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Foreword

This report is a collection of papers by the GIS/SQL Working Group, NIST GIS Standards

Laboratory. The working Group is chaired by Dr. Vincent B. Robinson, Institute for Land

Information Management, University of Toronto. The focus of this report was established

during the GIS/SQL Workshop held at the National Institute of Standards and Technology

(NIST), April 3-4, 1991, Gaithersburg, MD, sponsored by the GIS Laboratory. A prime

objective of the GIS Standards Laboratory is to facilitate joint efforts in adapting information

technology standards for use by the GIS community.

A Geographic Information Systems (GIS) extension to the Structured Query Language (SQL)

has significant implications. For the GIS world, a GIS extension to SQL benefits both GIS

software vendors and end users. The integration of SQL into GIS software wiU require less

effort and maintenance by GIS vendors. GIS users wiU have a common database language to

directly perform many of the functions and operations they require. A GIS/SQL extension can

provide the transactional capability with the particular feamres required in GIS processing.

Other advantages of incorporating GIS capabilities into the current SQL refinements include

distributed GIS processing through Remote Data Access (RDA) and potential adaptation of

object-oriented constructs by relational-based GIS technology. Accordingly, a GIS extension

to SQL, within the larger context of generic information technology standards, affords GIS

technology a greater open systems capability. For the general computing community, the GIS

extension to SQL provides fundamental GIS functions without specialized GIS software.

The intent of this report is to stimulate dialogue and development of a GIS extension to SQL
among those interested. Internationally, a new project in this regard has been approved within

the ISO/IEC Joint Technical Committee 1 (JTCl), Information Technology. Nationally, the

recently formed technical committee for GIS standards X3L1 will consider participating in

such efforts. As these efforts progress and become formalized, the adoption of a GIS

extension to SQL will greatly benefit Federal GIS users.

The views expressed by the authors of this report are their own and do not necessarily reflect

those of NIST. Citations, inclusion or omission of specific vendors or commercial products

does not imply either endorsement or criticism by NIST.

Henry Tom
Manager
NIST GIS Standards Laboratory
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On Heterogeneous Geographic Information Systems,

Architectures, Spatial Data Models, Transactions

and Database Languages

Vincent B. Robinson and D. Scott Mackay
Institute for Land Information Management

University of Toronto, Erindale College

Mississauga, Ontario L5L 1C6
Canada

1 Introduction

This paper addresses several essential concepts, developments, and issues pertaining to

Geographic Infonnation Systems (GIS) and development of a SQL database language for GIS.

Suggestions or proposals for database language extensions to SQL are collectively addressed

by Ashworth (1993), Gallagher (1993), Halustchak (1993), and van Roessel (1993). This paper

sets a general context for considering SQL database language extensions for GIS.

An important implication

of the Mackay and

Robinson (1992)

discussion of

heterogeneous

infonnation systems and

geographic data

interchange is the central

role a database language

such as SQL may play

in providing a unified

model for the

management of

geographic data. Meeting

this challenge requires

that many issues be

addressed (Robinson

1991). Foremost is to

place GIS in context

with other areas of

infonnation technology (IT). GIS are a specialised information, or database, system that deals

with geographically referenced, spatially structured information (Bracken and Webster, 1989).

Although GIS may have some special characteristics, they have many of the needs and

characteristics of general purpose information systems and of spatial information systems

(Figure 1). GIS are but one, albeit specialized, area of information management technology.

Therefore it is affected by many of the same trends and developments found generally in the

IT field.

increasing

specialization

Figure 1. Geographic information systems as a specialized

information system.
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Figure 2. Conceptual structure of a geographic information infrastructure (source:

Mackay and Robinson 1992).

Within the last decade a significant development in the GIS industry has been that of

enterprise GIS. Traditionally GIS filled the role of a technical subsystem often isolated from

other inforaiation resources of an organization. Enterprise-wide GIS is a broad multi-

department driven, database technology (GeoVision 1992). It is because of this broad,

organizationally driven database perspective that in many parts of the world (e.g., USDI 1989,

1990; DMR 1989) there is a clear trend towards developing integrated geographic information

systems consisting of geographically distributed systems (Figure 2). The cultivation of these

systems demands the use of one or more models of heterogeneous or multidatabase systems.

Mackay and Robinson (1992) argue that geographic data interchange standards efforts

represent attempts at heterogeneous geographic database design. They observe that the

maturation of such systems will promote the need for effective multidatabase languages

systems that enable GIS to become actively integrated into broad, organization-wide database

systems (Mackay and Robinson 1992).

To understand some of the complexities of developing a SQL database language extension to

support the integration of GIS into a heterogeneous information systems environment we
briefly present the two prevailing GIS database architectures, spatial data models, geographic

database transactions and GIS database languages.
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2 GIS Database Architecture

GIS handle data describing both spatial location, extent, etc and characteristics of spatial

entities located in geographical space. These dual demands that have given rise to two major

database architectures in the GIS industry - dual and unified database architectures. The dual

database model stores and manages spatial and nonspatial (attribute) data in independent

structures which are often separate software systems. The unified database model brings spatial

and attribute data together into a single database frameworic (Bracken and Webster, 1989).

(Figure 3).

Figure 3. Dual database GIS showing a composite layer as a layer of indices pointing to

attributes.

Since query languages (QL) are the primary means for users to access and manage existing

databases, they can become an expression of how a GIS is integrated with other organizational

functions. This leads to an interesting observation regarding the dual vs unified database

models. In the dual database model the nonspatial, or attribute, information is kept in a

relational database and accessed using a database language, such as SQL, while spatial data is

accessed using a specialized spatial query language. The dual database architecture grew out of

past limitations of nonspatially oriented database technology when applied to spatial problems

of databases {e.g. Chang and Fu 1981, Webster and Bracken 1989,) and the need to link to

existing nonspatial databases.
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class_id class_name geo_type
class memb Attributes

class’ id class_^emb polygon_class_memb
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class_memb MBR

class_memb MBR

5
class memb line class id line class memb

class._id class..memb lme_class_id * line_class_memb
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^

i
•

class_memb MBR start_class_memb u end_class_memb x/y_coord_list

class id class memb node class

class_memb x,y;z

Figure 4. Example of schema for a unified geographic database model based on relational

database technology with extensions for GIS (source: Ashworth 1992).

The unified database approach manages spatial and nonspatial data together with a single

database schema and language (Figure 4). An important reason for maintaining a geographic

database within a single database management system is that all the data can then be subject to

facilities such as security, integrity control, communication, and transaction management. For

example, in land information systems that receive updates regularly the importance of

referential integrity is especially important. Without a unified database management system,

referential integrity can easily be lost (Robinson 1989).

Often systems based on the unified database model have been built using relational database

technology {e.g. Ashworth 1993; Halustchak 1993). These unified database systems usually

exploit bulk-field types in relational databases to enable efficient handling of spatial data. To
overcome access performance problems spatial access methods based on R-tree or quad-tree

indexing is often exploited (e.g., Ashworth 1993; Faloutsos et al 1987; Westwood and

Brinkman 1988).
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3 Spatial Data Models

Historically use of a raster or vector based data model had a fundamental impact on the

database, or query, language. For example, QPE-based spatial query languages have tended to

be built upon a raster-based model while SQL-based languages have tended to be built upon a

vector-based model (Figure 5). The language of cartographic modeling (Tomlin 1990) also has

its roots in the raster model of data organization, however is being adapted to the vector-based

domain of SQL-based GIS products (e.g., Ashworth 1993). Although there are transforms that

allow systems to map between these models the process is not without its difficulties. Because

current spatial query languages are usually tightly coupled to the underlying data model, the

data model determines the how the language is structured and the meaning of its vocabulary.

More relevant to the problem of

heterogeneous GIS in an enterprise

are the layer-based and object-based

spatial data models (Worboys and

Deen 1991). The general distinction

between the layer vs object based

models is that a layer is a function

from a set of spatial references to an

attribute set, thus providing

information on the gobal variation of

an attribute over the layer. In

contrast, the object-based approach

models the infoimation structure as

being populated with constituent

objects which have to spatial

objects. Consequently, one model

can be view as the inverse of the

other.

Figure 5. Simple contrast of Raster and Vector

models of spatial data representation.

3.1 Layer-based Spatial Data Model (LSDM)

The layer-based spatial data model consists of a finite collection of layers {L, I 1< i < n} and

assume an underlying spatial frameworic as set F of spatial references. For example, T might

be the points of a regular grid such as a digital elevation model. For !<!<«, each layer L, is

a function from set F to an attribute set A,. L, is a function from a set of spatial references to

an attribute set, thus providing information on the global variation of A, over L,. For

example, a layer of soil polygons maps an arbitraiy partitioning of a geographic space onto

attributes from some soil domain (e.g. series). Thus, the layer-based model of geographic

information represents spatially distributed- attributes as a set of data layers each of which

defines a distribution of a single attribute over a well defined space (Figures 3 and 6).
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Layers are often organized so that points, lines, and polygons (i.e., spatial primitives) are

stored in separate layers. For example, well sites represented by points might be stored in one

layer, with roads, represented by lines, in a second layer with land parcels, represented by

polygons, in a third layer (ESRI 1991). In addition, it is common to organize the layers by

theme where parcels and roads are on separate layers (Figure 6). With dual-database systems it

is often recommended to organize layers along joint theme/spatial primitive lines since the

associated attributes differ so dramatically that it would be difficult to represent the associated

attributes in both the spatial and relational systems.

The algebra of a layer-based model is specified by giving the layers and the operations on the

layers. Layer-based operations take as arguments existing layers and produce a new layer.

Generally speaking operations may be local, focal, or zonal where (Tomlin, 1990) :

Local operations. An attribute is created at location S£ which depends on the attributes of S£

associated with the layers which are arguments of the operation (Figure 7).

Focal operations. An attribute created at Sf depends not only on the appropriate attributes of S£

but also on the attributes in the neighborhood of S£. Given framework F, a

neighborhood ftmction n: F -> p(r) may be defined which associates with each

location x a set of locations within a specified distance of 2B.
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Layer: population Spatial Database System

Figure 7. Local operation where mortality -per 100 persons depends on layers of total

population and total mortality for each location.

Zonal operations. An attribute created at location S£ is dependent upon the appropriate

attributes within the zone containing 9L Given a layer L, , a zone is a subset of T, the

values of whose attributes satisfy a predefined condition such as in the case where the

zone is elevation above 120m. A zoning of F is a partition of F into disjoint zones

whose union is F.

The layer-based approach is efficient for performing locally-based spatial operations, including

point-based operations (e.g. leaf area index calculated ratio of band 4 and band 3),

neighborhood operations (e.g. deriving gradient at point S£ using finite difference calculations

of elevations within a small neighboihood of S£), and zoning operations (e.g. given soil

polygons in one layer and gradient in another layer, compute mean gradient for each soil

polygon). Note that these operations do not require explicit coding of topological

relationships. Explicit topology is not provided within layers of a raster-based GIS, so

topology must be stored external to layers (dual-database model) for a vector-based GIS.
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Figure 8. Concept of a focal operation in the layer model.
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3.2 Object-based Spatial Data Model

While the layer-based model provides information on the global variation of an attribute over

a defined space, the object-based spatial data model (OSDM) views the information structure

as populated by component objects which have as attributes references to spatial objects. The

OSDM assumes the usual object data model (e.g., Mohan and Kasyap, 1988; Drabowski et al

1990) which has at its core an entity, the object, that combines the properties of procedures

and data. The fundamental aggregate unit in such object representations is the class. A class is

an intentional description of data and the various instances of a class form the extensional

data. In addition, objects in the OSDM have attributes which inherit properties from generic

spatial objects such as point, line, and polygon (Figure 10).

Figure 10. Object spatial data model treats geographic objects as component parts of

information strucutre.
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Three general classes of primitive spatial operations describe OSDM:

Euclidean operations (Figure 1 1) include measurements not only of length but also of mgl&.

Some have broken operations that involve measurement of length out as a separate

category such as metric operations (Worboys and Deen 1991).

Topological operations (Figure 12) depend upon the topological structure of the space.

Examples include the Boolean operation to determine whether two regions are

adjacent, and the Boolean operation to determine wheflier a region is connected.

Set-based operations (Figure 13) treat spatial objects as sets. The intersection, or union, of two

regions would be an example of a set-based operation.

It is clear that the basic idea of objects and their importance in GIS database languages will

continue to exert substantial influence on their development A common assumption is that

users tend to organize their model of geographic information and processing around the idea of

geographic objects. But there are other advantages as weU.

Figure 11. Euclidean operation in object spatial data model and relation to information

structure.
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class_id class_memb refs

Figure 12. Topological operation to determine if two spatial objects share a boundary.

41 42 43 44 45 46 47 48 49 54 56 04 06

Figure 13. Set-based operation to determine the intersection of two geographic objects.
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The object-based model combines generic spatial objects (e.g. points, lines, polygons), explicit

spatial relations between objects (e.g. lines have left and right polygons), and attributes (e.g.

size) into a unified structure that allows for easier maintenance of updates to a spatial database.

The object-based model thus avoids problems associated with maintaining a dual database

model (Bracken and Webster, 1989). Important to GIS database managers, this approach can

more easily capture integrity contraints by exploiting the structure of an object class. Special

functions may be tagged to a class of objects to keep a data integrity check on object instances

of that class (Mohan and Kashyap 1988). Furthermore, a unified object-based model is

particularly important in developing spatial decision support systems (Armstrong and

Densham, 1990), and knowledgebased GIS applications (Robinson et al 1989; Mackay et al

1993).

3.3 Layer-Object Transformation

LDSM and ODSM are not mutually exclusive. It is possible to translate from layer-to-object

and back. Worboys and Deen (1991) suggest that a suitable model of transformation between

the layer and object models is point-set topology. As an example, Mackay et al (1993) focus

on a layer-to-object transformation in a knowledgebased approach to forest ecosystem

modeling. However, the object-to-layer transformation could be used to generate maps showing

daily, monthly or annual snapshots of simulated variables. Since Mackay et al (1993) are

working mainly with raster data (e.g. DEM and satellite imagery) their point-set topology is

represented by pixels and their neighborhoods.

In Mackay et al (1993) transformation from image data to symbolic elements requires a three-

step process (Figure 14): (1) topographic partitioning of drainage basins into hiUslopes and

stream links, (2) analysis of the hiUslope and stream links, and (3) generation of an object-

based database. Terrain partitioning uses techniques described by Band (1989). In this

approach a drainage area transform is recursively computed, then pruned to form a tree of

stream links. HiUslopes are attached to each stream link as left and right polygon areas. The

strength of this approach is its flexibUity in scaling terrain partitioning from a few, large

hiUslopes to many, smaU hiUslopes for any given drainage basin, by adjusting the constraints

on how the drainage area transform is pruned. It is this scale adaptabiUty that aUows layer-to-

object transformations without loss of essential spatial heterogeneity. The spatial heterogeneity

of land surface properties is required for realistic forest ecosystem simulations. The scaling

tool retains enough physical basis so that processes vary spatiaUy whUe also aUowing for

direct measurement of land surface and environmental parameters.

As Mackay et al (1993) note a major advantage of the object model is the ease with which

topological operations are performed on objects. Since many query languages are based on

First Order Logic, and FOL treats propositions (individuals or attributes) as objects, the object-

based model of GIS provides a data model that is compatible with many query languages,

including SQL.

As interest in object-based and object-oriented approaches to GIS database languages continues

to grow it is apparent that there are two architectures being used to develop such systems. One
approach includes an object-based database language as an integral part of an object-oriented
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f OBJECT DATABASE^
V CREATION y

Figure 14. Concept of Layer-to-Object transformation process (source: Mackay et al 1993).

GIS. Another approach attempts to build an object-based database language as an interface

layer between the user and the underlying nonobject-oriented (geographic) database system.

This appears to be the more practical approach.

4 Transactions and GIS Environment

Although its importance is becoming increasingly apparent there is a relatively small body of

work addressing issues related to managing GIS transactions (e.g. Halustchak 1993; Meier and

ng 1986; Robinson and Zhang 1988; Robinson 1989). Two goals of a transaction module are

to provide concurrency and maintain database consistency (Wang, 1991). These goals apply

equally to nonspatial and spatial database management systems. In other words, management

of transactions should be of ,at least, equal importance in GIS as in other database systems.

However, like CAD, GIS transactions can be considerably more complex than the usual short

duration transactions typical of many business applications.

4.1 Transactions

Basically, a transaction maps a consistent database state to a new consistent state atomically. It

also serves as a unit of recovery (Wang, 1991). A database system must ensure that a database

remains consistent despite many users doing retrievals and updates concurrently and the

possibility of system failures.
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A geographic database, like other databases, consists of a countable set of entities E
and a GIS transaction is a finite sequence of operations of die form

TrPi[xJ...p"‘[xJc.
(1 )

where aq’s are entities from E, where is the jth operation of T; which is either a read or

write on entity Xj, and where Cj indicates that T; commits. Should T; fail to commit it wiU

conduct a rollback. A consequence of the durability property of transactions is that committed

transactions should never be rolled back. GIS transactions are roUedback when consistency

contraints prevent an operation on the database that would result in a loss of integrity. The

specification of those consistency constraints can be quite involved since the integrity of tte

geographic database depends on the logical consistency of a potentially very large number of

geographic relations (Meier and fig 1986; Robinson 1989; Robinson and Zhang 1988).

A transaction system T = {Ti,...,Tfj} is a set of N transactions that are being executed

concurrently. A complete schedule is the result of an execution of T. It is a sequence of aU the

operations from the transactions in T that respects the ordering within each T;. Th^e database

transactions are typically of short duration, generally in terms of minutes. However, it is

common for GIS transactions to be of long duration, lasting hours, days, or weeks. Meier and

Ilg (1986) note m extreme case where, in some jurisdictions, modifications to a land register

can last as long as a year due to legal procedures, during which time a user should not be able

to gain exclusive use of the database for iheir updating work.

4.2 Long Duration Transactions

Like other spatial information systems, such as CAD, the GIS data management environment

is characterized by a need to manage long-duration transactions (Korth et al 1990; Robinson

1989; Robinson and Zhang 1988) and versions (Katz 1990).

Users of GIS have a longer duration transaction than is typical in many business applications.

Sam (1991) modeled the facility alteration process at an aiiport with regard to its implications

on the management of airport technical data. The update of a technical database due to

alterations to facilities can take weeks or months. A user who may be designing changes to a

part of a geographic database may take hours or days to make all the necessary changes (for

other examples see Halustchak 1993).

A long duration transaction (LDT) is a transaction which spans multiple short trmsactions,

multiple sessions, and multiple application processes. Its lifetime does not have a system-

imposed upper bound. A session is the duration of an application’s interaction with the GIS

(Figure 15). When a session is started, a short transaction is beguiL A session takes place

within a LDT. Therefore, when a session begins it can also begin a long transaction or connect

to an existing one. And when a session ends it can end the LDT (RotzeU 1991).

Enterprise GIS make use of two basic models of managing access to the geographic databases

on which a LDT may operate. The two models are the check-in/check-out and branching

versions, both of which are not peculiar to GIS but have been described in other contexts.
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Figure 15. Concept of a Long Duration Transaction composed of sessions

and short duration transactions (source: Rotzell 1991).

