controller 62

6.6.1 Task Status 62

ii

7 Planning To Job Control Interface 63

7.1 Job Controller Initiated Messages 63

7.1.1 Connect 64

7.1.2 Disconnect 64

7.1.3 Plan Executing 64

7.1 .4 Plan Finished 65

7.15 Replan Aborted Step 65

7.1.6 Replan Deferred Step 66

7.1 .7 Replan Late Plan 67

7.1 .8 Replan Late Step 68

7.1.9 Replan Terminated Step 69

7.1.10 Planner Instructs Job Controller to Abort Task 70

7.1.11 Planner Instructs Job Controller to Defer Task 70

7.1.12 Planner Instructs Job Controller to Terminate Task 71

7.1.13 Planner Instructs Job Controller to Resume the Task 72

7.2 Planner Initiated Messages 72

72.1 Recheck Step 72

8 Guardian Planning Interface 73

8.1 Data Objects 74

8.1.1 Guardian Administrative Status Object 74

8.1.2 Covenan\ Name Object 74

8.1.3 Covenant Status Object 75

8.1.4 Subcovenant Status Object 75

8.15 Guardian Covenant Status Object 75

8.2 Guardian Initiated Messages 76

82.1 Availability Alert 76

8.22 Clear Covenant Notification 76

82.3 Clear Schedule 77

82.4 Configuration Alert 78

825 Connect 78

82.6 Die 79

82.7 Disconnect 79

82.8 Identify 79

8.2.9 Ignore Subordinate 80

82.10 Reactivate Subordinate 80

82.11 Remove All Bids 81

82.12 Report Administrative Status 82

82.13 Report Covenants 82

8.2.14 Set Covenant Notification 83

82.15 Update Co nant Constraints 84

8.3 Planner Initiated Messages 85

83.1 Administrative Status 85

83.2 Notify Covenant 86

83.3 Subcovenant Error Occurred 86

iii

8.3.4 Subordinate Problem 86

9 Guardian Job Control Interface ••••••••••••••••••••••a#•••••••••••••••••••••••••••••••••• 88

9.1 Data Objects 89

9.1.1 Guardian Administrative Status Object.. 89

9.1.2 Task Name Object 89

9.1.3 Task Status Object 90

9.1.4 Subtask Status Object 90

9.15 Guardian Task Status Object .• 90

9.2 Guardian Initiated Messages 91

92.1 Abort Task. 91

92.2 Call Task Completed 91

92.3 Change Subtask Status 92

92.4 Clear Task Notification 93

9.25 Configuration Alert 94

9.2.6 Connect 94

9.2.7 Defer Task 95

9.2.8 Die 95

9.2.9 Disconnect..... 95

9.2.10 Emergency Stop 96

92.11 Identify 96

9.2.12 Ignore Subordinate 96

9.2.13 Pause All Tasks 97

9.2.14 Pause Task 98

92.15 Reactivate Subordinate 98

92.16 Report Administrative Status 99

92.17 Report Tasks. 99

92.18 Resume All Tasks .*. 100

9.2JQ Resume Task 100

9.2.2 Set Task Notification ...101

9.2.21 Terminate All Tasks 102

9.2.22 Terminate Task 102

9.3 Job Controller Initiated Messages 104

93.1 Adnunt rative Status 104

93.2 Notify Task 105

93.3 Subordinate Problem 105

93.4 Subtask Error Occurred 105

935 Task Error Occurred 106

10

11

11.1

11.2

12

Example Error Recovery Scenario

Summary
Tssues Addressed.

Issues Remaining

Glossary—

'•••••••••••••••••a 107

109

109

109

110

IV

List of Figures

Figure 1. Control Entity Diagram 12

Figure 2. An MSI Architectural Compliant System with Embedded Planners 13

Figure 3. An MSI Architectural Compliant System with a Planning Hierarchy 14

Figure 4. An MSI Architectural Compliant System with a Centralized Planner 14

Figure 5. Plan-state Transition Diagram 22

Figure 6. Step-state Transition Diagram 23

Figure 7. Planner Administrative-state Transition Diagram 29

Figure 8. Covenant-state Transition Diagram 31

Figure 9. Job Controller Administrative-state Transition Diagram 43

Figure 10. Task-state Transition Diagram 45

Figure 11. Task Late Scenario 107

/

List of Tables

Table 1. Production Plan States 21

Table 2. Production Plan Step-states 22

Table 3. Planner Administrative-state Definitions 28

Table 4. Covenant-state Definitions 29

Table 5. Semantics of the Planner Activate Message 32

Table 6. Job Controller Administrative-state Definitions 42

Table 7. Task-state Definitions 44

Table 8. Task-management-state Definitions 45

Table 9. Semantics of the Job Controller Activate Message 47

Table 10. Semantics of the Job Controller Deactivate Message 47

Table 11. Semantics of the Emergency Stop Message 48

Table 12. Semantics of the Pause All Tasks Message 49

Table 13. Semantics of the Resume All Tasks Message 52

Table 14. Semantics of the Job Controller Terminate All Tasks Message 52

Table 15. Task Late Scenario 108

vii

/

1 Introduction

A major activity of the National Institute of Standards and Technology (NIST) Manufacturing

Systems Integration (MSI) project is the development of an open architecture that incorporates an

integrated production planning and control environment with provisions for the detection and

recovery from anomalous situations. This document is concerned with defining the details of the

interfaces for control entities which are incorporated into an integrated system that conforms to

the NIST MSI architectural model as revised in 1992.

The purpose of this document is twofold: to document the progress and current status of the MSI
architecture’s control entity interfaces and to provide designers and implementors with

specifications for an MSI architectural compliant control entity. The concepts presented in this

document were developed by the MSI architecture committee and represent the consensus of that

committee as of June 1992. In 1992 the architecture committee members were Ed Barkmeyer,

Steven Ray, M. Kate Senehi, Evan Wallace and Sarah Wallace.

The remainder of this document proceeds as follows:

• Section 2 provides an overview of the MSI project, a discussion of pertinent aspects of the

MSI architecture, and a discussion of the assumptions which have been made concerning

the environment within which the system is operating,

• Section 3 discusses production plans in the context of the interaction between planners

and job controllers and the recovery from anomalous situations,

• Section 4 discusses generic data objects which are common to several of the 5 control

entity interfaces,

• Sections 5-9 detail the 5 different control entity interfaces: the planning interface, the job

control interface, the planning-to-job-control interface, the guardian planning interface

and the guardian job control interface,

• Section 10 gives an example scenario of how the different messages from the 5 interfaces

work together to provide for the detection of and recovery from anomalous situations,

• Section 1 1 concludes this document by discussing future extensions to this specification.

9

2 Background

This section provides an overview of the MSI project (its direction, goals, and current status) and

discusses several aspects of the MSI architecture which impact the control entity interface

concepts presented in this document. The architectural issues discussed include hierarchical

control, plans and plan decomposition, the planning paradigm, the job control paradigm,

provisions for anomaly detection and recovery, and the communications paradigm.

2.1 The MSI Project

The primary goal of the MSI project is to develop an open architecture which incorporates an

integrated production planning and control environment with provisions for the detection and

recovery from anomalous situations in order to enable flexible integration of manufacturing

systems. There are three main thrusts within the MSI project to achieve this goal:

• the development of an open architecture which details the form and function of identified

systems within the architecture, and the nature of interaction between them,

• the definition of information models describing the information to be shared among the

different systems identified by the architecture, and

• the definition of communication interfaces detailing how and when systems within the

architecture exchange and share information.

A cyclic three-phased approach has been used for the development of the architecture. An initial

architecture - including information models and communication interfaces - was developed,

implemented and tested in 1990 and 1991 (see [Senehi, 1991a] and [Senehi, 1991b] for details).

This architecture incorporated an integrated production planning and control environment with no

support for the detection or recovery from anomalous situations. In 1991 and 1992, a revised

architecture was developed (incorporating the results of testing the initial architecture) and

expanded to provide for the detection and recovery from anomalous situations. Work is cuiTently

underway to implement and test this revised architecture.

The reader is referred to [Senehi, 1992] for an overview of the revised architecture; a more

detailed paper is forthcoming. [Barkmeyer, 1993] and [Ray, 1992b] present the information

models developed as part of the revised architecture. This paper documents the communication

interfaces that have been developed as part of the revised architecture.

2.2 Hierarchical Control

In the MSI architecture, a control entity is required to exist within a control hierarchy.

2.2.1 Control Hierarchy

The primary functions of a control hierarchy are to provide reliable channels for directing the start

up and shut down of control entities, to localize planning and replanning activity, and to

coordinate the manufacturing activity of interrelated equipment. A control entity may have, at

most, one supervisor and any number of subordinates. A subsystem consists of a specific control

entity and all of its subordinates.

A control hierarchy consists of three logical levels:

• The equipment level is the lowest level of control to which the MSI architecture applies.

Within this level, there is a software complex which drives physical equipment An

10

equipment control entity is responsible for the planning and execution of tasks by an

individual device; it may execute only one task at a time. It may have internal subordinate

software elements which perform primitive control tasks, but the characteristics of these

internal interfaces are not specified by the MSI architecture.

• A workcell is a subsystem consisting of a collection of equipment viewed as a functional

unit. It is coordinated by a single supervisory control entity designated the workcell

control entity. The grouping of equipment into workcells is based upon many factors and

is highly facility dependent. A workcell control entity may supervise equipment control

entities directly, or subordinate workcell control entities, or some combination thereof.

There may be any number of “levels” of workcell management within a control hierarchy.

• The top level control entity is the shop control entity. The subsystem it supervises consists

of a set of workcell control entities in a manufacturing shop which are part of the current

factory configuration. At present, the MSI architecture is limited to a single shop and there

is only one control entity at this level. The primary difference between the shop control

entity and other control entities is that the shop control entity processes orders; all other

control entities process commands.

Each control entity will exhibit at most two interfaces to its supervisor and each of its

subordinates: one for a planning function and one for a job control function. It is possible for an

entire control hierarchy to support only the planning function, in which case each control entity

exhibits only the planning interface to its supervisor and subordinates. Such a control hierarchy

would be used to plan future shifts or to test different factory configurations by allowing what-if

planning. If a control hierarchy exhibits the job control function, it must also exhibit the planning

function.

2.22 Control Entities

control entity is a pair of different functional architectural entities which share the same area of

focus; the two functions that a control entity performs are a planning function and a job control

function. An entity, which performs the planning function for a control entity is denoted a

“planner” and an entity which performs the job control function for a control entity is denoted a
‘ iob controller”. As currently defined by the MSI architecture, a planner supports resource

.allocation and scheduling; it may, but is not required to, support process planning and batching. In

order to accommodate as many types of control entities as possible, the MSI architecture

identifies a limited set of compatibility requirements for interfacing control entities.

Integrating a control entity into the MSI architecture may require five types of interfaces:

• the planning interface (commands and status for scheduling),

• the job control interface (commands and status for task execution),

• the guardian interface to planning (commands and status for human intervention and

monitoring of scheduling activity)

• the guardian interface to job control (commands and status for human intervention and

monitoring of task execution) and

• the planning-to-job-control interface (commands and status for rescheduling of tasks and

anomaly recovery).

The job control interface and both guardian interfaces are required for any control entity to be

integrated into the MSI architecture. If the control entity is implemented as two separate entities,

one corresponding to each function, then the planning-to-job-control interface is required. If the

11

planning function for a control entity is implemented separately from the planning function for

other control entities, then the planning interface is required for that control entity. A conceptual

diagram depicting all five control entity interfaces is shown in Figure 1.. A more detailed

discussion of when each interface is required can be found in Section 2.2.3 on page 12.

i L i

p-p JC-JC

Control Entity
iiiiiiiiiiiiiiiiiiiiiiii

G-P G-JC

Planning

P-JC

Job Control
1

p-p
Legend: P - Planning

JC - Job Control

G - Guardian

JC-JC

Figure 1. Control Entity Diagram

2.2.3 The Physical Architecture of a Control Hierarchy

The topology of the control hierarchy (i.e., the number of control entities and their inter-

relationships) is determined by constraints and coordination requirements on the physical

equipment and job controllers. There are no constraints placed on the planning function which

require that it be implemented as a distributed system, or that it be implemented to physically

correspond one-to-one to the job controllers, or that each control entity’s planning function be

embedded within the control entity. The only requirements placed upon an implementation of a

control entity’s planning function are:

• Each job controller in the control hierarchy has some agent which is responsible for

creating and maintaining its schedule.

• Each job controller in the control hierarchy has some agent which is responsible for

addressing planning errors which the job controller detects.

Given these two constraints on an implementation of a control entity’s planning function, several

valid implementations may be discussed.

Embedded Planner, it is valid within the MSI architecture for the planning function for each

control entity to be embedded within the control entity itself. In this example, each planner is

required to exhibit the planning interface. Each control entity is not required to exhibit the

12

planning-to-job-control interface because the control entity is not distributed; there is no external

interface between the planning and job control functions. The planning and job control functions,

however, must support the semantics of the planning-to-job-control interface. An example of such

a system is depicted in as Figure 2.

Figure 2. An MSI Architectural Compliant System with Embedded Planners

Distributed Planning Hierarchy. It is valid within the MSI architecture to have a distributed

planning hierarchy which mirrors the control hierarchy (i.e., a planner for each job controller). In

this example, the planner is required to exhibit both the planning interface and the planning-to-

job-control interface because both the planning function and the control entity are distributed. An
example of such a system is depicted in Figure 3.

Centralized Planner. It is valid within the MSI architecture to have a centralized planner which

plans for every job controller in the control hierarchy. In this example, the planner is not required

to exhibit the planning interface because it is not a distributed implementation. The planner is

required to support the planning-to-job-control interface because each control entity is

distributed; it must support one planning-to-job-control interface for each job controller in the

control hierarchy. Each control entity is a conceptual entity only; there is no physical

correspondence. An example of such a system is depicted in Figure 4.

Each of the systems discussed describes a homogeneous implementation of all control entities’

planning functions (i.e., every control entity’s planning function is implemented in an identical

manner). It is also valid within the MSI architecture to have hybrid combinations of these

systems.

13

Figure 3. An MSI Architectural Compliant System with a Planning Hierarchy

Equipment
Job Control

Figure 4. An MSI Architectural Compliant System with a Centralized Planner

2.3 Plans and Plan Decomposition

A plan is a recipe for performing a procedure; it contains a set of steps which provides sequencing

information and details how to perform each operation within the procedure. In the MSI
architecture, every manufacturing process begins with a plan and culminates in its execution.

2.3.1 Types of Plans

The MSI architecture recognizes three types of plans
1

: process plans, production-managed plans

and production plans. A process plan is a generic recipe describing how to perform some

1. For more detailed information about plans, their representation and their decomposition, see [Catron,

1991] and [Ray, 1992a].

14

procedure in support of the production of some number (usually one) of products. A production-

managed plan is an expansion of a process plan which supports the production of a required

number of products using a given factory configuration; a production-managed plan reflects

decisions about part mix, batching, lot sizes and material handling. A production plan is a

refinement of a production-managed plan which identifies specific resources for each step and the

times of their usage for that step.

Production-managed plans are the principle input into the planning function; production plans are

the principle output. It is the planning function’s responsibility to create production plans that

correspond to the production-managed plans by choosing appropriate branches of the production-

managed plan, selecting proper equipment and scheduling that equipment to perform selected

steps.

Production plans are the primary input into the job control function, and the execution of the

planned operation is the primary output. Production plans detail for the job control function how
and when to perform a specified procedure. The job controller converts the plan into a sequence of

commands to subordinate controllers or equipment which ultimately result in the motion of

equipment and the execution of a manufacturing process. In anomalous situations, a planner may
modify in-execution production plans in order to maintain a feasible schedule for the job

controller.

2.32 Plan Decomposition

Because the MSI architecture dictates a control hierarchy and because production-managed plans

and production plans assume a specific factory configuration, production-managed plans and

production plans must be hierarchical. There will be a shop level production-managed plan to

perform a specific procedure which will be scheduled by the shop level control entity creating a

shop level production plan. The shop level production-managed plan will contain steps which

detail how to perform the specified procedure in terms of workcell operations; each step may refer

to a (subordinate) workcell and a subordinate production-managed plan which will be scheduled

by some subordinate workcell to create a production plan for executing that step in that workcell.

Each workcell production-managed plan, in turn, will contain steps which refer to subordinate

workcell or equipment control entities and subordinate production-managed plans. This process

of plan decomposition (or refinement for a lower level of control) will continue until, at the

equipment level, a plan is developed which contains only primitive operations. The hierarchical

production plans will then be executed by the job controllers who have been allocated to perform

specific steps. During execution, each of the subordinate plans will be activated by a message on

the job control interface.

2.4 The Planning Function

There are two primary functions of a planner: to schedule the execution of tasks for specific job

controller(s) and to assist in anomaly recovery on behalf of those job controller(s).

2.4.1 Planner Negotiation

When more than one planning system is involved in the scheduling of an operation, planners use a

negotiation scheme to schedule and reschedule the execution of steps. This negotiation scheme is

similar to the contract negotiations that occur in the business world. A control entity, acting as a

contracting party, will issue a request for bid to a collection of its subordinates who have the

15

*

capability to perform a specified operation. Each subordinate, acting as a potential contractor, will

determine when it will be able to perform the requested operation and what other activities will be

affected (this may require the subordinate to negotiate with its subordinates); it will propose a bid

to its supervisor. The supervisor will choose to accept one of the proposed bids based upon its

own internal knowledge and inform that subordinate that its bid is being accepted (this is similar

to the contracting party signing the contract). The chosen subordinate will then finalize the bid as

a contract if it is still possible to perform the operation within the proposed time frame (this is

similar to the contractor signing the contract). At this point a contract exists between the two

control entities to perform a specified operation within a specified time frame. For the remainder

of this document, both bids and the resulting contracts are referred to as covenants.

During the negotiation process, a production plan is developed to refine a manufacturing process.

Thus each covenant is associated with a production plan and vice versa. When the plan contains

steps which involve the actions of subordinates, a subcovenant is associated with each such step.

A covenant represents the scheduling information (for the associated production plan) which is

shared between a planner and its supervisor. A subcovenant represents the scheduling information

related to a specific step within a production plan which is shared between a planner and one of its

subordinates. A subcovenant is the supervisor’s view of a subordinate’s covenant.

2.4.2 Planner Recovery From Anomalous Situations

The MSI architecture specifies a functional interface between a planner and a job controller to

address anomalous situations which are detected by a job controller. If a job controller determines

that a task is running late, cannot be started, or cannot be continued, it will request the planner to

replan the affected production plan. The planner will attempt to replan the production plan.

Properly, this may involve rescheduling steps, adding, removing, or modifying steps, or even

taking different production alternatives. With current technology, it is likely that a planner will

only be able to resolve problems that can be solved by rescheduling steps. Even in most

rescheduling cases, a planner will have to renegotiate contracts and subcontracts with its

subordinates and possibly its supervisor in order to resolve problems; a planner may have to

resolve a problem by instructing the job controller to abnormally complete a task.

Planner recovery is discussed in more detail in Section 7 on page 63.

2.5 The Job Control Function

The primary function of a job controller is to perform manufacturing operations. In the MSI
architecture, a job controller may only receive task requests from its supervisor; it will accept or

reject these requests based upon its administrative state, the validity of the message parameters,

and possibly other internal information.

In the MSI architecture, the job controllers use a ‘token of control’ scheme to monitor and execute

tasks. A control entity will execute those steps in a production plan that are assigned to it When it

encounters a stq which refers to a subordinate control entity, it will pass the token of control for

,.iat task to the subordinate control entity by instructing it to perform a task that corresponds to

that step
2

. The supervisor job controller will then monitor the execution of its task by requesting

and receiving status information from its subordinates. The token of control will return to the

/
2. There will be multiple tokens of control for a task if them are parallel or concurrent paths in that produc-

tion plan (one for each path).

16

supervisor when the subordinate has normally or abnormally completed the execution of its task.

It is also possible for the supervisor to influence the outcome of a subordinate’s task by issuing

messages specific to the task. Section 6 on page 42 provides a more detailed explanation of the

job control task execution scheme.

During execution, every contract made by the planner becomes a task to be executed by the job

controller by the direction of its supervisor. Thus, a task is associated with the corresponding

production plan. When the job controller is ready to initiate a step XXX by a subcovenant, a

corresponding subtask is created and associated with that step. A task represents the execution-

specific information related to a production plan which is shared between a job controller and its

supervisor. A subtask represents the execution-specific information related to a specific step

within a production plan which is shared between a job controller and one of its subordinates. A
subtask is the supervisor’s view of a subordinate’s task. In addition, for each task, there is a

corresponding covenant in the planning domain and for each subtask associated with a step in the

production plan, there is a corresponding subcovenant in the planning domain.

2.6 Detection and Recovery from Anomalous Situations

Anomalies can be grouped into three different classes based upon their cause: resource anomalies,

task anomalies and tooling anomalies. A resource anomaly occurs when a piece of equipment,

whose control entity is part of the control hierarchy, becomes impaired or exhibits unexpected

behavior. A task anomaly is an anomaly which affects a specific task only (e.g., task lateness,

workpiece damage, unanticipated task abortion, etc.); the resource on which the task is currently

being performed is unaffected. In general, a resource anomaly will result in a task anomaly, but a

task anomaly may not cause a resource anomaly. A tooling anomaly occurs when a tool is

damaged. Tools, as defined in the MSI architecture
3

, differ from other resources in that they are

not permanently associated with any member of the control hierarchy but may be moved from

workcell to workcell as needed. The interfaces defined by the MSI architecture currently support

the detection and reporting of all three types of anomalies, but only addresses recovery from

resource and task anomalies.

The MSI architecture provides two mechanisms for addressing resource and task anomalies:

human monitoring and intervention, and replanning. Resource anomalies are, in general, resolved

by the human monitoring and intervention mechanism because the resource’s availability may be

affected and the resource is likely to require maintenance. Task anomalies may be resolved by

either mechanism. Each mechanism will be discussed in turn.

2.6.1 Human Monitoring and Intervention

The MSI architecture provides two interfaces to support external monitoring and intervention in

the otherwise automatic operation of a control entity: the guardian and the watchdog.

2. 6.

1

.1 The Guardian Interface

The guardian interface is provided so that a control entity may receive assistance from an operator

to resolve planning or job control errors. The entity with which a control entity establishes a

connection via the guaraian interface is called a guardian. The guardian is a software complex

with decision-making intelligence (provided by a human operator or an automated intelligent

3. See [Barioneyer, 1993] and [Ray, 1992b],

17

entity). There are two types of guardian interfaces: the guardian planning interface through which

a control entity reports planning errors, and the guardian job control interface through which a

control entity reports job control errors. In addition, each of the two guardian interfaces may be

either active or passive. A passive guardian interface provides only monitoring capabilities,

whereas an active guardian interface provides monitoring and intervention capabilities. A control

entity may have any number of established passive guardian planning and guardian job control

connections; it may have no more than one established active guardian planning connection and

one established active guardian job control connection. Whether a guardian connection is passive

or active is determined when the connection is established. Sections 8 and 9 discuss, in detail, the

messages for the guardian planning interface and the guardian job control interface, respectively.

2.6.1.2 The Watchdog Interface

To allow a control entity to run without active guardian connections, a primitive guardian

interface, referred to as the ‘watchdog’, is presumed always to exist for a running control entity.

The watchdog interface is a mechanism by which an operator is informed that a control entity

'eeds a. ice to resolve an anomalous situation encountered by the planner or the job

jntrollei „ at is, either the planner or job controller needs assistance on its active guardian

onnection). The watc og can be described conceptually as a pair of red lights. One red light

denotes the control en y needing assistance to resolve a planning error (denoted ‘the planning

red light’); the other, that the control entity needs assistance to resolve a job control error (denoted

‘the job control red light’).

Specific messages in the guardian planning interface cause the control entity to turn on the

planning red light These messages are Subordinate Problem, Subcovenant Error Occurred, and

Administrative Status messages which contain abnormal information. If a control entity wishes to

issue or ~ these messages, it will turn on the planning red light whether or not the control entity

has an a. e guardian planning connection. The planning red light remains turned on until all

outstanding planning problems requiring guardian assistance have been resolved.

Specific messages in the guardian job control interface cause the control entity to turn on the job

control red fight. These messages are Subordinate Problem, Task Error Occurred, Subtask Error

Occurrec d Administrative ^ is messages which contain abnormal information. If a control

entity wisnes to issue one of these messages, it will turn on the job control red light whether or not

the control entity has an active guardian job control connection. The job control red light remains

turned on until all outstanding job control problems requiring guardian assistance have been

resolved.

2.6.2 Replanning

Replanning, or the dynamic modification of production plans, is the automated mechanism by

which a control entity (or a segment of the shop) recover 'om anomalous situations. Since all

anomalous situations (other than planner failures) are detected by the job controller, replanning is

initiated by a message from the job controller to the planner within the control entity. A brief

discussion of replanning was prese d in Section 2.4.' on page 16. A more detailed discussion of

replanning is presented in Section 7 on page 63.

/

18

2.7 Communications Paradigm

Each of the interfaces defined in this specification assumes a guaranteed point-to-point messaging

communications paradigm. This section describes the paradigm in more detail and discusses the

consequences of using this paradigm.

Because a connection exists between exactly two entities, if an entity wishes to share the same

information with more than one entity, it must create multiple connections, one to each interested

entity, and it must explicitly transmit messages across each connection.

Because the communications paradigm supports guaranteed message delivery, an entity must

support message queuing: it is possible for an entity to receive messages much faster than it can

process them. An entity must support some level of message queuing and some mechanism to

handle a full message queue.

Because the communications paradigm supports guaranteed message delivery, an entity may take

advantage of incremental status reporting. An entity may report only on those items that have

changed since the last time status was reported because the receiving entity is guaranteed to

receive every message and in the order they were issued.

2.7.1 The Nature of a Control Entity Interface

A connection is an instance of a specific interface between exactly two entities. There are several

valid operations that an entity may perform on an interface: connect, disconnect and transmit:

• Connecting to an interface results in the creation of a connection between exactly two

entities.

• Disconnecting from an interface causes an existing connection to cease to exist

(Connection recovery is the process of building a new connection and getting its

information state to match the state of a previous connection.)

• Transmitting across an interface occurs when one entity participating in a connection

sends a message (a collection of information) to the other entity participating in a

connection.

2.12 Types of Messages

There are three types of messages used in defining the interfaces in the MSI architecture: requests,

responses and unconfirmed messages.

A request is a message by which one entity asks another entity to perform some operation or

provide some information.

A response is a message sent in reply to a particular request A positive response (denoted

response+ in the text) either indicates that the receiving entity agrees to perform the operation (or

has completed it), or provides the requested information. A negative response (denoted response-

in the text) indicates that the receiving entity is rejecting the request and (usually) explains why.

An unconfirmed message is a message by which one entity provides information to another entity

without a request being made. An unconfirmed message may be thought of as a response to ar.

assumed request for information or as a notification that something may need to be done, rathtr;

than a request to do something in particular.

Formally, to every request message there is exactly one response message. Some requests,

however, may cause the receiving entity to initiate a fairly long-term operation, so that the formal

19

response only indicates acceptance of the operation request Other messages, both unconfirmed

and request/response pairs, concerning the same operation may be exchanged during the course of

the operation.

An entity which issues a request or unconfirmed message is said to be the “issuing entity”. An

entity which receives an unconfirmed message or request and issues a response is said to be the

“receiving entity”.

2.73 Message Format

Each type of request or unconfirmed message is presented in a separate subsection within this

document. Responses are described under the corresponding request.

Each subsection presenting the semantics of a request follows the following format:

• the name of the request (or the unconfirmed message),

• a definition of the message from the issuing entity’s perspective,

• a list of the parameters to the request

• a discussion of the parameters and variations in the request,

• a list of the possible responses and their parameters,

• a discussion of the parameters and variations in the responses, and

• a definition of the request from the receiving entity’s perspective— what steps are to be

taken under what circumstances (usually presented in a table).

2.7.4 Types of Parameters

Each message may or may not have parameters associated with it There are four types of

parameters: required, optional, conditional, and choice.

A required parameter is a parameter that must be specified. A parameter is required unless

otherwise labelled.

An optional parameter is a parameter that may or may not be specified. In general, optional

parameters are parameters such as text strings describing an error code. An optional parameter is

denoted by the word ‘optional’ following the parameter name. For example:

error-text (OPTIONAL)

A conditional parameter is a parameter that is required in some situations and absent in others. A
conditional parameter is denoted by the word ‘conditional’ following the parameter name. For

example:

Task Status Object (CONDITIONAL)

A choice parameter is a parameter which has a single function but may take values of different

data types. For example, some requests for informatio ive a choice parameter which designates

the objects to be reported on. The parameter value may be an object type, indicating that all

objects of that type should be reported, or it may be a list of object identifiers, indicating that

exactly those objects are to be reported on. A choice parameter is denoted by the word ‘CHOICE
OF’ and then a collection of alternative parameters or values. For example:

covenants: CHOICE OF {

list of supervisor-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

20

3 Production Plans

This section discusses production plans and their steps in the context of the interaction between

planners and job controllers and the recovery from anomalous situations.

3.1 Production Plans and their States

Production plans are accessed and modified by both a planner and job controller— sometimes

simultaneously. As a result, they are subject to change and refinement (evolution) both before and

during execution. As they change, they make transitions through a set of evolutionary states.

These states are In-Scheduling, Bidden, Scheduled, Executing, Completed, Deferred, Terminated

and Aborted. Table 1. explains each of the plan-states and the constraints placed on both a planner

and job controller with respect to accessing and modifying a production plan in that state.

Plan State Valid Planner Actions Valid Job Controller Actions

In-Scheduling,

Bidden

A planner is in the process of performing

resource allocation and scheduling for this

plan via negotiations with the supervisor and

subordinates.

A job controller should never access a pro-

duction plan which is in one of these states.

Scheduled3
A planner may modify a production plan’s

plan-state from the Scheduled plan-state to

either the In-Scheduling or Bidden plan-state.

It may not make any other modifications to a

production plan in this state.

A job controller may modify a production

plan’s plan-state from the Scheduled plan-

state to the Executing plan-state. It may not

make any other modifications to a production

plan in this state.

Executing

If a production plan is in the Executing plan-

state, the rules governing the interaction

between a planner and job controller are

defined on a step by step basis. See the dis-

cussion of step-states below.

If a production plan is in the Executing plan-

state, the rules governing the interaction

between a planner and job controller are

defined on a step by step basis. See the dis-

cussion of step-states below.

Completed,

Aborted,

Deferred,

Terminated

A planner may make any valid modifications

it wishes to a production plan in these states.

In general, it will do nothing more than dis-

pose of the production plan.

If a production plan is in any of these plan-

states, a job controller has normally or abnor-

mally completed executing the production

plan and no longer needs to modify the pro-

duction plan.

Table 1. Production Plan States

a. The transitions from Scheduled to In-Scheduling, Bidden or Executing must have a semaphore mechanism

to prevent both a planner and a job controller from checking the current plan-state of a production plan and

then each of them setting the plan-state to a different value.

Valid plan-state transitions are depicted in Figure 5. on page 22. Each transition specifies which

entity can make that transition (the planner [p] or the job controller [c]).

3.2 Steps and Their States

Because both a planner and job controller can access and modify a production plan

simultaneously, there not only need to be rules for accessing the production plan as an entity, but

also rules governing the access and modification of the individual steps within a production plan.

As a result, a collection of step-states have been defined, along with a collection of rules defining

the constraints placed on both a planner and job controller with respect to accessing and

modifying a step in that state. Valid step-states are Unscheduled, In-Scheduling, Scheduled, Not-

21

Yet-Executing, Executing and Completed. Table 2. explains each of the step-states and the rules

associated with each state.

Step-state Valid Planner Actions Valid Job Controller Actions

Unscheduled,

In-Scheduling

A planner may make any valid modifica-

tions to a step which is in one of these states

as long as the modifications do not violate

planner negotiations.

A job controller should never access a step

which is in one of these states.

Scheduled
8

A planner may modify a step’s state from
the Scheduled step-state to either the

Unscheduled or In-Scheduling step-state.

A job controller may modify a step’s state

from the Scheduled step-state to the Not-

Yet-Executing step-state.

Not-Yet-Executingb

A planner may modify a step’s state from
the Not-Yet-Executing step-state to the

Unscheduled, In-Scheduling or Scheduled
step-states. It may also update the sched-

uled-start-time or scheduded-completion-

tiine of a step in this state. In all cases, it

must issue a Recheck Step message to the

job controller. See Section 72.1 on page 72
for the discussion of Recheck Step.

A job controller may modify a step’s state

from the Not-Yet-Executing step-state to

the Executing or Scheduled step-state.

Executing A planner may update only the scheduled-

completion-time of a step in this state.

A job controller may make any valid modi-
fications to a step in a production plan in

this state. It may modify a step’s state to the

Scheduled step-state.

Completed

A planner may dispose of a step in a pro-

duction plan which is in this state.

A job controller may make any valid modi-
fications to a step in this state. It may mod-
ify a step’s state to the Scheduled step-state.

Table 2. Production Plan Step-states

a. The transitions from Scheduled to Unscheduled, In-Scheduling, or Executing must have a semaphore

mechanism to prevent both a planner and a job controller from checking the current step-state of a step in a

production plan and then each of them setting the step-state to a different value.

b. The transitions from Not-Yet-Executing to Unscheduled, In-Scheduling, Scheduled or Executing must

have a semaphore mechanism to prevent both a planner and a job controller from checking the current step-

state of a step within a production plan and then each of them setting the step-state to a different value.

/

22

Valid step-state transitions are depicted in Figure 6. Each transition specifies which entity can

make that transition (the planner [p], the job controller [c] or either [p/c]).

3.3 Checkpoints

In order to facilitate recovery from anomalous situations, the MSI architecture supports the notion

of specific steps within a production plan being checkpoints. A checkpoint is a step within a

production plan where, upon completion of that step, the manufacturing process may be

temporarily or indefinitely suspended in a safe manner without damage to either the equipment of

the workpieces. The shop level planner and job controller and all workcell planners and job

controllers are required to understand checkpoints. In most cases, the start and end of a production

plan, at least, will be checkpoints. A less trivial example of a checkpoint would be a machining

step which drills a hole. After the hole is completed and the cutter is withdrawn, in some cases it

may be safe to stop the plan at this step and resume at a later time. The MSI architecture does not

require that equipment job controllers understand the notion of checkpoint

23

4 Generic Data Objects

There are several simple and complex data objects used in the five control entity interfaces. A
simple data object is an object which contains a single piece of information; a complex data object

is an object which contains several pieces of information, each of which may be simple or

complex. A definition of each simple data object can be found in the glossary (See Section 12 on

page 110).

Several of the complex data objects are generic and used in several of the control entity interfaces.

Each of the generic complex data objects are presented in this section. Those complex data

objects which are unique to a single interface are presented in the appropriate section.

4.1 Plan Identifier Object

The Plan Identifier Object is a data object which uniquely identifies a production-managed plan or

a production plan. It contains the following data elements:

plan-location (CONDITIONAL)
plan-identifier

plan-version

The parameter plan-location has a value if the plan is located in some database other than a

planner’s default plan database.

4.2 Plan Parameter Object

The Plan Parameter Object is a data object which specifies a name, value pair denoting either an

input or output parameter. It contains the following data elements:

parameter-name

parameter-value (CONDITIONAL)

All input parameters will provide a parameter-value; output parameters will only specify a

parameter-value if it is known at the time the Plan Parameter Object is created.

4.3 Error Object

The Error Object is a data object which contains information describing an error which has

occurred. It contains the following data elements:

error-code

error-text (OPTIONAL)

The Error Object is used in all 5 of the control entity interfaces presented in Sections 5-9. F^ch

interface, however, has its own set of valid error-codes.

Valid error-codes within the planning interface include:

• deactivate failed— connected to job controller

• deactivate failed— outstanding bids

• invalid administrative state

• invalid covenant identifier

• invalid covenant state

• invalid parameter specified

24

• invalid plan identifier

• invalid planning strategy

• planning horizon exceeded

• subordinate not responding

Valid error-codes within the job control interface include:

• cannot pause task within requested pausing duration

• deactivate failed— outstanding tasks

• invalid administrative state

• invalid parameter specified

• invalid plan identifier

• invalid task identifier

• invalid task state

• subordinate not responding

• terminate task failed— task not paused

Valid error-codes within the planning/job control interface include:

• invalid plan state

• invalid production plan identifier

• invalid step identifier

Valid error-codes within the guardian planning interface include all valid planning error-codes

plus the following:

• cannot connect to subordinate

• invalid subordinate

• subordinate reporting anomalous covenant reports

Valid error-codes within the guardian job control interface include all valid job control error-

codes plus the following:

• cannot connect to planner

• cannot connect to subordinate

• invalid subordinate

• invalid subtask identifier

• subordinate reporting anomalous administrative status reports

• subordinate reporting anomalous task reports

4.4 Acceptance Object

The Acceptance Object is a data object which either confirms an operation or specifies an error

condition. It contains the following data elements:

acceptance-code

acceptance-text (OPTIONAL)

For each interface, the set of valid acceptance-codes is the set of valid error-codes plus the

acceptance-code which specifies that no error has occurred and the operation has been accepted.

25

5 Planning Interface

This section presents the planning interface, including:

• a general discussion of the planning paradigm and how the messages provided by the

interface support that paradigm,

• state models for both a planner’s administrative state and its covenants,

• the data objects used by the planning interface, and

• the messages which are provided by the planning interface — administrative planning

requests, covenant requests issued by a supervising planner and covenant requests issued

by a subordinate planner.

5.1 The Planning Model

This section discusses how a planner performs its planning and replanning functions by using

internal planning strategies and the messages provided by the planning interface.

In most scenarios where a planner is requested to plan or replan an operation, the sequence of

steps that the planner follows are similar. As a result, a general discussion of what planning

strategies are and how they affect the planning function, and scenarios describing how a planner

plans and replans will aid the reader in more fully understanding the planning interface.

5.1.1 Planning Strategies

Each planner supports some number of planning strategies. A planning strategy determines the

approach that a planner will take when trying to schedule an operation; the planning strategy

specifies a set of constraints which the planner should meet and a set of goals which the planner

should achieve. A time window, specified by an earliest-start-time and a latest-completion-time,

may also be specified to further constrain a planner’s options. If either limit of the time window is

not specified, the assumed earliest-start-time is the current time and the assumed latest-

completion-time is the end of the planner’s planning horizon.

Planning strategies include:

• Priority Scheduling — within a given time window, schedule an operation anywhere

within the window using its priority to cancel previously scheduled operations.

• First-Come-First-Serve Scheduling— within a given time window, schedule an operation

anywhere within the window without disrupting or cancelling previously scheduled

operations.

• As-Soon-As-Possible Priority Scheduling — within a given time window, schedule an

operation as soon as possible (as close to the earliest-start-time of .the time window as

possible) using its priority to cancel previou sly scheduled operations.

• As-Soon-As-Possible First-Come-First-Serve Scheduling— within a given time window,

schedule an operation as soon as possible (as close to the earliest-start-time of the time

window as possible) without disrupting or cancelling previously scheduled operations.

• As-Late-As-Possible Priority Scheduling — within a given time window, schedule an

operation as late as possible (as close to the latest-completion-time of the time window as

possible) using its priority to cancel previously scheduled operations.

26

• As-Late-As-Possible First-Come-First-Serve Scheduling — within a given time window,

schedule an operation as late as possible (as close to the latest-completion-time of the time

window as possible) without disrupting or cancelling previously scheduled operations.

When a planner supports more than one planning strategy, the supervisor will specify which

planning strategy to use when it requests a planner to schedule an operation.

5.1.2 Scheduling an Operation

When a planner schedules an operation described by a production-managed plan, the planner

follows a certain sequence of steps as it creates the production plan. For a workcell or equipment

level planner, this sequence of steps is initiated by the receipt of a Request for Bid request from

the supervisor. For the shop planner, this sequence of steps is initiated by new orders (with

associated production-managed plans) entering the shop.

When requested to schedule an operation, a planner should perform the following steps:

1. For each step in the production-managed plan (in precedence order), the planner

should do the following:

(a) If the step does not require the use of any subordinate, schedule the step according

to internal procedures and the specified planning strategy. Proceed to the next step in

the plan.

(b) Otherwise, issue Request for Bid requests to some collection of subordinates who
can perform the step.

(c) After receiving some number of Covenant Status messages from subordinates

ac ' rtising their bids, select one bid which should be accepted.

(c ssue an Accept Bid request to the subordinate whose bid was selected.

(e> If an Accept Bid response- is received from that subordinate, then choose another

bid to accept and repeat steps (d) and (e). If there are no more bids to accept, then

change the parameters to the Request for Bid and repeat starting at step (c).

(f) If an Accept Bid response-i- is received from a subordinate, then issue Remove
Covenants requests to each of the other subordinates who have provided a bid but

were not issued an Accept Bid request Proceed to the next step in the plan.

2. After all steps in the production-managed plan have been scheduled and a production

plan has been created, if the planner has a supervisor (i.e., the planner is not the shop

planner), issue a Covenant Status message to the supervisor advertising the bid.

5.13 Rescheduling In-Execution Operations

When an anomalous situation occurs which results in a production plan’s specified schedule

becoming infeasible, a job controller will request the planner to resolve the situation. In these

cases, the planner will attempt to reschedule the production plan.

The steps that a planner follows in attempting to reschedule a production plan are nearly identical

to those that the planner performs when scheduling an operation. When a planner is scheduling an

operation, it schedules every step in the production plan, whereas when a planner is rescheduling

a production plan, it only reschedules those steps which are directly causing the schedule’s

infeasibility and the : nteps which are directly or indirectly affected by resolving this infeasibility.

The planner will re .^dule the production plan starting with the steps causing the infeasibility;

the planner will then examine each subsequent step to determine if its scheduled execution time

overlaps with the rescheduled execution of the previous steps. If there is an overlap, the planner

27

will reschedule those steps. This will continue until the end of the plan or until a step is reached

which is not affected by the rescheduling of the previous steps.

When requested to reschedule a production plan, a planner should perform the following steps:

1. Starting with the step(s) which causes the schedule’s infeasibility, and continuing until

the end of the plan or until a step is reached whose scheduled execution time does not

overlap with the scheduled execution time of the rescheduled previous step(s), the

planner should do the following:

(a) If the step does not require the use of any subordinate, schedule the step according

to internal procedures and the specified planning strategy. Proceed to the next step in

the plan.

(b) Otherwise, issue a Remove Covenants request to the subordinate currently speci-

fied to perform the step.

(c) Issue Request for Bid requests to some collection of subordinates who can perform

the step.

(d) After receiving some number of Covenant Status messages from subordinates

advertising their bids, select one bid which should be accepted.

(e) Issue an Accept Bid request to the subordinate whose bid was selected.

(f) If an Accept Bid response- is received from that subordinate, then choose another

bid to accept and repeat steps (d) and (e). If there are no more bids to accept, then

change the parameters to the Request for Bid and repeat starting at step (c).

(g) If an Accept Bid responses- is received from a subordinate, then issue Remove
Covenants requests to each of the other subordinates who have provided a bid but

were not issued an Accept Bid request Proceed to the next step in the plan.

2. The planner should continue with the semantics of the scenario which caused it to

need to reschedule.

5.2 Planner Administrative States

ch planner has a notion of admirdstrative state. Table 3. enumerates and defines the valid

external administrative states
4
for a planner.

State Definition

Available

The planner has either

1. started cold and is ready to establish a connection to the supervisor, or

2. received and processed a Deactivate message, released its connection to the supervisor, deacti-

vated its subordinates and is ready to be halted.

Active

The planner is

1. connected to and activated by the supervisor,

2. connected to or in the process of activating its subordinates,

3. ready to accept and process or already processing covenant requests from the supervisor, and
4. ready to accept and process or already processing replamurg requests from the job controller.

Table 3. Planner Administrative-state Definitions

Valid transitions among the planner administrative states and the planning messages that cause

those transitions are depicted in Figure 7.

4. It is possible for a planner to have any number of internal intermediate administrative states, for example,

to specify whether it is connected to the supervisor, connected to the job controllers) or connected to its sub-

ordinates.

28

Figure 7. Planner Administrative-state Transition Diagram

5.3 Covenant States

Each covenant that a planner is currently negotiating or has already negotiated but not disposed of

(i.e., the job controller has not executed a task to fulfill that covenant) has an associated covenant-

state. A covenant-state denotes the current state of a covenant; valid covenant-states are:

• Accepting • Executing

• Bidding • Executed

• Bidden • No Covenant

• Breaking Bid • Pre-Bidding

• Breaking Contract • Removing Covenant

• Contracted

All covenant-states are transitional states except No Covenant and Executed. The covenant-states

address not only the negotiatior stages of a covenant, but also the execution of a task associated

with that covenant Only after the task has completed execution (normally or abnormally) does

the covenant cease to exist. Table 4. defines each of the covenant-states.

Covenant-state Definition

Pre-Bidding The planner has received a Request for Bid request from the supervisor but has not s u
responded. It is determining whether or not it will formulate a bid.

Bidding Tne planner has received and responded positively to a Request for Bid from the supervi-

sor A covenant has been created but the planner has not completed formulating a bid.

Bidden

The planner has formulated a bid and submitted it to the supervisor. The planner is waiting

for the supervisor to confirm the bid or to remove the bid (it may be removed for several

reasons).

Accepting The planner has received an Accept Bid request from the supervisor for a bid and it is in

the process of converting the bid into a contract.

Contracted The planner and the supervisor have agree i that the covenant will be honored by both par-

. ties to perform a task within a specified tine frame.

Executing A task has been created by a job controller to fulfill the covenant.

Executed The covenant has been fulfilled (or abandoned).

Breaking Bid

The planner has requested permission from the supervisor to cancel this covenant in order

to formulate a bid for some other request. A response has not yet been received from the

supervisor.

Breaking Contract

The planner has requested permission from the supervisor to cancel this covenant in order

to formulate a bid for some other request. A response has not yet been received from the

supervisor.

Table 4. Covenant-state Definitions

29

Covenant-state Definition

Removing Contract The planner has received a Remove Covenant request from the supervisor to remove the

covenant but has not yet disposed of it

No Covenant The planner does not intend to formulate a bid as requested by the supervisor or a planner

has just disposed of the covenant as requested by the supervisor.

Table 4. Covenant-state Definitions

Valid transitions among the covenant-states and the messages (planner messages or planning-to-

job-control messages) which cause those transitions are depicted in Figure 8..on page 31.

5.4 Complex Data Objects Used in the Planning Interface

In addition to the data objects described in Section 4 on page 24, there is only one other complex

data object used in the planning interface: the Covenant Status Object.

The Covenant Status Object is a data object which contains information describing a single

covenant It is used to convey covenant status information between supervisory and subordinate

planners
5

.

The Covenant Status Object contains the following data elements:

planning-strategy

priority

earliest-start-time (CONDITIONAL)
latest-completion-time (CONDITIONAL)
covenant-state

production-plan: Plan Identifier Object

scheduled-start-time

scheduled-completion-time

conflicting-covenants: list of supervisor-covenant-identifier (CONDITIONAL)

The parameters earliest-start-time and latest-completion-time have values only if they are

specified by the supervisor in the Request for Bid request (see Section 5.6.4 on page 37). The

parameter conflicting-covenants specifies the list of covenants that would have to be cancelled in

order for the current covenant to be contracted. If there are no such covenants, then the list is

empty. When the covenant is contracted, such covenants are broken and the list is always empty.

5.5 Planner Administrative Requests

The planner issues administrative requests to one of its subordinates to alter its administrative

status or request information about its administrative status. The planner administrative requests

are:

• Activate

• Deactivate

• Identify

5. In addition, it is used to report information to a guardian through the guardian planning interface. See Sec-

tion 8.1.3 on page 75 for more information about its use in the guardian planning interface.

30

31

5.5.1 Activate

An Activate message is used by a planner to connect to and initialize a subordinate. The

parameters for both the Activate request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A planner wishing to activate one of its subordinates should issue it an Activate request. The

Activate response+ results in the connection to be established. Table 5. details what a planner

should do upon receiving an Activate request from the supervisor.

Administrative State Action

Available

1. Upon receiving an Activate request, perform any internal initialization and switch

to the Active administrative state.
i

2. If the initialization fails or the planner cannot switch to the Active administrative

state, then issue an Activate response-. No further action is necessary.

3. Otherwise, issue an Activate response+.

4. If necessary, query the database to determine who its subordinates are.

5. Attempt to activate each subordinate by issuing an Activate request to each one.

6. If the planner receives an Activate response- from any of its subordinates, contact

the active guardian and proceed according to its instructions.

Active

Receiving an Activate request while in the Active administrative state causes a con-

nection to be established between the receiving planner and the supervisor. If the

planner already has a connection to the supervisor, this is a protocol violation; issue

an Activate response-. Otherwise, accept the connection by issuing an Activate

response+.

Table 5. Semantics of the Planner Activate Message

5.5.2 Deactivate

A Deactivate message is used by a planner to disconnect from and shut down a subordinate. The
parameters for both the Deactivate request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A planner wishing to deactivate one of its subordinates should issue it a Deactivate request. Upon
receiving a Deactivate request from the supervisor, a planner should perform the following steps:

1. If the planner’s administrative state is Available, a protocol violation has occurred;

ignore the request. No further action is necessary.

2. If the planner has any outstanding bids, issue a Deactivate response- and continue
negotiating covenants. No further action is necessary.

3. If the planner has no subordinates, respond Deactivate response+ and switch to the
Available administrative state. The planner is now ready to be halted.

32

4. If the planner has subordinates, issue a Deactivate response+. This will result in the

connection with the supervisor being released. Then the planner should issue a Deacti-

vate request to each of its subordinates. If any subordinate responds with Deactivate

response-, contact the active guardian and proceed according to its instructions. If all

subordinates respond with Deactivate response-i-, switch to the Available administra-

tive state. The planner is now ready to be halted.

5.53 Identify

An Identify message is issued by a planner to determine the characteristics of a subordinate. The

parameters for both the Identify request and its response are as follows:

Parameters on Request:

<none>

Parameters on Response:

make
model

version

level

list of planning-strategy

A planner wishing to know the characteristics of one of its subordinates should issue that

subordinate an Identify request. Upon receiving an Identify request from the supervisor, a planner

should issue an Identify response, specifying its make, model and version, its level and which

planning strategies it supports.

5.6 Covenant Requests Issued By A Supervising Planner

Covenant Requests are requests which a planner may issue to either the supervisor or one of its

subordinates to perfprm some action to a set of covenants or to obtain information about a set of

covenants. This section presents the covenant requests which a planner may issue to one of its

subordinates:

• Accept Bid

• Remove Covenants

• Report Covenants

• Request for Bid

• Update Covenant Constraints

These requests may only be issued to a subordinate planner which is in the Active administrative

state. If a subordinate planner receives one of these requests while in the Available administrative

state, the request should be ignored.

5.6.1 Accept Bid

An Accept Bid message is issued by a planner to a subordinate; it requests a bid to be accepted

resulting in a contract being established between a planner and that subordinate. The parameters

for both the Accept Bid request and its responses are as follows:

Parameters on Request:

subordinate-covenant-identifier

33

Parameters on Responses

:

supervisor-covenant-identifier

Parameters on Response-:

supervisor-covenant-identifier

error: Error Object

Covenant Status Object (CONDITIONAL)

If a planner issues an Accept Bid response- the conditional parameter Covenant Status Object is

specified if it contains information related to rejecting the request.