4.2.1 Check-in/Check-out Model. Conceptually, a LDT can be implemented by checking

out data from a public database into a private database and merging the results back into the

public database when the work is done (Figure 15). A LDT holds the locks in a public

database on the objects, or layers, that are checked out to prevent their access by other

transactions (Wang 1991). This is a model used by some GISs (e.g. Ashworth 1993).

4.2.2 Branching Versions Model. A branching versions model for LDT does not require

holding both public and private databases. A LDT is modeled by a sequence of regular short

transactions that operate on a private branch of versions of the database. Transactions

accessing data of different branches of versions do not interfere with each other (Wang 1991).

4.3 GIS Transaction Environment

Many observations regarding the conduct of large GIS projects are similar to those made by

Korth et al (1990) with regard to the conduct of large design projects in a CAD environment

The first observation is that a partitioning of a geographic database is induced by the

partitioning of a large GIS application effort into a number of projects. Each partition consists

of spatial and attribute data relevant to each project. GIS transactions from distinct projects

require shared access to certain classes of data, such as the database directory. This means that

long duration waits may be acceptable for cases where project transactions attempt to access
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another project’s database partition.

Secondly, a transaction

hierarchy is induced

naturally from the interaction

of a user and the window

system on the GIS

workstation. The user may
create and manipulate

multiple windows, executing

multiple tasks concurrently.

The sequence of transactions

initiated from the same

window implies a user-

defined ordering of

transactions. This is only a

partial ordering of

transactions. For this reason,

Korth et al (1990) model a

user’s transaction as a set

rather than as a sequence of

short-duration transactions.

Each project has a number

of users who further

subdivide the project into subtasks. As users woilc on well-defined, fairly small subtasks, there

is greater need for shared access to the project’s database than among projects. This leads to

the notion of cooperating transactions (Korth et al 1990) which is a set of user’s transactions.

Each user’s short-duration transaction needs wait only until any currently-executing, conflicting

short-duration transactions of other user’s transactions are complete. From the database

consistency point of view, it is immaterial how many users participate in the same cooperating

transaction. All the short-duration transactions of all the users’ transactions are treated as if

issued by a single user.

In a complex GIS application project it is frequently the case that some tasks are subcontracted

to other users. The client specifies the task to be completed and grants the subcontractor

limited access to the client’s database. Korth et al (1990) represent the notion of

subcontracted work with the notion of a clientisubcontractor transaction pair. A subcontractor

transaction is a cooperating transaction which exists solely to work; on behalf of a cooperating

client transactioa Subcontractor transaction may itself subcontract work, thus becoming a

client of one transaction while being a subcontractor of another transaction (Figure 16). Thus,

similar to Korth et al ’s (1990) conclusions regarding transactions in the CAD environment,

the GIS transaction environment could be said to consist of :

a set of concurrent project transactions where a project transaction is

a set of cooperating transactions, where a cooperating transaction is

Figure 16. Project transaction made up of cooperating

transactions which are directed acyclic graphs of

short duration transactions (source: Korth et al

1990).
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a hierarchy of clients/subcontractors, where a

client/subcontractor transaction is

a directed acyclic graph of short-duration

transactions, where a short-duration transaction

is

a sequence of database operations, where a

database operation is

a sequence of system operations,

which typically occur in a database hierarchy that supports the GIS application(s).

4.4 GIS Database Hierarchy

The system configuration often envisioned for enterprise GIS systems consists of at least one

public system (central server) and a collection of private systems connected to the public

system {e.g. Figure 2). The public system manages the public database of stable spatial and

attribute data. A private system manages the private database of a user on a GIS woricstation.

A GIS transaction initiated on a private system involves

• checking out geographic data from the public system and their insertion into

the private database

• checking in updated geographic data to the public database, and

• reading and writing of both the private database and the public database.

The model of transactions leads to a logical partitioning of a global database of a GIS system

into a set of public, private, and project databases. The public database holds released

geographic objects and data about their status. A released set of geographic objects, or layers,

is accessible to aU authorized users in the GIS environment but cannot be updated or deleted.

A private database exists on a woricstation, or subnetwork of workstations, and contains non-

released designs, on which a user is currently working. The user who creates the private

database is the owner and administrator of the database. A private database of a user is

generally not accessible to other users.

The project database serves as the repository of geographic objects, or layers, that are being

passed back and forth among users within a project. It contains those geographic objects and

data about those objects (or layers) that are accessible only to cooperating users within a

project and specified subcontractor transactions.

Given this general model of GIS transactions and the database hiearchy to support those

transactions, LDT management in the GIS environment is regularly taking place within a

multidatabase environment. Therefore, multidatabase transactions are another characteristic of

GIS application environment.
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4.5 Multidatabase Transactions

A factor determining the level to which global transactions can be managed effectively is the

degree of autonomy which exists. Distributed systems with the least autonomy offer die

greatest global control (Ozsu and Valduriez, 1991). Since a distributed system has tight global

control, distributed models of transaction serializability and atomicity are reasonable, and

transactions are relatively short-lived. On the other hand, open systems, where transactions are

based on bulk data exchange, atomicity is weU-defined, but transactions may be long such as

in the GIS environment. Consistency between systems exchanging data can be maintained by

each respective system. However, it is the multidatabase systems which lie in the grey miea

between no autonomy and Ml autonomy that present the most difficult problems in transaction

management

The notion of transaction in a centralized DBMS is determined according to a model of

serializability. Each transaction is considered atomic which means it either Mly succeeds in

retrieving information or updating the database, or it completely fails. Models of transactions

are different in multidatabase systems, where notions of global and local control need to be

defiiKJd. In a multidatabase system with a global schema, or a multidatabase language system

with global query language, the user submits a global query which is decomposed into a set of

subqueries each of which is passed to a local DBMS where it is processed. Each subquery is

then considered an atomic transaction in itself. Queries may be translated many times as ttiey

travel through various system layers of the multidatabase. Thus, query processors must manage

the global resources which may be distributed throughout the system. However, site autonomy

requires that global control not include control of the data resources residing in the local

DBMSs (Bright et al, 1992). A combination of global and local states of a global transaction,

and cascading queries, makes ttmisactions in multidatabase systems relatively long-lived and

non-atomic.

Each autonomous DBMS in a multidatabase system has its own transaction processing services

for managing, scheduling, and recovery of transactions. Tlie multidatabase layer has its own
transaction processing services which accept and coordinate global transactions. The global

transaction manager is not aware of the local transactions being processed by the local

DBMSs, so it cannot control local conflicts or conflicts between global transactions caused by

interference of local transactions. It is tiierefore difficult to define and enforce distributed

transaction atomicity (Ozsu and Valduriez, 1991).

5 Heterogeneous GIS

Given the nature of long duration transactions in a GIS environment it is clear that the

management of multiple databases is an important issue in geographic information

management The GIS LDT which presumes public and private databases being held across

multiple database systems has provided the impetus for groups to move towards development

of spatial data interchange standards so that the interchange of the geographic data between

client/subcontractor transactions and public/private databases can be accomplished in a more

effective manner. On the surface this might seem to link spatial data interchange standards to

LDT’s in the GIS environment rather than database languages. However, data interchange

standards address a relatively small portion of the problem. Mackay and Robinson (1992)
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present the argument that geographic data interchange format efforts, represent attempts at

heterogeneous geographic database design.

They further suggest that spatial data interchange standards efforts need to evolve towards

multidatabases that provide facilities for querying, browsing, and updating geographically

distributed spatial databases. Mackay and Robinson (1992) discuss the relationship of

heterogeneous database design to geographic data interchange, geographic interchange

standards in regard to the semantic modelling needs of GIS and the issue of whether or not

dedicated geographic data interchange standards are necessary, or if their function can be

provided using general database query language standards, with GIS extensions.

5.1 Data Interchange and Heterogeneous Database Design

Figure 17 illustrates database functionality as a continuum with interchange standards and

remote DBMS interfaces laying at the extreme of having no database functionality. At the

other extreme, federated DBMS provide full database functionality. A data interchange format

allows periodic, nontransaction-based interchange of data among multiple database

management systems (DBMS) (Sheth and Larson 1990). Thus, the notion of database

functionality plays an important role in comparing data interchange standards to heterogeneous

DBMSs, particularly with respect to transactions.

Data interchange is an important part of managing multiple DBMSs as these databases need

conventions for data interchange. Litwin et al (1990) suggest the use of Standard Format Data

Units (SFDU), self-documenting and self-describing data formats that carry universally

interpretable type objects, as a possible solution to information interchange in a multidatabase.

Standards such as SDTS and CGIS are to some extent interchange formats aimed at meeting

this need in the GIS environment An example of a self-describing data interchange carrier is

the International Organization for Standardization Information processing - Specificationfor a

data descriptive file for information interchange - ISO 8211 (ISO 1985) which is a medium-

independent and system-independent file and data record format for interchanging of data

structures of arbitrary complexity and size, between computer systems.

Database Functionality

exchange standards federated DBMS
remote DBMS interfaces

Figure 17. Continuum of database functionality ( source: Mackay and Robinson 1992).
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5.2 Continuum of Heterogeneous Database Design Models

A distributed DBMS is a system to manage multiple geographically distributed databases as a

single, integrated database. Distributed databases are typically designed top-dov^m, such that

local and global DBMS functions are designed simultaneously, and local DBMSs are

homogeneous with respect to data model and functional interface (Bright et al 1992).

Distributed DBMSs have the advantage of providing transparent access to the physically

distributed database such that information can be accessed as if the DBMS was centralized

(Ozsu and Valduriez 1991). Distributed databases have the disadvantage that each database in

the distributed DBMS must be designed and built at the same time, or else existing databases

have to be brought off-line while their data model is made compatible with the data model of

the distributed DBMS installation. Existing applications are changed or disrupted because they

do not distinguish between local and global operations, and the organization of infonnation

management has to be restructured in replacing a centralized DBMS with a distributed DBMS
(Sheth and Larson 1990).

A bottom-up approach to DBMS design is achieved with multidatabase or federated systems.

These systems have the advantage of being able to integrate pre-existing local DBMSs without

having to modify them, and allow applications to be systematically designed such that different

data can reside on dedicated databases (Litwin et al 1990). Since the pre-existing DBMSs
were not designed with the multidatabase system in mind, they are most likely based on

different data models, or different implementations of the same data model. As a result of this

lack of homogeneity between DBMSs, the bottom-up designed system is referred to as a

heterogeneous DBMS (Bright et al 1992). Heterogeneous systems can be classified in terms

of the degree of autonomy permitted in each local DBMS. This is illustrated in Figure 18

which shows a continuum of DBMS designs ranging from tightly-coupled systems that have

the least autonomy, to loosely-coupled systems that provide maximum autonomy. The

intensity of the box in Figure 18 is intended to emphasize the fact that level of independence

or autonomy between DBMSs is a relative property, measured on a continuum. At the

extreme of least autonomy lies the global schema multidatabase systems which provide a

single database view to the system user, and provide maximum DBMS support to the user. At

the other extreme lies interoperable systems which provide no integrated DBMS support, but

have full autonomy. The white box in Figure 18 emphasizes a division between multidatabase

systems and interoperable systems. An interoperable systems’ global functions are limited to

simple data interchange; they support no database functionality (Bright et al 1992).

Multidatabase language systems provide the highest level of autonomy in current multidatabase

systems, but do so by limiting DBMS support to a set of support tools with which the user is

expected to integrate information from multiple, autonomous DBMSs. Since it allows for a

high degree of autonomy within existing databases, and provides facilities for retrieving and

updating, multidatabase language systems represent the most reasonable model upon which to

base geographic data interchange.
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tightly-coupled
Database Integration

loosely-coupled

global schema multidatabase interoperable

(single DB view) language system systems

Figure 18. Level of autonomy in heterogeneous databases depends on coupling (source:

Mackay and Robinson 1992).

5.3 Data Integration Problems

Heterogeneity in multidatabases results from the fact that autonomous databases are developed

with a local homogeneous design. Sets of local assumptions clash and local applications do

not have access to the semantics represented in foreign applications (Ventrone and HeUer

1991). Heterogeneity occurs in two forms: (1) syntactic, and (2) semantic. Syntactic

heterogeneity results from differences in the data models and implementations of data models

between two or more systems. Semantic heterogeneity results from differences in how the data

models are used to represent the same real world in two or more systems, or as a result of

evolution of a database schema. Differing data models, i.e. layer and object, are a common
source of semantic heterogeneity in GIS (Worboys and Deen 1991).

Semantic heterogeneity may also occur as a result of having different occurrences of the same

domain values having different interpretations. This condition violates the assumption in

centralized relational databases that each value has a unique interpretatioa Other sources of

semantic heterogeneity include cardinality differences between domains represented in two or

more databases, or in a given database over time, granularity differences, encoding differences,

and time and unit differences (Ventrone and Heiler 1991). Data integration requires that

syntactic and semantic differences be resolved using a common representation of the

information, such as a global data model or an interchange format.

Schema integration and data interchange both require the use of a canonical, or globally

accepted, data model. The goal is the integration of multiple, local databases each of which

represents a small part of the overall world being modelled by the multidatabase system. This

process consists of three schema manipulation procedures: (1) schema translation, (2) schema

definition, and (3) schema integration. Schema translation is the process whereby the data

definitions of the local schemes are translated into a component schema using a canonical data

model. The local schema represented in one data model is mapped onto the component

schema in a different data model. Translation is required when the data model of the local

schema differs from the canonical model of the federation, or when the data model of the

federated schema is different from the canonical data model. The translation process is

facilitated by using a semantic data model as a canonical model. A semantic data model can

represent additional semantics that may be difficult or impossible to specify in a traditional
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model (Sheth and Larson 1990).

The purpose of schema definition is to create one or more export schemes from the component

schema. An export schema describes the objects, using the canonical data model, that the

local DBMS administrator decides to make available to the multidatabase community.

Understanding the semantics of these objects is the responsibility of a federation user who may
use these objects in generating his/her own federated database schema.

Schema integration is the process of designing a global conceptual schema, or federated

schema, from which the logical schema for a new DBMS is created. During schema

integration a number of conflicts may occur. Synonym naming conflicts occur when classes or

attributes with different names represent the same concept or attribute, respectively.

Homonym naming conflicts occur when names are the same but different concepts are

represented. Structural conflicts result from different choices of modelling constructs between

two or more schemes, and manifest themselves as type conflicts, dependency conflicts, where a

group of concepts are related through different dependencies in different schemes, and key

conflicts, where different keys are assigned to the same concept in different schemes (Gotthard

et al 1992).

Schema transformations seek to resolve conflicts between schemes by making available to the

system designer the semantic relationships of the concepts involved in the conflict Schemes

are merged by superimposing common concepts. Schemes are restructured to ensure

completeness, eliminate redundancy and understandability. Completeness is achieved by

introducing class hierarchies, additional relationships, or discriminating attributes (Gotthard et

al 1992). By forming class generalization hierarchies, similar objects from different schemes

can be classified together. Once objects are organized by their similarities it is easier to

analyze the conflicts between the objects. Knowledge about the relationships between objects,

other objects, and their attributes helps identify compatibility between objects, of different

schemes, that are not identical. For example, isomoiphic relationships between two types of

different schemes occurs if their instances correspond (Yang et al 1991). Gotthard et al

(1992) present a formal method of analyzing object types to identify semantic similarity.

Coordination of the activities of developing a multidatabase system requires the use of a data

dictionary/directory. All schemes representing information about data managed in the

federation are stored in the data dictionary/dictionary. The dictionary/directory also stores

information about mappings among schemes, information about schemes and databases, and

information about the various systems involved in the multidatabase (Sheth and Larson 1990).

The data dictionary stores metadata to describe the semantics of the domain values. This

metadata may include time of measurement, accuracy, source, and derivation formula, stored

as text, program code, rules, constraint languages, tags, or footnotes. Other data in the

database also provide context for a given item of data (Ventrone and Heiler 1991). The
integrated data dictionary is the basis for information interchange in a multidatabase. The

semantics of derived (or intensional) type objects should be kept in a derivation record in the

system’s data dictionary (Litwin et al 1990). Sani (1990) reports the only effort todate to apply
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a data dictionary standard, namely ERDS, in a GIS contexL

The data dictionary is used to manage update dependencies such that each system in the

multidatabase checks derived objects and takes appropriate corrective actions on affected

objects when a schema is updated. This may simply involve informing the system users of

invalid intensional objects and make these objects unavailable until the database is corrected.

Each export schema is thus verified before it is used in building a federated schema.

Intensional definition of objects allows for the development and refinement of views without

duplication; the data dictionary/directory can notify the system or user if a new view is being

created that is equivalent to an existing view. This self-documentation and self-maintenance

allows for a smoother and more natural evolution of autonomous databases (Litwin et al

1990).

6 Towards a GIS Database Language

There is a wide variety of languages developed for the query and management of GIS

databases (Robinson 1991). In the case of dual database GIS there are typically two database

languages with one for the spatial database which differs significantly from that used to

manage the nonspatial database. Unified database GIS have a single database language but is

may differ from those used in the remainder of the multidatabase GIS environment. It is

important to realize that development of GIS database and query languages have generally

ignored issues related to multidatabase management.

GIS database and query languages have progressed since the early days of automated

cartography. In the early days, command-driven packages such as SYMAP demanded users to

adhere to a rigid, fixed-format which was fairly close to the development language, e.g.

Fortran. One of the early attempts at combining interactive microcomputer technology with a

menu-driven geoprocessing system is described by Robinson (1980; Robinson and Coiner

1986). In this case, a programming language ((TBASIQ was necessary for updating the

geographic database. Command line languages are still common in GIS, particularly in layer-

based systems.

Several efforts in spatial query language and geographic database management have a link

with relational database systems. Among such efforts are pictorial query languages (PQL),

query-by-piaorial-example (QPE), extensions to SQL, and natural language (NL) query

processing systems. In addition, there has been some consideration of logic-based approached

to geographic database management. The relational approach to pictorial, or geographical,

database systems was proposed in the 1970’s (e.g. Mantey and Carlson 1979). Chang and

Kunii (1981) considered a GIS as an example of a relational database approach to pictorial

database management. It is a common conclusion that the traditional relational algebra is

insufficient to manipulate tabular, graphical, image, and geographical data (e.g. Chang and Fu

1980). For example, traditional relational algebra is inadequate for analyzing spatial

relationships among geographic objects. Geographical data includes a typical case in which

the number of different relations is almost equal to the number of data instances (Chang and
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Kunii 1981).

6.1 Query by Pictorial Exaniple (QPE)

In pictorial database systems a set of picture operations called picture algebra was designed for

storage, retrieval, manipulation, and transformation of spatial data. Chang and Fu (1980; 1981)

proposed QPE as a picture query language for IMAID an integrated relational database system

interfaced with an image analysis system. Most queries are specified from the relations that are

parts of a database of Landsat images and digitized maps. Processing sets are used to

recognize boundaries of regions and connected line segments on digitized pictures. This QPE-
based system included six classes of manipulation capabilities.