If a planner wishes to generate a contract for a step in a production plan (for which the planner has

a collection of bids and has determined which bid it would like to accept), it should issue an

Accept Bid request to the subordinate who advertised the selected bid.

1. If a planner receives an Accept Bid request for an invalid covenant, it should issue an

Accept Bid response- No further action is necessary.

2. If the covenant (or production plan supporting the covenant) is not intact (i.e. steps are

currently being rescheduled and the planner expects that the rescheduling of the steps

will impact the start or completion time of its advertised bid), do the following:

(a) Issue an Accept Bid response- to the supervisor.

(b) If the planner is at the equipment level, dispose of the covenant and associated pro-

duction plan. No further action is necessary.

(c) If the planner has subordinates, issue Remove Covenants requests to all subordi-

nates with subcovenants in support of the covenant, and then dispose of the covenant

and associated production plan. No further action is necessary.

3. If the covenant (and production plan supporting the covenant) is still intact, issue a

Covenants Broken request for all covenants that need to be broken in order to accept

the specified covenant (this list was specified in the original bid). After receiving a

response to the Covenants Broken request from the supervisor, issue an Accept Bid
response+ to the supervisor. No further action is necessary.

5.6.2 Remove Covenants

A Remove Covenants message is issued by a planner to a subordinate; it requests a set of

covenants which a planner has negotiated with that subordinate to be cancelled. The parameters

for both the Remove Covenants request and its response are as follows:

Parameters on Request:

covenants: CHOICE OF {

list of subordinate-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

Parameters on Response:

list of [

subordinate-covenant-identifier

supervisor-covenant-identifier

acceptance: Acceptance Object

] (CONDITIONAL)

34

If a Remove Covenants request specifies All-Bids, All-Contracts or All-Covenants, the response

will have no parameters.

If a planner wishes to cancel one or more covenants which currently exist between itself and one

of its subordinates, it should issue a Remove Covenants request to that subordinate. The planner

has a choice of specifying a list of covenants to remove or specifying to remove all bids, all

contracts or all covenants. Upon receiving a Remove Covenants request from the supervisor, a

planner should perform the following steps:

1. If the Remove Covenants request was issued with the parameter All-Bids, then for

each covenant in the Pre-Bidding covenant-state, issue a Request for Bid response-

For each covenant in the Bidding, Bidden, Breaking Bid or Accepting covenant-states,

do the following:

Switch the covenant to the Removing Covenant covenant-state. Dispose of the cove-

nant and the associated production plan. If the planner has subordinates, disposing of

the selected covenants may require issuing Remove Covenants requests to subordi-

nates for negotiated subcovenants. After the covenant is disposed of, switch the cove-

nant to the No Covenant covenant-state. Issue a Remove Covenants response with no

parameters. No further action is necessary.

2. If the Remove Covenants request was issued with the parameter All-Contracts, then

for each covenant in the Breaking Contract or Contracted covenant-state, do the fol-

lowing:

Switch the covenant to the Removing Covenant covenant-state. Dispose of the cove-

nant and the associated production plan. If the planner has subordinates, disposing of

the selected covenants may require issuing Remove Covenants requests to subordi-

nates for negotiated subcovenants. After the covenant is disposed of, switch the cove-

nant to the No Covenant covenant-state. Issue a Remove Covenants response with no
parameters. No further action is necessary.

3. If the Remove Covenants request was issued with the parameter All-Covenanu>, then

for each covenant in the Pre-Bidding covenant-state, issue a Request for Bid response-
. For each covenant in the Bidding, Bidden, Breaking Bid, Accepting, Breaking Con-
tract or Contracted covenant-state, do the following:

Switch the covenant to the Removing Covenant covenant-state. Dispose of the cove-

nant and the associated production plan. If the planner has subordinates, disposing of

the selected covenants may require issuing Remove Covenants requests to subordi-

nates for negotiated subcovenants. After the covenant is disposed of, switch the cove-

nant to the No Covenant covenant-state. Issue a Remove Covenants response with no
parameters. No further action is necessary.

4. If the Remove Covenants request was issued with a list of covenants, then for each
covenant in the list that is in die Bidding, Bidden, Breaking Bid, Accepting, Breaking
Contract or Contracted state, do the following:

Switch the covenant to the Removing Covenant covenant-state. Dispose of the cove-

nant and the associated production plan. If the planner has subordinates, disposing of
the selected covenants may require issuing Remove Covenants requests to subordi-

nates for negotiated subcovenants. After the covenant is disposed of, switch the cove-
nant to the No Covenant covenant-state. Issue a Remove Covenants response with no
parameters. It is an error to remove any other covenants. Issue a Remove Covenants
response specifying the error codes for those that are in error and an acceptance code
for those that were removed.

35

5.63 Report Covenants

A Report Covenants message is issued by a planner to a subordinate; it requests that subordinate

to report the current status of a set of covenants. The parameters for both the Report Covenants

request and its response are as follows:

Parameters on Request:

covenants: CHOICE OF {

list of subordinate-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

Parameters on Response:

list of [

subordinate-covenant-identifier

supervisor-covenant-identifier

CHOICE OF {

error: Error Object

OR status: Covenant Status Object}

] (CONDITIONAL)

If a Report Covenants request specifies All-Bids, All-Contracts or All-Covenants and the

subordinate planner currently has no outstanding bids, contracts, or covenants (respectively), the

response will have no parameters.

A planner wishing to receive updated status for a collection of its subcovenants should issue a

Report Covenants request to each of its subordinates whose covenants correspond to those

subcovenants. Upon receiving a Report Covenants request from the supervisor, a planner should

perform the following steps:

1. If the Report Covenants request was issued with the parameter All-Bids, then for each

covenant in the Bidding, Bidden, Breaking Bid or Accepting covenant-states, collect

the supervisor-covenant-identifier, local-covenant-identifier and Covenant Status

Object information and issue a Report Covenants response.

2. If the Report Covenants request was issued with the parameter All-Contracts, then for

each covenant in the Contracted, Breaking Contract or Executing covenant-states, col-

lect the supervisor-covenant-identifier, local-covenant-identifier and Covenant Status

Object information and issue a Report Covenants response.

3. If the Report Covenants request was issued with the parameter All-Covenants, then for

each covenant in the Bidding, Bidden, Breaking Bid, Accepting, Contracted, Breaking
Contract, Removing Covenant or Executing covenant-states, collect the supervisor-

covenant-identifier, local-covenant-identifier and Covenant Status Object information

and issue a Report Covenants response.

4. If the Report Covenants request was issued with a list of covenants, then for each cov-
enant that is in the list, but not in the Executed covenant-state, collect the supervisor-

covenant-identifier, local-covenant-identifier and Covenant Status Object information.

For all other covenants in the list, identify the appropriate error and issue a Report
Covenants response which includes the error information for invalid covenants and the

covenant status information for valid covenants.

36

5.6.4 Request for Bid

A Request for Bid message is issued by a planner to a subordinate; it requests that subordinate to

estimate when it is able to perform a requested operation. The parameters for both the Request for

Bid request and its responses are as follows:

Parameters on Request:

supervisor-covenant-identifier

global-step-reference

supervisor-manufacturing-unit-identifier (CONDITIONAL)

planning-strategy

priority

earliest- start-time (CONDITIONAL)
latest-completion-time (CONDITIONAL)
terminated-flag

input-plan: CHOICE OF {

plan: Plan Identifier Object

OR work-element-identifier}

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)

Parameters on Response+:

supervisor-covenant-identifier

subordinate-covenant-identifier

covenant-state

Parameters on Response-:

supervisor-covenant-identifier

error: Error Object

If a planner wishes to schedule a specific operation, it should issue a Request for Bid request to

some collection of its subordinates who are capable of performing the operation. The planner

specifies a local identifier, a manufacturing unit which identifies the workpieces on which to

perform the operation, if any, a planning strategy to use in planning the operation, a priority,

optionally an earliest-start-time and latest-completion-time between which the operation should

be scheduled, a plan or work element which details the steps to perform the operation and any

input parameters which are required by the plan.

If the subordinate planner issues a Request for Bid response+, it will specify a local identifier for

the covenant. In all -future communications regarding this covenant, the supervisor will always

provide the subordinate’s local identifier for the covenant (subordinate-covenant-identifier) and

the subordinate will always provide the supervisor’s local identifier for the covenant (supervisor-

covenant-identifier).

Upon receiving a Request for Bid request from the supervisor, a planner should perform the

following steps:

1. If a planner receives a Request for Bid request with invalid parameters, it should issue

a Request for Bid response-. No further action is necessary.

2. If a planner receives a Request for Bid request and determines that it cannot or will not

bid, it should issue a Request for Bid response-!- with a covenant state of No Covenant

3. Otherwise, the planner should issue a Request for Bid response-i- with a covenant-state

of Bidding.

37

4. If the terminated-flag parameter in the original Request for Bid request is set to true,

then the plan which is specified in the request is a production plan and not a produc-

tion-managed plan (the production plan was partially executed and is being replanned

due to an error situation). If this is the case, then in steps 5. and 6., the planner should

not schedule steps which are in the Executed step-state; it should only schedule the

portion of the plan which was not executed.

5. In general the planner should:

(a) Use its internal planning algorithm to schedule the operation to produce a produc-

tion plan. This may involve issuing Break Covenant requests for covenants which

need to be broken in order to bid this operation.

(b) Issue a Covenant Status message to the supervisor advertising its bid.

6. If the planner has subordinate planners, it should traverse the specified production-

managed plan and perform the following steps for each step in the plan that requires

scheduling or resource allocation (generating a production plan):

(a) Issue Request for Bid requests to some collection of its subordinates who can per-

form the step.

(b) After receiving some number of Covenant Status messages from subordinates

advertising their bids, select one bid which should be accepted.

(c) Issue an Accept Bid request to the subordinate whose bid was selected.

(d) If an Accept Bid response- is received from that subordinate, then choose another

bid and repeat steps (c) and (d). If there are no more bids to accept, then change the

parameters to the Request for Bid and repeat starting with step (a).

(e) If an Accept Bid response+ is received, then issue Remove Covenant requests to

each of the other subordinates who provided a bid but were not issued an Accept Bid
request.

(f) Start scheduling the next step in the plan. If there are no more steps in the plan,

then formulate a bid and issue a Covenant Status message to the supervisor advertising

its bid.

5.6.5 Update Covenant Constraints

An Update Covenant Constraints message is issued by a planner to a subordinate. It allows the

planner to update the set of constraints governing an outstanding covenant with that subordinate.

The parameters for both the Update Covenant Constraints request and its responses are as

follows:

Parameters on Request:

subordinate-covenant-identifier

planning-strategy

priority

earliest-start-time (CONDITIONAL)
latest-completion-time (CONDITIONAL)

Parameters on Response+:

supervisor-covenant-identifier

Covenant Status Object

Parameters on Response-:

supervisor-covenant-identifier

error: Error Object

Covenant Status Object (CONDITIONAL)

38

If one of the conditional parameters in the Update Covenant Constraints request is omitted, then

that constraint is removed. These semantics are consistent with that of the Request for Bid:

existent constraints should be specified and constraints to be removed should be omitted from the

request. If a planner issues an Update Covenant Constraints response-, the conditional parameter

Covenant Status Object is specified if it contains information related to rejecting the request.

An Update Covenant Constraints request is to change all of the planning parameters which were

specified in the Request for Bid request: planning-strategy, priority, earliest-start-time or latest-

completion-time. This information may be used by the subordinate planner to reschedule a

covenant If a planner wishes to give a subordinate flexibility to reschedule a covenant within

certain constraints but without supervised interaction, it may issue that subordinate an Update

Covenant Constraints request.

Upon receiving an Update Covenant Constraints request from the supervisor, a planner should

perform the following steps:

1. If a planner receives an Update Covenant Constraints request for an invalid covenant,

it should issue an Update Covenant Constraints response- No further action is neces-

sary.

2. If any of the constraints are invalid (e.g., unsupported planning-strategy, specified

times violate covenant as currently specified, times extend past planning horizon),

issue an Update Covenant Constraints response- and ignore ALL new constraint val-

ues specified in the request

3. Otherwise, update the covenant information to reflect the new constraints. The planner

is required to accept all new constraints except the planning-strategy.

4. The planner may wish to reschedule the covenant at this time. If so, it must meet the

newly accepted constraints. See Section 5.1.2 on page 27 for how to schedule a cove-

nant. It must complete rescheduling the covenant prior to responding to the Update
Covenant Constraints request

5. The planner should issue an Update Covenant Constraints responses-.

6. At any point in the future the planner may modify any covenant such that it continues

to satisfy the constraints. The most likely modification of a covenant will be shuffling

it around in order to accept or bid on other operations. If the planner modifies any cov-

enant, it must issue a Covenant Status message to inform the supervisor of the

changes.

5.7 Covenant Requests Issued By A Subordinate Planner

Covenant Requests are requests which a planner may issue to either the supervisor or one of its

subordinates to perform some action to a set of covenants or to obtain information about a set of

covenants. This section presents the covenant requests which a planner may issue to the

supervisor:

• Break Covenants

• Covenant Status

• Covenants Broken

These requests may only be issued to a supervising planner which is in the Active administrative

state. If a supervising planner receives one of these requests while in the Available administrative

state, the request should be ignored.

39

5.7.1 Break Covenants

A Break Covenants message is issued by a planner to the supervisor to request permission to

cancel a set of covenants in order to formulate a specified other covenant (the causing-covenant),

or to, in general, cancel all bids, contracts or covenants. The parameters for the Break Covenants

request and its response are as follows:

Parameters on Request:

covenants: CHOICE OF{

causing-covenant: supervisor-covenant-identifier

list of supervisor-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

Parameters on Response:

acceptance: Acceptance Object

The Break Covenants message at no time implies that the set of covenants has already been

cancelled or is in the process of being cancelled; if the supervisor grants permission, it merely

implies that it will allow those covenants to be cancelled in order to formulate a specified other

covenant6 . A planner wishing to request permission to cancel a set of covenants should issue a

Break Covenants request to the supervisor. If the supervisor denies permission, then the planner

may not overlap those covenants with the specified new covenant; it must formulate a bid for a

different time. If the supervisor grants permission, then the planner may overlap those covenants

with the specified new covenant. If the planner does overlap those covenants with the specified

new covenant, those overlapped covenants must be specified in the conflicting-covenants

parameter of the Covenant Status Object when the new bid is reported to the supervisor.

The algorithms that a planner goes through to determine if a set of covenants may be broken is

beyond the scope and intention of this specification. Only the external behavior and semantics

need to be preserved. If the planner determines that it is acceptable to break the specified set of

covenants, it should issue a Break Covenants response granting permission. If the planner

determines that it is not acceptable to break the specified set of covenants and wishes to deny

permission, it should issue a Break Covenants response specifying an error code.

5.7.2 Covenant Status

A Covenant Status message is issued by a planner to inform the supervisor of the current status of

a covenant The Covenant Status message is an unconfirmed message; it has no response. The
parameters are as follows:

Parameters:

supervisor-covenant-identifier

Covenant Status Object

list of output-plan-parameter: Plan Parameter Object (CONDITIONAL)

6. The Covenants Broken message is used to actually cancel those covenants. It is issued by a planner at the

time the supervisor requests the planner to accept that covenant

40

If a planner issues a Covenant Status message, the conditional parameter list of output-plan-

paramete, is specified if the production-managed plan used to schedule the covenant requires

output plan parameters.

A Covenant Status message should be issued any time one of the parameters in the covenant’s

status changes (i.e./if any of the parameters of the Covenant Status Object or the output plan

parameters have changed). It is invalid to receive a Covenant Status message while in the

Available administrative state; the message should be ignored.

5.73 Covenants Broken

A Covenants Broken message is issued by a planner to the supervisor; it notifies the supervisor

that a set of covenants have been cancelled. The parameters for both the Covenants Broken

request and its response are as follows:

Parameters on Request:

covenants: CHOICE OF{

list of supervisor-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

Parameters on Response:

<none>

A planner wishing to cancel a set of covenants it has with the supervisor should issue a Covenants

Broken request to the supervisor. This message is used to cancel covenants in order to accept

another covenant or.because the resource for which the planner is planning has had a change in

availability and a set of covenants can no longer be fulfilled at the negotiated time. In addition to

informing the supervisor that a set of covenants are broken, the planner issuing the request must

also dispose of those covenants and associated production plans.

Upon receiving a Covenants Broken request from a subordinate planner, the planner should issue

a Covenants Broken response (this response is required in order to synchronize planner activity).

It should then attempt to replan its affected covenants (those covenants with subcovenants that

were broken).

41

6 Job Control Interface

This section presents the job control interface, including:

• state models for both a job controller’s administrative state and its tasks,

• the data objects used by the job control interface, and

• the messages which are provided by the job control interface— administrative job control

messages, task requests issued by a supervising job controller and task requests issued by

a subordinate job controller.

6.1 Job Controller Administrative States

Each job controller has a notion of administrative state. Table 6. enumerates and defines the valid

administrative states for a job controller.

State Definition

Available

The job controller has either

1. started cold and is ready to establish a connection to the supervisor, or

2. received and processed a Deactivate message from the supervisor, has released its

connection to the supervisor, deactivated its subordinates and is ready to be halted.

Active

The job controller is up. It is

1. connected to and activated by the supervisor,

2. connected to or in the process of activating its subordinates,

3. ready to accept and process task message, and

4. accepting and initiating new tasks.

Pausing

The job controller is up. It has received a Pause All Tasks message from the supervi-

sor or the active guardian. It is accepting new task requests and executing them until

a checkpoint is reached. It is bringing currently active tasks to the next checkpoint

and suspending their execution.

Paused

The job controller is up. All tasks are suspended at a checkpoint. It is accepting but

not initiating new task requests; it will not resume execution of outstanding tasks

until directed to do so.

Terminating

The job controller is up. It has received a Terminate All Tasks message from the

supervisor or the active guardian. It is in the process of terminating all outstanding

tasks. It will not accept any new task requests.

Terminated

The job controller is up. It has terminated all outstanding tasks and is not accepting

any new task requests.

E-stopped

The job controller has received and processed an Emergency Stop message from the

supervisor or the active guardian. The job controller is in an unknown state: it is no
longer processing any tasks and any peripheral equipment directly under its control

has been moved to a safe state. It may or may not be connected to the supervisor and
subordinates.

Table 6. Job Controller Administrative-state Definitions

Valid transitions among the job controller administrative states and the job control messages that

cause those transitions are depicted in Figure 9. on page 43.

6.2 Task States and Task Management States

Each outstanding task that a job controller is currently executing has an associated task-state and

task-management-state.

/

42

Figure 9. Job Controller Administrative-state Transition Diagram

6.2.1 Task States

A task-state denotes the current state of a task; valid task-states are:

• Aborted Paused

• Active • Terminated

• Completed • Waiting for Guardian

• Deferred • Waiting for Planner

A task-state is either a transitional task-state or a terminal task-state. Active, Paused, Waiting for

Guardian and Waiting for Planner are transitional task-states. Aborted, Completed, Deferred and

Terminated are terminal task-states. Table 7. on page 44 defines each of the task-states.

43

Task-state Definition

Aborted

The task was abnormally terminated as quickly as possible by the direction of the

supervisor, the active guardian or the planner. The state of the workpieces and tools

involved in the task is unknown. This is a terminal state.

Active The task is currently executing. This is a transitional state.

Completed The task has completed execution normally; no errors occurred. This is a terminal

state.

Deferred

The task was abnormally terminated as quickly as possible by the direction of the

supervisor, the active guardian or the planner. The task is known to be completely

repeatable from the beginning without damage to the workpieces or replacement of

the tools. This is a terminal state.

Paused

The task’s execution has been temporarily suspended at a checkpoint, pending some
external event or a message from the supervisor or the active guardian to resume the

task. This is a transitional state.

Terminated

The task was terminated at a checkpoint so that execution may continue at some later

point The state of the workpieces and tools involved in the task is known to be as

specified for completion of the checkpointed step. This is a terminal state.

Waiting for Guardian The task’s execution has been temporarily suspended, pending instructions from the

active guardian. This is a transitional state.

Waiting for Planner The task’s execution has been temporarily suspended, pending instructions from the

planner. This is a transitional state.

Table 7. Task-state Definitions

Valid transitions among the task-states are depicted in Figure 10. on page 45. The messages that

cause task-state transitions are many and their effects inter-related. As a result, the messages that

cause each transition are not shown.

6.22 Task Management States

A task-management-state further refines the notion of a task’s current state. The task-

management-state denotes that a task is in the process of switching from a transitional task-state

to either a terminal task-state or the Paused task-state. Valid task-management-states are:

• Aborting

• Deferring

• Normal (no transition is currently in-process)

• Pausing

• Terminating

Table 8. on page 45 defines the valid task-management-states.

6.3 Complex Data Objects Used in the Job Control Interface

In addition to the data objects described in Section 4 on page 24, there is only a single additional

complex data object used in the job control interface: the Task Status Object

The Task Status Object is a data object whi-h contains information describing a single task. It is

used to convey task status information between supervisory and subordinate job controllers
7

.

7. In addition, it is used to report information to a guardian through the guardian job control interface. See
Section 8.1.3 on page 75 for more information about its use in the guardian job control interface.

44

Figure 10. Task-state Transition Diagram

Task-management-

state
Definition

Aborting The job controller has received and is processing an Abort Task directive from either

the supervisor, the active guardian or the planner. It has not completed aborting the

task.

Deferring

The job controller has received and is processing a Defer Task directive from either

the supervisor, the active guardian or the planner. It has not completed deferring the

task.

Normal The job controller has received no directives from the supervisor, the active guardian

or the planner which affects the state of the task.

Pausing

The job controller has received and is processing a Pause Task or Pause All Tasks
directive from either the supervisor or the active guardian. It has not completed paus-

ing the task

Terminating

The job co.it. jller has received and is processing a Terminate Task or Terminate All

Tasks directive from either the supervisor, the active guardian or the planner. It has

not completed terminating the task.

Table 8. Task-management-state Definitions

45

The Task Status Object contains the following data elements:

task-state

task-management-state

late

execution-time: CHOICE OF{

start-time

completion-time

OR estimated-remaining-duration}

list of output-plan-parameter: Plan Parameter Object (CONDITIONAL)

The parameter list of output-plan-parameter is only specified in the Task Status Object if the

production plan associated with the task contains output plan parameters; otherwise it is empty.

6.4 Job Controller Administrative Requests

The job controller administrative requests are requests which a job controller may issue to the

supervisor or one of its subordinates to alter its administrative status or request/provide

information about its administrative status. The job controller administrative requests are:

• Activate

• Administrative Status

• Deactivate

• Emergency Stop

• Identify

Pause All Tasks

Report Administrative Status

Resume All Tasks

Terminate All Tasks

6.4.1 Activate

An Activate message is issued by a job controller to connect to and initialize a subordinate. The

parameters for both the Activate request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response

error: Error Object

A job controller wishing to activate one of its subordinates should issue it an Activate request

The Activate response-)- results in the connection being established. Table 9. details what a job

controller should do upon receiving an Activate request from the supervisor.

6.4.2 Administrative Status

An Administrative Status message is issued by a job controller to inform the supervisor of any

change in its administrative status. The Administrative Status message is an unconfirmed

message; it has no response. The parameters are as follows:

Parameters:

administrative-state

link-to-supervisor-status

46

Administrative State Action

Available

1. Upon receiving an Activate request, perform any internal initialization and switch

to the Active administrative state.

2. If the initialization fails or the job controller cannot switch to the Active adminis-

trative state, then issue an Activate response-. No further action is necessary.

3. Otherwise, issue an Activate response*.

4. K necessary, query the database to determine who the planner and subordinates

are.

5. Attempt to establish a connection to the planner.

6. Attempt to activate each subordinate by issuing an Activate request to each one.

7. If the job controller receives an Activate response- from any of its subordinates,

contact the active guardian and proceed according to its instructions.

Active,

Pausing,

Paused,

Terminating,

Terminated,

E-stopped

Receiving an Activate request while in the Active, Pausing, Paused, Terminating or

Terminated administrative state causes a connection to be established between the

receiving job controller and the supervisor. If the job controller already has a connec-

tion to the supervisor, this is a protocol violation; issue an Activate response-. Other-

wise, accept the connection by issuing an Activate response+.

Table 9. Semantics of the Job Controller Activate Message

An Administrative Status message should be issued any time one of the parameters in the

administrative status changes, (i.e., if the administrative state or the status of the connection

between the job controller and the supervisor has changed).

6.43 Deactivate

A Deactivate message is issued by a job controller to disconnect from and shut down a

subordinate The parameters for both the Deactivate request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A job controller wishing to deactivate one of its subordinates should issue it a Deactivate request

The Deactivate response- results in the connection being terminated. Table 10. details what a job

controller should do upon receiving a Deactivate request from the supervisor.

Administrative State Action

Available It is a protocol violation to receive a Deactivate request while in the Available admin-
istrative state. Issue a Deactivate response-.

Table 10. Semantics of the Job Controller Deactivate Message

47

Administrative State Action

Active,

Pausing,

Paused,

Terminating,

Terminated,

E-stopped

1. If the job controller has any outstanding tasks, issue a Deactivate response- and

continue executing the tasks. No further action is necessary.

2. If the job controller directly controls equipment, move any equipment to a safe

position and respond Deactivate response*. If the equipment cannot be moved to a

safe position, issue a Deactivate response-. No further action is necessary.

3. If the job controller has subordinates, issue a Deactivate response+. This will

result in the connection with the supervisor being released.

4. Issue Deactivate requests to each of its subordinates.

5. If any subordinate responds with Deactivate response-, contact the active guard-

ian and proceed according to its instructions.

6. If all subordinates respond with Deactivate response+, switch to the Available

administrative state.

7. The job controller is now ready to be halted.

Table 10. Semantics of the Job Controller Deactivate Message

6.4.4 Emergency Stop

An Emergency Stop message is issued by a job controller to a subordinate; it requests the

subordinate to immediately stop all physical activity. The Emergency Stop message is an

unconfirmed message; it has no response. There are no parameters to the Emergency Stop

message.

Table 11. details what a job controller should do upon receiving an Emergency Stop message from

the supervisor.

Administrative State Action

Available

It is a protocol violation to receive an Emergency Stop message while in the Avail-

able administrative state. Since this message does not have a response, no action is

necessary.

Active,

Pausing,

Paused,

Terminating,

Terminated

1. If the job controller has subordinates, issue Emergency Stop messages to each

subordinate.

2. If the job controller has any equipment directly under its control, abort all tasks

and move that equipment to a safe position.

3. Switch to the E-stopped administrative state.

4. Optionally, move any necessary internal data to local or global databases, discon-

nect from the supervisor and subordinates and halt

E-stopped Receiving an Emergency Stop message while in the E-stopped administrative state

has no affect on the job controller. Ignore the message.

Table 11. Semantics of the Emergency Stop Message

6.4.5 Identify

An Identify message is issued by a job controller to determine the characteristics of a subordinate.

The parameters for both the Identify request and its response are as follows:

Parameters on Request:

<none>

Parameters on Response:

make
model

version

level

48

A job controller wishing to know the characteristics of one of its subordinates should issue that

subordinate an Identify request. Upon receiving an Identify request from the supervisor, a job

controller should issue an Identify response, specifying the make, model and version of the job

controller, what level of job controller it is (shop, workcell, or equipment level) and any vendor

extensions that are supported.

6.4.6 Pause AH Tasks

A Pause All Tasks message is issued by a job controller to a subordinate; it requests the

subordinate to switch to the Pausing (and eventually to the Paused) administrative state and to

suspend the execution of all outstanding tasks. The parameters for both the Pause All Tasks

request and its responses are as follows:

Parameters on Request:

time-frame: CHOICE OF{

desired-pausing-duration

OR as-soon-as-possible}

expected-paused-duration

Parameters on Response+:

estimated-pausing-duration

Parameters on Response-

error: Error Object

estimated-pausing-duration (CONDITIONAL)

If a job controller issues a Pause All Tasks response-, the conditional parameter estimated-

pausing-duration is specified if the reason for rejecting the request is that all activity cannot be

paused within the requested desired-pausing-duration.

The purpose of this message is to temporarily halt all activity within a subordinate subsystem

such that neither the equipment nor any of the tasks’ workpieces are damaged. The intention is

that the execution of the suspended tasks will either be resumed or terminated at some point in the

future. A job controller wishing to pause a subordinate subsystem should issue the subordinate a

Pause All Tasks request The job controller may specify either a time interval within which the

subordinate should suspend all activity (parameter desired-pausing-duration), or that all activity

should be paused as soon as possible. In addition, the job controller will estimate how long it

expects the subordinate subsystem will remain paused (parameter expected-paused-duration).

This parameter is specified so that the subordinate may adjust its scheduled to accommodate

suspending all activity. Table 12. details what a job controller should do upon receiving a Pause

All Tasks request from the supervisor.

Administrative

State
Action

Available,

E-stopped

h is a protocol violation to receive a Pause All Tasks request while in the Available or E-

ropped administrative state.

Table 12. Semantics of the Pause All Tasks Message

49

Administrative

State
Action

Active,

Pausing

1. Switch to the Pausing administrative state.

2. Examine each currently executing task. For each currently executing task do the following:

(a) If the task is in a terminal state (Aborted, Deferred, Completed.or Terminated) or if the

task’s management state is Aborting, Deferring or Terminating, then no action is necessary

to pause that task.

(b) Identify the nearest checkpoint for each remaining task and determine the earliest-paus-

ing-time for each task. The earliest-pausing-time is the earliest time in which that task’s

execution can reach the identified checkpoint.

3. Determine the earliest time in which all tasks can be paused (the maximum earliest-paus-

ing-time of all tasks), denoted earliest-pause-all-time.

4. If the job controller is at the equipment level, the job controller should;

(a) If the Pause All Tasks request was issued with the parameter as-soon-as-possible, issue

a Pause All Tasks response+ with an estimated-pausing-duration of the earliest-pause-all-

time.

(b) If the Pause All Tasks request was issued with the parameter desired-pausing-duration

and the earliest-pause-all-time is within that desired-pausing-duration, issue a Pause All

Tasks response+ with an estimated-pausing-duration of the earliest-pause-all-time.

(c) Otherwise, issue a Pause All Tasks response- with an estimated-pausing-duration of the

earliest-pause-all-time, and switch to the Active administrative state. Continue execution of

the sole outstanding task. No further action is necessary.

(d) Continue executing the sole task until its identified checkpoint is reached. Suspend exe-

cution of the task, switch the task to the Paused task-state.

(e) After the sole task is either in a terminal task-state or in the Paused task-state, switch to

the Paused administrative state and issue an Administrative Status message.

5. If the job controller has subordinates, the job controller should:

(a) If the Pause All Tasks request was issued with the parameter as-soon-as-possible, issue

a Pause All Tasks response+ with an estimated-pausing-duration of the earliest-pause-all-

time and then do the following:

Issue Pause All Tasks requests to each of its subordinates so that its subordinates will

pause all activity as soon as possible.

After all subordinates issue a Pause All Tasks response-t- continue executing each task

until its identified checkpoint is reached (either by the workcell job controller or its subordi-

nates reporting that the task is Paused). Switch the task to the Paused task-state.

After all tasks are in the Paused task-state and all subordinates are in the Paused admin-
istrative state, switch to the Paused administrative state and issue an Administrative Status

message.
(b) If the Pause All Tasks request was issued with the parameter desired-pausing-duration

and the earliest-pause-all-time is within that desired-pausing-duration, issue a Pause All

Tasks response+ with an estimated-pausing-duration of the earliest-pause-all-time.

Continue executing each task until its identified checkpoint is reached. Switch the task

to the Paused task-state. After all tasks are in the Paused task-state, switch to the Paused
administrative state and issue an Administrative Status message.
(c) If the Pause All Tasks request was issued with the parameter desired-pausing-duration

and the earliest-pause-all-time is not within the desired-pausing-duration, then:

Issue Pause All Tasks requests to each of its subordinates to determine if all of its subor-

dinates can pause their tasks within the desired-pausing-duration.

If any subordinate issues a Pause All Tasks response-, then issue a Pause All Tasks
response- to the supervisor with the longest estimated-pausing-duration received from its

subordinates or the earliest-pause-all-time it calculated earlier. Issue Resume All Tasks

requests to all subordinates who responded positively to the Pause All Tasks requests.

Switch back to the Active administrative state. Continue execution of all tasks. No further

action is necessary.

If all subordinates issue a Pause All Tasks response+ then issue a Pause All Tasks
responses- to the supervisor with the longest estimated-pausing-duration received from its

subordinates. Continue executing each task until its identified checkpoint is reached (either

by the workcell job controller or its subordinates reporting that the task is Paused). Switch
the task to the Paused task-state.

After all tasks are in the Paused task-state and all subordinates are in the Paused admin-
istrative state, switch to the Paused administrative state.

6. Continue to monitor the estimated-completion-time of each task to determine if it becomes
late by using the expected-pause-duration specified in the Pause All Tasks request

Table 12. Semantics of the Pause All Tasks Message

50

Administrative

State
Action

Paused

When a job controller receives a Pause All Tasks request while in the Paused administrative

state, it should update its information concerning when it is expected to continue executing its

outstanding tasks (based upon the parameter expected-pause-duration). The job controller

should issue a Pause All Tasks response+ with an estimated-pausing-duration of 0. It should

continue to monitor the estimated-completion-time for each task to determine if it becomes
late. It should use the newly received expected-pause-duration to determine if tasks are late.

Terminating,

Terminated,

E-stopped

It is a protocol violation to receive a Pause All Tasks request while in the Terminating, Termi-

nated or E-stopped administrative state.

Table 12. Semantics of the Pause All Tasks Message

6.4.7 Report Administrative Status

The Report Administrative Status message is issued by a job controller to request administrative

status information from a subordinate. The parameters for both the Report Administrative Status

request and its response are as follows:

Parameters on Request:

<none>

Parameters on Response:

administrative-state

link-to-supervisor-status

A job controller wishing to receive updated administrative status from one of its subordinates

should issue it a Report Administrative Status request Upon receiving a Report Administrative

Status request from the supervisor, a job controller should issue a Report Administrative Status

response specifying its current administrative state and the current state of the connection

between itself and the supervisor.

6.4.8 Resume All Tasks

A Resume All Tasks message is issued by a job controller to a subordinate; it requests the

subordinate to switch from the Pausing, Paused or Terminated administrative state to the Active

administrative state and resume the execution of all outstanding tasks. The parameters for both the

Resume All Tasks request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

The purpose of this message is to resume the activity of a subordinate subsystem which has

previously been issued a Pause All Tasks or Terminate All Tasks request A job controller wishing

to resume the activity of a subordinate subsystem should issue the subordinate a Resume All

Tasks request. Table 13. on page 52 details what a job controller should do upon receiving a

Resume All Tasks request from the supervisor.

51

Administrative State Action

Available,

E-stopped

It is a protocol violation to receive a Resume All Tasks while in the Available or E-

stopped administrative state.

Active

1. Issue a Resume All Tasks response+ to the supervisor.

2. If the job controller has subordinates, issue a Resume All Tasks request to each

subordinate.

Pausing,

Paused

1. Switch to the Active administrative state.

2. Issue a Resume All Tasks response+ to the supervisor.

3. If the job controller has subordinates, issue a Resume All Tasks request to each

subordinate.

4. For each task that is in the Paused task-state and the Normal task-management-

state, switch the task to the Active task-state. Resume the execution of these outstand-

ing tasks.

Terminating It is a protocol violation to receive a Resume All Tasks while in the Terminating

administrative state.

Terminated

1. Switch to the Active administrative state.

2. Issue a Resume All Tasks response-t- to the supervisor.

3. If the job controller has subordinates, issue a Resume All Tasks request to each

subordinate.

4. Resume the execution of new tasks.
;

Table 13. Semantics of the Resume All Tasks Message

6.4.9 Terminate All Tasks

A Terminate All Tasks message is issued by a job controller to a subordinate; it requests the

subordinate to switch to the Terminating (and eventually to the Terminated) administrative state,

to indefinitely suspend the execution of all outstanding tasks and to no longer accept Execute Task

requests. The parameters for both the Terminate All Tasks request and its responses are as

follows;

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A job controller wishing to terminate the activity of a subordinate should issue it a Terminate All

Tasks request. Table 14. details what a job controller should do upon receiving a Terminate All

Tasks request from the supervisor.

Administrative State Action

Available,

Active,

Pausing,

E-stopped

It is a protocol violation to receive a Terminate All Tasks request while in the Avail-

able, Active, Pausing or E-stopped administrative state.

Table 14. Semantics of i e Job Contro Terminate All Tasks Message

/

52

Administrative State Action

Paused

1. Switch to the Terminating administrative state.

2. Issue a Terminate All Tasks response+ to the supervisor.

3. If the job controller is at the equipment level and the sole task is in the Paused
task-state, then do the following:

Abort the task according to internal procedures.

Switch the task to the Terminated task-state and issue a Plan Finished request to

the planner.

Switch to the Terminated administrative state.

4. If the job controller is at the equipment level and there is no outstanding task or

the sole task is not in the Paused task-state (then it must be in a terminal task-state),

switch to the Terminated administrative state. Issue an Administrative Status message
to the supervisor.

5. If the job controller has subordinates, issue a Terminate All Tasks request to each

subordinate. For each task that is in the Paused task-state, do the following:

Abort any local subtasks according to internal procedures.

After all subtasks have been terminated (either by the workcell or some subordi-

nate), switch the task to the Terminated task-state and issue a Plan Finished request to

the planner.

After receiving an Administrative Status message from each subordinate advertis-

ing a Terminated administrative state, switch to the Terminated administrative state

and issue an Administrative Status message to the supervisor.

Terminating,

Terminated

Receiving a Terminate All Tasks request while in the Terminating or Terminated

administrative state will have no affect on the internal state of the job controller. Issue

a Terminate All Tasks response-*-.

Tiible 14. Semantics of the Job Controller Terminate All Tasks Message

6.5 Task Requests Issued By A Supervising Job Controller

Task Requests are requests which a job controller may issue to either the supervisor or one of its

subordinates to perforn some action to a task or to obtain information about a set of tasks. This

section presents the task requests which a job controller may issue to one of its subordinates:

• Abort Task • Report Tasks

• Defer Task • Resume Task

• Execute Task • Terminate Task

• Pause Task .

These requests may not be issued to a subordinate job controller which is in the Available or E-

stopped administrative state. If a subordinate job controller receives one of these requests while in

the Available or E-stopped administrative state, the request should be ignored and an

Administrative Status message should be issued to the supervisor.

6.5.1 Abort Task

An Abort Task message is issued by a job controller to a subordinate; it requests that a specified

subordinate task be aborted. When aborting a task, no consideration is given to preserving the

state of the workpiece or possibly even the replaceable tools; the only concern is not to damage

the equipment The parameters for both the Abort Task request and its responses are as follows:

Parameters on Request:

subordinate-task-identifier

Parameters on Response+:

supervisor-task-identifier

53

Parameters on Response-:

supervisor-task-identifier

error: Error Object

Task Status Object (CONDITIONAL)

If a job controller issues an Abort Task response-, the conditional parameter Task Status Object is

specified if it contains information related to rejecting the request.

A job controller wishing to abort one of its subtasks should issue an Abort Task request to the

subordinate whose task corresponds to the job controller’s subtask.

Upon receiving an Abort Task request from the supervisor, the job controller should perform the

following steps:

1. If the job controller’s administrative state is Terminated, issue an Abort Task

response- No further action is necessary.

2. If the specified task is an invalid task, issue an Abort Task response-. No further action

is necessary.

3. If the specified task is in the Aborted task-state, issue an Abort Task response-*- to the

supervisor.

4. If the specified task is in some other terminal task-state, issue a Task Status message to

the supervisor specifying its terminal state and then issue an Abort Task response- to

the supervisor. No further action is necessary.

5. If the specified task’s management state is Aborting, proceed to step 10.

6. Otherwise, set the specified task’s management state to Aborting.

7. If the Abort Task request invalidates any outstanding requests for the specified task,

respond negatively to those outstanding requests. If the Abort Task request invalidates

any requests that the job controller has issued, then cancel those requests.

8. If the job controller is at the equipment level, abort the task according to internal pro-

cedures.

9. If the job cor oiler has subordinates, issue Abort Task requests to each subordinate

with subtasks in support of the specified task and wait for responses.

If any subordinate responds with an Abort Task response-, issue an Abort Task
response- to the supervisor and contact the active guardian. Proceed according to the

active guardian’s instructions.

If all subordinates respond with Abort Task responses+, then the task has been suc-

cessfully aborted.

10. After the task is aborted, switch the task into the Aborted task-state and clear the task’s

management state.

1 1 . Issue a Plan Finished request to the planner.

12. Issue an Abort Task response+ to the supervisor.

6.52 Defer Task

A Defer Task message is issued by a job controller to a subordinate; it requests that a specified

subordinate task be deferred. A task may be deferred if it is completely repeatable, from the

beginning, without damage to the workpiece(s). The parameters for both the Defer Task request

and i s responses are as follows:

54

Parameters on Request:

subordinate-task-identifier

Parameters on Response+:

supervisor-task-identifier

Parameters on Response-:

supervisor-task-identifier

error: Error Object

Task Status Object (CONDITIONAL)

If a job controller issues a Defer Task response- the conditional parameter Task Status Object is

specified if it contains information related to rejecting the request.

o

A job controller wishing to defer one of its subtasks should issue a Defer Task request to the

subordinate whose task corresponds to the job controller’s subtask.

Upon receiving a Defer Task request from the supervisor, the job controller should perform the

following steps:

1. If the job controller’s administrative state is Terminating or Terminated, issue a Defer

Task response- No further action is necessary.

2. If the specified task is an invalid task, issue a Defer Task response- No further action

is necessary.

3. If the specified task is in the Deferred task-state, issue a Defer Task response+. No fur-

ther action is necessary.

4. If the specified task is in some other terminal task-state, issue a Task Status message to

the supervisor specifying its terminal state and then issue a Defer Task response- to

the supervisor. No further action is necessary.

5. If the specified task’s management state is Aborting or Terminating, issue a Defer Task
response- No further action is necessary.

6. If the specified task’s management state is Deferring, proceed to step 11.

7. Otherwise, set the task’s management state to Deferring.

8. A Defer Task request will invalidate any received or issued Pause Task requests. If any
such request was received, issue a response-. If any such requests were issued, cancel

them.

9. If the job controller is at the equipment level, abort the task according to internal pro-

cedures.

10. If the job controller has subordinates, then do the following:

(a) Abort any locally executing subtasks according to internal procedures.

(b) Pause each subtask which is being executed by a subordinate (see Section 6.5.4 on
page 57).

(c) After all subtasks are paused. Terminate each subtask which is being executed by a

subordinate (see Section 6.5.7 on page 61).

(d) If any subtask cannot be paused or terminated, issue a Defer Task response- to the

supervisor and contact the active guardian for assistance. Proceed according to its

instructions.

8. It is unlikely that a job controller will have the intelligence to determine whether or not a task or subtask is

deferrable. It is expected that the active guardian will instruct a job controller to defer a task,.

55

(e) After all locally executing subtasks are aborted and all subtasks executed by subor-

dinates have been terminated, the task is deferred.

11. After the task is deferred, switch the task into the Deferred task-state and set the task’s

management state to Normal.

12. Issue a Plan Finished request to the planner.

13. Issue a Defer Task response-t- to the supervisor.

6.5.3 Execute Task

An Execute Task message is issued by a job controller to a subordinate; it requests the creation

and execution of a new task. The parameters for both the Execute Task request and its responses

are as follows:

Parameters on Request:

supervisor-task-identifier

production-plan: Plan Identifier Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)

Parameters on Responses:

supervisor-task-identifier

subordinate-task-identifier

Parameters on Response-:

supervisor-task-identifier

error: Error Object

A job controller wishing to begin the execution of one of its subtasks which is scheduled to be

executed by a subordinate should issue an Execute Task request to that subordinate. The job

controller specifies a local identifier for the task, the production plan to be executed (parameters

production-plan-identifier and production-plan-version) and any input plan parameters that the

production plan may require.

If the subordinate job controller issues an Execute Task response-i-, it will specify a local identifier

for that task. In all future communications regarding this task, the supervisor will always provide

the subordinate’s local identifier for the task (subordinate-task-identifier) and the subordinate will

always provide the supervisor’s local identifier for the task (supervisor-task-identifier).

Upon receiving an Execute Task request from the supervisor, the job controller should perform

the following steps:

1. If the job controller’s administrative state is Terminating or Terminated, issue an Exe-
cute Task response-. No further action is necessary.

2. If the specified task already exists (i.e., the supervisor-task-id is identical to a currently

outstanding task), issue an Execute Task response-. No further action is necessary.

3. Validate the specified production plan. If it is invalid, issue an Execute Task response-
No further action is necessary.

4. Issue an Execute Task response-i-.

5. If the job controller’s administrative state is Active, then do the following:

(a) Create a new task with a task-state of Active and a task-management state of Nor-
mal.

(b) Execute the task according to the steps in the production plan and the job control-

ler’s internal task execution algorithms.

56

6. If the job controller’s administrative state is Pausing or Paused, then do the following:

(a) Create a new task with a task-state of Active and a task-management-state of Paus-

ing.

(b) If the task can be paused (i.e., a checkpoint can be reached) without the movement
of any equipment (assuming that any request to a subordinate implies equipment

movement), then execute the task until a checkpoint is reached and then switch the

task to the Paused task-state. No further action is necessary.

(c) If the task cannot be paused without performing manufacturing steps, then switch

the subtask to the Waiting for Guardian task-state and contact the active guardian. Pro-

ceed according to the active guardian’s instructions.

6.5.4 Pause Task

A Pause Task message is issued by a job controller to a subordinate; it requests a specified

subordinate task’s execution to be suspended. The parameters for both the Pause Task request and

its responses are as follows:

Parameters on Request:

subordinate-task-identifier

time-frame: CHOICE OF {

desired-pausing-duration

OR as-soon-as-possible

}

expected-paused-duration

Parameters on Response+:

supervisor-task-identifier

estimated-pausing-duration

Parameters on Response-:

supervisor-task-identifier

error: Error Object

estimated-pausing-duration (CONDITIONAL)
Task Status Object (CONDITIONAL)

If a job controller issues a Pause Task response-, the conditional parameter estimated-pausing-

duration is specified if the reason for rejecting the request is because the specified task cannot be

paused within the requested desired-pausing-duration. The conditional parameter Task Status

Object is specified if it contains information related to rejecting the request

A job controller wishing to suspend the execution of one of its subtasks should issue a Pause Task

request to the subordinate whose task corresponds to the job controller’s subtask. The job

controller may specify either a time interval within which its subtask should reach the paused

task-state (parameter desired-pausing-duration), or that its subtask should be paused as soon as

possible. In addition, the job controller will estimate how long its subtask’s execution is expected

to be suspended (parameter expected-paused-duration). This parameter is specified so that the

subordinate may adjust its schedule to accommodate the suspended execution.

Upon receiving a Pause Task request from the supervisor, a job controller should perform the

following steps:

1. If the job controller’s administrative state is Terminating or Terminated, issue a Pause

Task response-. No further action is necessary.

57

2. If the specified task is an invalid task, issue a Pause Task response-. No further action

is necessary.

3. If the specified task is in a terminal task-state (Aborted, Deferred, Completed or Ter-

minated) or if the task’s management state is Aborting, Deferring or Terminating, then

issue a Pause Task response- No further action is necessary.

4. If the job controller’s administrative state is Paused, then do the following:

(a) Update the information associated with that task specifying when it is expected to

continue executing that task (based upon the parameter expected-pause-duration).

(b) Continue to monitor the estimated-completion-time of the task to determine if it

becomes late. Use the newly received expected-pause-duration to determine if it

becomes late.

5. If the job controller’s administrative state is Active or Pausing, then do the following:

(a) Set the specified task’s management state to Pausing.

(b) Identify the nearest future checkpoint for the specified task and determine the ear-

liest time in which it can pause the task (denoted ‘earliest-pausing-time’).

(c) If the job controller has no subordinates or the specified task does not involve any

subordinates, it should:

» If the Pause Task request was issued with the parameter as-soon-as-possible,

issue a Pause Task response+ with an estimated-pausing-duration of the earliest-

pausing-time.

» If the Pause Task request was issued with the parameter desired-pausing-dura-

tion and the earliest-pausing-time is within that desired-pausing-duration, issue a

Pause Task response+ with an estimated-pausing-duration of the earliest-pausing-

time.

» Otherwise, issue a Pause Task response- with an estimated-pausing-duration of

the earliest-pausing-time, clear the task’s management state and continue execu-

tion of the task. No further action is necessary.

» Continue execution of the task until the identified checkpoint is reached, and
then suspend execution of the task, switch the task to the Paused task-state and
clear the task’s management state.

(d) If the job controller has subordinates, it should:

» If the Pause Task request was issued with the parameter as-soon-as-possible,

then issue a Pause Task response+ with an estimated-pausing-duration of the earli-

est-pausing-time. Then do the following:

»> Issue Pause Task requests to each subordinate that is executing a subtask

in support of that task in order to pause the task as soon as possible.

»> Continue execution of the task until the identified checkpoint(s) are

reached (either by this job controller or its subordinates reporting Paused), then

switch the task to the Paused task-state and clear the task’s management state.

Issue a Task Status message to the supervisor.

» If the Pause Task request was issued with the parameter desired-pausing-dura-

tion and the earliest-pausing-time is within that desired-pausing-duration, then

issue a Pause Task response+ with an estimated-pausing-duration of the earliest-

pausing-time. The do the following:

»> Continue execution of the task until the identified checkpoint(s) are

reached, then switch the task to the Paused task-state and clear the task’s man-
agement state. Issue a Task Status message to the supervisor.

» If the Pause Task request was issued with the parameter desired-pausing-dura-

tion and the earliest-pausing-time is not within that desired-pausing-duration, then

do the following:

58

»> Issue Pause Task requests to each subordinate that is executing a subtask

in support of that task to determine if all subordinates can pause their tasks

within the desired-pausing-duration.

»> If all of the involved subordinates issue Pause Task response-*-, then the

job controller should issue a Pause Task response+ to the supervisor with the

longest estimated-pausing-duration (received by a subordinate or determined

locally).

»> If all of the subordinates that responded with Pause Task response- speci-

fied an estimated-pausing-duration (i.e., more time is required to pause the

task), the job controller should issue a Pause Task response- to the supervisor

with the longest estimated-pausing-duration (received by a subordinate or

determined locally), issue Resume Task requests to all subordinates who
responded positively to the Pause Task requests, clear the task’s management
state and continue execution of the task. No further action is necessary.

»> If any subordinate responded Pause Task response- for any other reason,

then the job controller should issue a Pause Task response- to the supervisor,

issue Resume Task requests to all subordinates who responded positively, clear

the task’s management state and continue execution of the task. No further

action is necessary.

»> Continue execution of the task until the identified checkpoint(s) are

reached (either by the workcell job controller or its subordinates reporting

Paused), then switch the task to the Paused task-state and clear the task’s man-
agement state.