Another high level query language, PICQUERY, was designed to reside as a software layer

above a pictorial database management system (PDBMS). It is intended to be the interface

through which the user may access conventional relational databases using QBE and at tihe

same time pictorial databases using PICQUERY. hi concept, PICQUERY and QBE are seen as

one single language by the user (Joseph and Cardenas 1988). PICQUERY is proposed by

Joseph and Cardenas (1988) as a new tabular query language based on QPE, PICQUERY
language commands may operate on the whole pictorial database or a set of picture-object

identifiers. A picture is a distinctly identified, independent image stored in the pictorial

database. It is built on top of a grid-based PICDMS.

6.2 Natural Language

It has been argued that since most users are competent in using natural language, it would be

the ideal language for database interaction. The implication being that braining would be

reduced, or eliminated, and users would have little inhibition to using the computer

(Schneideiman 1978). Thus, natural language query systems are an attempt to increase ftie

naturalness of user interaction with GIS. Typical of some NL approaches in GIS-related

applications is that described by Kasturi et al (1989) which is a natural language ffontend

(NLF) to a map data processing system that converts NL input to the syntactic form required

by a query processor. The NLF consists of a preprocessor and a top-down parser. The
preprocessor verifies that each word in the query is a part of its lexicon. The parser attempts to

match its semantic grammar to the input query.

Pereira et al (1982) describe a system, ORBI, that is perhaps one of the more sophisticated NL
efforts related to GIS. It is interrogatable in a subset of Portuguese which embodies and

assimilates expert knowledge on environmental biophysical resource evaluatiort ORBI’s
linguistic competence is achieved by means of a lexical and syntactic-semantic malysis,

transforming a sentence into an optimally ordered directly evaluable list of Prolog goals (see

Pereira and Warren 1980). The core grammar is independent of its application and is

transportable to other domains. Much effort was devoted to incorporating elliptic and

extraposed structures. Syntactic and semantic controls verify number and gender agreements,
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designations of complex entities, and compatibility between nouns and verbs and their

complements, pointing out any faults.

GIS users do not care to enter NL phrases via the keyboard. Hence there are significant

research issues that could increase the utility of NL as a GIS query language. In particular, as

technical capabilities for speech recognition as an input channel develop, voice inpul/output

interface will have a profound impact (Straub and Wetherbe 1989) on how we interact with

GIS. To support this interface, NLI will be required to have some increased measure of

linguistic competence, especially in regards to the linguistics of spatial relations. NL for query

in GIS require considerable GIS competence in order to interpret a user’s query (Robinson

1991). Intelligent interfaces that permit users to express their needs in a form more natural to

them will be critical in meeting the overall objective of providing GIS that have a high level

of geographical competence while not burdening the user with undue cognitive load (Lundberg

and Robinson 1988).

6.3 Logic-based Approaches

Mackay and Robinson (1992) raised the question of whether geographic data exchange formats

(e.g. SDTS, CGIS) are required, or if spatial information management features can be

supported using query languages based on powerful semantic models, or extended relational

models (Robinson 1990). Roman (1990) suggests that logic-based data models provide the

necessary tools to model space, time, and accuracy. In particular, databases supporting logical

inference are able to handle queries on topologically connected spatial features, using transitive

closure on spatial relations. Robinson and Zhang (1988) reported on the use of logic-

programming to develop a system for managing consistency constraints during update

transactions in a land information system.

Roman (1990) suggests that models based on logic are inefficient This is particularly true of

systems in which a Prolog inference engine is built on top of a relational database. The

impedance mismatch that results from the tuple-oriented Prolog and set-oriented relational

model leads to inefficiency. However, recent work on deductive database languages based on

Datalog, such as Logical Database Language (LDL) (Naqvi and Tsur 1989), provide relatively

efficient and powerful languages for complex queries. In an object-oriented framework,

PROBE attempts to handle spatial information by providing specialized, embedded spatial

operators, and a data structure for spatial access (Orenstein 1986; Orenstein and Manola 1988).

6.4 SQL

Widespread use of the SQL database language led to the ANSI (1986) standard. Prevalence of

SQL as the database language of preference in organizations has had a profound effect upon

how GIS products are being developed. There is a clear demand by organizations that GIS

products be integrated with other software resources, particularly SQL-based database systems.

Perhaps of more importance is the fact that organizations are beginning to consider GIS

implementation to be an integral part of their existing corporate information resources
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development strategy.

There have been many GIS-related developments using SQL or, SQL-like, languages (e.g.,

Abel and Smith 1986; Charlwood et al 1987; Frank 1982; Goh 1989; Herring et al 1989;

Ingram and Plullips 1987; Keating et al 1987; Roussopoulos et al 1988; Tanaka and Ikeda

1989; Waugh and Healey 1986; Westwood and Brinkman 1988) which were reviewed by

Robinson (1990). Extending SQL to deal with geographical queries has lead to the

specification of classes of spatial operators. Terms used to denote spatial operators are similar

across some of the above implementations. Robinson (1990) noted dial diere appears to be

some convergence towards a common vocabulary that might serve as a useful basis for

developing standards for defining spatial extensions to SQL. However, similarity of terms does

not ensure that the operations are equivalent. One of the fimdamental problems in determining

equivalence is the heterogeneity in data models upon which the operators arc based.

SDTS and CGIS (CGSB 1991) require the use of an internal data model to express spatial

domains, and a second data model to specify the form of the data transfer. Unless these

models are developed specifically to fit together, there are inevitable mismatches or

heterogeneity between the models. The transfer specification could be simplified if the two

models were made compatible. The CGIS specification suggests the use of an extended-SQL

to represent the data for exchange purposes (CGSB 1991). SQL contains a firll representation

of relational algebra {i.e. it is Codd Complete). It is used to represent transactions involving

both data retrieval and database updates. Fumre extensions to SQL for non-traditional

applications such as GIS (Robinson 1990) need to consider aspects of extensibility to allow for

spatial functions, abstract data types (ADT) for handling large, unformatted quantities of data,

abstraction {e.g. isa) to preserve at least some of the semantics of concepts, and recursion or

iteration to allow for transitive closure queries. Furthermore, if spatial data exchange is to

evolve towards a more general framework of data sharing in multidatabase environments, then

models of long transactions need to be incorporatal into the database language. Key concerns

of researchers and developers working on SQL/GIS issues include complex data types {e.g.

arrays, lists, directed acyclic graphs), extensibility, spatial fimctions, and long transactions

(Ashworth 1993; Halustchak 1993). Ashworth (1993) specifies a set of spatial functions {e.g.

including EXTENT, BUFFER, LENGTH, OVERLAP) that may be included as part of a

GIS/SQL. It seems tmreasonable to pre-define all spatial relations that are considered

significant by a one or a few vendors. However, if the expressiveness of SQL could be

extended to that provided by logic languages, such as Datalog (UUman 1988), tiien it may be

possible to define spatial relationships using recursive expressions.
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7 Concluding Comments

Transactions in a GIS environment often involve more than one database. The integration of

GIS into an organization presumes, to some extent, the ability of the GIS and nonGIS database

systems to effectively interact It is the general surrounding IT environment which may in the

end have more influence on GIS than GIS on IT. As SQL becomes more widely accepted in

information systems in general and the performance of SQL-based GIS products improves it

will be difficult for GIS users and suppliers to ignore the wider organizational imperatives that

this portends.

Like Robinson (1991) it is suggested that an SQL database language with GIS extensions may
provide a general and effective solution to the problems of interchanging and managing

geographic data among several databases. Since SQL provides generalized query facilities for

ad hoc queries on databases, it seems reasonable to expect that SQL, or another formal query

language, is needed for building GIS that can be integrated with other information resources

distributed about in other locations and systems as suggested by Gallagher (1993).
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1 Introduction

Data management requirements for geographic information systems (GIS) often exceed the

capabilities of existing database management systems. GIS requires a logically integrated

database of diverse data often stored in geographically separated data banks under the

management and control of heterogeneous data management systems. An over-riding

requirement is that these various data managers be able to communicate with each other and

provide shared access to data and data operations and methods under appropriate security,

integrity, and access control mechanisms.

Database Language SQL [13] and its distributed processing counterpart. Remote Database

Access (RDA) [15], are important International Standards that are able to address a significant

portion of the above GIS requirements. SQL is particularly appropriate for the definition and

management of data that is structured into repeated occurrences having common data structure

definitions. SQL provides a high-level query and update language for set-at-a-time retrieval

and update operations, as well as required database management functions for schema and

view definition, integrity constraints, schema manipulation, and access control SQL provides

a data manipulation language that is mathematically sound and based on a first-order predicate

calculus. SQL is self-describing in the sense that all schema information is queryable through

a set of catalog tables. Features of the most recent SQL standard are discussed in [6], [7], and

[18].

Early in 1991, technical committees for SQL standardi2:ation, operating under the procedures

of the American National Standards Institute (ANSI) and the ftitemational Organization for

Standardization (ISO), committed to enhancing SQL into a computationally complete language

for the definition and management of persistent, complex objects. This includes the

specification of abstract data types, object identifiers, methods, inheritance, polymorphism,

encapsulation, and all of the other facilities normally associated with object data management.

Preliminary specifications for these facilities are contained in the most recent SQL3 Working

Draft [14].
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This paper focuses on the new object-oriented facilities proposed for inclusion in SQL3. It is

adapted for GIS from [10]. Section 2 focuses on a three-schema data management architecture

with an emphasis on using SQL and RDA to integrate local and remote data repositories,

including both SQL and non-SQL data. Section 3 describes the preliminary status of object-

oriented facilities proposed for SQL3; these facilities are subject to revision and improvement

as they evolve over the next two or three years before final standardization. Section 4 looks at

future opportunities and focuses on the potential benefits of defining a collection of standard

"generic ADT packages" as the basis for SQL management of objects common to a number of

application areas. Section 5 proposes a new SQL interface that would allow non-SQL data

repositiories to make their data and special methods available, in a standard manner, to full-

function SQL systems and to SQL applications. Section 6 draws some conclusions about the

benefits of existing SQL and RDA standards as weU as future opportunities.

2 Data management architecture

In an integrated GIS environment, we assume two or more remote GIS client/servers

communicating with one another at the highest conceptual schema levels. This ensures that

the communicating environments share a common understanding of the semantics of the data.

This is a desirable goal that depends heavily on GIS standards not yet fully developed.

At the other extreme, in the absence of any data management standards, two sites can only

communicate at the very lowest levels. Each site may be able to access files of data or

"bulletin-board" views of data at other sites, or it may be able to pass parameters to application

processes at remote sites, but it is not possible to access the external schema logical views of

the data without knowing the external data model employed at the remote site and a syntax or

protocol for invoking operations on that data model. Unless there are standards for schemas,

access to remote sites may be effectively limited to the use of very low-level external schemas,

thereby limiting common understanding to veiy simple structures. This low-level

communication forces application programs to perform many of the data structuring and re-

structuring tasks that could be performed more effectively by a database management system.

2.1 Three schema architecture

Data management has traditionally employed a three-schema architecture to place itself in a

data processing environment. A conceptual schema represents a high-level, enterprise-wide

view of aU data, data relationships (including rules restricting updates or cascading the effects

of updates to related data), and the GIS processes that use and update the data. Generally an

enterprise has only one conceptual schema. The conceptual schema may or may not be

directly implementable - often it is represented via abstract diagrams devoid of the details

necessary for actual implementation. Changes in the details of computer implementation or

the specific human users and application programs that access the data have no effect on the

conceptual schema.

An external schema represents a logical view of the data as accessible to a set of human users

and application programs; an enterprise may have many external schemas. An external

schema is generally a small subset of the conceptual schema, and may have application-

oriented views of the data defined in the conceptual schema. An external schema is always

Towards SQL Database Language Extensions for GIS page 37



implementable, although minor changes in the physical implementation have no effect on its

visibility to an application. This facilitates migration of the data to other hardware and

software environments. An external schema may change to accommodate changes in the use

of the data.

An internal schema represents a physical view of the data as stored on persistent storage

devices. An enterprise may have many internal schemas to provide efficiency on a variety of

hardware and software environments. Conceptual and external schemas are independent of the

structures and access methods of any underlying file system; in conliast, an internal schema

may be heavily dependent on file structures and access methods.

Each schema is constructed according to the rules of a data model. The data model prescribes

not only the rules for defining data structures, but also the rules for interpreting and

manipulating the data structures.

The conceptual schema may consist of a very large collection of object types and their

interrelationships; no single application program wU require access to aU the objects described

by the conceptual schema. In contrast, an external schema may consist of a simple "record-

oriented" view of only a few object types; a third generation programming language can easily

process data described by such a schema. The conceptual schema itself may be so complex

that it must be maintained by specialized software such as an Information Resource Dictionary

System (IRDS). The IRDS may also be required to manage the mappings between the

conceptual schema and the different external schemas, and the relationships among data and

processes.

2.2 External schema communication

Standard communication among cooperating systems is possible at the present time using the

government open systems interconnection profile (GOSIP). Currently, the application layer of

GOSIP contains standards for association control (ACSE), file transfer (FTAM), virtual

terminal (VT), and electronic mail message handling systems (MHS). The next version of

GOSIP is expected in mid 1993 and will likely contain extensions of these facilities as well as

remote database access (RDA) and additional facilities for handling documents (ODA/ODIF),

electronic data interchange (EDI), and remote operations (ROS). Extensions to MHS and ROS
should make it possible for user-defined objects at various remote sites to communicate their

existence and provide access to their methods to application processors. Objects at remote

sites may be able to "show themselves" to users at local workstations by using the graphical

user interfaces proposed for future versions of VT.

We believe that the RDA component of GOSIP will provide the basis of distributed access to

external schema definitions and to object data instances (Figure 1). In particular, existing and

very near-term SQL and RDA standards will make it possible for various specialized, GIS data

management systems to describe themselves to external processors and to provide "standard"

access to the data they manage. With implementation of an External Repository Interface

(ERJ), discussed in Section 5 below, it is possible for each heterogeneous external schema to

be "self-describing" in the sense that it can construct a "tabular" view of its logical data

structures that can then be accessed and manipulated by aU other sites. With longer-term
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emerging data management standards that support object-oriented and knowledge-based

features, an ERI interface can evolve into the desired high-level, GIS conceptual schema
communication, with "seamless" integration of complex, structured data and supporting

application services (Figure 1).

We begin with a "GIS Application Processor" that wishes to communicate with and access

data at a number of different data repositories, some local and some remote. The application

processor could use existing GOSIP protocols to connect to external processes or transfer files,

but it would prefer not to have to manage its own communications links or worry about

integrity, access control, remote transactions, or any number of different data manipulation

functions; instead, it would rather communicate with a single, "familiar" GIS interface for both

schema data and actual data occurrences. The "familiar" GIS could then connect itself to

remote sites and access the desired data and data definitions, returning them to the accessing

processor in a standard format A remote object would stiU be able to use VT to "show itself'

to the accessing process or use FTAM to transfer files containing objects or object definitions

not under the control of the communicating data managers.

Local Local

SQL Non-SQL
Data Data

Remote
Non-SQL

Data

Remote
SQL
Data

Figure 1. Data Integration Architecture.

We assume the existence of any number of heterogeneous data repositories, some at the local

site and some at distributed sites. We assume a fuU-function SQL processor at all sites, but
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not necessarily as the manager of the most impo^ant data. The non-SQL processors may
control the maps, graphics images, or complex g graphic structures that the application

processor wishes to access. The local SQL proc. or conforaas to Database Language SQL
and has two integrated client components, one coil orming to the RDA/SQL Specialization and

one conforming to the SQL/ERI interface proposed in Section 5 of this report

Communications among the three SQL components are likely proprietary. The local site may
have any number of non-SQL data repositories each controlled by a Non-SQL Processor

having a component that conforms to the SQL/ERI interface. Communications among the

internal components of the Non-SQL Processor are also proprietary. The local site has a

proprietary local procedure calling mechanism and a proprietary local inter-process

communications capability. Using these proprietary mechanisms the GIS Application

Processor is able to issue standard SQL calls to the local full-function SQL processor, and the

SQL/ERI Qient component of the SQL processor is able to communicate, using an ERI

specified subset of standard SQL, with the SQL/ERI Server of the Non-SQL Processor.

The local site is connected to one or more remote sites via a standard communications network

that is able to connect to remote processes and allow "messages" or "calls" to be exchanged

among processes (using ROS or MHS). Some messages may be sent directly fiom the

application processor to processes or file stores at the remote site, but idealy, some local

repository manager makes a connection and sends messages on behalf of the application

processor. The Generic RDA and RDA/SQL Specialization standards specify protocols that

allow the RDA Qient component of the local SQL processor to send SQL statements to the

RDA Server component of a remote SQL processor, or the SQL/ERI Server component of any

Non-SQL processor, and receive data in return. All protocols and data are defined in the RDA
standards and are transmitted as ASN.l (ISO 8825) packages. If the GIS Application

Processor is operating, interactively, on behalf of a human user, then any of the data

repositories may use a local graphical user interface (GUI), or non-local GOSIP VT protocols,

to present status information or a "menu of choices" to the human user. In this way an

interactive "browsing" or "navigational" capability is provided to the human user without

losing the standard RDA/SQL protocol communications used by the non-human processors.

At the remote site there exists a full-function SQL Processor as weU as any number of Non-

SQL Processors. Components of the SQL Processor conform to the SQL and RDA standards,

and satisfy the proposed SQL/ERI Qient requirements. Each Non-SQL Processor has a
"

component that conforms to the SQL/ERI Server specification. The remote site handles

internal commuiucations and procedure calls in the same proprietary manner as does the local

site.

At the present time the RDA standard specifies interchange protocols for transmitting records

of data from a server site to a client site, provided that the data items in the records are either

numbers or character strings. Near term RDA foUow-on specifications will extend the data

types handled to all of those specified in the SQL-92 specification, i.e. fixed and variable

length character strings, fixed and variable length bit strings, fixed and floating point numerics,

dates, times, timestamps, and intervals. Later RDA follow-on specifications will provide

interchange mechanisms, in terms of ASN.l elements, for the user defined abstract data types

(ADTs) specified in the emerging SQL3 working draft. RDA protocols do not by themselves

provide interchange mechanisms for other data objects, so interchange standards for images.
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maps, topologies, and other spatial and geographic objects will remain critical for transmitting

agreed object definitions among various sites.

SQL and RDA provide the basis for standard external schema communication. An SQL
external repository interface (SQL/ERI) makes it possible for non-SQL data repositories to

share their data with GIS applications. With emerging SQL enhancements for object-oriented

and knowledge-based data management and emerging RDA extensions for distributed database,

the ERI can evolve to support the GIS goal of direct conceptual schema communication.

3 Object Management in SQL3

Eailier versions of the SQL3 Woridng Draft specified object-oriented facilities such as User-

Defined data types. Assertions, and Triggers to support the object notions of abstraction and

encapsulation. They also included the generalization and specialization of tables in a table

hierarchy that supported multiple inheritance. In each case, these object concepts were only

partially supported without fully enforcing them as a discipline. There was no notion of object

identifiers and no notion of class hierarchies for user-defined data types.