(e) Continue to monitor the estimated-completion-time of the task to determine if it

becomes late by using the expected-pause-duration specified in the Pause Task
request

6.5.5 Report Tasks

A Report Tasks message is issued by a job controller to a subordinate; it requests status

information to be reported on a set of specified subordinate tasks. The parameters for both the

Report Tasks request and its response are as follows:

Parameters on Request:

.asks: CHOICE OF {

list of subordinate-task-identifier

OR All-Tasks)

Parameters on Response:

list of [

subordinate-task-identifier

supervisor-task-identifier

status: CHOICE OF{
error: Error Object

OR status: Task Status Object)

] (CONDITIONAL)

If a job controller issues a Report Tasks request and it wishes to receive status on all outstanding

tasks, All-Tasks is specified. If All-Tasks is specified in a Report Tasks request and a job

controller does not currently have any outstanding tasks, then the Report Tasks response has an

empty list

59

A job controller wishing to receive updated status for a collection of its subtasks should issue a

Report Tasks request to each of its subordinates whose tasks correspond to the job controller’s

subtasks.

Upon receiving a Report Tasks request from the supervisor, the job controller should perform the

following steps:

1. If the Report Tasks request specified All-Tasks, then for each outstanding task, collect

the supervisor-task-identifier, local-task-identifier, and Task Status Object information,

and issue a Report Tasks response.

2. If the Report Tasks request specified a list of tasks, for each invalid local-task-identi-

fier in the list of tasks, specify the error-code of invalid task identifier. For each valid

local-task-identifier in the list of tasks, collect the supervisor-task-identifier, local-task-

identifier and Task Status Object information. Issue a Report Tasks response which

includes the error information for invalid tasks and the task status information for

valid tasks.

6.5.6 Resume Task

A Resume Task message is issued by a job controller to a subordinate; it requests a suspended

subordinate task’s execution to continue. The parameters for both the Resume Task request and its

responses are as follows:

Parameters on Request:

subordinate-task-identifier

Parameters on Response+:

supervisor-task-identifier

Parameters on Response-:

supervisor-task-identifier

error: Error Object

Task Status Object (CONDITIONAL)

If a job controller issues a Resume Task response-, the conditional parameter Task Status Object

is specified if it contains information related to rejecting the request.

A job controller wishing to resume the execution of one of its subtasks should issue a Resume

Task request to the subordinate whose task corresponds to the job controller’s subtask.

Upon receiving a Resume Task request from the supervisor, the job controller should perform the

following steps:

1. If the job controller’s administrative state is Terminating or Terminated, issue a

Resume Task response-. No further action is necessary.

2. If the specified task is an invalid task, issue a Resume Task response- No further

action is necessary.

3. If the specified task is in a terminal task-state (Aborted, Deferred, Completed or Ter-

minated) or the task’s management state is Aborting, Deferring or Terminating, issue a

Resume Task response- No further action is necessary.

4. If the job controller’s administrative state is Active or Pausing, then do the following:

(a) If the specified task’s state is not Active, switch it to the Active task-state. Set the

task-management-state to Normal.

(b) Issue a Resume Task response-h

60

(c) Resume the execution of local subtasks supporting the task, switching each to the

Active task-state and setting its task-management-state to Normal.

(d) If the job controller has subordinates supporting the task, then for each subtask in

execution by a subordinate, issue that subordinate a Resume Task request. If any sub-

ordinate responds with Resume Task response-, contact the active guardian and pro-

ceed according to its instructions.

5.

If the job controller’s administrative state is Paused, then do the following:

(a) Switch to the Pausing administrative state.

(b) Proceed according to step 4.

6.5.7 Terminate Task

A Terminate Task message is issued by a job controller to a subordinate; it requests a specified

subordinate task’s execution to be indefinitely suspended. The parameters for both the Terminate

Task request and its responses are as follows:

Parameters on Request:

subordinate-task-identifier

Parameters on Responses:

supervisor-task-identifier

Parameters on Response

supervisor-task-identifier

error: Error Object

Task Status Object (CONDITIONAL)

If a job controller issues a Terminate Task response- the conditional parameter Task Status

Object is specified if it contains information related to rejecting the request.

A job controller wishing to terminate one of its subtasks should issue a Terminate Task request to

the subordinate whose task corresponds to the job controller’s subtask.

Upon receiving a Terminate Task request from the supervisor, the job controller should perform

the following steps:

.

1. If the specified task is an invalid task, issue a Terminate Task response-. No further

action is necessary.

2. If the specified task is in the Terminated task-state, issue a Terminate Task response+.

No further action is necessary.

3. If the specified task is in some other terminal task-state, issue a Task Status message to

the supervisor specifying its terminal state and then issue a Terminate Task response-

to the supervisor. No further action is necessary.

4. If the specified task is not currently in the Paused task-state or the task-management-

state is Aborting or Deferring, the task cannot be terminated; issue a Terminate Task

response-. No further action is necessary.

5. If the specified task’s management state is Terminating, proceed to step 9.

6. Otherwise, set the task-management-state to Terminating.

7. If the job controller is at the equipment level, abort the task according to internal pro-

cedures. Issue a Terminate Task response+.

61

8. If the job controller has subordinates, then abort tiny local subtasks and issue Termi-

nate Task requests to all subordinates with subtasks in support of the specified task,

and wait for responses.

(a) If any subordinate responds with a Terminate Task response- for a reason other

than the task being in the Completed or Terminated task-state, then do the following:

» If a subordinate task is in the Aborted task-state, issue a Terminate Task

response- No further action is necessary.

» Otherwise, contact the active guardian. Proceed according to the active guard-

ian’s instructions.

(b) If all subordinates respond with Terminate Task responses-i- or if all subordinates

that respond with Terminate Task response- do so because the task is already in the

Completed or Terminated task-state, then the task has been successfully terminated.

9. After the task is terminated, mark all Executing or Not-Yet-Executing steps in the pro-

duction plan as Scheduled, switch the task into the Terminated task-state and clear the

task-management-state.

10. Issue a Task Status message to the supervisor.

11. Issue a Plan Finished request to the planner.

6.6 Task Requests Issued By A Subordinate Job Controller

Task Requests are requests which a job controller may issue to either the supervisor or one of its

subordinates to perform some action to a task or to obtain information about a set of tasks. This

section presents the task requests which a job controller may issue to the supervisor: Task Status.

This request may not be issued to the supervisor if the job controller is in the Available or E-

stopped administrative state. If a supervising job controller receives a Task Status request from a

subordinate which is in the Available or E-stopped administrative state, the request should be

ignored.

6.6.1 Task Status

A Task Status message is issued by a job controller to inform the supervisor of the current status

of a task. The Task Status message is an unconfirmed message; it has no response. The parameters

are as follows:

Parameters:

supervisor-task-identifier

Task Status Object

A Task Status message should be issued any time one of the parameters in the task’s status

changes (i.e., if any of the parameters of the Task Status Object have changed).

/

62

7 Planning To Job Control Interface

Due to the close relationship and frequent need for interaction between a job controller and the

planner, a special interface is specified to support task completion and error recovery. Due to the

nature of the planning-to-job-control interface, most messages are initiated by the job controller.

7.1 Job Controller Initiated Messages

There are three types of messages supported by the planning-to-job-control interface: connection-

management messages, execution-related messages and error-related messages.

The connection-management messages are:

• Connect

• Disconnect

The execution-related messages are:

• Plan Executing

• Plan Finished

The error-related messages are:

• Replan Aborted Step

• Replan Deferred Step

• Replan Late Plan

• Replan Late Step

• Replan Terminated Step

It is invalid for a planner to receive an execution-related or error-related message from a job

controller while in the Available administrative state. If a planner does receive one of these

messages while in the Available administrative state, the message should be ignored.

The dialogues and actions which occur between a job controller and the planner in any error-

related dialogue are similar:

A job controller encounters a situation with a task which requires rescheduling. It issues a

request to the planner to reschedule the production plan associated with the offending task.

The planner attempts (and perhaps succeeds) to modify the production plan and responds

to the job controller with an action which affects the disposition of the task. The job con-

troller carries out the instructed action.

There are several valid actions that a planner may instruct the job controller to perform: abort the

task, defer the task, terminate the task, or retry executing the task according to a modified

production plan.

The reaminder of this section discusses the complex interactions between a job controller and

planner, and is structured as follows. First, there is a discussion of the connection-management

and execution-related messages. Next, there is a discussion of the error-related messages,

including a description of the circumstances which cause a job controller to issue each message,

the planner actions upon receiving each message, and the planner’s response to the job controller.

Finally, there is a discussion of what a job controller does as a result of receiving a response from

the planner for each valid action (i.e., abort the task, defer the task, terminate the task, or retry

executing the task according to a modified production plan).

63

7.1.1 Connect

A Connect message is issued by a job controller to the planner to establish a connection via the

planning-to-job-control interface. This is the first message a job controller may issue to the

planner; the connection must be established before issuing any other messages. The parameters

for both the Connect request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response

error: Error Object

A planner which receives a Connect request should determine if it is capable of accepting the

connection request, and if so, issue a Connect response+. The Connect response+ results in the

connection being established. A planner may reject a Connect request because it is not in the

Active administrative state or because the job controller requesting a connection is not a job

controller for which the receiving planner plans.

7.1.2 Disconnect

A Disconnect message is issued by a job controller to the planner to terminate a connection which

is currently established via the planning-to-job-control interface. This is the last message a job

controller may issue the planner without re-establishing a connection. The parameters for both the

Disconnect request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A planner which receives a Disconnect request should determine if it should terminate the

connection, and if so, issue a Disconnect response-!-. The Disconnect response-!- results in the

connection being terminated. In general, the primary reason for rejecting a Disconnect request is

that the planner has outstanding requests from the job controller.

7.13 Plan Executing

A Plan Executing message is issued by a job controller to inform the planner that a production

plan has begun execution. The Plan Executing message is an unconfirmed message; it has no

response. The parameters are as follows:

Parameters:

production-plan: Plan Identifier Object

If a planner receives a Plan Executing messag which specifies an invalid plan, it should ignore

the message. Otherwise, it should switch the covenant that corresponds to that production plan to

the Executing covenant-state and issue a Covenant Status message to the supervisor. Once a

64

covenant has entered the Executing covenant-state, the planner may no longer alter the covenant;

all discrepancies and errors associated with that covenant are reported via the job controllers.

7.1.4 Plan Finished

A Plan Finished message is issued by a job controller to inform the planner that a production plan

has completed execution. The parameters for both the Plan Finished request and its response are

as follows:

Parameters on Request:

production-plan: Plan Identifier Object

plan-state

local-task-identifier

Parameters on Response:

local-task-identifier

If a planner receives a Plan Finished request and the plan is invalid or the specified plan-state is

Not-Yet-Executing or Executing, the planner should ignore the request and issue a Plan Finished

response. If the plan-state is Aborted, Completed or Deferred, discard the production plan and its

corresponding covenant. If the plan-state is Terminated, discard only the covenant that

corresponds to the production plan; save the production plan because it is needed in order to

reschedule remaining unexecuted steps in the production plan. In the case of Aborted, Deferred

or Terminated, deleting the covenant may involve issuing Remove Covenants requests to

subordinates for the unexecuted subcovenants. Issue a Plan Finished response only after

completing the previous steps.

7.1.5 Replan Aborted Step

A Replan Aborted Step message is issued by a job controller to the planner if one of its subtasks

has been unexpectedly aborted and the step needs to be replanned. In general, this will occur if a

job controller -eceives a Task Status message from one of its subordinates specifying that a

subtask has been Aborted and the job controller did not instruct its subordinate to Abort the

subtask. In such cases, th“ job controller will switch the specified task to the Waiting for Planner

task-state and iss “ a Re .ian Aborted Step request to the planner specifying the production plan

and the step whicr. was aborted. The parameters for both the Replan Aborted Step request and its

responses are as follows:

Parameters on Request:

production-plan: Plan Identifier Object

step-identifier

local-task-identifier

Parameters on Response+:

local-task-identifier

action € {Abort Task, Defer Task, Resume, Terminate Task}

Parameters on Response-:

local-task-identifier

error: Error Object

Upon receiving a Replan Aborted Step request from the job controller, the planner should perform

the following steps:

65

1. If the specified production plan or step is invalid, issue a Replan Aborted Step

response- No further action is necessary.

2. If the planner can modify the plan to recover from the anomaly, it should do so and do

one of the following:

(a) Issue a Replan Aborted Step response+ with action ‘Resume’. This is issued if the

job controller can continue execution of the task according to the modified production

plan at the place where it encountered an aborted subtask. No further action is neces-

sary.

(b) Issue Replan Aborted Step response-i- with action ‘Defer Task’. This is issued if the

planner’s recovery from the anomaly requires the job controller to start the task from

the beginning again. This will require rescheduling, so the job controller is requested

to defer the task. No further action is necessary.

3. If the planner cannot modify the production plan to recover from the anomaly and the

workpiece(s) are affected or the task’s execution cannot continue until a checkpoint is

reached, then the planner should issue a Replan Aborted Step response-i- with action

‘Abort Task’. No further action is necessary.

4. Otherwise, the planner should issue a Replan Aborted Step response-i- with action

‘Terminate Task’.

7.1.6 Replan Deferred Step

A Replan Deferred Step message is issued by a job controller to the planner if one of its subtasks

has been unexpectedly deferred and the step needs to be replanned. In general, this will occur if a

job controller receives a Task Status message from one of its subordinates specifying that a

subtask has been Deferred and the job controller did not instruct its subordinate to Defer the

subtask. In such cases, the job controller will switch the specified task to the Waiting for Planner

task-state and issue a Replan Deferred Step request to the planner specifying the production plan

and the step which was deferred. The parameters for both the Replan Deferred Step request and its

responses are as follows:

Parameters on Request:

production-plan: Plan Identifier Object

step-identifier

local-task-identifier

Parameters on Response+:

local-task-identifier

action e {Abort Task, Defer Task, Resume, Terminate Task)

Parameters on Response-:

local-task-identifier

error: Error Object

Upon receiving a Replan De erred Step request from the job controller, the planner should

perform the following steps:

1. If the spe :ified production plan or step is invalid, issue a Replan Deferred Step
response-. No further action is necessary.

2. Otherwise, the planner should reschedule the production plan (see Section 5.1.3 on
page 27) starting with the step which was deferred.

66

3. If the planner succeeds in rescheduling the plan, then the planner should issue a

Replan Deferred Step response+ with action ‘Resume’. Note that if the rescheduled

plan violates the current covenant constraints, this information will be conveyed via

the job controller’s estimated-completion-time for the associated task, which may
result in rescheduling at the supervisor level.

4. If the planner cannot reschedule the plan, then issue a Subcovenant Error Occurred
request to the active guardian.

(a) If the guardian responds with Subcovenant Error Occurred response with action

‘Retry’, then repeat starting with step 2.

(b) If the guardian responds with Subcovenant Error Occurred response with another

action, issue a Replan Deferred Step response* to the job controller with the same
action which the guardian specified.

7.1.7 Replan Late Plan

A Replan Late Planmessage is issued by an equipment-level job controller to the planner if the

identified task’s estimated-completion-time is later than its scheduled-completion-time. In such

cases, the job controller will switch the specified task to the Waiting for Planner task-state and

issue a Replan Late Plan request to the planner, specifying the production plan and the current

estimated-completion-time for the task associated with the production plan. The parameters for

both the Replan Late Plan request and its responses are as follows:

Parameters on Request:

production-plan: Plan Identifier Object

estimated-completion-time

local-task-identifier

Parameters on Response+:

local-task-identifier

action € {Abort Task, Defer Task, Resume, Terminate Task)

Parameters on Response-:

local-task-identifier

error: Error Object

Upon receiving a Replan Late Plan request from the job controller, the planner should perform the

following steps:

1. If the estimated-completion-time is past the planner’s planning horizon, contact the

active guardian for assistance and proceed according to its instructions.

2. If the specified production plan is invalid, issue a Replan Late Plan response- No fur-

ther action is necessary.

3. Otherwise the planner should determine if extending the current plan to accommodate
the lateness will affect any existing covenants for this planner.

4. If no covenants will be affected, then do the following:

(a) Extend the scheduled-completion-time for the production plan to the estimated-

completion-time specified in the request

(b) Issue a Replan late Plan response+ with action ‘Resume’. Do not issue a Covenant
Status message to the supervisor planner; this notification will be issued by the job

controllers.

(c) No further action is necessary.

5. If there are covenants that will be affected, then do the following:

67

(a) Issue a Break Covenants request to the supervisor to determine if those covenants

may be broken so that the late one may be extended.

(b) If the supervisor grants permission to break those covenants, then do the follow-

ing:

» Issue a Covenants Broken request for the covenants to be broken and remove
the covenants.

» Extend the scheduled-completion-time for the production plan to the estimated-

completion-time specified in the request.

» Issue a Replan Late Plan responses- with action ‘Resume’. Do not issue a Cove-

nant Status message to the supervisor; this notification will be issued by the job

controller.

» No further action is necessary.

(c) If the supervisor does not grant permission to break all the necessary covenants,

then do the following:

» Identify the first future checkpoint prior to the completion of the plan. Issue a

Break Covenants request to the supervisor for the covenants that need to be broken

in order to reach the checkpoint. If the supervisor grants permission to break the

covenants that need to be broken in order to reach the identified checkpoint, then:

»> Issue a Covenants Broken request for the covenants for which permission

was granted,

»> Extend the scheduled-completion-time of the production plan, and

»> Issue a Replan Late Plan response-t- with action ‘Terminate Task’.

»> No further action is necessary.

» If no checkpoint can be reached or the supervisor will not grant permission to

break the necessary covenants to reach a checkpoint and the operation which the

plan defines is completely repeatable with no ill consequence, then issue a Replan
Late Plan response+ with action ‘Defer Task’. No further action is necessary.

» Otherwise, issue a Replan Late Plan response+ with action ‘Abort Task’.

» No further action is necessary.

7.1.8 Replan Late Step

A Replan Late Step message is issued by a job controller to the planner if one of its subordinates

is reporting an estimated-completion-time later than the scheduled-start-time of a subsequent step.

In such cases, the job controller will switch the specified task to the Waiting for Planner task-state

and issue a Replan Late Step request to the planner specifying the production plan, the step which

is late and that step’s current estimated-completion-time. The parameters for both the Replan Late

Step request and its responses are as follows:

Parameters on Request:

production-plan: Plan Identifier Object

step-identifier

estimated-completion-time

local-task-identifier

Parameters on Response+;

local-task-identifier

action € {Abort Task, Defer Task, Resume, Terminate Task}

Parameters on Response-:

local-task-identifier

error: Error Object

68

Upon receiving a Replan Late Step request from the job controller, the planner should perform the

following steps:

1.

If the estimated-completion-time is past the planner’s planning horizon, contact the

active guardian and proceed according to its instructions.

1. If the specified production plan or step is invalid, issue a Replan Late Step response-.

No further action is necessary.

2. Otherwise, the planner should update the scheduled-completion-time for the specified

step.

3. Then, the planner should reschedule the production plan (see Section 5.1.3 on

page 27) starting with the step(s) following the step which was late.

4. If the planner succeeds in rescheduling the plan, then the planner should issue a

Replan Late Step response+ with action ‘Resume’. Note that if the rescheduled plan

violates the current covenant constraints, this information will be conveyed via the job

controller’s estimated-completion-time for the associated task, which may result in

rescheduling to occur at the supervisor level.

5. If the planner cannot reschedule the plan, then issue a Subcovenant Error Occurred

request to the active guardian.

(a) If the guardian responds with Subcovenant Error Occurred response with action

‘Retry’, then repeat starting with step 3.

(b) If the guardian responds with Subcovenant Error Occurred response with another

option, issue a Replan Deferred Step response-i- to the job controller with the same
action which the guardian specified.

7.1.9 Replan Terminated Step

A Replan Terminated Step message is issued by a job controller to the planner if one of its

subtasks has been unexpectedly terminated and the step needs to be replanned. In general, this

will occur if a job controller receives a Task Status message from one of its subordinates

specifying that a subtask has been Terminated and the job controller did not instruct its

subordinate to terminate the subtask. In such cases, the job controller will switch the task to the

Waiting for Planner task-state and issue a Replan Terminated Step request to the planner

specifying the production plan and step which was terminated. The parameters for both the

Replan Terminated Step request and its responses are as follows:

Parameters on Request:

production-plan: Plan Identifier Object

step-identifier

local-task-identifier

Parameters on Response+:

local-task-identifier

action e {Abort Task, Defer Task, Resume, Terminate Task}

Parameters on Response-:

local-task-identifier

error: Error Object

Upon receiving a Replan Terminated Step request from the job controller, the planner should

perform the following steps:

69

1. If the specified production plan or step is invalid, issue a Replan Terminated Step

response- No further action is necessary.

2. Otherwise the planner should do the following:

(a) Issue Request for Bid requests to some collection of subordinates who can perform

the terminated step. In the request parameters, specify the production plan that was ter-

minated (NOT the production-managed plan) and set the terminated-flag to true.

(b) After receiving some number of Covenant Status messages from subordinates

advertising their bids, select one bid which should be accepted.

(c) Issue an Accept Bid request to the subordinate whose bid was selected.

(d) If an Accept Bid response- is received from the subordinate, then choose another

bid to accept and repeat steps (c) and (d). If there are no more bids to accept, then

change the parameters to the Request for Bid and repeat starting with step (a).

(e) If an Accept Bid response* is received from the subordinate, then issue Remove
Covenant requests to each of the subordinates who provided a bid but were not issued

an Accept Bid request.

3. Then, the planner should reschedule the production plan (see Section 5.1.3 on

page 27) starting with the step(s) following the step which was terminated.

4. If the planner succeeds in rescheduling the plan, then the planner should issue a

Replan Late Step response-!- with action ‘Resume’. Note that if the rescheduled plan

violates the current covenant constraints, this information will be conveyed via the job

controller’s estimated-completion-time for the associated task, which may result in

rescheduling to occur at the supervisor level.

5. If the planner cannot reschedule the plan, then issue a Subcovenant Error Occurred

request to the active guardian.

(a) If the guardian responds with Subcovenant Error Occurred response with action

‘Retry’, then repeat starting with step 3.

(b) If the guardian responds with Subcovenant Error Occurred response with another

option, issue a Replan Deferred Step response-!- to the job controller with the same
action which the guardian specified.

7.1.10 Planner Instructs Job Controller to Abort Task

Upon receipt from the planner of a response-!- with action ‘Abort Task’ to one of Replan Aborted

Step, Replan Deferred Step, Replan Late Plan, Replan Late Step or Replan Terminated Step, the

job controller should perform the following steps:

1 . If the identified task is invalid or is not in the Waiting for Planner task-state, ignore the

message. No further action is necessary.

2. If the specified task is already in a terminal task-state, issue a Task Status message to

the supervisor and a Plan Finished message to the planner with the appropriate plan-

state. No further action is necessary.

3. Otherwise, follow steps 5. - 11. in Section 6.5.1 on page 53.

4. Issue a Task Status message to the supervisor.

7.1.11 Planner Instructs Job Controller to Defer Task

Upon receiving from the planner a response-!- with action ‘Defer Task’ to one of Replan Aborted

Step, Replan Deferred Step, Replan Late Plan, Replan Late Step or Replan Terminated Step, the

job controller should perform the following steps:

70

1. If the identified task is invalid or is not in the Waiting for Planner task-state, ignore the

message. No further action is necessary.

2. If the specified task is already in a terminal task-state, issue a Task Status message to

the supervisor and a Plan Finished message to the planner with the appropriate plan-

state. No further action is necessary.

3. If the specified task’s management state is Aborting or Terminating, ignore the mes-
sage. No further action is necessary.

4. Otherwise, follow steps 7. - 12. in Section 6.5.2 on page 54.

5. Issue a Task Status message to the supervisor.

7.1.12 Planner Instructs Job Controller to Terminate Task

Upon receiving from the planner a response+ with action ‘Terminate Task’ to one of Replan

Aborted Step, Replan Deferred Step, Replan Late Plan, Replan Late Step or Replan Terminated

Step, the job controller should perform the following steps:

1. If the identified task is invalid or is not in the Waiting for Planner task-state, ignore the

message. No further action is necessary.

2. If the specified task is already in a terminal task-state, issue a Task Status message to

the supervisor and a Plan Finished message to the planner with the appropriate plan-

state. No further action is necessary.

3. If the job controller is at the equipment level, it should:

(a) Pause the task (see Section 6.5.4 on page 57).

(b) Abort the task according to internal procedures.

(c) Mark all Executing or Not-Yet-Executing steps in the production plan as Sched-

uled.

(d) Issue a Plan Finished request to the planner.

(e) After receiving a response from the planner, issue a Task Status message to the

supervisor specifying that the task has been Terminated.

4. If the job controller has subordinates, the job controller must consider each subtask

individually:

(a) For each subtask which is Deferred, Completed or already Terminated, no action is

necessary.

(b) If any subtask of the task is in the Aborted task-state or Aborting task-manage-

ment-state, contact the active guardian with Subtask Error Occurred.

(c) For each subtask which is in the Active task-state, issue Pause Task requests (with

parameter as-soon-as-possible) to the subordinate executing that subtask. See Section

6.5.4 on page 57 for the details of the Pause Task message. If all active subtasks can-

not be paused, then contact the active guardian with Subtask Error Occurred.

(d) After all subordinates who were attempting to pause tasks have issued a Task Sta-

tus message specifying that their tasks are Paused, issue a Terminate Task request for

all subtasks which are in the Paused state. When all subtasks have been Terminated,

the task is Terminated.

(e) After the task has been terminated, mark all Executing and Not-Yet-Executing

steps in the production plan as Scheduled.

(f) Issue a Plan Finished request to the planner.

(g) After receiving a response from the planner, issue a Task Status message to the

supervisor specifying that the task has been terminated.

71

7.1.13 Planner Instructs Job Controller to Resume the Task

Upon receiving from the planner a response+ with action ‘Resume’ to one of Replan Aborted

Step, Replan Deferred Step, Replan Late Plan, Replan Late Step or Replan Terminated Step, the

job controller should perform the following steps:

1. If the identified task is invalid or not in the Waiting for Planner task-state, ignore the

message. No further action is necessary.