The newest SQL3 Working Draft [14] now addresses the requirement for true "objects" and

"object identifiers" in SQL and also specifies supporting features such as encapsulation,

subtypes, inheritance, and polymorphism. The following subsections briefly describe the

current status of these features. Of course, as with any draft, the specifications are subject to

revision and improvement as they evolve over the next two or three years before final

standardization.

3.1 Abstract data types

The abstract data type facility provides the capability to define and manage persistent data type

definitions, including structures and operations on those structures. A new ADT can be

"constructed" from any existing data type, including previously defined abstract data types,

known to the current SQL environment.

An abbreviated version of the current syntax is as follows:

CREATE TYPE <ADT name>

[ <OID options> ]

[ <subtype clause> ]

[ <member list> ]

The <OID options> are discussed in Section 3.2 and the <subtype clause> is discussed in

Section 3.5 below. The <member list> specifies the attributes, operations, and other methods

applicable to the ADT definition.

Attributes contain an <encapsulation level>; otherwise, an attribute definition has the same

syntax as a regular relational column definition. An <encapsulation level> is specified as

either PUBLIC, PRIVATE, or PROTECTED. Public components form the interface of the

ADT and are visible to aU authorized users of the ADT. Private components are totally
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encapsulated, and are visible only within the definition of the ADT that contains them.

Protected components are partially encapsulated, being visible both within their own ADT and

within the definitions of aU subtypes of that ADT.

Operations on an ADT may include EQUALS and LESS THAN. The EQUALS clause

identifies a function that specifies conditions under which two instances of the defined data

type are considered to be equal. The LESS THAN clause identifies a function that specifies a

comparison ordering over data type instances. The definitions of equality and ordering, taken

together, specify the semantics to be used in the SQL comparison predicate when applied to

ADTs. If the LESS THAN definition is not specified, then the ordering tests of the

comparison predicate must return an unknown value.

Other methods associated with ADTs include FUNCTION definitions. FUNCTIONS operate

on one or more ADT instances and return either Boolean, if the result is to be used as a truth

value in a Boolean predicate, or a single value of a defined data type, if the result is to be

used as a value specification. Functions may be SQL functions, completely defined in an SQL
schema definition, or they may be external function calls to functions defined in standard

programming languages (see 3.4).

Special "constructor" and "destructor" functions are defined to make or remove instances of an

abstract data type. At the present time constructor and destructor functions are invoked

implicitly through Insert or Delete operations on a table.

Special methods, identified as CAST functions, specify how an ADT may be mapped to other

existing data types. For example, an IMAGE ADT may be mapped to a BIT STTUNG
representation. With the ability to include CAST specifications in any ADT definition, a data

type definer can define mappings to specific external representations. In this way the internal

representation may be kept PRIVATE and not directly accessible, thereby allowing efficient

implementation.

Abstract data type definitions and SQL or external function declarations are treated just like

any other SQL objects as far as access control and other usage privileges are concerned.

Access control is independent of encapsulation since encapsulation defines the structure of

what is possible to see and access control determines who can see that structure. All names

are qualified by the schema name of the containing schema and by the catalog name of the

containing catalog. Each such object is "owned" by the authorization identifier of the schema

in which it is defined and aU privileges to use the object, to "see" its representation, or to

modify its definition must be explicitly granted by the object owner. Privileges on existing

ADTs may be GRANTed and REVOKEd and new ADTs or function declarations may be

ADDed or DROPed from the schema as part of the SQL schema manipulation language.
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3.2 Object identifiers

Object identity is that aspect of an object that never changes and that distinguishes the object

from all other objects. Ideally, an object’s identity is independent of its name, structure, or

location. Object identity is therefore a unique identification of an object that is independent of

the state of that object, and which persists over time. The identity of an object persists even

after the object no longer exists (e.g. like a timestamp), so that it may never be confused with

the identity of any other object. Other objects can use the identity of an object as a unique

way of referencing it.

The <OID options> clause in an ADT definition allows several alternatives for object identifier

(OID) specification:

WITH OID VISIBLE,

WITH OID NOT VISIBLE, or

WITHOUT OID

If WITH OID is specified, then an OID value is generated when the object is created to give

that object an immutable identity. The OID can be referenced by an "object reference" in

constraints, queries, and other ADT definitions. If NOT VISIBLE is specified, then the OID
value may not be passed as a parameter to functions or stored in a host language variable. If

WITHOUT OID is specified, then the ADT does not have an object identifier; instead, each

instance represents itself just like values of primitive data types do.

There is a continuing debate in the SQL standardization committees as to whether SQL should

support all three of the above options, or if every new ADT definition should be assumed to

carry a unique object identifier. The outcome of this debate will not affect the functionality of

the new language, but it may influence its appearance and style.

PUBLIC components of an ADT are accessible to authorized users through a special "attribute

reference" operator (i.e. <ADT reference>.<attribute name>). If the ADT has WITH OID
specified, then the <ADT reference> will be to an object identifier of a specific ADT; if the

ADT has WITHOUT OID specified, then the <ADT reference> will be to the ADT value

itself. The attribute reference identifies a specific component of the ADT instance and permits

the user to read or modify its value.

3.3 Object management

Object ADTs are subject to special "constmctor" and "destructor" functions that either create a

new instance of the ADT and make it part of the database or remove an instance of an ADT
from the database. Since SQL is a "table-based" language, SQL designers have to address

issues concerning whether or not SQL object instances may exist outside of table occurrences.

If SQL objects are allowed to exist outside of tables, then new syntax to manipulate them and

new structures to hold collections of them must become part of the language. Although these

issues are still subject to debate and modification, the current status is to require that all object

manipulation be achieved through table operations.
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SQL3 currentiv allows specification of a "tabular" shell over an ADT class. In this way,

constructor a* i destructor functions are automatically invoked when rows are inserted or

deleted from le table, and the table itself is the collection of all object occurrences. SQL
query and upuate statements may then be applied to the table without the need for any special

language enhancements. If a requirement surfaces later to allow objects to exist and be

managed independently of tables, then it can be handled as an upward compatible language

enhancement.

In order to accommodate this implicit invocation of constructor and destructor functions, minor

enhancements are needed to the syntax and semantics of the CREATE TABLE and INSERT
statements (see [5]). The statement "CREATE TABLE T OF <ADT name>" creates a tabular

envelope around the abstract data type specified by <ADT name> and all attributes of the

abstract data type become columns of the new table T. Object instances may then be managed

by the usual SQL Select, Update, and Delete statements.

The statement "INSERT INTO T <insert speo ALIAS <name>", using the new ALIAS option

with an Insert statement, returns the object identifier of any new object created by the Insert

statement to the <name> variable. Syntax rules prohibit specification of an alias when the

underlying ADT is specified WITHOUT OID.

3.4 Methods and functions

An abstract data type includes not only a collection of values or properties but also a set of

operations (methods) on those values. Such operations are the procedures and functions that

define the behavior of the abstract data type. Some of the operations associated with an ADT
might be realized by means of data that is stored in the database, while other operations might

be realized as executable code (functions). An implementation of an ADT is the stored data

together with the data structures and code that implement the behavior of the ADT.

As seen in Section 3.1, methods may be encapsulated with the ADT definition. Specific

methods for determining equality, and ordering when appropriate, are then usable in regular

SQL comparison predicates. As we have seen, other methods can be defined as special

operators on ADTs or as predicates that return tmth values. A single value returned from a

function caU can be used any place in the SQL language that a single value is allowed. A
truth value returned from a function call can be used as one of the terms in a boolean

predicate.

Functions may be defined completely in SQL, or only their interface definition may be

specified in SQL with the content of the function written in some programming language (e.g.

Ada, C, or eventually C-H-). An SQL function may be "defined" as an independent schema

element, as part of an ADT definition, or as part of a module definition. An external function

may be "declared" in the same places. The syntax of an SQL fimetion is:

[CONSTRUCTOR I ACTOR I DESTRUCTOR] FUNCTION <function name>

<parameter declaration lisO

RETURNS <data typo
<SQL statement> ;

END FUNCTION
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Only constructor or destructor functions may create or destroy new ADT instances; they have

already been discussed above. An actor function is any other function that reads or updates

components of an ADT instance or accesses any other parameter declared in the <parameter

declaration list>. A parameter in the parameter list consists of a parameter name and an SQL
data type. The RETURNS clause specifies the SQL data type of the result returned. Since all

data types in an SQL function are SQL types that must accommodate Null values, it is not

necessary to worry about "indicator" parameters to convey Nulls.

The <SQL statement> may be any SQL statement, including compound statements and control

statements. Of particular importance here are the following:

• A NEW statement that allows creation of a new OBJECT ADT instance; it is

only allowed in a CONSTRUCTOR function.

• A DESTROY statement that destroys the existence of an OBJECT ADT
instance; it is only allowed in a DESTRUCTOR function.

• An ASSIGNMENT statement that allows the result of an SQL value

expression to be assigned to a free standing local variable, a column,

or an attribute of an ADT.

• A CALL statement that allows invocation of an SQL procedure.

• A RETURN statement that allows the result of an SQL value expression to be

returned as the RETURNS value of the SQL function.

The syntax of an external function declaration is:

DECLARE EXTERNAL <extemal function name>

<formal parameter list>

RETURNS <result data type>

[ CAST AS <cast data typo ]

LANGUAGE <language name>

The <formal parameter list> is a list of SQL data types. If a data type in the parameter list is

supported in the programming language identified by the LANGUAGE clause, then the

corresponding programming language routine has two parameters for that data type; the second

parameter is the "indicator" parameter to convey Null values. If a data type in the parameter

list is an ADT not supported in the programming language identified by the LANGUAGE
clause, then the corresponding programming language routine has two parameters for each

base type in the ADT definition, recursively. Again, the second parameter in each case is an

"indicator" parameter. The actual mapping from the <formal parameter list> in the external

function declaration to the parameter list of the programming language routine can become

quite complex, but is completely specified in the SQL3 woridng draft

The CAST AS clause is a convenience to allow "encapsulated" casting from a programming

language data type to an SQL data type. For example, an SQL DATETIME data type that

appears in the formal parameter list is automatically cast to its character string literal
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representation before it is passed to a programming language routine. The CAST AS clause

could also automatically cause the character string RESULT to be re-cast into an SQL
DATETIME value. Since every SQL data type has a defined CAST operation to and from

character string representations, it is possible to pass any SQL data type to any programming

language that supports character strings.

3.5 Subtypes and inheritance

Specification of "UNDER <ADT name>" in the <subtype clause> of an ADT definition (see

3.1) permits a new ADT to be defined as a subtype of an existing ADT. A type can have

more than one subtype and more than one supertype. Thus a subtype is a specialized type of

one or more supertypes and a supertype is a generalized type of one or more subtypes. A
supertype shall not have itself as a proper subtype and a subtype family shall have exactly one

maximal supertype.

Inheritance is an abstraction mechanism that adds to the power of data abstraction by allowing

classes of objects to be related hierarchically. Inheritance allows classes to share definitions

with other classes, thereby supporting newer, more specialized, data definitions without losing

the existing properties and operations of the superclass.

Through inheritance, new types can be built over older, less specialized types rather than

having to rewrite properties from scratch. Inheritance makes it possible to build a hierarchy of

related ADTs, i.e. a "type hierarchy", that share the same interface, and possibly the same

representation and implementations. As we move up in the inheritance hierarchy, types

become more generalized; as we move down types become more specialized. These

generalization/specialization capabilities allow more accurate and succinct modeling of

applications.

The SQL implementation of a type hierarchy (see [16]) requires that an instance of a subtype

is also an instance of aU of its supertypes. Every instance is associated with a "most specific

type" that corresponds to the lowest subtype assigned to the instance. At any given time, an

instance must have exactly one most specific type. Note that the most specific type of an

instance need not correspond to a leaf type in the type hierarchy.

As above, every column definition in an ADT has an encapsulation level specified as either

PUBLIC, PRIVATE, or PROTECTED. Public and protected components are visible to the

definitions of all subtypes of that ADT, but private components are not.

A subtype can define constructor, actor, and destructor operations just like any other ADT.
All operations of the supertype are invocable from the subtype, so there is a high potential for

name conflicts when the subtype defines more specialized operations. Name resolution rules,

described in the following section, ameliorate this problem.

SQL provides "multiple inheritance", i.e. a subtype can have more than one direct supertype.

With multiple inheritance, we can define a new type STUDENT-EMP which is a subtype of

both STUDENT and EMPLOYEE. A person who is both a student and an employee can be

modeled as an instance of the STUDENT-EMP type. In this way an instance will satisfy the
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requirement to always have a "most specific type".

Multiple inheritance could lead to ambiguous inheritance of components from its supertypes,

so SQL provides the disambiguity rules:

• If an attribute in more than one supertype is inherited from a common
supertype higher in the hierarchy, then only the one from the common
supertype is inherited.

• If an attribute with the same name in each of the supertypes is not inherited

from a common supertype higher in the hierarchy, then the type

definition is invalid unless the type definer renames the inherited

components to remove the name clash.

These rules, and other related issues, are subject to improvement and evolution as the SQL
ADT facility stabilizes over the next two or three years.

3.6 Polymorphic functions

Polymorphism is the ability to invoke an operation on any of several different objects and

have that object determine what to do at run-time. A polymoiphic function is one that can be

applied in the same way to a variety of data objects. Support for polymorphism involves

technical decisions concerning early or late binding among objects and the procedures that

invoke their methods. To help address some of these technical decisions, a number of

techniques have evolved, such as:

Overloading The ability to assign the same name to more than one function

or procedure - name resolution is then detmnined by a set of

rules, thereby allowing a processor to distinguish among

different functions of the same name by examining the "type"

of the input data.

Coercion The ability to omit semantically needed type coversions - -we

have already seen that SQL uses this technique in some of its

parameter passing to external functions.

Inclusion The ability to manipulate objects of a subtype "as if they

were objects of a supertype -- possibly with a function of the

same name that calls different routines.

Generalizing The ability to specify that a parameter should "take on" the

type of some supertype during processing of a specific

function call.

Resolution rules supporting polymorphism are derived from one basic concept, i.e. that for any

particular function invocation, there must exist a single "best match" from the candidate

functions that are "in scope". When a function call is executed, the unique "most specific
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type" of the various input parameters is used to help define the "best match" according to the

following rules, many of which are derived from those used by C++:

• Begin with the set of all functions that are "in scope" for a particular function

call, i.e. those that are defined or declared with the calling function

name in the statement, procedure, module, or schema associated with

the function call.

• For each argument, determine the set of functions that is a "best match" for

that argument, then take the intersection of these sets. Unless this

intersection has exactly one member, the call is illegal. That is, the

function selected must be a "strictly better match" for at least one

argument than every other possible function, but not necessarily the

same argument for each function.

• To decide which functions are the best match for each argument, agree: an

"exact match" is better than one based on type coercion (i.e.

CASTing), an implicit conversion to the "closest" supertype is better

than SQL or user-defined type coercion, and an implicit SQL-defined

CAST is better than an implicit user-defined CAST.

Consider an example where the following three functions are defined:

FUNCTION F(:pl X, :p2 INTEGER)
FUNCTION F(:pl X, :p2 REAL)
FUNCTION F(:pl Y, :p2 REAL)

Suppose that X and Y are abstract types defined in the same schema and that X has a user-

defined CAST clause that defines a conversion from INTEGER to X. A function call F(l,l),

where both 1 ’s are integer literals would result in the following analysis:

• For the first argument, there is no exact match, and no implicit SQL
conversion, so the user-defined conversion from INTEGER to X is

used. The first two function definitions are in the set of "best

matches".

• For the second argument, the INTEGER type of the literal is an exact match to

the INTEGER parameter. Only the first function is in the set of "best

matches".

Based on this analysis, the first function is the "best match" so it is the one invoked.

As a second example (also from [3]), suppose you have a type hierarchy in which A is a

supertype, B and C are subtypes of A, and D is a subtype of both B and C.

A
/\

B C
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D

In this case, suppose that three functions F are defined as:

F(:p A) RETURNS A
F(:p B) RETURNS B
F(:p Q RETURNS C

Based only on the compile time rules described so far, a function call F(d), where the value

d is of type D, would be ambiguous because, with an implicit conversion to the supertypes B
and C of D, both the second and third functions would be in the set of "best matches". A
function call F(x), where the value x is of type A, would also be ambiguous at compile-time

because the x might really be of type D at run-time.

As currently specified, the SQL Syntax Rules require that an implementation consider all

possible cases that might occur at run-time. For each case, i.e. for each of the four possible

"most specific types" that x might have at run-time in the above example, the above rules must

hold and identify for each case, a unique function. In addition, the set of identified functions

must specify a RETURNS data type such that they all share a "common" supertype. This

common supertype is the one returned in all cases.

There are a number of issues associated with polymorphism. In some cases the rules for

resolving function calls are arbitrary and not always the best choice for eveiy application

scenario. Other issues concern the run-time overhead associated with the "late" binding

required to support inheritance of properties to all subtypes of a given type.

3.7 Control structures

In Section 3.4 we saw that several "control" statements have already been introduced into the

SQL language, e.g. ASSIGNMENT, CALL, and RETURN. The next step is to consider if

more control statements and other "programming language" facilities should be added to SQL.

In particular, we need to consider the appropriateness of:

• sequences of SQL statements in a procedure instead of the single SQL
statement allowed in the current SQL standard,

• flow of control statements, such as looping, branching, etc.,

• exception handling, so that when an exception is raised, the SQL function or

procedure can resolve the issue internally, or propagate the exception

to the next outermost exception handler, rather than always returning

control to the main calling routine.

These 3GL programming language facilities are valuable because they allow procedural

encapsulation and they allow complete behavior to be specified within an ADT definition

without the need to escape to a procedure written in some other language. Complex behavior

can be made available to the host application program via a single call. This offers benefits in
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both cost and control. In SQL’92, all procedures are single SQL statements so multiple calls

must be made to address complex problems. All temporary state and flow of control belong to

the host language application, thereby adding complexity to the application program that could

be encapsulated in the SQL procedure. The following facilities from [8] are included in the

current SQL3 woiidng draft.

3.7.1 Compound statement . A compound statement is a statement that allows a collection of

SQL statements to be grouped together into a "block". A compound statement may declare its

own local variables and specify exception handling for an exception that occurs during

execution of any statement in the group. Its syntax is as follows:

[ <beginning Iabel>: ]

[ <variable declaration list> ]

BEGIN

[ <SQL statement liso ]

[ <exception handler> ]

END [ <ending label> ]

<exception handler> ::=

EXCEPTION [ {WHEN <condition> THEN <SQL statement list>}... ]

<condition> ::= <exception name list> I OTHER

An <exception name> is unique within a <module> and may be declared with an <exception

declaration>.

3.7.2 Exception handling . An exception declaration establishes a one-to-one correspondence

between an SQLSTATE error condition and a user-defined exception name. It’s syntax is

DECLARE <exception name> EXCEPTION FOR SQLSTATE <SQLSTATE
literal>.

The exception handling mechanism under consideration for SQL3 is based very strongly on

the mechanism defined in Ada. Each compound statement is assumed to have an exception

handler, if one is not explicitly defined, then a default handler is provided by the system.