2. Otherwise, retrieve an updated copy of the step which was specified in the original

request to the planner and continue execution of the task (according to administrative

state).

7.2 Planner Initiated Messages

There is only a single message which a planner may send to the job controller: Recheck Step. It is

discussed below.

7.2.1 Recheck Step

The Recheck Step message is issued by a planner to inform the job controller that a step within an

executing production plan has been modified and the job controller should verify that it has the

modified information. The Recheck Step message should only be issued if the step which is

modified is in the Not-Yet-Executing step-state. The Recheck Step message is an unconfirmed

message; it has no response. The parameters are as follows:

Parameters:

production-plan: Plan Identifier Object

step-identifier

72

8 Guardian Planning Interface

The MSI architecture provides the guardian planning interface to allow external monitoring and

intervention of planning functions. The guardian planning interface supports some of the same

messages as the planning interface. It provides additional messages for error reporting and

recovery not provided by the planning interface.

There are two major differences between a guardian planning message and the planning message

with the same name:

• In the covenant-related messages of the planning interface, each request has a subordinate-

covenant-identifier parameter which identifies the covenant; its responses have a

supervisor-covenant-identifier parameter which denotes the supervisor’s identifier for that

covenant In the guardian planning interface, each request has a local-covenant-identifier

parameter which is defined to be equivalent in value to the subordinate-covenant-

identifier; its responses have the same local-covenant-identifier parameter as in the

request

• Some of the covenant related messages in the planning interface contain a Covenant

Status Object parameter in the responses. In the guardian planning interface, this

parameter is replaced with the Guardian Covenant Status Object. The default detail-level

is used for the Guardian Covenant Status Object.

If the semantics of a message in the guardian planning interface are identical to the message in the

planning interface with the same name, the reader will be referred to the planning interface

specification for that message. In these cases, the following substitutions should be applied when
reading those sections for the semantics of the guardian planning message:

• The response issued for the original request to the supervisor should be issued to the

requesting guardian instead. All other supervisor correspondence should remain as

specified.

• Any mention of the subordinate planner refers to the planner which was issued the

message.

A planner may have at most one established active guardian planning connection at a time; it may
have any number of established passive guardian planning connections. The set of messages

which are valid for the passive guardian planning interface are:

Administrative Status • Notify Covenant

Clear Covenant Notification • Report Administrative Status

Connect • Report Covenants

Disconnect '
• Set Covenant Notification

Identify

The set of messages which are valid for the active guardian planning interface are all valid passive

guardian planning messages plus the following:

Availability Alert

Clear Schedule

Configuration Alert

Die

Ignore Subordinate

Reactivate Subordinate

Remove All Bids

Subcovenant Error Occurred

Subordinate Problem

Update Covenant Constraints

73

8.1 Data Objects

In addition to the data objects discussed in Section 4 on page 24, there are two complex data

objects used in the guardian planning interface: the Guardian Administrative Status Object for

reporting administrative status and the Guardian Covenant Status Object for reporting covenant

status. Both data objects employ a similar mechanism to allow different levels of detail to be

specified.

The Guardian Covenant Status Object has three component complex data objects: Covenant

Name Object, Covenant Status Object, and Subcovenant Status Object The following subsections

describe all of these data objects in detail.

8.1.1 Guardian Administrative Status Object

The Guardian Administrative Status Object is a data object which contains information describing

a planner’s administrative status. Detail-levels 0 and 1 provide increasingly more detailed

information about a planner’s administrative status. The default detail-level is 0.

The Guardian Administrative Status Object contains the following data elements:

if (detail-level = 0) [

administrative-state

link-to-supervisor-status

planner-job-control-link-status (CONDITIONAL)

]

if (detail-level = 1) [

administrative-state

link-to-supervisor-status

planner-job-control-link-status (CONDITIONAL)
list of [

subordinate-planner-identifier

administrative-state

link-to-subordinate-status

] (CONDITIONAL)

]

If the current configuration specifies that a control entity exhibits the planning function only (no

job control function is supported), then the parameter planner-job-control-link-status is omitted. If

the planner does not have any subordinates, then the list of subordinate information should be

omitted.

8.1.2 Covenant Name Object

The Covenant Name Object is a component of the Guardian Covenant Status Object; it contains

high level information about a single covenant Its primary use is to provide the minimal

information necessary for a guardian to identify a covenant.

The Covenant Name Object contains the following data elements:

local-covenant-identifier

supervisor-covenant-identifier

global-plan-reference

74

plan: CHOICE OF{

production-managed-plan: Plan Identifier Object

OR work-element-identifier

}

8.1.3 Covenant Status Object

The Covenant Status Object is a data object which is used in both the planning interface and the

guardian planning interface to describe detailed information about a single covenant. The reader

is referred to Section 5.4 on page 30 for a description of the Covenant Status Object. Within the

guardian planning interface, the Covenant Status Object is a component of the Guardian Covenant

Status Object.

8.1.4 Subcovenant Status Object

The Subcovenant Status Object is a component of the Guardian Covenant Status Object; it

contains detailed information about a subcovenant for a step in a production plan.

The Subcovenant Status Object contains the following data elements:

local-subcovenant-identifier

step-identifier

subcovenant-state

subordinate-planner-identifier (CONDITIONAL)
subordinate-subcovenant-identifier (CONDITIONAL)

If a subcovenant is being scheduled by the same planner responsible for scheduling the covenant

to which it bel ongs, then the parameters subordinate -planner-identifier and subordinate-

subcovenant-ide: tifier are omitted.

8.1.5 Guardian Covenant Status Object

The Guardian Covenant Status Object is a data object which specifies information about a single

covenant Detail-levels 0, 1, 2 and 3 provide increasingly more detailed information about a

covenant If the detail-level is 2, the list of subcovenant (Subcovenant Status Object), contains

information about only those subcovenants that are currently in the process of being scheduled. If

the detail-level is 3, the list of subcovenant (Subcovenant Status Object), contains information

about all subcovenants of a covenant The default detail-level is 1.

The Guardian Covenant Status Object contains the following data elements:

if (detail-level = 0) [

Covenant Name Object

]

if (detail-level = 1) [

Covenant Name Object

Covenant Status Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)

]

if (detai r/el = 2) [

Covt ant Name Object

Covenant Status Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)
list of subcovenant :Subcovenant Status Object

]

75

if (detail-level = 3) [

Covenant Name Object

Covenant Status Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)

list of subcovenant: Subcovenant Status Object

]

The parameter list of input-plan-parameter is only specified if the source-plan used to schedule

the covenant requires input plan parameters; otherwise it is omitted.

8.2 Guardian Initiated Messages

The guardian initiated messages in the guardian planning interface are:

• Availability Alert • Ignore Subordinate

• Clear Covenant Notification • Reactivate Subordinate

• Clear Schedule • Remove All Bids

• Configuration Alert • Report Administrative Status

• Connect • Report Covenants

• Die • Set Covenant Notification

• Disconnect • Update Covenant Constraints

• Identify

This section describes each of these messages in more detail.

8.2.1 Availability Alert

The Availability Alert message is valid for the active guardian planning interface only. It is issued

by the active guardian to a planner if the resource for which that planner is scheduling has had a

change in availability. The Availability Alert message is an unconfirmed message; it has no

response. There are no parameters to the Availability Alert message.

A planner needs to be constantly informed of changes in its resource’s availability so that it may
accurately schedule plans for the job controller to execute; it must be aware of when that resource

is expected to be down for maintenance and if that resource is currently unavailable due to a

failure. If the availability information changes, an Availability Alert message should be issued to

the planner.

It is a protocol violation for a planner to receive an Availability Alert while in the Available

administrative state; the message should be ignored. Otherwise, upon receiving an Availability

Alert message, a planner should update its local information about the resource’s availability. If

the new availability information conflicts with previously scheduled covenants, the planner

should issue a Covenants Broken message to the supervisor for the affected covenants (see

Section 5.7.3 on page 41 for the details of this message).

8.2.2 Clear Covenant Notification

The Clear Covenant Notification message is valid for both the active and passive guardian

planning interfaces. It is issued by a guardian to a planner, it requests the planner to discontinue

dynamically reporting covenant status to the issuing guardian for a set of covenants. The
parameters for both the Clear Covenant Notification request and its response are as follows:

76

Parameters on Request:

detail-level

covenants: CHOICE OF{

list of local-covenant-identifier

OR All-Bids

OR All-Contracts

• OR All-Covenants

}

Parameters on Response:

list of [

local-covenant-identifier

acceptance: Acceptance Object

] (CONDITIONAL)

If a planner receives a Clear Covenant Notification request which specifies All-Bids, All-

Contracts or All-Covenants, the Clear Covenant Notification response will have no parameters.

If a guardian wishes to discontinue dynamic status reporting for a set of covenants, it should issue

a Clear Covenant Notification request to the planner with those covenants.

It is a protocol violation to receive a Clear Covenant Notification request while in the Available

administrative state. The planner should ignore the request and issue an Administrative Status

message.

If the planner is in the Active administrative state and the guardian specifies all bids, all contracts

or all covenants in the Clear Covenant Notification request, then the planner should clear

notification for all outstanding bids, contracts or covenants (respectively) which are marked to be

reported to the requesting guardian, and issue a Clear Covenant Notification response with no

parameters.

If the planner is in the Active administrative state and the guardian specifies a list of covenants on

which to clear notification, then the planner should determine the validity of each covenant

specified by the guardian, and if valid, clear notification for that covenant. The planner should

issue a Clear Covenant Notification response, enumerating each specified covenant and denoting

whether notification was cleared or not

8.23 Clear Schedule

The Clear Schedule message is valid for the active guardian planning interface only. It is issued

by the active guardian to a planner; it requests the planner to dispose of all covenants which

overlap with a specified time interval. The parameters for both the Clear Schedule request and its

responses are as follows:

Parameters on Request:

start-time

completion-time

Parameters on Response:

acceptance: Acceptance Object

If the active guardian wishes to clear the schedule (remove all contracted and bidden operations)

of a given planner within a given time interval, it should issue a Clear Schedule request to that

77

planner. Upon receiving a Clear Schedule request from the active guardian, the planner should

perform the following steps:

1. It is a protocol violation to receive a Clear Schedule request while in the Available

administrative state. The planner should ignore the request and issue an Administra-

tive Status message to the active guardian.

2. If the specified time interval is completely beyond the planner’s planning horizon,

issue a Clear Schedule response- No further action is necessary.

3. If the specified time interval is in the past, issue a Clear Schedule response- No fur-

ther action is necessary.

4. If the specified start-time is later than the specified completion-time, issue a Clear

Schedule response- No further action is necessary.

5. For each covenant which partially or completely overlaps with the specified time inter-

val, do the following:

(a) Switch the covenant to the Removing Covenant covenant-state.

(b) Dispose of the covenant and its associated production plan. If the planner has sub-

ordinates, this may involve issuing Remove Covenant requests to subordinates.

6. Issue a Covenants Broken message to the supervisor specifying the covenants which

have been broken.

7. Issue a Gear Schedule response-!-.

8.2.4 Configuration Alert

The Configuration Alert is valid for the active guardian planning interface only. It is issued by the

active guardian to inform a planner that the baseline configuration
9

has changed. The

Configuration Alert message is an unconfirmed message; it has no response. There are no

parameters to the Configuration Alert message.

It is a protocol violation to receive a Configuration Alert while in the Available administrative

state; the message should be ignored. If a planner receives a Configuration Alert from the active

guardian whi n the Active administrative state, it should consult the current baseline

configuration to .ietermine if the supervisor and/or subordinates have changed or if its relationship

to one or more job controllers has changed. It should deactivate each planner which it is currently

supervising but not a subordinate in the modified configuration. It should activate each of its

subordinates in the modified configuration if it is not currently supervising that planner.

8.2.5 Connect

The Connect message is valid for both the active and passive guardian planning interfaces. It is

issued by a guardian to a planner to establish an active or passive guardian planning connection

via the guardian planning interface. This is the first message a guardian may issue to a planner; the

connection is required to be established prior to issuing any other messages. The parameters for

both the Connect request and its responses are as follows:

Parameters on Request:

<nc *>

/
9. A baseline configuration is the original specification of where a control entity exists within the control

hierarchy, who the supervisor is, who its subordinates are, and whether the job control function exists.

78

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A planner who receives a Connect request should determine if it is capable of accepting the

connection request, and if so, issue a Connect response-h The Connect responses- results in the

connection being established. In general, the primary reason for rejecting a connection request

from a guardian is that the planner currently has an established active guardian planning

connection and another request for the active guardian planning connection is received.

8.2.6 Die

The Die message is valid for the active guardian planning interface only. It is issued by the active

guardian to a planner; it requests the planner to immediately exit regardless of administrative state

or the existence of outstanding bids. The Die message is an unconfirmed message; it has no

response. There are no parameters to the Die message.

An active guardian may issue a Die message to a planner which is exhibiting anomalous behavior

or in other situations where such extreme actions are necessary. When a planner receives a Die

message, the only action it is required to perform is to exit; it may perform additional actions. It

should be noted that for the shop and workcell planners, this will result in planners without

supervisors.

8.2.7 Disconnect *

The Disconnect message is valid for both the active and passive guardian planning interfaces. It is

issued by a guardian to a planner to terminate a connection which is currently established via the

guardian planning interface. This is the last message a guardian may issue to a planner without re-

establishing a connection. The parameters for both the Disconnect request and its responses are as

follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

A planner which receives a Disconnect request should determine if it should terminate the

connection, and if so, issue a Disconnect response-h The Disconnect response+ results in the

connection being terminated. In general, the primary reason for rejecting a Disconnect request is

that the planner has outstanding requests to that guardian.

8.2.8 Identify

The Identify message is valid for both the active and passive guardian planning interfaces. It is

issued by a guardian to a planner to determine its characteristics. The parameters for both the

Identify request and its response are as follows:

Parameters on Request:

<none>

79

Parameters on Response:

make
model

version

level

list of planning-strategy

If a guardian wishes to know a particular planner’s characteristics, it should issue that planner an

Identify request The steps that a planner should follow upon receiving an Identify request from a

guardian are identical to those of receiving an Identify request from the supervisor. See Section

5.5.3 on page 33 for an explanation of these steps.

8.2.9 Ignore Subordinate

The Ignore Subordinate message is valid for the active guardian planning interface only. It is

issued by the active guardian to a planner; it requests the planner to indefinitely suspend both

communicating with and supervising one of its subordinates. The parameters for both the Ignore

Subordinate request and its responses are as follows:

Parameters on Request:

subordinate-planner-identifier

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

This message is used when a planner is exhibiting anomalous behavior which is interfering with

the supervisor’s performance; the active guardian may decide to issue an Ignore Subordinate

request instructing the supervising planner to ignore that subordinate.

Upon receiving an Ignore Subordinate request from the active guardian, the planner should

perform the following steps:

1. The planner has not checked the baseline configuration to determine its subordinates

when in the Available administrative state. If the planner is in the Available adminis-

trative state, issue an Ignore Subordinate response- No further action is necessary.

2. If the specified subordinate does not exist, issue an Ignore Subordinate response-. No
further action is necessary.

3. Terminate the connection (if one exists) with the specified subordinate.

4. Issue an Ignore Subordinate response+.

5. Do not attempt to establish a new connection.

6. Continue to report in Guardian Administrative Status messages that the specified sub-

ordinate exists and that its link status is unconnected. This is done so that the guardian

will remain aware that this subordinate is being ignored.

8.2.10 Reactivate Subordinate

The Reactivate Subordinate message is valid for the active guardian planning interface only. At is

issued by the active guardian to a planner, it requests the planner to resume communicating with

and supervising a subordinate that it was previously instructed to ignore. The parameters for both

the Reactivate Subordinate request and its responses are as follows:

80

Parameters on Request:

subordinate-planner-identifier

Parameters on Response+:

<none>

Parameters on Response

error: Error Object

Upon receiving a Reactivate Subordinate request from the active guardian, the planner should

perform the following steps:

1. A planner has not checked the baseline configuration to determine its subordinates

when in the Available administrative state. If the planner is in the Available adminis-

trative state, issue a Reactivate Subordinate response-. No further action is necessary.

2. If the specified subordinate does not exist, issue a Reactivate Subordinate response-.

No further action is necessary.

3. Otherwise, issue a Reactivate Subordinate response-i-.

4. Attempt to establish a connection with the specified subordinate. If the planner cannot

establish a connection with the specified subordinate, it should issue an Administrative

Status message (see Section 8.3.1 on page 85).

5. If a connection can be established, the planner should resume its supervisory responsi-

bilities with respect to that subordinate.

8.2.11 Remove All Bids

The Remove All Bids message is valid for the active guardian planning interface only. It is issued

by the active guardian to a planner, it requests the planner to dispose of all covenants which are in

the Pre-Bidding, Bidding, Bidden, Breaking Bid or Accepting covenant-state so that the planner

may be deactivated. The parameters for both the Remove All Bids request and its responses are as

follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

acceptance: Acceptance Object

If the active guardian wishes to deactivate a planner, it should first issue that planner a Remove
All Bids request Upon receiving a Remove All Bids request from the active guardian, the planner

should perform the following steps:

1. It is a protocol violation to receive a Remove All Bids request while in the Available

administrative state. The planner should ignore the request and issue an Administra-

tive Status message to the requesting guardian.

2. For each covenant in the Pre-Bidding covenant-state, issue a Request for Bid
response-. Dispose of the covenant and its associated production plan.

3. For each covenant in the Accepting covenant-state, issue an Accept Bid response-

Switch the covenant to the Removing Covenant covenant-state. Dispose of the cove-

nant and its associated production plan. If the planner has subordinates, this may
involve issuing Remove Covenant requests to subordinates.

81

4. For each covenant in the Bidding, Bidden, or Breaking Bid covenant-state, switch the

covenant to the Removing Covenant covenant-state. Dispose of the covenant and its

associated production plan. If the planner has subordinates, this may involve issuing

Remove Covenant requests to subordinates.

5. Issue a Remove All Bids response+.

8.2.12 Report Administrative Status

The Report Administrative Status message is valid for both the active and passive guardian

planning interface. It is issued by a guardian to a planner to request its current administrative

status. The parameters for both the Report Administrative Status request and its responses are as

follows:

Parameters on Request:

detail-level

Parameters on Response+:

Guardian Administrative Status Object

Parameters on Response-:

error: Error Object

If a guardian wishes to receive updated administrative status from a planner, it should issue a

Report Administrative Status request to that planner. The detail-level parameter allows a guardian

to request administrative information about only the planner or the planner’s subsystem. See

Section 8.1.1 on page 74 for a discussion of the Guardian Administrative Status Object which

explains the information provided for each detail-level.

Upon receiving a Report Administrative Status request from a guardian, a planner should issue a

Report Administrative Status response- if the detail-level is invalid. Otherwise, it should issue a

Report Administrative Status response-i- specifying the required information as defined by the

Guardian Administrative Status Object and detail-level.

8.2.13 Report Covenants

The Report Covenants message is valid for both the active and passive guardian planning

interface. It is issued by a guardian to a planner; it requests status information to be reported on a

set of covenants. The parameters for both the Report Covenants request and its response are as

follows:

Parameters on Request

:

covenants: CHOICE OF{

list of local-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

detail-level

Parameters on Response:

list of [

local-covenant-identifier

status: CHOICE {

error: Error Object

OR status: Guardian Covenant Status Object}

] (CONDITIONAL)

82

If a Report Covenants request specified All-Bids, All-Contracts or All-Covenants and a planner

currently has no outstanding bids, contracts or covenants (respectively), then the Report

Covenants response will have no parameters.

If a guardian wishes to receive updated status for some collection of covenants, it should issue a

Report Covenants request to the planner with those covenants. The detail-level parameter allows a

guardian to request more or less detailed information about the covenants. See Section 8.1.5 on

page 75 for a discussion of the Guardian Covenant Status Object which explains the information

provided for each detail-level. Upon receiving a Report Covenants request from the guardian, the

planner should perform the following steps:

1. It is a protocol violation to receive a Report Covenants request while in the Available

administrative state. The planner should ignore the request and issue an Administra-

tive Status message to the requesting guardian.

2. If the Report Covenants request was issued with the parameter All-Bids, then for each

covenant in the Bidding, Bidden, Breaking Bid or Accepting covenant-state, compile

the Guardian Covenant Status Object and issue a Report Covenants response.

3. If the Report Covenants request was issued with the parameter All-Contracts, then for

each covenant in the Contracted, Breaking Contract or Executing covenant-state, com-
pile a Guardian Covenant Status Object and issue a Report Covenants response.

4. If the Report Covenants request was issued with the parameter All-Covenants, then for

each covenant in the Bidding, Bidden, Breaking Bid, Accepting, Contracted, Breaking
Contract, Removing Covenant or Executing covenant-state, compile a Guardian Cove-
nant Status Object and issue a Report Covenants response.

5. If the Report Covenants request was issued with a list of covenants, then for each cov-

enant that is in the list, but not in the Executed covenant-state, compile a Guardian
Covenant Status Object. For all other covenants in the list, identify the appropriate

error and issue a Report Covenants response which includes the error information for

invalid covenants and the covenant status information for valid covenants.

8.2.14 Set Covenant Notification

The Set Covenant Notification message is valid for both the active and passive guardian planning

interfaces. It is issued by a guardian to a planner, it requests the planner to dynamically report

covenant status to the issuing guardian for a set of covenants. The parameters for both the Set

Covenant Notification r quest and its response are as follows:

Parameters on Requesi

covenants: CHOICE OF{

list of local-covenant-identifier

OR All-Bids

OR All-Contracts

OR All-Covenants}

detail-level

Parameters on Response:

list of [

local-covenant-identifier

acceptance: Acceptance Object

] (CONDITIONAL)

83

If a planner receives a Set Covenant Notification request which specifies All-Bids, All-Contracts

or All-Covenants, then the Set Covenant Notification response will have no parameters.

If a guardian wishes to receive dynamic covenant status reports for a set of covenants, it should

issue a Set Covenant Notification request to the planner with those covenants. This message

differs from the Report Covenants message in that the Report Covenants message provides a

snapshot view of the status for a set of covenants; the Set Covenant Notification message provides

a continuous view of the status for a set of covenants— the planner should issue status messages

any time the current status of one of the specified covenants changes.

The detail-level parameter allows a guardian to request more or less detailed information about

the covenants. See Section 8.1.5 on page 75 for a discussion of the Guardian Covenant Status

Object which explains the information provided for each detail-level.

It is a protocol violation to receive a Set Covenant Notification while in the Available

administrative state. The planner should ignore the request and issue an Administrative Status

message to the requesting guardian.

If the planner is in the Active administrative state and all bids, all contracts or all covenants is

specified in the request, then the planner should set notification for all outstanding bids, contracts

or covenants, respectively, and issue a Set Covenant Notification response with no parameters.

If the planner is in the Active administrative state and a list of covenants is specified in the

request, then the planner should determine the validity of each covenant specified by the guardian,

and if valid, set notification for that covenant The planner should issue a Set Covenant

Notification response, enumerating each specified covenant and denoting whether notification

was set or not

8.2.15 Update Covenant Constraints

The Update Covenant Constraints message is valid for the active guardian planning interface

only. It is issued by the active guardian to a planner to assist the planner in planning by changing

the constraints associated with a covenant. The parameters for both the Update Covenant

Constraints request and its responses are as follows:

Parameters on Request:

local-covenant-identifier

planning-strategy

priority

earliest-start-time (CONDITIONAL)
latest-completion-time (CONDITIONAL)

Parameters on Response+:

local-covenant-identifier

Parameters on Response-:

local-covenant-identifier

error: Error Object

Guardian Covenant Status Object (CONDITIONAL)

If one of the conditional parameters is the Update Covenant Constraints request is omitted, then

that constraint is removed. These semantics are consistent with that of die Request for Bid:

existent constraints should be specified, constraints to be removed should be omitted from the

84

request. If a planner issues an Update Covenant Constraints response- the conditional parameter

Guardian Covenant Status Object is specified if it contains information related to rejecting the

request.

An Update Covenant Constraints message may be used to change any combination of the

following parameters of a covenant: planning-strategy, priority, earliest-start-time or latest-

completion-time. Only the parameters which are to be changed should be specified in the request.

This information may be used by the planner to reschedule a covenant. If the active guardian

wishes to intervene with the scheduling of an operation, it may issue an Update Covenant

Constraints request to a planner. The steps that a planner should follow upon receiving an Update

Covenant Constraints request from the active guardian are identical to those of receiving an

Update Covenant Constraints request from the supervisor. See Section 5.6.5 on page 38 for an

explanation of these steps.

8.3 Planner Initiated Messages

The planner initiated messages in the guardian planning interface are:

• Administrative Status

• Notify ovenant

• Subcovenant Error Occurred

• Subordinate Problem

This section describes each of these messages in more detail.

8.3.1 Administrative Status

An Administrative Status message is valid for both the active and passive guardian planning

interface. It is issued to each guardian by a planner to inform that guardian of any change in its

administrative status. A planner should issue an Administrative Status message to each connected

guardian every time one of the parameters in its administrative status changes. If the planner does

not currently have an established guardian planning connection and it wishes to issue an

Administrative Status message to report an abnormal situation, it should turn on the planning

watchdog and after establishing a connection to a guardian, it should issue an Administrative

Status message. The Administrative Status message is an unconfirmed message; it has no

response. The parameters are as follows:

Parameters:

administrative-state

link-to-supervisor-status

operational-status

list of [

subordinate-planner-identifier

administrative-state

link-to-subordinate-status

] (CONDITIONAL)

If a planner issuing an Administrative Status message has no subordinates, then the list of

subordinate information will not be specified.

85

8.3.2 Notify Covenant

The Notify Covenant messages is valid for both the active and passive guardian planning

interfaces. A Notify Covenant message is issued by a planner to a guardian -to report the current

status of a covenant. The Notify Covenant message is an unconfirmed message; it has no

response. The parameters are as follows:

Parameters:

local-covenant-identifier

Guardian Covenant Status Object

When in the Active administrative state, a planner should, for each outstanding covenant, issue

Notify Covenant messages to each guardian which has set notification for that covenant each time

any parameter of the Guardian Covenant Status Object for that covenant changes. The detail-level

used in determining how much information to provide in the Guardian Covenant Status Object is

that which was specified by that guardian in its Set Covenant Notification request.

8.33 Subcovenant Error Occurred

The Subcovenant Error Occurred message is valid for the active guardian planning interface only.

It is issued by a planner to inform the active guardian that an error has occurred in attempting to

reschedule a production plan. When the planner wishes to issue this message to the active

guardian, the planner should turn on its watchdog red-light. The parameters for both the

Subcovenant Error Occurred request and its response are as follows:

Parameters on Request:

local-covenant-identifier

step-identifier

global-plan-reference

error: Error Object

Parameters on Response:

local-covenant-identifier

action e {Abort Covenant, Defer Covenant, Retry, Terminate Covenant}

Most subcovenant scheduling errors arise from either competing priority covenants or when the

production plan associated with the covenant is already executing and therefore the planner is

restricted regarding what it can do to resolve a conflict. The active guardian may respond with one

of four options: Abort, Defer, Retry or Terminate. Abort, Defer and Terminate cause the planner

to instruct the job controller to Abort, Defer or Terminate (respectively) the corresponding

subtask. Retry causes the planner to re-attempt to resolve the conflict; in general, the guardian has

changed the parameters — either at this level of control or some higher level of control —
associated with the covenants so that the conflict will no longer exist

8.3.4 Subordinate Problem

The Subordinate Problem message is valid for the active guardian planning interface only. It is

issued by a planner to inform the active guardian that a subordinate is exhibiting anomalous

behavior. When the planner wishes to issue this message to the active guardian, the planner

should turn on its watchdog red-light. The Subordinate Problem message is an unconfirmed

message; it has no response. The parameters are as follows:

86

Parameters:

subordinate-planner-identifier

error: Error Object

Examples of when a Subordinate Problem message would be issued include when a subordinate is

not responding to requests, when a subordinate is consistently issuing inappropriate messages, or

when a planner is unable to establish a connection to its subordinate.

87

9 Guardian Job Control Interface

The MSI architecture provides the guardian job control interface to allow for external monitoring

and intervention of job control functions. The guardian job control interface supports most of the

same messages as the job control interface. It provides additional messages for error reporting and

recovery not provided by the job control interface.

There are two major differences between a guardian job control message and a job control

message with the same name:

• In the task-related messages of the job control interface, each request has a subordinate-

task-identifier parameter which identifies the task, and its responses have a supervisor-

task-identifier parameter which denotes the supervisor’s identifier for that task. In the

guardian job control interface, each request has a local-task-identifier parameter which is

defined to be equivalent in value to the subordinate-task-identifier, and its responses have

the same local-task-identifier parameter as in the request.

• Several of the task related messages in the job control interface contain a Task Status

Object parameter in the responses. In the guardian job control interface, this parameter is

replaced with the Guardian Task Status Object. The default detail-level is used for the

Guardian Task Status Object.

If the semantic • of a message in the guardian job control interface are identical to the message in

the job control interface with the same name, the reader will be referred to the job control

interface specification for that message. In these cases, the following substitutions should be

applied when reading those sections for the semantics of the guardian job control message:

• Any response issued to the supervisor should be issued to the requesting guardian instead.

• Any mention of the subordinate job controller refers to the job controller which was issued

the message.

A job controller may have at most one established active guardian job conttol connection at a

time; it may have any number of established passive guardian job control connections. The set of

message'' which are valid for the passive guardian job control interface are:

Administrative Status

Clear Task Notification

Connect

Disconnect

Identify

The set of messages which are valid for the active guardian job control interface are all valid

passive guardian job control messages plus the following:

Notify Task

Report Administrative Status

Report Tasks

Set Task Notification

Abort Task

Call Task Complete

Change Subtask Status

Configuration Alert

Defer Task

Die

Emergency Stop

Pause Task

Reactivate Subordinate

Resume All Tasks

Resume Task

Subordinate Problem

Subtask Error Occurred

Task Error Occurred

88

• Ignore Subordinate

• Pause All Tasks

• Terminate All Tasks

• Terminate Task

9.1 Data Objects

In addition to the data objects discussed in Section 4 on page 24, there are two complex data

objects used in the guardian job control interface: the Guardian Administrative Status Object for

reporting administrative status and the Guardian Task Status Object for reporting task status. Both

data objects employ a similar mechanism to allow different levels of detail to be specified.

The Guardian Task Status Object has three component data objects: Task Name Object, Task

Status Object, and Task Detail Status Object. The following subsections describe all of these data

objects in detail.

9.1.1 Guardian Administrative Status Object

The Guardian Administrative Status Object is a data object which contains information describing

a job controller’s administrative status. Detail-levels 0 and 1 provide increasingly more detailed

information about a job controller’s administrative status. The default detail-level is 0.

The Guardian Administrative Status Object contains the following data elements:

if (detail-level = 0) [

administrative-state

link-to-supervisor-status

planner-job-control-link-status

]

if (detail-level = 1) [

administrative-state

link-to-supervisor-status

planner-job-control-link-status

list of [

subordinate-job-controller-identifier

administrative-state

link-to-subordinate-status

] (CONDITIONAL)

]

If a job controller has no subordinates, then the list of subordinate information should be omitted.

9.1.2 Task Name Object

The Task Name Object is a component of the Guardian Task Status Object which contains high-

level information about a single task. Its primary use is to provide the minimal information

necessary for a guardian to identify a task.

The Task Name Object contains the following data elements:

local-task-identifier

supervisor-task-identifier

production-plan: Plan Identifier Object

global-plan-reference

89

9.1.3 Task Status Object

The Task Status Object is a data object which is used in both the job control interface and the

guardian job control interface to describe detailed information about a single task. The reader is

referred to Section 6.3 on page 44 for a description of the Task Status Object. Within the guardian

job control interface, the Task Status Object is a component of the Guardian Task Status Object.

9.1.4 Subtask Status Object

The Subtask Status Object is a component of the Guardian Task Status Object which contains

detailed information about a subtask belonging to a single task at the addressed level of control.

The Subtask Status Object contains the following data elements:

local-subtask-identifier

step-identifier

subtask-state

subtask-management-state

subordinate-job-controller-identifier (CONDITIONAL)
subordinate-subtask-identifier (CONDITIONAL)

If a subtask is being executed by the same job controller responsible for executing the task to

which it belongs, then the parameters subordinate-job-controller-identifier and subordinate-

subtask-identifier are omitted.

9.1.5 Guardian Task Status Object

The Guardian Task Status Object is a data object which specifies information about a single task.

Depending on what the detail-level is, the Guardian Task Status Object will provide more or less

detailed information. Detail-levels 0, 1 and 2 provide increasingly more detailed information

about a task. The default detail-level is 1.

The Guardian Task Status Object contains the following data elements:

if (detail-level = 0) [

Task Name Object

]

if (detail-level ~ 1) [

Task Name Object

Task Status Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)

]

if (aetail-level = 2) [

Task Name Object

Task Status Object

list of input-plan-parameter: Plan Parameter Object (CONDITIONAL)
list of subtask: Subtask Status Object

]

The parameter list of input-plan-parameter is specified if the production plan requires input plan

parameters.

90

9.2 Guardian Initiated Messages

The guardian initiated messages in the guardian job control interface are:

Abort Task

Call Task Completed

Change Subtask Status

Clear Task Notification

Configuration Alert

Connect

Defer Task

Die

Disconnect

Emergency Stop

Identify

Ignore Subordinate

Pause All Tasks

Pause Task

Reactivate Subordinate

Report Administrative Status

Report Tasks

Resume All Tasks

Resume Task

Set Task Notification

Terminate All Tasks

Terminate Task

This section describes each of these messages in detail.

9.2.1 Abort Task

The Abort Task message is valid for the active guardian job control interface only. It is issued by

the active guardian to a job controller; it requests a specified task to be aborted. The parameters

for both the Abort Task request and its responses are as follows:

Parameters on Request:

local-task-identifier

Parameters on Response*:

local-task-identifier

Parameters on Response-:

local-task-identifier

error: Error Object

Guardian Task Status Object (CONDITIONAL)

If a job controller issues an Abort Task response-, the conditional parameter Guardian Task Status

Object is specified if it contains information related to rejecting the request.

If the active guardian wishes to abort a task, it should issue an Abort Task request to the job

controller currently executing the task. The steps that a job controller should follow upon

receiving an Abort Task request from the active guardian are identical to those of receiving an

Abort Task request from the supervisor. See Section 6.5.1 on page 53 for an explanation of these

steps.

9.2.2 Call Task Completed

The Call Task Completed message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller, it requests a job controller to abort a specific task,

but to report that it has successfully completed. The parameters for both the Call Task Completed

request and its responses are as follows:

91

Parameters on Request:

local-task-identifier

Parameters on Response+:

local-task-identifier

Parameters on Response-:

local-task-identifier

error: Error Object

Guardian Task Status Object (CONDITIONAL)

If the job controller issues a Call Task Completed response- the conditional parameter Guardian

Task Status Object is specified if it contains information related to rejecting the request.

This message is used to address an error condition when a guardian operator intervenes in the

execution of a task which results in the task’s completion. In such a situation, the active guardian

should issue a Call Task Completed request to the job controller executing the task so that the job

controller will treat the task as completed.
10

Upon receiving a Call Task Completed request from the active guardian, the job controller should

perform the following steps:

1. If the job controller is in the Available or E-stopped administrative state, the request

should be ignored and an Administrative Status message should be issued to the

requesting guardian. No further action is necessary.

2. If the specified task is an invalid task, issue a Call Task Completed response-. No fur-

ther action is necessary.

3. If the specified task is already in the Aborted, Deferred or Terminated task-state, issue

a Call Task Completed response- No further action is necessary.

4. If the specified task is already in the Completed task-state, issue a Call Task Com-
pleted response-h No further action is necessary.

5. Abort any locally executing subtasks according to internal procedures.

6. If the job controller has subordinates, issue Abort Task requests to all subordinates

executing subtasks in support of the specified task.

7. After all subtasks have been aborted (both local and non-local), the task is aborted.

8. Issue a Plan Finished request to the planner specifying that the production plan has
reached the Completed plan-state.

9. Issue a Task Status message to the supervisor specifying that the task has completed
(i.e., the task-state is Completed).

10. Issue a Call Task Completed response-*-.

9.23 Change Subtask Status

The Change Subtask Status message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller. It requests the job controller to update the status

information associated with an outstanding subtask which is being executed by a subordinate (or

10. For example, a robot encounters an error which results in it being unable to complete a move-part opera-

tion. The guardian operator intervenes by moving the part to the correct destination location. The operator

would then issues a Call Task Completed request to the robot job controller.

92

possibly executing locally). The parameters for both the Change Subtask Status request and its

responses are as follows:

Parameters on Request:

local-task-identifier

local-subtask-identifier

Task Status Object

Parameters on Response+:

local-task-identifier

local-subtask-identifier

Parameters on Response

local-task-identifier

local-subtask-identifier

error: Error Object

Upon receiving a Change Subtask Status request from the active guardian, the job controller

should perform the following steps:

1. If the job controller is in the Available or E-stopped administrative state, the request

should be ignored and an Administrative Status message should be issued to the

requesting guardian. No further action is necessary.

2. If the specified task is an invalid task or the specified subtask is an invalid subtask,

issue a Change Subtask Status response- No further action is necessary.

3. If the specified task is already in the Aborted, Completed, Deferred or Terminated

task-state, issue a Change Subtask Status response- No further action is necessary.

4. Update the internal information about the specified subtask to reflect the information

specified in the Task Status Object.

5. Proceed executing the task according to the status information provided.

6. Issue a Change Subtask Status response+.

9.2.4 Clear Task Notification

The Clear Task Notification message is valid for both the active and passive guardian job control

interfaces. It is issued by a guardian to a job controller, it requests the dynamic reporting of status

information to cease for a set of tasks. The parameters for both the Clear Task Notification request

and its response are as follows:

Parameters on Request:

tasks: CHOICE OF {

list of local-task-identifier (CONDITIONAL)
OR All-Tasks

Parameters on Response:

list of [

local-task-identifier

acceptance: Acceptance Object

] (CONDITIONAL

If a guardian issues a Gear Task Notification request and wishes to clear notification for all tasks

with notification currently set, the request will have no parameters. If no list of tasks is specified

in a Clear Task Notification request, the Clear Task Notification response will have no parameters.

93

If a guardian wishes to no longer receive dynamically updated status information for a set of

tasks, it should issue a Clear Task Notification request to the job controller currently executing

those tasks.

It is a protocol violation to receive a Clear Task Notification request while in the Available or E-

stopped administrative state. The job controller should ignore the request and issue an

Administrative Status message to the requesting guardian.

For all other administrative states, if the guardian does not specify a list of tasks in the Clear Task

Notification request, then the job controller should clear notification for all outstanding tasks and

the Clear Task Notification response will have no parameters. If the guardian specifies a list of

tasks on which to clear notification, then the job controller should determine the validity of each

task specified by the guardian, and if valid, clear notification for that task. The job controller

should issue a Clear Task Notification response, enumerating each specified task and denoting

whether notification was cleared or not.

9.2.5 Configuration Alert

The Configuration Alert is valid for the active guardian job control interface only. It is issued by

the active guardian to inform a job controller that the baseline configuration
11

has changed. The

Configuration Alert message is an unconfirmed message; it has no response. There are no

parameters to the Configuration Alert message.

It is a protocol violation to receive a Configuration Alert while in the Available or E-stopped

administrative state; the message should be ignored. Otherwise, the job controller should consult

the current baseline configuration to determine if the supervisor and/or subordinates have changed

or if its relationship to the planner has changed. It should deactivate each job controller which it is

currently supervising but which is not a subordinate in the modified configuration. It should

activate each of its subordinates in the modified configuration if it is not currently supervising that

job controller. If the planner has changed, it should disconnect from its current planner and

connect to the new planner.

6 Connect

To Connect message is valid for both the active and passive guardian job control interfaces. It is

issued by a guardian to a job controller to establish a connection via the guardian job control

interface. This is the first message a guardian may issue to a job controller; a connection must be

established before any other messages are issued. The parameters for both the Connect request

and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response+:

<none>

Parameters on Response-:

error: Error Object

11. A baseline configuration is the original specification of where a control entity exists within the control

hierarchy, who the supervisor is, who its subordinates are, and whether the job control function exists.

94

A job controller who receives a Connect request should determine if it is capable of accepting the

connection request, and if so, issue a Connect response-h The Connect response+ results in the

connection being established. In general, the primary reason for rejecting a connection request

from a guardian is that the job controller currently has the active guardian job control connection

and another request for the active guardian job control connection is received.

9.2.7 Defer Task

The Defer Task message is valid for the active guardian job control interface only. It is issued by

the active guardian to a job controller, it requests a specified task to be deferred. The parameters

for both the Defer Task request and its responses are as follows:

Parameters on Request:

local-task-identifier

Parameters on Response*:

local-task-identifier

Parameters on Response-:

local-task-identifier

error: Error Object

Guardian Task Status Object (CONDITIONAL)

If a job controller issues a Defer Task response- the conditional parameter Guardian Task Status

Object is specified if it contains information related to rejecting the request.

If the active guardian wishes to defer a task, it should issue a Defer Task request to the job

controller currently executing the task. The steps that a job controller should follow upon

receiving a Defer Task request from the active guardian are identical to those of receiving a Defer

Task from the supervisor. See Section 6.5.2 on page 54 for an explanation of these steps.

9.2.8 Die

The Die message is valid for the active guardian job control interface only. It is issued by the

active guardian to a job controller; it requests the job controller to exit regardless of

administrative state or the existence of outstanding tasks. The Die message is an unconfirmed

message; it has no response. There are no parameters to the Die message.

An active guardian may issue a Die message to a job controller which is exhibiting anomalous

behavior or in other situations where such extreme actions are necessary. When a job controller

receives a Die message, the only action it is required to perform is to exit; it may perform other

actions. It should be noted that for higher level job controllers, this will result in job controllers

without supervisors.

9.2.9 Disconnect

The Disconnect message is valid for both the active and passive guardian job control interfaces. It

is issued by a guardian to a job controller to terminate a connection which is currently established

via the guardian job control interface. This is the last message a guardian may issue to a job

controller without re-establishing a connection. The parameters for both the Disconnect request

and its responses are as follows:

Parameters on Request:

<none>

95

Parameters on Responses:

<none>

Parameters on Response-:

error: Error Object

A job controller which receives a Disconnect request should determine if it should terminate the

connection, and if so, issue a Disconnect response+. The Disconnect response* results in the

connection being terminated. In general, the primary reason for rejecting a Disconnect request is

that the job controller has outstanding requests to that guardian.

9.2.10 Emergency Stop

The Emergency Stop message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller; it requests the job controller to immediately stop

all physical activity. The Emergency Stop message is an unconfirmed message; it has no response.

There are no parameters to the Emergency Stop message.

The steps that a job controller should follow upon receiving an Emergency Stop message from the

active guardian are identical to those of receiving an Emergency Stop message from the

supervisor. See Table 11. on page 48 for an explanation of these steps.

9.2.11 Identify

The Identify message is valid for both the active and passive guardian job control interfaces. It is

issued to determine the characteristics of a job controller. The parameters for both the Identify

request and its response are as follows:

Parameters on Request:

<none>

Parameters on Response:

make
model

version

level

If a guardian wishes to know the characteristics of a job controller, it should issue the job

controller an Identify request. The steps that a job controller should follow upon receiving an

Identify request from a guardian are identical to those of receiving an Identify request from the

supervisor. See Section 6.4.5 on page 48 for an explanation of these steps.

9.2.12 Ignore Subordinate

The Ignor° Subordinate message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller; it requests the job controller to indefinitely

suspend both communicating with and supervising one of its subordinates. The parameters for

both the Ignore Subordinate request and its responses are as follows:

Parameters on Request:

subordinate-job-controller-identifier

Parameters on Response+:

<none>

96

Parameters on Response-:

error: Error Object

This message is used when a job controller is exhibiting anomalous behavior which is interfering

with the supervisor’s performance; the active guardian may decide to issue an Ignore Subordinate

request instructing the supervising job controller to ignore that subordinate.

Upon receiving an Ignore Subordinate request from the active guardian, the job controller should

perform the following steps:

1. The job controller has not checked the baseline configuration to determine its subordi-

nates when in the Available administrative state. If the planner is in the administrative

state, issue an Ignore Subordinate response- No further action is necessary.

2. If the specified subordinate does not exist, issue an Ignore Subordinate response-. No
further action is necessary.

3. Terminate the connection (if one exists) with the specified subordinate.

4. Issue an Ignore Subordinate response-)-.

5. Do not attempt to establish a new connection.

6. Continue to report, in Guardian Administrative Status messages, that the specified

subordinate exists and that its link status is unconnected. This is done so that the

guardian will remain aware that this subordinate is being ignored.

9.2.13 Pause All Tasks

The Pause All Tasks message is valid for the active guardian job control interface only. It is issued

by the active guardian to a job controller; it requests the job controller to switch to the Pausing

(and eventually to the Paused) administrative state and to suspend the execution of all outstanding

tasks. The parameters for both the Pause All Tasks request and its responses are as follows:

Parameters on Request:

time-frame: CHOICE OF {

desired-pausing-duration

OR as-soon-as-possible}

expected-paused-duration

Parameters on Response*:

estimated-pausing-duration

Parameters on Response-:

error: Error Object

estimated-pausing-duration (CONDITIONAL)

If a job controller issues a Pause All Tasks response-, the conditional parameter estimated-

pausing-duration is specified if the reason for rejecting the request is that all activity cannot be

paused within the requested desired-pausing-duration.

The semantics of the Pause All Tasks message in the guardian job control interface are identical to

those of the Pause All Tasks message in the job control interface. See Section 6.4.6 on page 49 for

an explanation of these semantics.

97

9.2.14 Pause Task

The Pause Task message is valid for the active guardian job control interface only. It is issued by

the active guardian to a job controller; it requests a specified task’s execution to be suspended.

The parameters for both the Pause Task request and its responses are as follows:

Parameters on Request:

local-task-identifier

time-frame: CHOICE OF {

desired-pausing-duration

OR as-soon-as-possible}

expected-paused-duration

Parameters on Responses:

local-task-identifier

estimated-pausing-duration

Parameters on Response-:

local-task-identifier

error: Error Object

estimated-pausing-duration (CONDITIONAL)
Guardian Task Status Object (CONDITIONAL)

If a job controller issues a Pause Task response-, the conditional parameter estimated-pausing-

duration is specified if the reason for rejecting the request is that the specified task cannot be

paused within the requested desired-pausing-duration. The conditional parameter Guardian Task

Status Object is specified if it contains information related to rejecting the request.

The semantics of the Pause Task message in the guardian job control interface are identical to

those of the Pause Task message in the job control interface. See Section 6.4.5 on page 48 for an

explanation of these semantics.

9.2.15 Reactivate Subordinate

The Reactivate Subordinate message is valid for the active guardian job control interface only. It

is issued by the active guardian to a job controller, it requests the job controller to resume

communication with and supervision of a subordinate that it was previously instructed to ignore.

The parameters for both the Reactivate Subordinate request and its responses are as follows:

Parameters on Request:

subordinate-job-controller-identifier

Parameters on Responses :

<none>

Parameters on Response-:

error: Error Object

Upon receiving a Reactivate Subordinate request from the active guardian, the job controller

should perform the following steps:

1. A planner has not checked the baseline configuration to determine its subordinates

when in the Available administrative state. If the job controller is in the Available

administrative state, issue a Reactivate Subordinate response-. No further action is

necessary.

98

2. If the specified subordinate does not exist, issue a Reactivate Subordinate response-
No further action is necessary.

3. Otherwise, issue a Reactivate Subordinate response+.

4. Attempt to establish a connection with the specified subordinate. If it cannot establish

a connection with the specified subordinate, it should specify that in an Administrative

Status message.

5. If a connection can be established, the job controller should resume its supervisory

responsibilities with respect to that subordinate.

9.2.16 Report Administrative Status

The Report Administrative Status message is valid for both the active and passive guardian job

control interfaces. It is issued by a guardian to a job controller to request current administrative

status. The parameters for both the Report Administrative Status request and its responses are as

follows:

Parameters on Request:

detail-level

Parameters on Response+

:

Guardian Administrative Status Object

Parameters on Response-:

error: Error Object

If a guardian wishes to receive updated administrative status about a job controller, it should issue

a Report Administrative Status request to that job controller. The detail-level parameter allows a

guardian to specify whether it wants information about only the job controller or the job

controller’s subsystem as well. See Section 9.1.1 on page 89 for a discussion of the Guardian

Administrative Status Object, which explains the information provided for each detail-level.

Upon receiving i . . eport Administrative Status request from a guardian, a job controller should

issue a Report Administrative Status response- if the detail-level is invalid. Otherwise, it should

issue a Report Administrative Status response-*- specifying the required information as defined by

the Guardian Administrative Status Object and the detail-level.

9.2.17 Report Tasks

The Report Tasks message is valid for both the active and passive guardian job control interface.

It is issued by a guardian to a job controller to request status information on a set of tasks. The

parameters for both the Report Tasks request and its response are as follows:

Parameters on Request:

tasks: CHOICE OF {

list of local-task-identifier (CONDITIONAL)
OR All-Tasks

detail-level

Parameters on Response:

list of [

local-task-identifier

99

status: CHOICE OF {

error: Error Object

OR status: Guardian Task Status Object}

] (CONDITIONAL)

If a guardian issues a Report Tasks request and wishes to receive status on all outstanding tasks,

the conditional parameter list of local-task-identifier will not be specified. If All-Tasks is specified

in a Report Tasks request and a job controller does not currently have any outstanding tasks, then

the Report Tasks response will have no parameters.

If a guardian wishes to receive updated status for a collection of tasks, it should issue a Report

Tasks request to the job controller currently executing those tasks. The detail-level parameter

allows a guardian to specify whether it wants more or less detailed information about the tasks.

See Section 9.1.5 on page 90 for a discussion of the Guardian Task Starns Object which explains

the information provided for each detail-level.

The steps that a job controller should follow upon receiving a Report Tasks request from a

guardian are identical to those of receiving a Report Tasks request from the supervisor. See

Section 6.5.5 on page 59 for an explanation of these steps.

9.2.18 Resume AH Tasks

The Resume All Tasks message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller; it requests the job controller to switch from the

Pausing, Paused or Terminated administrative state to the Active administrative state and resume

the execution of all outstanding tasks. The parameters for both the Resume All Tasks request and

its responses are as follows:

Parameters on Request:

<none>

Parameters on Responses:

<none>

Parameters on Response-:

error: Error Object

If the active guardian wishes to resume the activity of a job controller which has previously been

instructed to suspend or ten ate all activity, it should issue the job controller a Resume All

Tasks request. The steps that a job controller should follow upon receiving a Resume AH Tasks

request from the active guardian are identical to those of receiving a Resume AH Tasks request

from the supervisor. See Table 13. on page 52 for an explanation of these steps.

9.2.19 Resume Task

The Resume Task message is wild for the active guardian job control interface only. It is issued

by the af ve guardian to a job controUer; it requests a suspended task’s execution to continue. The

parametcis for both the Resume Task request and its responses are as foUows:

Parameters on Request:

local-task-identifier

Parameters on Responses:

local-task-identifier

100

Parameters on Response-:

local-task-identifier

error: Error Object

Guardian Task Status Object (CONDITIONAL)

If a job controller issues a Resume Task response-, the conditional parameter Guardian Task

Status Object is specified if it contains information related to rejecting the request.