When the execution of a statement results in an active exception condition, then the containing

exception handler is immediately given control. Ultimately, the exception handler temiinates

with one of the following behaviors:

• The compound statement terminates with the active exception condition still

active, or

• The compound statement terminates with a new active exception condition, or

• The compound statement terminates successfully, as though no exception

occurred, and there is no outstanding active exception condition.
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The exception handler may execute SIGNAL or RESIGNAL statements to identify a new
exception name or to pass on the existing exception name. If an exception condition occurs in

the exception handler itself, then the compound statement is terminated and that exception

condition becomes the "active" exception condition.

3.7.3 Flow of control statements . Program flow of control statements is currently specified

in the draft SQL3 document as

• A CASE statement to allow selection of an execution path based on alternative

choices. A <value expression> is executed and, depending on the

result, control is transferred to the appropriate block of statements.

• An IF statement with THEN, ELSE, and ELSEIF alternatives to allow

selection of an execution path based on the truth value of one or more

conditions.

• A LOOP statement, with a WHILE clause, to allow repeated execution of a

block of SQL statements based on the continued true result of the

<search condition> in the WHILE clause. A LOOP statement is also

allowed to have a statement label.

• A LEAVE statement to provide a graceful exit ft’om a block or loop statement.

3.8 Stored procedures

In the existing SQL-92 standard a module is a persistent object created by the Module

Language. It is a named package of procedures that can be called from an application

program, where each procedure consists of exactly one SQL statement. However, there is no

requirement that an implementation be able to execute Module Language (the alternative is

Embedded SQL) and the resulting persistent module is not stored as part of the SQL schema,

is not reflected in the information schema tables, and cannot be passed across an RDA
connection to a remote site.

In the emerging SQL3 specification, ANSI and ISO standardization committees have

recognized the requirement for some "standard" capability to define persistent modules that

"live" in the SQL schema and whose procedures may be called from any SQL statement in the

same processing environment. In SQL3 the CREATE MODULE statement has the same status

as any other schema definition statement. The result of execution is a module that is managed

by SQL rather than by the proprietary facilities of the host operating environment. Module

definitions are reflected in the Information Schema just like any other schema object and they

are subject to ownership and access control declarations.

The primary benefit of supporting stored procedures is that implementations are able to

optimize groups of statements rather than just individual statements. Entire packages of SQL
procedures can be sent to a remote SQL conforming site, be optimized at that site, and then be

executed with a single call when needed.
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3.9 Parameterized types

The ability to define abstract data types does not by itself provide the capability to define

"parameterized" types. A parameterized type is really a "type family" with a new data type for

each value of an input parameter. For example, an ADT definition for VECTOR(N) can be

thought of as a family of data types, one for each positive integer value of N. This idea is not

new as we already have parameterized, predefined types in the existing SQL standard, e.g.

CHARACTER(N) and DECIMAL(P,S), and it is a common feature in programming languages

that support user-defined types. Reference [4] adds the ability to specify parameterized ADT
definitions in SQL.

We may think of a "parameter" as any value of a data type known to tlie SQL environment,

e.g. an integer value in the examples above. We may also think of a "parameter” as a

reference to an exisitng data type, rather than a value of that type. For example, we may wish

to specify that VECTOR(N) is really a vector of integers, or reals, or decimals with fixed

precision and scale. This can be achieved by passing a data type name to the ADT definition

instead of just a data type value.

The syntax for specifying a parameterized type in SQL3 is very similar to that for specifying a

regular ADT, namely:

CREATE TYPE TEMPLATE <template name>

( { <template parameter declaration> )...

)

<abstract data type body>

<template parameter declaration>

<template parameter name> { <data type> 1 TYPE ]

The keyword TEMPLATE indicates that the specification is for a paramaterized ADT rather

than a regular ADT. The keyword TYPE indicates that a parameter is a data type name rather

than a data type value. The <abstract data type body> is analogous to the body of a regular

ADT definition.

A parameterized type is referenced by specifying the type template name and an actual

parameter list. Each actual parameter must be a value, or a data type, that can be determined

at syntax evaluation time, i.e. usually a literal or a data type name. If the actual parameter is a

data type name, then the fonnal template parameter must specify TYPE.

You are allowed to define more than one type template with the same name, just as you may
define more than one <SQL fimction> with the same name. For example, it is legal to define

two POINT data types, one for 2-dimensional points and one for 3-dimensional points. TTie

rules for matching a parameterized type reference to a parameterized type definition are the

same as the rules for matching overloaded functions.

3.9.1 Distinct types . Sometimes it is desirable to be able to distinguish between table or

ADT attributes that have the same underlying ADT definition. For example, table T1 might

have a column named Cartesian_Coordinate that is defined to have the data type POINT and

table T2 might have a column named Polar_Coordinate that is also defined to have the data
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type POINT. The POINT data type may have a DISTANCE function defined to calculate the

distance between any two points, but clearly the calculation

DISTANCE(T 1 .Cartesian_Coordinate,T2Polar_Coordinate)

may not be a meaningful calculation.

The SQL3 draft provides a facility for the user to declare that two otherwise equivalent ADT
declarations are to be treated as "distinct" data types. The keyword DISTINCT used in an

ADT declaration indicates that the resulting type is to be treated as "distinct" from any other

declaration of the same ADT. In the above example, if two new types are declared

CREATE DISTINCT TYPE CARTESIAN_POINT AS POINT
CREATE DISTINCT TYPE POLAR_POINT AS POINT

and if Cartesian_Coordinate and Polar_Coordinate are declared to have the data types

CARTESIAN_POINT and POLAR_POINT respectively, then both kinds of coordinant points

would have all the methods and operations for POINT, but any attempt to apply the

DISTANCE function between them would result in an error.

The DISTINCT facility in SQL3 is currently only applicable to abstract data types, not to pre-

defined data types. For example, it is not legal to declare the following:

CREATE DISTINCT TYPE PART.NBR AS INTEGER
CREATE DISTINCT TYPE EMPJD AS INTEGER

It is possible to extend the definition for "distinct" types from abstract types to pre-defmed

types. This is an issue that will be addressed in the near term.

3.9.2 CLIP generator types. The emerging Common Language Independent Datatypes

(CLID) specification [12], under development in ISO JTC1/SC22AVG11, also specifies

facilities for parameterized and distinct data types. However the syntax is slightly different.

CLID uses the keyword GENERATOR instead of TEMPLATE and NEW instead of

DISTINCT, but the effect is essentially identical.

Some of the following sections in this paper were written before parameterized types were

added to the SQL3 working draft, so they are written using the CLID syntax. Thus in the

following sections

CREATE GENERATOR TYPE « CREATE TYPE TEMPLATE and

CREATE NewType = NEW OldType « CREATE DISTINCT TYPE
NewType AS OldType

3.10 Generator types

At the present time SQL3 only defines a limited number of data types, including: fixed and

variable length character strings, fixed and variable length bit strings, fixed and floating point

numerics, dates, times, timestamps, intervals. Boolean, and enumerations. The components of
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an ADT must therefore be defined as one of these base data types or as a previously defined

ADT.

There is a need to extend the pre-defined, base data types to include "generator" data types

such as those specified in the emerging ISO common language-independent datatypes (CLID)

specification [12], The CLID specification includes, among others, the generator types:

ARRAY {[<lower>..<upper>]}... OF <base typo
LIST OF <base typo
SET OF <base typo
CHOICE ({<identifier>:<base type>}...)

RECORD ({<identifier>:<base type>}...)

RANGE Subtype Generator

SIZE Subtype Generator

EXTEND Supertype Generator

Declared Generator

ARRAY creates a new data type whose values are fixed-length sequences of values from the

<base type>. Values in the sequence are in a one-to-one correspondence with a value in the

product space of the <lowei> to <upper> limits for each index component. Operations defined

for an array are:

Equal a Boolean predicate on two arrays that returns true if their corresponding

components are pairwise equal, and returns false otherwise.

Select operates on an array and on an element of the index product space to

return the appropriate value from the <base type>.

Replace operates on an array, an element of the index product space, and a value

from the <base typo to produce a new array with the given value

substituted into the appropriate position.

LIST creates a new data type whose values are ordered sequences of values from the <base

type>, including the empty sequence. The following operations are defined for lists:

Equal Equal is a Boolean predicate on two lists that returns true iff the two lists have

the same length and all components are pairwise equal.

IsEmpty IsEmpty is a Boolean predicate on a single list that returns true iff the sequence

is empty.

Head Head operates on a list to return the first element from the sequence.

Tail Tail operates on a list to return a new list consisting of all elements except the

first

Append Append operates on a list and a single value from the <base type> to produce a

new Ust with the value as the last element of the sequence.

Empty Empty is a niladic operation yielding the empty sequence.
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SET creates a new data type whose values are taken from the power set (i.e. the set of all

subsets) of the <base type>, with operations appropriate to the mathematical set algebra. In

order to ensure uniqueness of representation, the <base type> is required to be discrete,

meaning it cannot have a distance function defined that yields any limit points that are

elements of the <base typo. Operations on sets consist of the following:

Equal a Boolean predicate that returns true iff two sets are equal.

Isin a Boolean predicate that op)erates on an element of the <base typo and a

set to return true iff the element is a member of the set

Subset a Boolean predicate that operates on two sets and returns true iff the first

is a subset of the second.

Union

Intersection

Complement

SetOf

Empty

Universe

Select

operates on two sets to return their set union,

operates on two sets to return their set intersection,

operates on a set to return its set complement

operates on a single value of the <base type> to return the singleton set

consisting of just that element

a niladic operation that returns the empty set

a niladic operation that returns the set of all values from the <base type>.

operates on a set to return an arbitrary single value from that set.

SET OF <base typo : SIZE (<min>, <max>)

LIST OF <base type> : SIZE (<min>, <max>)

For sets, the size declaration specifies constraints on the minimum and maximum cardinality of

sets that are allowed as part of the subtype. For lists, the size declaration specifies constraints

on the minimum and maximum length of the sequence of elements that determines the list.

EXTEND is a supertype generator that acts on a <base typo to create a new data type that

has the <base type> as a subtype. The syntax is:

<base type> : EXTEND (cvalue list>).

The value space of the extended data type consists of aU values in the <base type> plus those

additional values specified in the cvalue list>. The extend generator can be used with

ENUMERATION or other data types to extend the value space to include the values in the

value list The operations defined for the cbase type> are not automatically extended.
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4 Generic ADT packages

With the existence of abstract data types (ADTs) and generator types in SQL3, there is a new

opportunity to consider standardization of the SQL interface to packages of high-level data

objects for use in various application areas. It makes sense to standardize packages for science

and engineering, fuU-text and document processing, or methods for the management of

multimedia objects such as image, sound, animation, music, and video. A new standardization

project has been proposed by ISO/IEC JTC1/SC21AVG3 to develop a "companion standard"

for SQL3 that would specify a class library of multimedia and other useful ADT packages.

This proposed standard, to be called SQL/MM, would provide an SQL language binding for

multime^a objects defined by other standardization bodies (e.g. SCI 8 for documents, SC24

for images, and SC29 for photographs and motion pictures). The main intent of

standardization is to allow applications to use the same ADTs across different application

areas, thereby promoting interoperability and the sharing of data, and encouraging performance

optimization over a manageable collection of types.

Some packages, e.g. geographic information structures, have broad appeal across different

application areas and could benefit from "generic" standardization. The difficult part, and the

most important, is for user groups to agree on the desired types and methods that are most

useful in a specific application area. Once an application package is well-defined and accepted

by a significant user population, implementations will follow rapidly.

This section is gives examples of a few generic ADT packages that may have value in some

GIS application areas. If others agree that it makes sense to define named ADTs and syntax

for accessing them in a standard specification, then they can be pursued with the proper

mechanism to make that standardization happen.

The capabilities discussed in Section 3 need to be available before one can define robust

"generic" application packages with "well-chosen" definitions. Since Abstract Data Type

facilities are already in the emerging SQL3 specification, we assume that the needed additional

data types and data type generators will either also be included as part of SQL3 or as the "base

requirement" of the SQL/MM project.

n the following subsections we assume that all SQL-defined types are able to accommodate

nun values. All operations must be able to handle input and output parameters that may have

null values. In some cases we will want the aggregate type (e.g. an array) to handle null types

in the components and sometimes we won’t. This will be a decision that needs to be made for

each newly defined type. To accommodate null values, we must sometimes replace the CLID
BOOLEAN data type by an SQL data type that recognizes true, false, and unknown. We
achieve this by using the OLID data type STATE(true, false, unknown) wherever a truth value

is expected in SQL.

4.1 Vector spaces

We know from linear algebra [11, 17] that any finite-dimensional vector space defined over

the field of real or complex numbers is isomorphic to a real or complex product space. In

addition, if a finite-dimensional vector space has an inner product defined, then that inner
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product space is isomoqDhic to the real or complex product space with the well-known scalar

product for vectors of real or complex numbers. Many geometric properties of any inner

product space are closely related to geometric properties on real or complex product spaces.

For these reasons, the fmite-dimensionsal real and complex product spaces play an important

practical role in many geoscience and engineering applications. It would be an important

contribution to these applications if the base operations were standardized and incorporated

into all "scientific" database management systems.

We assume the existence of a COMPLEX data type

TYPE COMPLEX = RECORD (real:REAL, imag;REAL)

with operations, using the notation of [12], defined as follows:

ZeroO:COMPLEX
OneO:COMPLEX
Add(u:COMPLEX,v:COMPLEX):COMPLEX
AddInv(u:COMPLEX):COMPLEX
Mult(u:COMPLEX,v:COMPLEX):COMPLEX
MultInv(u:COMPLEX):COMPLEX where u not equal to ZEROQ
Conjugate(u:COMPLEX):COMPLEX

where Zero and One are the additive and multiplicative identities. Add and Mult are the

addition and multiplication operations for complex numbers, Addinv is the additive inverse,

and Multinv is the multiplicative inverse. Under these operations the non-null values of

COMPLEX satisfy the axioms of a mathematical field.

The following additional COMPLEX operations are defined in terms of the base operations for

Record-type:

Equal(u:COMPLEX,v:COMPLEX):STATE(true, false, unknown)

Aggregate(x:REAL,y:REAL):COMPLEX Note: x or y null implies result is

null

RealPart(u:COMPLEX):REAL

ImagPan(u:COMPLEX):REAL

4.2 Product Spaces

Let FIELD be any numeric data type that has the operations of a mathematical field, i.e.

addition, subtraction, multiplication, and division. We define the following general product

space to represent vectors defined over FIELD:

CREATE GENERATOR TYPE VECTOR(N) OF FIELD = NEW ARRAY
[1..N] OF FIELD

We are particularly interested in the cases where FIELD is either REAL or COMPLEX, so

define the following:
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CREATE GENERATOR TYPE REALVECTOR(N) = VECTOR(N) OF REAL

CREATE GENERATOR TYPE COMPLEXVECTOR(N) = VECTOR(N) OF
COMPLEX

Let VECTORG^ be a shorthand notation for VECTOR(N) OF FIELD and define the

following operations for VECTOR(N):

ZeroO:VECTOR(N)
Add(x;VECTOR(N),y:VECTOR(N)):VECTOR(N)
AddInv(x:VECTOR(N)):VECTOR(N)

ScalarMdt(a:FmLD,x:\^CTOR(N)):VECTOR(N)

ScalarProd(x:VECTOR(N),y:VECTOR(N)):FIELD

Nonn(x:VECTOR(N)):REAL

Dist(x:VECTOR(N),y:VECTOR(N)):REAL

With Zero as the zero vector in N-space, Add as vector addition, Addinv as the additive

inverse for vectors, ScalarMult as multiplication of a vector by a scalar, and ScalarProd as the

scalar product of two vectors, VECTOR(N) OF FIELD will satisfy the axioms of an inner

product space over the base field. In addition, if Norm(x) is defined to be the positive square

root of ScalarProd(x,x), and if Dist(x,y) is defined as Nonn(Add(x,AddInv(y))), then

VECTOR(N) OF FIELD becomes a complete metric space in the norm topology.

The following operations, analogous to Record-type operations, allow equality comparison of

vectors, constmction of vectors from base components, and reference to individual vector

components:

Equal(x:VECTOR(N),y:VECTOR(N)):STATE(true, false, unknown)

Aggregate(al:FIELD,...,aN:FIELD):VECTOR(N)

Project(x:VECTOR(N),i:(INTEGER:RANGE(l.JS0)):FIELD

There is no LESS THAN operation defined for vectors, so it is not possible to test for order

relationships in comparison predicates.

4.3 Cross Products in Real 2-Space and 3-Space

We note that REALVECTOR(2) and REALVECTOR(3) have important vector applications in

many engineering and physics problems. In each of these data types, it makes sense to define

an additional operation, the vector cross product, as follows:

CrossProd(x:REALVECTOR(2),y:REALVECTOR(2)):REALVECTOR(3)

CrossProd(x:REALVECTOR(3),y:REALVECTOR(3)):REALVECTOR(3)

We could consider generalizing the CrossProd to be a vector product on VECTOR(N), but the

definition becomes very complex. It might be better to wait until after matrix algebra

operations have been defined to represent linear transformations of vectors. One might also

consider adding other vector operations, e.g. Gradients and Curl, etc., that are important in

physical science applications.
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4.4 Matrix algebra

Many practical applications can be modeled in terms of linear transformations on finite-

dimensional real or complex vector spaces. Such linear transformations can be represented as

two-dimensional matrices over real or complex fields. Addition and scalar multiplication of

matrices are defined to coincide with addition and scalar multiplication of linear

transformations, and multiplication of matrices is defined to coincide with composition of

linear transformations. Standardization of matrices and matrix operations as SQL data types

would be an important contribution to many areas of applied mathematics.

Let RING be any numeric data type that has the operations of a mathematical ring, i.e.

addition, subtraction, and multiplication, but not necessarily division. We define the following

general product space to represent matrices defined over RING:

CREATE GENERATOR TYPE MATRIX(MN) OF RING = NEW ARRAY
[l..M][l.JSn OF RING

We are particularly interested in the cases where RING is either REAL or COMPLEX, so

define the following:

CREATE GENERATOR TYPE REALMATRIX(MN) = MATRIX(MN) OF
REAL

CREATE GENERATOR TYPE COMPLEXMATRIX(MN) = MATRIX(MN)
OF COMPLEX

Let VECrOR(N) be a shorthand notation for VECTOR(N) OF FIELD and let MATRIX(MJ^
be a shorthand notation for MATRIX(M,N) of RING. Then define the following operations

for MATRIX(MJ^:

ZeroO:MATRIX(M,N)

IdentityO:MATRIX(MN)

Add(x:MATRIX(MN).y:MATRIX(MN)):MATRIX(MN)
AddInv(x:MATRIX(MJ^):MATRIX(MN)
ScalarMult(a:RING,x:MATRIX(M,N)):MATRIX(MN)

MatrixProd(x:MATRIX(M,S),y:MATRIX(SN)):MATRIX(MN)

Transpose(x:MATRIX(MN)):MATRIX(N,M)

ConjugateTranspose(x:MATRIX(MN)):MATRIX(N,M)

Trace(x:MATRIX(NN)):RING

Determinant(x:MATRIX(NN)):FIELD
Adjoint(x:MATRIX(NN)):MATRIX(NN)

MatrixInv(x;MATRIX(NJSO):MATRIX(NN)

Rank(x:MATRIX(MN)):(INTEGER:RANGE(l..Min(MN)))

Reduce(x:MATRIX(MN)):MATRIX(MN)

With Zero as the all-zero matrix. Add as matrix addition, AddInv as the additive inverse for

matrices, and ScalarMult as multiplication of a matrix by a scalar, MATRIX(MN) satisfies the

axioms of a vector space over the base field. In addition, with Identity as the diagonal identity

matrix, MatrixProd as the product of two product-compatible matrices, and Matrixinv as the
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inverse of square, non-singular matrices, REALMATRIX(N,N) and COMPLEXMATRIX(NJ^
are linear algebras, i.e. they satisfy the properties of a non-commutative mathematical ring

with identity.