If the active guardian wishes to resume the execution of a specific task, it should issue a Resume
Task request to the job controller executing the task. The steps that a job controller should follow

upon receiving a Resume Task request from the active guardian are identical to those of receiving

a Resume Task request from the supervisor. See Section 6.5.6 on page 60 for an explanation of

these steps.

9.2.20 Set Task Notification

The Set Task Notification message is valid for both the active and passive guardian job control

interfaces. It is issued by a guardian to a job controller; it requests task status information to be

dynamically reported for a set of tasks. The parameters for both the Set Task Notification request

and its response are as follows:

Parameters on Request:

tasks: CHOICE OF {

list of local-task-identifier (CONDITIONAL)
OR All-Tasks

detail-level

Parameters on Response:

list of [

local-task-identifier

acceptance: Acceptance Object

] (CONDITIONAL)

If a guardian issues a Set Task Notification request and wishes to set notification for all

outstanding tasks, the conditional parameter list of local-task-identifier will not be specified. If a

guardian specifies All-Tasks, the Set Task Notification response will have no parameters.

If a guardian wishes to receive dynamically updated status information about a set of tasks, it

should issue a Set Task Notification request to the job controller with those tasks. This message

differs from the Report Tasks message in that the Report Tasks message provides a snapshot view

of the status for a set of tasks; the Set Task Notification message results in the job controller

issuing status messages any time the status parameters change for any of the specified tasks. The

detail-level parameter allows a guardian to specify whether it wants more or less detailed

information about the tasks. See Section 9.1.5 on page 90 for a discussion of the Guardian Task

Status Object which explains the information provided for each detail-level.

It is a protocol violation to receive a Set Task Notification request while in the Available or E-

stopped administrative state. The job controller should ignore the request and issue an

Administrative Status message to the requesting guardian.

For all other administrative states, if no list of tasks is specified in the request, then the job

controller will set notification for all outstanding tasks and the Set Task Notification response will

have no parameters. If a list of tasks is specified in the request, then the job controller should

determine the validity of each task specified by the guardian, and if valid, set notification for that

101

task. The job controller should issue a Set Task Notification response, enumerating each specified

task and denoting whether notification was set or not

For each task which has notification set, the job controller should issue Notify Task messages (see

Section 9.3.2 on page 105) to the guardian any time any parameter of the status information

changes. The detail-level used in determining how much information to provide in the Notify

Task message is that which was specified in the Set Task Notification request The job controller

should continue to issue Notify Task messages for each task with notification set until a Clear

Task Notification message (see Section 9.2.4 on page 93) is received which specifies that task.

9.2.21 Terminate All Tasks

The Terminate All Tasks message is valid for the active guardian job control interface only. It is

issued by the active guardian to a job controller; it requests the job controller to switch to the

Terminating (and eventually to the Terminated) administrative state, to indefinitely suspend the

execution of all outstanding tasks, and to no longer accept Execute Task requests. The parameters

for both the Terminate All Tasks request and its responses are as follows:

Parameters on Request:

<none>

Parameters on Response*

:

<none>

Parameters on Response-:

error: Error Object

If the active guardian wishes to terminate the activity of a job controller, it should issue a

Terminate All Tasks request to that job controller. The steps that a job controller should follow

upon receiving a Terminate All Tasks request from the active guardian are identical to those of

receiving a Terminate All Tasks request from the supervisor. See Table 14. on page 52 for an

explanation of these steps.

9.2.22 Terminate Task

The Terminate Task message is valid for the active guardian job control interface only. It is issued

by the active guardian to a job controller; it requests a specified task’s execution to be indefinitely

suspended. The parameters for both the Terminate Task request and its responses are as follows:

Parameters on Request:

local-task-identifier

Parameters on Response+:

local-task-identifier

Parameters on Response-:

local-task-identifier

error: Error Object

Guardian Task Status Object (CONDITIONAL)

If a job controller issues a Terminate Task response-, the conditional parameter Guardian Task

Status Object is specified if it contains information related to rejecting the request.

If the active guardian wishes to indefinitely suspend the execution of a job controller’s task, it

should issue that job controller a Terminate Task request for that task.

102

Upon receiving a Terminate Task request from the active guardian, the job controller should

perform the following steps:

1. If the job controller is in the Available or E-stopped administrative state, the job con-

troller should ignore the request and issue an Administrative Status message to the

requesting guardian. No further action is necessary.

2. If the specified task is an invalid task, issue a Terminate Task response- No further

action is necessary.

3. If the specified task is not in the Waiting for Guardian or Paused task-state, issue a Ter-

minate Task response- No further action is necessary.

4. If the task is in the Paused task-state, do the following:

(a) Switch the task’s management state to Terminating.

(b) If the job controller has subordinates executing subtasks in support of this task,

issue Terminate Task requests to those subordinates and wait for Terminate Task

response-h

(c) Abort any subtasks which are executing locally according to internal procedures.

(d) After all subtasks (local and non-local) have been terminated, the task is termi-

nated; switch the task to the Terminated task-state.

(e) Issue a Terminate Task response-h

(f) Mark all Executing and Not-Yet-Executing steps in the production plan as Sched-
uled.

(g) Issue a Plan Finished request to the planner.

(h) Issue a Task Status message to the supervisor.

(i) No further action is necessary.

5. If the job controller is at the equipment level and the task is in the Waiting for Guard-
ian task-state, do the following:

(a) Switch the task’s management state to Terminating.

(b) Continue executing the task until a checkpoint is reached.

(c) Abort the task according to internal procedures and switch the task to the Termi-
nated task-state.

(d) Issue a Terminate Task response-h

(e) Issue a Plan Finished request to the planner.

(f) Issue a Task Status message to the supervisor.

(g) No further action is necessary.

6. If the job controller has subordinates and the task is in the Waiting for Guardian task-

state, each subtask must be considered individually:

(a) For each subtask which is Deferred, Completed or Terminated, no action is neces-

sary.

(b) If any subtask is in the Aborted task-state or Aborting task-management-state,

issue a Terminate Task response-. Continue execution of the task if possible. No fur-

ther action is necessary.

(c) Switch the task’s management state to Terminating.

(d) For each subtask which is in the Active task-state, issue a Pause Task request (with

parameter as-soon-as-possible) to the subordinate executing that subtask.

(e) If all subordinates do not respond positively to the Pause Task request, then issue a

Terminate Task response- to the guardian. Issue Resume Task requests to all subordi-

nates who issued Pause Task responses-!-. Continue execution of the task if possible.

No further action is necessary.

103

(f) If all subordinates respond positively to the Pause Task requests, then issue a Ter-

minate Task response+ to the guardian.

(g) After all subordinates who were attempting to pause tasks have issued a Task Sta-

tus message specifying that their tasks are Paused, issue a Terminate Task request for

all subtasks which are in the Paused task- state. When all subtasks have been Termi-

nated, the task is Terminated.

(h) If at any time a subtask enters an unexpected state, contact the active guardian with

Task or Subtask Error Occurred.

(i) Mark all Executing and Not-Yet-Executing steps in the production plan as Sched-

uled.

7. Issue a Plan Finished request to the planner.

8. Issue a Task Status message to the supervisor.

9.3 Job Controller Initiated Messages

The job controller initiated messages in the guardian job control interface are:

• Administrative Status

• Notify Task

• Subordinate Problem

• Subtask Error Occurred

• Task Error Occurred

This section describes each of these messages in detail.

9.3.1 Administrative Status

The Administrative Status message is valid for both the active and passive guardian job control

interfaces. It is issued by a job controller to inform a guardian of any change in its administrative

status. The Administrative Status message is an unconfirmed message; it has no response. T. se

parameters are as follows:

Parameters:

administrative-state

planner-job-control-link-status

link-to-supervisor-status

operational-status

list of [

subordinate-job-controller-identifier

administrative-state

link-to-subordinate-status

] (CONDITIONAL)

If a job controller issuing an Administrative Status message has no subordinates, then the list of

subordinate information will not be specified.

For each established guardian job control connection, a job controller should issue Administrative

Status messages each time one of the parameters in its administrative status changes. If a job

controller does not currently have an established guardian job control connection and it wishes to

issue an Administrative Status message to report an abnormal situation, it should turn on the job

104

control watchdog, and after establishing a connection to a guardian, it should issue an

Administrative Status message.

9.3.2 Notify Task

The Notify Task message is valid for both the active and passive guardian job control interfaces.

A Notify Task message is issued by a job controller to a guardian to report the current status of a

task. The Notify Task message is an unconfirmed message; it has no response. The parameters are

as follows:

Parameters:

local-task-identifier

Guardian Task Status Object

For each outstanding task, a job controller should issue Notify Task messages to each guardian

which has set notification for that task each time any parameter of the Guardian Task Status

Object for that covenant changes. The detail-level used in determining how much information to

provide in the Guardian Task Status Object is that which was specified by that guardian in its Set

Task Notification request

9.33 Subordinate Problem

The Subordinate Problem message is valid for the active guardian job control interface only. It is

issued by a job controller to inform the active guardian that a subordinate is exhibiting anomalous

behavior. When the job controller wishes to issue this message to the active guardian, the job

controller should turn on the job control watchdog. The Subordinate Problem message is an

unconfirmed message; it has no response. The parameters are as follows:

Parameters:

subordinate-job-controller-identifier

error: Error Object

Examples of when a Subordinate Problem message would be issued include when a subordinate is

not responding to requests, when a subordinate is consistently issuing inappropriate messages, or

when a job controller is unable to establish a connection to its subordinate.

9.3.4 Subtask Error Occurred

The Subtask Error Occurred message is valid for the active guardian job control interface only. It

is issued by a job controller to inform the active guardian that an error has occurred which affects

one of its subtasks or an error has occurred to one of its subtasks which affects its task. Most

subtask errors are generated by receiving an unexpected status report from a subordinate which

the job controller (and the planner) cannot resolve. There are several messages that the active

guardian may issue to resolve a subtask error. They include Abort Task, Call Task Completed,

Change Subtask Status, Defer Task, Pause Task, Resume Task, and Terminate Task.

When the job controller wishes to issue this message to the active guardian, the job controller

should turn on the job control watchdog.The Subtask Error Occurred message is an unconfirmed

message; it has no response. The parameters are as follows:

Parameters:

local-task-identifier

local-subtask-identifier

105

subordinate-job-controller-identifier

error: Error Object

9.3.5 Task Error Occurred

The Task Error Occurred message is valid for the active guardian job control interface only. It is

issued by a job controller to inform the active guardian that an error has occurred which is either

intimately related to a specific task or which affects the job controller’s ability to complete the

execution of a task. In general, all equipment failures will cause a job controller to issue a Task

Error Occurred message. Errors specific to a task may also cause a job controller to issue a Task

Error Occurred (e.g., workpieces or tools not available for current task). There are several

messages that the active guardian may issue to resolve a task error. They include Abort Task, Call

Task Completed, Defer Task, Pause Task, Resume Task, and Terminate Task.

When the job controller wishes to issue this message to the active guardian, the job controller

should turn on the job control watchdog. The Task Error Occurred message is an unconfirmed

message; it has no response. The parameters are as follows:

Parameters:

local-task-identifier

error: Error Object

/

106

10 Example Error Recovery Scenario

This section presents an example scenario of task lateness to show how the messages from the

different interfaces interact The messages which are used in this scenario are Break Covenants,

Covenants Broken, Replan Late Plan, Replan Late Step, and Task Status. Figure 11. provides a

pictorial view of the scenario.

The following situation currently exists:

• Control Entity B is an equipment level control entity which is supervised by Control

Entity A.

• Control Entity A’s planner had previously scheduled a covenant for the operation

‘DrillHole9982r with Control Entity B’s planner to be executed at August 23, 1993

10:00:00 for 15 minutes.

• At August 23, 1993 10:00:00, Control Entity A’s job controller issued Control Entity B’s

job controller an Execute Task request for the operation ‘DriUHole99821’.

• Control Entity B ’s job controller has begun executing the task.

• The current time is August 23, 1993 10:13:00.

• Control Entity B’s job controller re-calculates the estimated-completion-time for the

operation ‘DrillHole9982r to be August 23, 1993 10:21:00. It realizes that this estimate

exceeds the scheduled-completion-time (August 23, 1993 10:15:00).

Table 15. on page 108 presents the dialog which occurs among the planners and job controllers of

control entities A and B.
12

12. PA denotes Control Entity A’s planner (similarly for PB) and JCA denotes Control Entity A’s job control-

ler (similarly for JCB).

107

Issuing

Entity

Receiving

Entity
Action

1 JCB Pb JCB issues PB ^ Replan Late Plan request for the operation ‘DrillHole9982r

specifying an estimated-conripletion-time of August 23, 1993 10:21:00.

2 Pb Pa

PB consults B’s schedule to determine if this task’s lateness will affect any subse-

quent operations for the resource. It determines that the operation ‘Drill-

Hole8827’ will be affected. PB issues a Break Covenants request to PA ,

requesting to break the contract for operation ‘DrillHole8827’ in order to com-
plete the current task, ‘DrillHole9982r.

3 Pa Pb

PA decides to grant permission to break the contract for ‘DrillHole8827’ in order

to complete the currently executing ‘DrillHole9982r because it is easier to

reschedule an operation than terminate an executing operation and resume it at

some future time. PA issues a Break Covenants response to PB granting permis-

sion.

4 Pb Pa Because PA gave PB permission to break the contract for ‘DrillHole8827\ Pp
issues a Covenants Broken request to PA , specifying the covenant for operation

‘DrillHole8827\

5 Pa Pb PA issues a Covenants Broken response to PB . It then attempts to reschedule that

operation for another time, and possibly with another subordinate.

6 Pb JCB

PB , upon receiving the Covenants Broken response from PA , will remove the cov-

enant and production plan associated with operation ‘DrillHole8827’. It will

extend the scheduled-completion-time for ‘DrillHole99821 ’ to the estimated-

completion-time provided by JCB (August 23, 1993 10:21:00) and issue ^Replan
Late Plan responses with action ‘Resume’ to JCB .

7 JCB JCA After receiving the Replan Late Plan responses from PB , JCB will issue a Task

Status message to JCA , specifying the estimated-completion-time for the task.

8 JCA Pa

After receiving the Task Status message from JCB , JCA determines that the new
estimated-completion-time for the step ‘DrillHole998Zl ’ in its production plan

‘MakeWidget3820’ conflicts with the scheduled-start-time for the subsequent

step in that production plan, ‘DeliverToDeburrl022’. JCA will issue aReplan
Late Step request to PA , specifying the production plan ‘MakeWidget3820 ’ and
the step ‘DrillHole99821’.

9 Pa <u•—*

PA will attempt to reschedule the steps in the production plan ‘MakeWid-
get3820’, starting with the step following ‘DrillHole99821 ’. It will reschedule

each step, in turn, until a step is reached whose scheduled-completion-time does
not overlap with the scheduled-start-time of the subsequent steps. After complet-

ing this, PA issues a Replan Late Step response+ with action ‘Resume’ to JCA .

10 .Ca JCa’s

supervisor

After receiving the Replan Late Step responses- from PA , JCA will continue mon-
itoring its subtask ‘DnUHole99821’. It will issue a Task Status message to the

supervisor.

Table 15. Task Late Scenario

108

11 Summary
This specification is the second iteration defining the control entity interfaces for a control entity

conforming to the MSI architecture.

11.1 Issues Addressed

As currently specified, this specification supports finite capacity scheduling and rescheduling,

task execution and monitoring, human monitoring and intervention at all levels of control within a

shop, error detection and limited error recovery. This specification is sufficient to support

recovery from errors which require rescheduling only (lateness and repeatable tasks).

11.2 Issues Remaining

This specification needs to be extended to support recovery that involves dynamically re-

allocating resources, dynamic material handling, and eventually dynamic process planning.

109

12 Glossary

acceptance-code: an integral value denoting acceptance or an error-code. See Section 4.4 on

page 25.

Acceptance Object: see Section 4.4 on page 25.

acceptance-text: a textual description of an acceptance code.

action: an instruction which a planner may issue to a job controller to resolve a replanning

error or anomaly.

administrative-state: the current state of a planner (see Section 5.2 on page 28) or job controller

(see Section 6.1 on page 42).

All-Bids: a value which denotes all covenants which are currently in the Pre-Bidding, Bidding,

Bidden, Breaking Bid, or Accepting covenant-state.

All-Contracts: a value which denotes all covenants which are currently in the Contracted, Break-

ing Contract, or Executing covenant-state.

All-Covenants: a value which denotes all covenants which are currently in the Pre-Bidding, Bid-

ding, Bidden, Breaking Bid, Removing Covenant, Accepting, Contracted, or

Breaking Contract or Executing covenant-state.

All-Tasks: a value which denotes all outstanding tasks.

as-soon-as-possible: a value which denotes ‘as soon as possible’.

completion-time: an absolute time which is used to specify the end of a time interval.

Covenant Name Object: see Section 8.1.2 on page 74.

Covenant Status Object: see Section 5.4 on page 30.

covenant-state: see Section 5.3 on page 29.

desired-pausing-duration: a time duration which specifies the maximum time a supervisor job

controller or a guardian wishes to wait for a set of tasks to reach the Paused task-

state.

detail-level: a parameter which indicates the desired level of detail to be reported in a given mes-

sage. Detail-level is used in the guardian planning and guardian job control inter-

face for administrative status reporting, covenant status reporting and task status

reporting.

earliest-start-time: an absolute time which indicates the earliest acceptable time at which an oper-

ation may be begun.

error-code: an integral value denoting an error condition. See Section 4.3 on page 24.

Error Object: see Section 4.3 on page 24.

error-text: a textual description of an error-code.

estimated-completion-time: an absolute time which specifies a job controller’s estimate of when a

task will complete execution.

110

estimated-pausing-duration: a time duration which specifies a job controller’s estimate of how
much time is needed for a set of tasks to reach the Paused task-state.

estimated-remaining-duration: a time duration which specifies a job controller’s estimate of how
much time is needed to complete the execution of a task.

expected-paused-duration: a time duration which specifies how much time a supervisor job con-

troller or a guardian expects a set of tasks to remain in the Paused task-state.

global-plan-reference: an operator-understandable globally unique identifier for a plan.

global-step-reference: an operator-understandable globally unique identifier for a step in a plan.

Guardian Administrative Status Object: see Section 8.1.1 on page 74 and Section 9.1.1 on

page 89.

Guardian Covenant Status Object: see Section 8.1.5 on page 75.

Guardian Task Status Object: see Section on page 90.

late: a boolean parameter which indicates whether a given task’s execution is expected to com-

plete later than its scheduled-completion-time. ‘True’ indicates that the task is

expected to be late; ‘false’ indicates that the task’s execution is expected to com-

plete early or on-time.

latest-completion-time: an absolute time which indicates the latest acceptable time for an opera-

tion to be completed.

level: a parameter which denotes at what level within the control hierarchy a given planner or job

controller exists. Possible values are equipment, workcell and shop.

link-to-subordinate-status: a parameter which indicates the status of a logical connection between

either a job controller and one of its subordinates or a planner and one of its subor-

dinates. Possible values are unconnected, listening, connecting, connected, and

disconnecting.

link-to-supervisor-status: a parameter which indicates the status of a logical connection between

either a job controller and the supervisor or a planner and the supervisor. Possible

values are unconnected, listening, connecting, connected and disconnecting.

local-covenant-identifier: a unique identifier for a covenant which is specified by and meaningful

to the planner responsible for planning the covenant

local-subcovenant-identifier: a unique identifier for a subcovenant which is specified by and

meaningful to the planner responsible for planning the covenant of which the sub-

covenant is a component.

local-subtask-identifier: a unique identifier for a subtask which is specified by and meaningful to

the job controller responsible for executing the task of which the subtask is a com-

ponent

local-task-identifier: a unique identifier for a task which is specified by and meaningful to the job

controller responsible for executing the task.

make: a parameter used in the Identify message which indicates the manufacturer of a planner or

job controller software.

Ill

model: a parameter used in the Identify message which indicates the model type of a planner or

job controller software.

operational-status:vendor-specific information detailing status information about a job controller

(e.g., coolant-level, joint-position, spindle-position).

parameter-name: the name of a plan parameter (input or output).

parameter-value: the value of a plan parameter (input or output).

plan-identifier: an attribute of a plan, which along with plan-version and plan-location uniquely

identifies a plan.

Plan Identifier Object:see Section 4.1 on page 24.

plan-location: an attribute of a plan which specifies where a plan is located. Along with plan-

identifier and plan-version, it niquely identifies a plan.

Plan Parameter Object: see Section 4.2 on page 24.

plan-state: see Section 3.1 on page 21.

plan-version: an attribute of a plan, which along with plan-identifier and plan-location uniquely

identifies a plan.

planner-job-control-link-status: a parameter which indicates the status of a logical connection

between a job controller and a planner. Possible values are unconnected, listening,

connecting, connected and disconnecting.

planning-strategy: a parameter which denotes an algorithm which a planner may use to schedule a

covenant (see Section 5.1.1 on page 26).

priority: a parameter which specifies the relative importance of a covenant to the shop’s commit-

ments. It is used in some planning-strategies to determine which existing cove-

nants may be modified in order to accommodate a new covenant

scheduled-completion-time: an absolute time which specifies a planner’s estimate of when a

task’s or subtask’s execution should complete. It may also specify the time at

which a resource is no longer available to perform a specified task or subtask.

scheduled-start-time: an absolute time which specifies a planner’s estimate of when a task’s or

subtask’s executr should begin. It may also specify the time at which a resource

becomes available to perform a specified task or subtask.

start-time: an absolute time which is used to specify the beginning of a time interval. Used in the

Clear Schedule guardian planning message.

step-identifier: a unique identifier for a step within a plan.

subcovenant-state: the current state of a subcovenant See Section 5.3 on page 29.

Subcovenant Status Object: see Section 8.1.4 on page 75.

subordinate-covenant-identifier: a unique identifier fo~ i planner’s covenant which is specified by

and meaningful to the planner responsive for scheduling the covenant.

subordinate -job-controller-identifier: a unique identifier for a subordinate job controller.

112

subordinate-planner-identifier: a unique identifier for a subordinate planner.

subordinate-subcovenant-identifier: a unique identifier for a planner’s subcovenant which is spec-

ified by and meaningful to that planner’s subordinate.

subordinate-subtask-identifier: a unique identifier for a job controller’s subtask which is specified

by and meaningful to that job controller’s subordinate.

subordinate-task-identifier: a unique identifier for a job controller’s task which is specified and

meaningful to the job controller responsible for executing the task.

subtask-management-state: the current management state of a subtask. See Section 6.2 on

page 42).

subtask-state: the current state of a subtask. See Section 6.2 on page 42.

Subtask Status Object: see Section 9.1.4 on page 90.

supervisor-covenant-identifier: a unique identifier for a planner’s covenant which is specified by

and meaningful to the supervisor of the planner responsible for scheduling the cov-

enant.

supervisor-manufacturing-unit-identifier: an identifier for a logical unit which represents the

workpieces on which to perform a specified operation.

supervisor-task-identifier: a unique identifier for a job controller’s task which is specified by and

meaningful to the supervisor of the job controller responsible for executing the

task.

Task Name Object: see Section 9.1.2 on page 89.

Task Status Object: see Section 6.3 on page 44.

task-management-state: the current management state of a task. See Section 6.2 on page 42.

task-state: the current state of a task. See Section 6.2 on page 42.

terminated-fiag: a boolean parameter specified in a Request for Bid request which denotes

whether the specified plan is a production-managed plan to be scheduled, or a par-

tially executed production plan which should be rescheduled.

version: a parameter used in the Identify message which denotes the version of the planner or job

controller software.

work-element-identifier: a unique identifier for an operation which a job controller innately

knows how to perform. In general, only equipment job controller’s have work-ele-

ments.

113

[Barkmeyer, 1993]

[Catron, 1991]

[Ray, 1992a]

[Ray, 1992b]

[Senehi, 1991a]

[Senehi, 1991b]

[Senehi, 1992]

References

Barkmeyer, E., S. Wallace, S. Ray, E. Wallace and M.K. Senehi,

“Manufacturing Systems Integration: Information Models”, National

Institute of Standards and Technology Interagency Report, forthcoming (to

be available from the National Technical Information Service, Springfield,

VA 22161).

Catron, B. and S. Ray, “ALPS - A Language for Process Specification,”

International Journal of Computer Integrated Manufacturing, Volume 4,

Number 2, pp. 105-113, 1991.

Ray, S., “Using the ALPS Process Plan Model,” Proceedings of the ASME
Manufacturing International Conference, Dallas, TX, 1992.

Ray, S. and S. Wallace, “A Production Management Information Model for

Discrete Manufacturing,” submitted to Production Planning and Control

Journal, September, 1992.

Senehi, M.K., E. Barkmeyer, M.E. Luce, S.R. Ray, E.K. Wallace, and S.

Wallace, “Manufacturing Systems Integration Initial Architecture

Document”, National Institute of Standards and Technology, Interagency

Report 91-4682, September 1991 (Available from the National Technical

Information Service, Springfield, VA 22161).

Senehi, M.K., S. Wallace, E. Barkmeyer, M.E. Luce, S.R. Ray, and E.K.

Wallace, “Manufacturing Systems Integration Control Entity Interface

Document”, National Institute of Standards and Technology, Interagency

Report 91-4626, June 1991 (Available from the National Technical

Information Service, Springfield, VA 22161).

Senehi, M.K., S. Wallace, and M.E. Luce, “An Architecture for

Manufacturing Systems Integration”, Proceedings of the ASME
Manufacturing International Conference, Dallas, TX, 1992.

114