The operations Transpose, Conjugate, Trace, Detenninant, and Adjoint (see [11]) all provide

helpful tools when matrices are used to analyze linear transformations. The

ConjugateTranspose is intended only for C0MPLEXMATR1X(M,N), but it is well-defined for

all MATR1X(M,N). Rank and Reduce are important operations whenever an MxN-Matrix is

used to represent a system ofM linear equations in N variables.

The following operations, analogous to Record-type operations, allow equality comparison of

matrices, construction of matrices from base components, and reference to individual matrix

components:

Equal(x:MATRIX(MJ^,y:MATRIX(MJ^):STATE(tnie, false, unknown)

RowAggregate(xl:VECTOR(N),...pcM:VECTOR(N)):MATRIX(MJS0

ColumnAggregate(xl:VECTOR(M),...,xN:VECTOR(M)):MATRIX(MJ^

Project(x:MATRIX(M,N),(iJ):(RECORD

(rowid:(INTEGER:RANGE(l..M)),colid:(INTEGER:RANGE(l.J^))):RIN

G
ProjectRow(x:MATRlX(MJ^d:(INTEGER:RANGE(l..M)):VECTOR(N)

ProjectColumn(x:MATRIX(M,N)j:(INTEGER:RANGE(l..N)):VECTOR(M)

4.5 Euclidean geometry

Any instantiation of the values of REALVECTOR(N) is said to be a Euclidean space. Every

Euclidean space can support the structures and operations of Euclidean geometry. Such

structures include, but are not limited to, point, line, segment, polysegment, polygon, convex

polygon, angle, angular measure, distance from point to line, distance from point to polygon,

distance between two disjoint polygons, planes, hypeiplanes, etc. Such notions are important

in GIS as the foundations upon which spatial data structures can be defined. The notion of

convex hull and optimization of linear functions defined on convex sets is important in

operations research and applied economics. It would be an important contribution to these

fields if certain fundamental Euclidean stmctures were standardized in SQL.

CREATE GENERATOR TYPE EUCLIDEAN(N) UNDER REALVECTOR(N)

All of the vector operations from REALVECTOR(N) would be inherited by EUQ-IDEAN(N)
and new structures and operations are defined as follows:

CREATE TYPE POINT UNDER EUCLIDEAN(N)

CREATE TYPE LINE = NEW SET OF POINT : SIZE(2,2)

CREATE TYPE HYPERPLANE = NEW ARRAY [l.JsT+l] OF REAL

CREATE TYPE HALFSPACE = NEW ARRAY [1..N+1] OF REAL

CREATE TYPE SEGMENT = NEW RECORD(start:POINT,stop:POINT)
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CREATE TYPE POLYSEGMENT = NEW LIST OF POINT

CREATE TYPE CONVEX.POLYHEDRON = NEW SET OF HALFSPACE :

SIZE(lJvl)

Note: M represents the number of "faces" of the convex polyhedron.

Define CAST operations so that a convex polyhedron can be represented as a

set of M linear inequalities in N variables, i.e. AX <= B where A is an MxN
matrix and X and B are elements of VECTOR(M). Also be able to CAST a

conve polyhedron as an Mx(N+l) matrix so that reduction algorithms can be

applied to "solve" the inequalities.

CREATE TYPE LINEAR_FUNCTION = NEW VECTOR(N) OF REAL

Note: A linear function is of the form f(X) = AX where A is a IxN vector and X is

an Nxl vector variable.

The following operations might be the start of a long list of operations of interest to operations

research professionsals:

Distance(p:POINT4:LINE):REAL

Distance(p:POINT4i:HYPERPLANE):REAL

Maximum(f:LINEAR_FUNCTION,cp:CONVEX_POLYHEDRON):REAL
Minimum(f:LINEAR_FUNCTION,cp:CONVEX_POLYHEDRON):REAL
etc.

Of particular importance in many engineering and cartographic applications is the two-

dimensional Euclidean plane and the three_dimensional Euclidean space. These instantiations

of EUCLIDEAN(2) and EUCLIDEAN(3) deserve special notation for they are likely

candidates for optimization in database systems catering to these application areas.

CREATE TYPE EUCLIDEAN_PLANE = EUCLIDEAN(2)

CREATE TYPE EUCLIDEAN.SPACE = EUCLIDEAN(3)

In the EUCLIDEAN_PLANE, it also makes sense to define the following new strucmres and

operations:

CREATE DOMAIN POLYGON AS POLYSEGMENT
CHECK(Equal(Head(VALUE)d^t(VALUE))

CREATE DOMAIN CONVEX_POLYGON AS POLYGON
CHECK( ScalarProd of all successive points is ...)

[Continue with needed functions — especially those dealing with distances, conic sections,

surveying, navigating, mapmaking, etc.] For example see [19].
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4.6 Geographic regions on Earth surface

Regions on the surface of the Earth could be defined as part of a "geographic’’ package as

follows:

CREATE TYPE DEGREE = NEW INTEGER:RANGE(-360..360)

CREATE TYPE LONG„DEGREE ^ DEGREE:RANGE(-179..180)

CREATE TYPE LAT_DEGREE = DEGREE:RANGE(-90..90)

CREATE TYPE MINUTE = NEW INTEGER:RANGE(0..59)

CREATE TYPE SECOND - NEW INTEGER:RANGE(0..59)

CREATE TYPE PRECISION = NEW INTEGER:RANGE(0..9999)

Note: This definition of precision is biased toward a decimal representation. As an

alternative, one might define precision as a positive integer, p, coded as a bit

string of length n, to represent the firaction p/2**n.

CREATE TYPE LATITUDE = RECORD
(deg:LAT_DEGREE,mm:MINUTE,sec:SECOND,pr^:PRECISION)

CREATE TYPE LONGITUDE = RECORD
(deg:LONG„DEGREE,mm:MINUTE,sec;SECOND,prec:PRECISIO

N)

CREATE TYPE MEASURE = RECORD
(deg:DEGREE,min:MINUTE,sec:SECOND,prec:PRECISION)

With these definitions the normal field extraction operations on RECORD can be used to

extract "degree", "minute", "second", and "precision" from LATITUDE and LONGITUDE
even if values of these types are stored in vendor specific fonnate. As cunently defined,

PRECISION is a partition of SECOND into 10,000 subunits. Reference [1] recommends this

level of precision as adequate (i.e. within 1/8-th inch) for identifying my point on the surface

of the Earth.

Other functions can be defined on LATITUDE and LONGITUDE to extract Universal

Transverse Mercator System (UTM) units or other units for accepted ways to identify points

on the surface of the Earth (see [1]).

Define Addition/Subtraction operations so that LATITUDE, LONGITUDE and MEASURE are

additive groups.

CREATE TYPE LOCATION = NEW
RECORD(lat;LATmJDE,long:LONGITUDE)

Determine if it makes sense to define arithmetic operations on LOCATION. E)efine distance

between LOCATIONS via great arcs on the surface of the earth (or use other accepted GIS
distance measurements).

CREATE TYPE REGION = NEW SET OF LOCATION
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Define Earth_Surface = UniverseQ

Note that Earth_Surface has a "finite" domain (i.e. approximately 2**70 elements). All

instances of REGION that represent contiguous geographic entities (e.g. countries, cities,

bodies of water) can be represented efficiently and the set operations of Union, Intersection,

Complement can be optimized using the methods of [9].

Define CAST operation from LOCATION to REGION.

Define QUADRANT as

RECORD(base:LOCATION4at:MEASURE,Iong:MEASURE)

Define CAST operation from QUADRANT to REGION.

A "quadrant" represents a "rectangular" region on the surface of the earth, i.e. all locations

within the rectangle determined by the "base" and the "lat" and "long" measures.

Define CAST operations between QUADRANT and RECTANGLE in

EUCLIDEAN space.

Import the Definitions of Euclidean Geometry for 2-space, especially segment, polysegment,

polygon, and convex polygoa

Define CAST operation fixim POLYGON to REGION to be the set of all locations that: 1) fall

on the boundary or 2) faU in the interior of the polygoa Note that the definition of interior

may be tricky unless the polygon is a convex polygon.

Define other important transformations between Euclidean 2-space and the Earth_Surface.

With the above data structures to represent Earth_Surface geography, many simple queries can

be answered quite easily. For example, the query "find the closest international airport to

Chesapeake Bay" or the query "find the locations of all hotels within 3 miles of Interstate 95

between Washington and New York" can be answered by treating all such geographic objects

as REGIONS. The answer to the first query is the distance between the set of all locations of

international airports and the set of locations comprising the region Chesapeake Bay, and the

answer to the second query is the intersection of the three regions: 1) set of aU hotel locations,

2) 3-mLle BUFFER around Interstate 95, and 3) Washington-NewYork-Corridor.

Another typical geographic query is to ask if Region A lies to the Northwest of Point B. This

is easily modeled by defining Northwest of Point B as a Quadrant and then determining if

Region A is contained in the Region determined that Quadrant

4.7 Spatial data types

There is a need to add new abstract data types to model appropriate operations for spatial data

management A detailed effort in this area is repotted in [2). Among the suggested ADTs is a

geometry ADT which manages geometric information and topologic relations.
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4.8 ASN.l data type

The Abstract Syntax Notation (ASN.l) standards (ISO 8824 and ISO 8825) define a number of

data types along with an underlying representation for each of those data types as an Octet

String, i.e. LIST OF OCTET where OCTET = ARRAY [0..7] OF BIT. SQL developers

should make sure that all SQL data types can be cast to some ASN.l data type (preferably a

predetermined one), and that aU ASN.l data types are representable in SQL. With the

appropriate cast operations to Octet Strings, the RDA standard can be used for interoperability,

even if the communicating systems don’t fuUy support one another’s data types.

5 External repository interface (ERI)

CIS applications require access to multiple data repositories, not aU of which are managed by

SQL conforming processors; in fact, most are probably managed by non-SQL processors. It is

not unusual for CIS applications to require data from the operating system, from graphics

repositories, from CD-ROM’s, from CAD/CAM databases, or from libraries of catalogued

data. We need to consider a new conformance alternative in SQL so that such non-SQL data

repositories can make their data available, in simplified but standard form, to SQL systems or

SQL applications. NIST representatives have proposed development of such new interface

specifications to ANSI and ISO standardization committees. The next year will see if we can

persuade others to see the benefits.

This "consciousness-raising" discussion is intended to heighten awareness to user requirements

for better integration among heterogeneous data repositories. It may make sense to specify a

"client" and a "server" interface to external repositories so that non-SQL systems can act as

servers to SQL requests for data. It may make sense to propose a new standardization project

to develop the conformance requirements needed for non-SQL systems to provide SQL views

of their data and for SQL systems to provide fully functional views over that data to SQL
users. This interface might be specified as part of the emerging SQL3 standard [14], or

processed as a completely separate standard. In any case, it would repackage functionality

from the SQL and RDA standards and give new conformance requirements for both SQL and

non-SQL systems.

If we label this new interface as the SQL external repository interface (SQL/ERI), then it

might consist of a "server" part and a "client" part. Non-SQL systems could claim

conformance to the "server" part and SQL systems could claim conformance to the "client"

part. A wide range of non-SQL products and services might be able to claim conformance as

SQL/ERI Servers. They could provide high level abstract data types with application specific

methods and operations. They might even be required to provide an SQL schema definition to

describe data that will be externally available. In addition, SQL/ERI Servers would be

required to evaluate "simple" SQL queries over individual objects defined in the schema. The
exact meaning of "simple" can be specified in the ERI definition - possibly at different levels

of service. The SQL processor can then think of the external repository as an

SQL_CATALOG that can be CONNECTed to, but that can only respond to whatever SQL
statements are specified for that level of service.
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In turn, SQL systems might be able to claim conformance as SQL/ERI Clients. If an SQL
system claims conformance as an SQL/ERI Qient, then it agrees to provide SQL functionality,

at whatever level of the SQL standard it conforms to, over any table or other object provided

by an SQL/ERI Server. This may require that the SQL system automatically create a

temporary table whenever the external view is referenced in a query, and then populate that

table using the limited capabilities provided by the "server" interface so that it can guarantee

the ability to perform nested queries, or searched updates and deletes, or recursive queries, or

whatever is requested by its application.

With the SQL/ERI "client" and "server" definitions, non-SQL systems would be able to

provide services to SQL-based applications even though they might not be able to provide the

expected query flexibility, access control, concurrency control, or updatability required of a

full-function SQL data manager. Full-function SQL processors could provide these expected

data management facilities and, in addition, provide user access to data repositories not

otherwise accessible via the SQL language. Section 2.2 describes how the SQL/ERI

definitions might be used to provide uniform GIS application access to both SQL and non-

SQL data at local and remote sites.

The SQL/ERI standard might provide several different conformance packages for non-SQL

systems. Certainly one kind of conformance package might coincide with the services

provided by read-only tables on CD-ROM. Data on the CD-ROM would "conform" to this

SQL/ERI server package if it includes a data manager kernel that is executable on a wide

range of workstations and responds correctly to an SQL CONNECT statement using the call

interface provided by that workstation. Another kind of conformance package might coincide

with the services provided by online databases. Such systems would be required to respond to

RDA requests as if they were remote SQL servers conforming to the RDA/SQL-Specialization.

Other conformance packages might correspond to the services required in a multi-vendor

environment with some updatability requirements and other requirements to "read" SQL data

in other remote catalogues.

In each of these cases, a conforming SQL/ERI server would be required to be "self-describing"

as if it were a separate SQL catalog. It would be required to supply an SQL
Information_Schema describing all available tables and other objects and the equivalent SQL
data types for aU attributes. In particular, the following tables from the Information_Schema

would probably be required, although some might be empty: TABLES, COLUMNS,
DOMAINS, VIEWS, and SCHEMATA. If the ERI Server provides new abstract data types

not defined in the SQL standard, then it would also be required to provide an SQL ADT
interface definition as specified in the emerging SQL3 specification.
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6 Conclusions

Database Language SQL provides standardized facilities for defining, managing, and protecting

data. With implementations available on all sizes and makes of computing equipment, the

SQL standard is leading the way toward unprecedented portability of database applications.

The emerging SQL3 specification includes object management capabilities over abstract, user-

defined data types, thereby making SQL3 a complete language for creating, managing, and

querying persistent objects. The emerging RDA standard promises to complete the link among

SQL products from different vendors, leading to true open systems interconnection and

interoperability among conforming SQL systems. Emerging specifications for future revisions

of SQL and RDA promise enhanced facilities to support intelligent objects and knowledge-

based applications in a distributed processing environmenL

GIS requirements for integration of SQL and non-SQL data repositories can be met with the

new user-defined data types in SQL and emphasis on a new common external repository

interface (ERI) linking SQL to non-SQL data managers. An SQL/ERI standard, based on an

appropriate subset of SQL and RDA capabilities, will provide new opportunities for integration

of heterogeneous data repositories into GIS applications. Non-SQL data repositories would be

able to use the object-oriented ADT definition facilities in SQL to present a standardized, yet

functionally complete, external schema to GIS applications. With support from full-function

SQL processors on one side of the ERI interface, and standardized access to data and data

operations on the other side, applications can take full advantage of high-level data structures

and operations provided by specialized, non-SQL processors while at the same time depend on

the availability of fuU-function SQL statements to access and manage the data.

Armed with fuU-function SQL and RDA implementations at each remote site, and ERI access

to specialized tools and data repositories, GIS applications wiU be able to specify, via an SQL
statement, what data is to be analyzed, and will be able to direct that data to a chosen

application tool, analyze data through the eyes of that tool (e.g. sophisticated design analysis

tools), and specify where the result should be directed for further access by other tools. The
interoperability capabilities provided by SQL and RDA allow integration of data and

applications from various processing sites. With these data management standards, and with

other capabilities provided by emerging specifications, the GIS goals of seamless

interoperability are within reach.
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1 Introduction

The use of relational database management system (RDBMS) technology within the existing

CIS user community is virtually universal. It is likely that RDBMS will be the major

commercial data management technology for the remainder of the decade, even with the

current emerging interest in object-oriented database technology. The Structured Query

Language (SQL) will be the major language for interaction with relational databases and is

being supported by many of the new object-oriented databases as weU. Furthermore, the

investment by organizations in training staff to use SQL is quite significant. Consequently, a

large body of expertise is available both within the Geographic Information Systems (GIS)

user community and computing industry as a whole.

The use of RDBMS and SQL by (GIS) has emerged 2i de facto industry standard. Even

though SQL is a weU defined standard, its implementation by GIS companies in their software

products varies considerably. Most GIS companies have made significant investments into the

design and development of proprietary interfaces and spatial data extensions to support SQL.

These GIS companies include Koik (Ingram and Phillips, 1987), Intergraph (Herring, Larsen,

and Shivakumar, 1988), Prime (Charlwood, Moon, and Tulip, 1987), and GeoVision

(Westwood, 1989). Each has attempted to provide facilities supporting spatial predicates and

spatial data manipulation facilities within SQL (or SQL-like query languages).

Since the acceptance of SQL as a de facto GIS standard, the GIS user community has

developed specific expectations about portability, functionality, and performance.

Unfortunately, the basic query language in most cases is an incomplete implementation of both

the ANSI and FIPS standards (ANSI, 1989; NIST, 1987). Each company provides its own set

of faiiiy minimal and elementary spatial extensions. These extensions generally do not

maintain consistent syntactic and semantic constructs with the rest of SQL, e.g. spatial

predicates are not in general supported within the WHERE clause, but rather within a separate

clause.

Many leading government agencies are starting to advocate the certification of SQL support by

GIS software products. The key to certification is to define an interface specification that may
be used to design and develop validation tests. This paper is intended to be an initial

framework that may be used to develop such a specification into a standard set of spatial

extensions that may be eventually embedded into the SQL ISO/ANSI standard.
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Our approach is to identify a set of enhancements that would be of general use to all GIS

vendors and in many cases to non-GIS vendors as weU. The proposed enhancements provide

significant capability over the current SQL standard for GIS applications. One could define

many more enhancements that would be useful for GIS, but we, at GeoVision, decided to

identify a set of enhancements each of which would have a good chance of being accepted by

all GIS vendors and also by many non-GIS users.

Detailed information is provided in the Functional Requirements section. Functions identified

include long term lock and transactions, custom functions, auto-sequence numbering, data

types, triggers, and n-dimensional indexing. These descriptions are intended as starting points

for discussion and as such are not rigorous definitions of data types and functions. The

specific syntax examples included in this proposal are intended as initial suggestions. The

discussion on long transaction support presents the long transaction concept, but does not

include specific SQL implementation suggestions.

2 Functional Requirements

The functional requirements described in this section are for extensions to SQL that would be

of major benefit to a GIS application using a relational database management system

(RDBMS) as its only storage mechanism. This section defines enhancements that are not

necessarily GIS specific, but could be used for other applications. Even the location data type

might have uses outside a GIS specific application, for example in a CAD application. In

some cases, such as the data types sections, SQL syntax and semantic changes are suggested.

In other cases, in particular, the long transactions section, concepts and requirements are

outlined with no specific SQL syntax suggestions.

2.1 Data Types

We have identified two sorts of implementation of data types, ones that are intrinsic to SQL
like the current character and numeric types, and ones that users could define for their specific

applications. The two intrinsic types described here are location and array data types.

2.1.1 Location Data Type. . Geographic information systems manage data about objects in a

spatial context. The geographic location of an object is an important datum. The concept of

"location" almost always is expressed as a value with multiple dimensions. This concept has

uses not only in GIS where location represents a location on the ground, but also in CAD,
mathematics, and various other engineering and scientific applications.
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The data type is represented by n numbers, where n is either two or three. To allow

flexibility, it should not restrict n to two or three, but allow higher dimensional locations. For

GIS, the basic requirement is for 2D or 3D data. For example:

create table spotheight (

id numeric primary key,

coords three_d_coordinate(12,2).

);

Above, the parameters for three_d_coordinate are meant to be the same as for the numeric

type, number of digits and precision. Instead of having specific types for 2D and 3D
coordinates, there could be one type with the dimension as a parameter.

create table spotheight (

id numeric primary key,

coords coordinate(3,12,2),

);

Of course the reason for having a location data type is not merely to have a compact way to

represent them. The SQL operators would have to support the location data type.

select ... where location_l between location_ll and location_ur.

The section on user defined functions later in this document has more examples of the use of

the location data type.

2.1.2 List or Array Data Type . . A problem in modeling GIS data in a relational database

is how to represent long ordered coordinate strings or large arrays of raster data. Representing

this data in normalized tables is inefficient both in terms of processing and in tenns of storage

overheads.

create table contours (

id numeric primary key,

feat_code char(lO),

z numeric(10,4).

);

create table coords (

id numeric references contours (id),

pt_num numeric,

coord coordinate(2,12,2),

primary key (id, pt_num) );
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Here, id is the unique id of the feature. The pt_num field is required to maintain the correct

order of points for the feature. These two fields are repeated for every single point If one

considers that the primary key requires an index for quick retrieval, then the oveitiead of

identifying a single point uses more storage than the actual point itself takes.

Almost all queries that require the coordinates for a contour line require the coordinates in

order, for example to draw the contour line on a plot This requires an order by clause.

select coord from coords where id = /z order by pt_num;

This is not too bad for most database systems which are fairly efficient in performing the sort

if the field being sorted is indexed. However, in most cases when coordinates are to be

retrieved, a join is involved also. For example, the following query is required to retrieve 100

metre contours.

select contours.id, contours.feat_code, coords.coord

from contours, coords

where z = 100 and contours.id = coordsid order by coords.id, pt_num;

This not only includes a sort of all selected rows, but also returns the id and feat_code along

with every single point. Some features, especially contour lines, require hundreds or thousands

of points to represent them accurately. Furthermore, in more realistic examples, more than

two attributes would be retrieved with every feature. This query is usually processed as two

separate queries, one to retrieve the basic feature attributes (id and feat_code in this example)

and a second query which returns only the coordinates.

Several relational database vendors now support a "long" data type to address this and similar

problems. It is a field that can hold a large amount of data with limits large enough that they

could be used for small images or for coordinate strings. The advantages with using that type

of field are: a separate coordinates table is not require saving the join; the overhead for

identifying each point is not needed; and the query can be processed with no sort required. A
significant disadvantage is that these fields cannot be used in expressions or comparisons. The

internal detail of these fields is completely unknown to the database management system, so

this type is not ideal. What is required is an ordered list or ordered array data type, for

example

create table contours (

id numeric primary key,

feat_code char(lO),

z numeric(10,4),

coords two_d_coordinate(12,2) array(l...unlim).

);

In the example, the field coords is an array of elements, where each element is a location data

type called two_d_coordinate. It is intended that the number of elements be variable and

unlimited. The relational database vendors, however, likely would have some limit on the size
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of arrays, the same way they have limits on the maximum number of rows per table. The
query for all 100 metre contours is as follows.

select id, feat_code, coords from contours where z = 100;

The provision of arrays requires further syntactic enhancements for inserting, updating, and

selecting elements of the array.

2.2 User Defined Functions

The proposed SQL3 standard includes "External Procedures" which is what I refer to as user

defined fimctions. The ability to write a function in a language like C and have it available as

a function within SQL is a veiy powerful capability. It allows GIS vendors to embed many of

their spatial functions right into SQL.

Currently, during data selection, if there are spatial functions involved in the selection, extra

data needs to be retrieved from the database. The selected data is then further filtered by GIS

software implementing the spatial functions. For example, consider a query "Find aU parcels

within 4 kilometers of a given location." Different vendors have different ways of handling

this, but in general, the query cannot be phrased accurately enough in SQL. Parcels in the

general geographical area are retrieved and then the spatial clipping functions are performed

afterwards.

Benefits include less data retrieved from the database and more powerful phrasing of queries.

User defined functions might include geographic distance, projection transformation (eg. UTM
to Mercator), unit conversion (eg. feet to metres), and more accurate selection (clipping).

Functions can also be written to perform specific operations on the previously described

location or array data types. For instance, a function could define a location data item out of

separate coordinates, or a function could extract a coordinate out of a location data type such

as

insert location(3082 19.45, 6209483.75, 450) into loc_table;

select ordinate(l, startjocn) from loc_table;

Or another example is select * from homes

where distance(location(308219, 6209483), homes.locn) < 20;

In the above example, homes.locn is a location data type, but it could either be a single

location field or it could be an array of location fields, in which case the distance function

returns minimum distance.

In select building.name from building, parks

where inside(building.locn, parks.perimeter)

and parks.name = ’Algonquin’;
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the function inside would perform a point-in-polygon operation to determine if die budding’s

location is inside the area enclosed by the pailc’s perimeter.

Some GIS functions that would be required could be implemented as operators rather than

functions. They would be spatial predicates in SQL such as inside, connected, crosses, and

northjof.

In select road.name, rail.lineno from road, rail

where road.coordinates crosses raiicoordinates;

coordinates would be arrays of location data type. TTiis could also be implemented as user

defined functions, so the requirement for user defined operators is not as strong as the

requirement for user defined functions.

sela:t road.name, rail.lineno from road, rail

where crosses(road.coordinates, rail.coordinates);

For the following examples using the location data type, the database management system

would need to support the semantics of the following types of expressions.

update buildings set locn = locn + location(500, 100);

select building.locn - fire.locn from ...;

2.3 Triggers

The integrity enhancement with the current SQL standard is very useful for maintaining the

integrity of relationships between rows of data in different tables. However, in GIS there are

cases where the relationship of information goes beyond referential integrity. For example, the

area of a polygon feature is dependent on the boundary coordinates of that polygon. If a user

alters the boundary information, a trigger could initiate another user function which, in this

example, would recompute the area value.

A trigger function could also be used to perform complex validation of input data. For

polygons, a trigger function could validate that an updated centroid point is inside the bounds

of the polygon area. This trigger capability is included in the proposed SQL3 standard.

2.4 Long Term Transactions and Locks

Currently, a transaction is assumed to be fairly short in duration, seconds or minutes, but

certainly not hours. In GIS, the situation is more complicated. Yes, it still makes sense to

have the same sort of transaction concept. A user digitizes a feature, enters some related

attributes, and updates some related features. That then is committed as a unit of work. It

makes sense that if something goes amiss during that unit of work that the transaction is rolled

back.

However, users of GIS also have a longer duration transaction. A user who may be designing
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changes to a part of a GIS may lake hours or days to make all the necessary changes. This

often will span several sessions with the user logging out between sessions. Some examples

include:

• A planner is designing a new road network for a proposed subdivision. This may
require adding or changing hundreds or thousands of features.

• An engineer is designing changes to a telephone network in a local area as a work

order.

• An engineer is analyzing a what-if scenario in an electrical network. The task

analyses the effect of a downed power line on the rest of the electrical

network

• A user is analyzing the potential impacts of a hypothetical forest bum area on

wildlife habitats.

Users expect to have similar capabilities with these long transactions as they do with the

current definition of transaction, but there are differences.

Similarities:

• The long transaction can be rolled back if the user decides not to apply any of the

changes.

• The user will commit the long transaction when done. After commit, aU users

will be able to see the changes.

Contrasts:

• The user still requires transaction control at a small unit of work level. In the

example of a planner designing a new road network, the rollback capability

is still necessary to rollback errors made to the most recently entered

feature, but without rolling back the whole design effort. So, the

requirement is not just a matter of adding capability to extend the life of a

transaction. It requires a two-level mechanism. Many instances of the

current concept of transaction, the short transaction are nested sequentially

inside a long transaction.

• If the system crashes, the rollback is not to the beginning of the long transaction,

but only to the beginning of the small unit of work, the short transaction.

• A long transaction is not terminated automatically when the database is closed. A
long transaction can span multiple sessions.

• Changes being made during the long transaction can be made available selectively

to other users before the long transaction is committed. This is necessary

in a design environment where several engineers collaborate on a single

design project The visibility of the long transaction is controlled, so not

all users see it. Rules of transaction serializability do not apply to long

transactions.
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• Data that is being updated or referenced by the long transaction is subject to

different locking rules. For short transactions, locking is used to enforce

concurrency based on a serializable transactions model. For long

transactions, persistent locks which can last as the length of the long

transaction are required. A user may be designing modifications to a piece

of equipment and wishes to maintain an exclusive lock against update of

that object Another type of lock is a shared lock where more than one

user may be changing the object within their transactions. This lock is

used when users are working in overlapping areas and each user potentially

may need to update the same object More information on this follows

later.

I present an approach to supporting long transactions which is based on a multi-version

management system. The approach requires the support of multiple versions of any given row

in the database. The description lays out some main requirements that need to be supported

by the database management system.

2.4.1 Multiple Versions . In the course of designing the new set of features, the designer

may go through several what-if scenarios. An engineer designing a change to a telephone

netwoik may need to examine several different cable configurations. During the whole design

process, the database stores aU variations of the data. The database stores several versions of a

given object, where an object may be represented by a set of rows in one or more tables.

Different users have a requirement to view different sets of versions. Some users may wish to

see only data that is a representation of the data as it is in the field. Other users may wish to

see different stages of the designs. In a multi-user database, there will be many engineers

doing design work, sometimes in different geographic areas, and sometimes in oveiiapping

geographic areas.

The support of versions has been an issue in CAD applications (eg. Kemper, Wilkes, and

Schlageter, 1991; Ahmed and Navath, 1991), and is becoming important in CIS applications,

especially in utility applications (eg. Easterfield, Newell, and Theriault, 1990). A version

management mechanism supports the storage of many versions of a single object with different

users working on different versions. However, a single view of the database will contain only

one version of any given object. A given version of an object may be seen in many views.

Permanent objects are seen in aU views of the data.

Different projects are often independent of each other. For example, two engineers are

designing road changes to opposite ends of the city where there is no overlap between the data

being changed for the two projects. But, this is not always the case. Sometimes an engineer

designs changes in an area that overlaps with the area being woiked on by another engineer.

In fact, the changes made by one engineer may depend on specific changes being made by the

other engineer. There is a dependency of one project on another project. For example, one

engineer may be designing the placement of a cable that attaches to a switch being placed

within another engineer’s project. The first engineer then has a concern whenever a design

change happens that affects the dependency.
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For any object in the database, there can be multiple versions. A version of an object may
depend on some other version of the object Objects are also related to one another. Let us

take a very simple example of a cable attached to a switch. If a cable is represented as a row

in a CABLE table, and a switch is represented in a SWITCH table, then for a many-to-two

relationship, the switches to which a cable is attached are represented using foreign keys in a

CABLE_SW table.

CABLE

(

cablejd char(lO) primary key,

type char(8),

);

SWITCH (

switch_id numeric(5),

type char(8),

);

CABLE_SW (

cable_id char(lO) references cable (cable_id),

end_ind char(l); /* S = start, E = end */

switch_id numeric(5) references switch (switch_id),

primary key (cablejd, end_ind) );

In a database where one is not concerned about versions of objects, the switchjd can refer to

one and only one row of the SWITCH table. However, in a database supporting multiple

versions of any given row, the switch_id foreign key may refer to several versions of the

switch. The referential integrity is more complicated. I am going to attach version numbers to

each row of these tables so as to be able to identify them. Let us say that there is a switch

with id 100 and type A. Let us call it version 0, meaning that it is a permanent version. An
engineer is designing a change to the network that requires a new cable, id C12, type X, and

version 1. The engineer attaches start end of the cable to the switch. Another engineer

determines that for his project, the switch must be replaced with a type B switch.

Fortunately, the type B switch can support the type X cable required by the first engineer. We
now have another switch with id 100, but of type B and version 2. A third engineer is basing

her design on the work of the other two engineers. She needs to upgrade the type X cable to

a type Y cable. The type Y cable can still attach to the type B switch. The type Y cable is

version 3.

SWITCH
switch_id type version

100 A 0

100 B 2

CABLE
cablejd type version

C12 X 1

C12 Y 3
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CABLE_SW
cable_id end_ind switchjd version

C12 S 100 1

Each engineer has a different

view of this data. The third

engineer sees a type Y cable

attached to a type B switch.

The second engineer sees a

type X cable attached to a

type B switch. The first

engineer sees a type X cable

attached to a type A switch.

Finally, a user that needs to

see an "as-buUt" view sees a

type A switch, but sees

neither the type A nor the

type B cable.

The various versions of a

given object can be

represented as a tree

structure (Figure 1). The branches leaving the object represent design alternatives based on

that object Each alternative may in turn have their own branches representing other

alternatives which are dependent on that alternative.

A task usually involves changing many objects in the database. Continuing with the scheme

where we assign a version number to each change, let us assume that all changes made for a

single task are assigned a single version number. The task may be a simple work-order or it

may be a what-if analysis scenario. Often, a user will need to explore several what-if

scenarios, comparing the results of each of the scenarios. Each scenario is a separate task. An
entire project would be composed of many tasks and often would be the result of collaboration

between several users.

Although the changes made within a task are made using a single version number, changes

may be made to data with other version numbers. For example, in Figure 2 switches SI and

S2 are modified using versions 7 and 8 respectively. Cable C30 is modified under version 8.

Then, under version 9, cable C20 is removed and replaced by cables C21 and C22 and switch

S3. Version 9 is directly dependent on versions 1, 7 and 8. Notice that the version 9 view

contains data from versions 0, 1,7, and 8.

Representing the task dependencies in a graph form, the graph is a directed graph. (Figure 3).

Contrast this with figure 1 which showed the version dependencies only for a single object.

For a single object, the dependency graph is a tree since a single version of an object is

dependent directly on only one other version of that object However, for a task, a single

version may be dependent directly on many other versions.
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The view of the database

that one has with a single

version is based on a

complex relationship

between versions. The

specific version of a given

object that is within the view

depends on the task

dependency graph. This is

an important concept in a

multi-user design database.

Each user can select the

view of the database that

they require. Their view is

chosen by the design project and stage within that project.

Once a view is established, the user will perform analysis

without needing to specify which version of which objea

needs to be seen. The view appears as a separate copy of

the database. Other users working on other projects will not

disturb that view. Similarly, any what-if changes made by

the user will not disturb other users of the database who are

working on different projects.

There is one exception to this view mechanism. In

work-order processing, it is often necessary to display

graphically on a plot an indication of what changes are to be

made. This type of plot is used in the field to guide the

workers. For example, if a work-order removes a cable, the

old version of the cable is displayed with an x’ed out symbolization. If a cable is to be

changed, the old and new attributes of the cable are displayed, but using different colours. So,

even within a view of a database, applications do need to access previous versions of the data.

As with short transactions, there are commit and rollback operations for long transactions. A
commit operation makes versions of objects, which represent conditional changes, permanent

objects. Conditional changes made to permanent rows replace those permanent rows. Those

rows then become available to all users working on the permanent versions of data. Similarly,

a rollback of a version removes all rows of that version without affecting the rows on which

they were dependent.

Commits of versions usually do not happen until the design change has been approved,

installed in the field, and compared against what was really installed in the field.

Occasionally, the field installation will need to make changes that were not anticipated by the

designers. For example, a telephone pole may be installed a few feet from the intended spot

due to an unanticipated obstruction.

Figure 3. Task Dependencies,
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Figure 2. Example of Task Dependency.
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We have seen how a user performs a single task using the long transaction mechanism. AH
changes made within that task are assigned a single version identification. In practice, a task

on its own is insufficient. A project is made up of many tasks, often with different users

working on different tasks that make up the project It is usually not until the whole project is

complete that the changes made within the tasks of the project are made available to all users.

With tasks supported by the database management system using long transactions, the

application can manage the project concept by treating it as an aggregate of tasks. Each task

can be assigned application specific attributes, such as "initial design", "initial approval",

"corrected design", and "final approval". Committing a project would involve committing each

task within the project In a very elaborate application, this aggregation can be nested to even

higher levels.

2.4.2 Referential Integrity Constraints . The presence of multiple versions of rows cleariy

complicates the matter of referential integrity. Each project view of the database has its

referential integrity. The foreign key reference from one end of a cable to the switch identifies

a single switch. The project view sees only one version of that switch. However, the database

management system must realize that the foreign key may reference many instances of the

switch rows. Foreign key references can be ambiguous, unless a version indicator is included

as part of the foreign key.

• Unique key constraints - A key is no longer unique within a whole table. It is

unique only within a single version.

• Foreign key references - A foreign key may refer to different versions of a primary

row depending on the task view that is in effect. Refer to the earlier

switch / cable example, above. The view from version 2 is that cable C12
version 1 refers to switch 100 version 2. However, the view from version

1 is that the same cable version, cable C12 version 1 refers to switch 100

version 0. So, while the logical data model requires a one-to-many

relationship between SWITCH and CABLE_SW, physically the relational

database must represent this as a many-to-many relationship.

2.4.3 Concurrency Control . In a multi-user environment, concurrency control is certainly

important However, in a graphic design environment, the traditional concept of a transaction

is too restrictive. Traditionally, within a transaction, a user wiU examine some records, make a

set of changes, and then commit the transactioa In a graphic design environment, the time

spent with a set of data is too long to force it to be within a database transaction. For

example, an engineer may work with all the electrical outside plant data in a 10 square mile

area for a period of a week. The engineer may decide that during that time he does not want

any other user editing selected data within that set. This requires a lock mechanism that lasts

an extended period of time. The locking done by relational database management systems for

concurrency is insufficient.

Most systems accomplish this by adding lock information columns to each table that contains

data that could be locked. Then, the lock control is handled by the application or user. It

works, but there are some drawbacks
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• If a user accesses the data through another application, then the lock controls are

not effective.

• All updates by the user must be monitored by the application to verify that there

are no lock conflicts. This adds overhead. For example:

update parcels set value = value * 1.1 where street = ’pine’;

The application could modify the query as follows;

update parcels set value = value * 1.1 where street = ’pine’ and lock is NULL;

This update will skip locked parcels, but often that is not the desired effect Usually the

application wiU want to inform the user if there are any lock conflicts. The application

will have to generate a separate query to verify that no locks will conflict

select parcel_id, lock from parcels where street = ’pine’ and lock is not NULL;

If there are subqueries, it further complicates the application’s processing of the operation.

Locking to maintain concurrency control is usually an exclusive type of locking. One user

updates an object and other users cannot update that object until the first user releases the

lock. The lock can be released prior to the end of a transaction. However, as pointed out

earlier, in a design environment with long transactions, exclusive locks are sometimes too

restrictive. If several users are woricing in overlapping areas, an exclusive lock would allow

only one user to make changes in the overlapping area. Often that is not appropriate, so users

prefer to use shared locks in those situations. A shared lock can be placed on an object by

any number of users. When a user eventually decides to update the object, the user escalates

his or her shared lock to an update lock. AU other shared locks on the object then are

discarded. Usually, the other users are notified by the application when their locks have been

discarded. Depending on application requirements, the notification can be immediate, or can

be done only when the other user attempts to update the object.

Long transactions can be rolled back. This has implications on users who have their tasks

which depend on those transactions. In a normal transaction, the database management system

prevents users from seeing changes before they are committed. In a long transaction, however,

it is necessary for several designers to see the transaction effects prior to the transaction being

committed permanently in the database. A view of the transaction is not provided

automatically to aU users. The user must identify the versions of data that they wish to be in

their view. In some applications, the owner of the transaction must grant access to the version

to a particular user before that user can see the transaction. After a rollback operation, the

other users must be informed so that they can update their dependencies.

Concurrency control for long transactions requires a lock mechanism whereby rows can be

locked for extended periods of time, under the control of the user. Both exclusive and shared

locks are required. Concurrency control also requires the ability for a user to control what

versions within his or her transaction are viewable by other users.
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2.4.4 Versioning Requirements Summary . In summary, long transactions can be

implemented using a database supported versioning mechanism. These are the main

requirements of the database management system to support multiple versions of rows.

Support multiple versions of rows in a table (based on primary keys).

Support dependencies between versions.

Manage referential integrity which takes versions into account.

Support views based on versions and version dependencies.

Provide commit and rollback operations at the version level.

Manage persistent locks at the row level.

I have not suggested a SQL syntax to support these concepts. Instead, I have tried simply to

present the concepts of long transactions in a GIS application and to outline the requirements

of a database management system to support these concepts.

2.5 Auto Sequence Numbering

It is common among GIS vendors to assign unique identification numbers to features added to

a GIS database. One cannot assume that all features that a user would create would have a

unique user key. In fact, often the only thing unique about a feature is it’s location and data

type. Spot heights, contour lines, and boundary features usually do not have unique user keys.

Even when the user has keys, they often are of different type for different feature (eg. part

number, street name) which makes it difficult to identify features in a general way. Thus, a

unique sequence of numbers is generated.

In a multi-user database and potentially in a distributed environment, generating unique

sequence numbers is tricky, although it can be done. It would be more useful and efficient if

the database management system could generate unique sequence number automatically. For

example, consider a "feature" table which contains attributes feature_code (eg. street, parcel),

type (eg. line, point, polygon), and perhaps others. A further attribute would be

feature_number and it would be defined as a unique sequence number. When one would

insert a row into the "feature" table, one would include aU columns except feature_number.

insert into features (feature_code, type, ...) values (’street’, ’line’, .,.);

The database management system would compute a new feature_number.

Towards SQL Database Language Extensions for GIS page 82



2.6 N-Dimensional Indexing

The "Create Index" statement is not part of the SQL standard. However, it is generally

expected that vendors provide this sort of command and therefore I have included a

requirement here. Most indexes available are B-Tree, hashing, or other method that handles

only one dimensional data. One can index several fields, but it becomes a concatenated index

rather than a multi-dimensional index. In GIS, it is essential to be able to provide at least a

two-dimensional indexing capability on coordinate location. For some applications, a

three-dimensional index would be desirable. There are many published spatial indexing

algorithms. Two commonly known spatial index structures are R-Trees and Quadtrees. One
of these or some other multi-dimensional index structure is required. For example:

create index geo_index on spotheights(x, y);

or using the location data type,

create index geo_index on spotheights(coords);

Note that the syntax is no different than what many vendors support currently. However, the

intention is that the index is treated as a 2-D index and not as a 1-D concatenated key index.

3 Conclusions

I have presented some of ideas for basic enhancements to SQL to support GIS data types and

functions. We at GeoVision feel that these enhancements would provide significant capability

over the current SQL standard, but at the same time would not hamper the various GIS

vendors from developing distinctive products or inventing new ways of modeling and

manipulating GIS data. We also feel that aU the concepts described in this paper can be used

for other non-GIS applications. Location and list data types can be used in any application

that deals with multi-dimensional data such as CAD / CAM. Versioning can be used in any

application that requires the support of on-line design woiic and that includes most engineering

or architecture types of applications.

It is hoped that ideas presented in this paper provide insight into some of the data management

issues that GIS needs to solve and that the ideas can be used as a starting point for further

discussions.
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1 Introduction

With growing interest in Geographic Information System (GIS) technology, there has

developed a need to provide standard mechanisms to interact with the data so information can

be combined in analysis and reported in an easy and efficient manner. From a database

perspective, GIS integrates spatial and attribute information. This paper outlines a proposed

extension to the SQL standard which includes spatial and object oriented extensions required

in the GIS environment. SQL has been chosen as the base to build on, because of its wide

spread acceptance in the current mainstream information processing environments. The SQL
standard already defines many Information Systems facilities that are needed in GIS, e.g.

transaction management, integrity constraints, privileges, a data definition language and a data

manipulation language.

SQL with Integrity Enhancement [1,9] is the basis for the extensions presented in this paper.

They are presented in such a way that they can be applied to the new SQL standard [2] that is

about to be adopted. The extensions are based on previous work done with the SYSTEM 9

Query Language (S9QL) [21] and the Analytical Tool Box product offerings [4, 6]. The

complete grammar for GIS!SQL can be found in Ashworth [5].

The sections, Object-Oriented Data Modeling and Extended Transaction Model, outline the

needs of GIS. The sections describing the GISISQL language extension are Object Oriented

Extensions, Spatial Extensions, Data Dictionaiy Extensions, Distributed Processing/Multibase

Extensions, Language Extensions and Input, Output and Graphic Display. The language

grammar is presented in BNF; please refer to [1] for a description of the notation used in this

paper. An Appendix of examples follows Concluding Remarks, a Glossary and References.
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2 Object Oriented Data Modeling

2.1 Object Oriented Approach

The real world can be modeled using an object oriented approach. This paradigm supports

objects, class definitions, subclassing, methods, inheritance, polymorphism and data

encapsulation.

The table definition has been extended to include the components of a class definition. Qass

definitions are used to define similar classifications of real world phenomena. An objea can be

modeled as a row in the table.

Qass definitions are structured into a class hierarchy that maintains inheritance information.

The Object class is the root of aU object classifications. Entity is a subclass of Object used to

model any phenomena. Spatial_Entity is a subclass of Entity used to model any spatial

phenomena. Simple and Composite are subclasses of SpatialJEntity. This portion of the

hierarchy is system defined. The user begins to build the spatial components of their GIS

model by subclassing the Simple or the Composite class definitions. The non-spatial

components of their GIS model can be modeled either by subclassing the Object class

definition or by subclassing the Entity class definition if it win be part of a composite directed

acyclic graph (DAG) discussed below. Similar models have been developed using entity-

relationship models such as [20].

In Figure 1 the user has defined a class definition called building to describe a man-made

structure. A building is a subclass of Simple. Office_building and dwelling are more specialized

types of building, but still share the same basic properties so they have been subclassed from

building.

Qasses are organized in a DAG. The class definition. Simple, is the super class designed to

model a single real world spatial phenomenon. The class definition. Composite, is the super

class used to model entities that are composed of two or more related real world entities.

Sometimes this is called the assemble or has-a relationship. Only subclasses of Entity may be

referenced in the composite DAG as in Figure 2.

In Figure 2 CityJBlock and Parcel are subclasses of the Composite class definition. Road,

Parcel_Boundary and Building are subclasses of the Simple class definition. Qass definitions

are organized into a directed acyclic graph (DAG) with subclasses of the Composite class

definition at internal nodes and subclasses of the Simple class definition at terminal points.

Subclasses of the Spatial_Entity class definition can be defined to maintain no topology, node

topology (0 Cell), linear topology (1 Cell), surface topology (2 Cell), solid topology (3 Cell) or

raster information.

A class definition includes a set of attributes and a set of methods. Attributes may be inherited

from the super class as well as having new ones defined specifically for the class definitioa

New attributes cannot redefine the data types of inherited attributes but changes to the attribute
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constraints are allowed.

In addition to the set of

attributes defined in a class

definition, a class definition has

a set of methods that an object

in the class wiU respond to. A
subclass will inherit all the

attributes and methods defined

by the parent (or superclass). A
subclass can define new
attributes and methods. The

behavior of a subclass’s method

can be changed by redefining

the method in the subclass

definition. This is referred to as polymorphism.

2.2 Extensibility

This paper outlines some ways to extend the GIS/SQL language be the ability to define new
methods, operators and abstract data types (ADTs). New operators and methods may be

Cijy BlocI
(CoffTposite)

Simple:

arcel

,

bmposite)

Parcel boundary Building
(Simple) (Simpler

Figure 2. Example of class definitions organized as acyclic

directed graph (DAG).
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defined to woric on a specific ADT.

2.2.1 Operators. Operators perform monadic or dyadic operations between one or two <value

expressioro and the resulls can be used in <value expressioro,

2.2.2 Functions. Functions perform some work with a set of parameters. The result of the

function can be used in <value expression>.

2.2.3 Abstract Data Types. New data types called ADTs can be created from the basic set of

data types (CHAR, INTEGER, etc.) or from other existing ADTs. Mediods can be defined to

work with the new data types. Existing operators may be redefined to work with an ADT; this

is commonly referred to as operator overloading. In addition to redefining existing operators,

new operators may be declared. A constructor is used to generate a literal for a given ADT.
The result can be treated as a <value specification>.

An ADT called GEOMETRY has been added to SQL for maintaining the geometric or both

geometric and topologic information. Many of the operators and functions in this paper have

their roots in topologic relationships between features [8]. If topological relationships are not

being maintained but are required for a spatial operator, spatial ftmction or spatial predicate,

then they will be derived during the query processing phase of the request. This would have to

be done if the data being analyzed came from separate systems not supporting tiie topologic

model [16].

3 Extended Transaction Model

This section briefly outlines some specific aspects of transactions in the GIS environment

3.1 Long Transactions

A long transaction has all the properties of a transaction as defined in [1] except for its

duration. This transaction may be active for weeks or months. A typical application using this

type of transaction is found in a municipal plarming department where a new subdivision is

plarmed or site changes need an approval process. The changes must be approved before being

finally committed to the database. If the changes are approved then the changes are committed

to the database, otherwise they are rolled back. Sometimes this work is done by contract woik

off site. Thus the system must support the ability to execute the transactions from remote

systems.

3.2 High Volume Read Operations

A typical business application may read up to one hundred records in an operation to fiU a

textual screen with data. By contrast, a typical GIS graphic display will have up to ten

thousand entities in a single spatial area that is displayed. Similarly adding a new subdivision

to the database involves a large numbers of update operations. The database management

system must be tuned to handle this type of behavior.
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3.3 Increased Data Interaction

Maintaining the topologic relationships among entities does increase the amount of work to

perform even a simple operation. For example, a single line may be used to define a land

parcel boundary, a forest boundary, a lake shoreline and a political boundary. To update this

line, there is an overhead in checking the privileges on all four classes.

3.4 Privileges on Spatial Area

There is a need to have privileges based on a spatial criterion. Metro Toronto for example, is

made up of five municipalities. There is a need to share information between the centres but

some data within the corporate boundary may only be updated by each centre. The ideal

solution is to have the capability to define privileges based on spatial area.

4 Object Oriented Extensions

This section describes the object oriented extensions for GIS/SQL.

4.1 Inheritance

The <isa clause> specifies a super class where the attributes and methods are inherited from in

this class. Many <isa clausos can be used in a single table definition to specify multiple

inheritance.

<table element> ::=

<isa clauso ::=

<isa clauso

ISA <table namo

The <table name> in the <isa clause> is the super class and must already exist.

4.2 Composite Specification

The <composed of clause> specifies the classes that may be used to assemble elements in class

being defined.

<table constraint definition>

<composed of clauso ;:=

<composed of item> ::=

<coniposed of clauso

COMPOSED [OF] <composed of iteni>

<table namo
( <table name> [{, <table namo }...]

)

The <table name> in <composed of item> must be a subclass of Entity.
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4.3 Composite Predicate

The <cx)mposite predicato enables the user to specify a predicate based on the composite

relationship.

<predicate> ::=

<composite predicato ::=

<composite op> ::=

<composite predicato

<value expression> [ NOT ] <composite op>

{ <value expression> I <subquery> }

REFERS [TO]

REFERRED [BY]

The operator constructors are:

returns TRUE if the LHS entity composes the RHS
entity.

returns TRUE if the LHS entity is used to compose

the RHS entity.

REFERS [TO]

REFERRED [BY]

4.4 Abstract Data Type Support

The <create adt statemeno can be used to create a new data type. This data type can be used

by any subsequent <create table statement>‘s.

<create adt statemeno ::=

<create adt body> ::=

<adt item> ::=

I

I

I

I

I

<data type item>

I

I

CREATE ADT cadt name> <create adt body>

( <adt item> [{, cadt item> }..,]

)

STRUCTURE ( cdata type item> [{, cdata type item> }...]

)

FORMAT cvalue expr^sion>

PARAMETERS ( cdata typo [{, cdata type> }.,.]

)

ISA cadt name>

clinker clauso

cmethod clause>

coperator definition>

cconstructor definition>

cdata typo
PRIVATE cdata typo
VARIABLE

The cdata type item> is used to specify the structure of the abstract data type. The
VARIABLE keyword may be used for variable length data types like the GEOMETRY ADT
(Section 5.1) The FORMAT directive can be used to specify how to display the data type.

PARAMETERS specifies the values required to define the ADT attribute. The ISA directive

lets the user specify a sub type of another type.
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The <linker clauso defines a loader module containing entry points for functions, operators,

constructors and methods that can be loaded dynamically or installed as part of an installation

procedure. The <value expression> is system and implementor specific.

<linker clauso ::=

LINKER <value expression>

In the UNIX environment, the <value expression> may be a string containing an object file

such as - LINKER “/GIS/adt/my_functions.o”

4.5 Method Specification

A <method clauso defines a method for a class or ADT. A <linker clauso and <method

clauso can be specified in the <table element> of a class definition. The previous section

specified a <method clause> in the <adt item>.

<table element> ::=

I

<method clauso ::=

<method paraineters> ::=

<data type liso ::=

<niethod retums> ::=

<tnethod error> ::=

<Iinker clauso

<method clauso

METHOD <method namo ( <method parameters> , <method retums> ,

<entry point> [ , <linker clauso ] [ , <method error> ] )

PARAMETERS ( <data type list> [,..])

<data typo [{, <data typo )...]

RETURNS ( <data typo )

ON ERROR <value expression>

A <method parameter> list can end with a for variable length argument lists. The <method

parameters> define the data types used as parameters to the method. The <method retums>

defines the data type of the returned value of the method. If it is not specified, the method

does not return a value. The <value expression> in <method erroi> must result in an integer. It

is used for error handling in Embedded SQL.

The <entry point> defines the label in the linker module. Like the <linker clauso , the <value

expression> is system and implementor specific.

<entry point> :;=

ENTRY <value expression>

In the UNIX environment, the cvalue expression> may be a string containing an entry

point: ENTRY “my_method”.
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4.6

Operator Definition

The <operator (iefimtion> is used to overload existing operators for an ADT. It is specified in

the <adt item> when defining an ADT.

<operator definition> ::=

FUNCTION <function name> ( PARAMETERS ( <data typo

[{, <data typo }...] ), RETURNS ( <data typo ), <entry point>

[ , <linker clauso ] [ , ON ERROR <value expression> ]

)

I OPERATOR <operator>

<entry poino [ <Iinker clauso ]

The OPERATOR directive will overload the operator and the FUNCTION directive creates a

function specific to the ADT.

4.7

Constructor Definition

A <constructor definition> how to specify a literal for an ADT.

<constructor definition> ::=

CONSTRUCTOR <constructor namo ( PARAMETERS ( <data typo

[{, <data typo }...] ) , RETURNS ( <data typo ) ,

OPTION ( <option list> ) , <entry point> [ , <linker clauso ]

[ , ON ERROR <value expression> ]

)

<option list> ::=

<constructor namo
I <constructor namo +

I <constructor namo *

I <constructor namo ( <unsigned integer> [ , <unsigned integer> ] ).

Constructors may be specified recursively. The <option list> specifies the limits for the

number of constructors at a given level. A + following the constructor’s name indicates one or

more may be specified; a * specifies zero or more and two integers specify an allowable range.

4.8

Built In ADT Management Functions

The <adt management function specification> provides some facilities to extract data values

from an ADT.

cadt management function specification> ::=

<adt management function key word> <value expression list>

<adt management function key word> ::=

NUMBEROF
I EXTRACT

<value expression list> ::=

( <value expression> [{ , -cvalue expression }...]

)
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The function definitions in <adt management function key word> are:

NUMBEROF returns the number of elements in an ADT value. The first

parameter is the ADT value. The second parameter is

the type of element.

EXTRACT extracts a given element from an ADT value. The first

4.9 Object Identity

parameter is the ADT value. The second parameter is

the name of element. The optional third parameter is

the name of the element to extract. The default is the

first element

The GENERATED keyword applies to only single primary key of integer type. This will cause

a unique key to be generated automatically. This is used to give object an identity

automatically and is useful when there is no attribute value to uniquely identify the spatial

entity.

<unique specification> ::=

1

[ GENERATED ] UNIQUE
[ GENERATED ] PRIMARY KEY

<unique column list> ::=

<column name> [{, <column name> }...]

4.10 Extended Data Types

To use the extended object oriented data management facilities, changes must be made to

<data type>.

<data typo ::=

1

<temporal typo
<extended typo

<temporal typo ::=

ANSI SQL 3.I35-I99X Compatible [2].

<extended typo ::=

1

1

<adt typo
<method typo
<formula typo

<adt typo ::=

<adt namo [ ( <value expression> [{, <value expression> }...] ) ]

<method typo ::=

<method namo ( <column namo )

<formula typo ::=

FORMULA ( <value expression> )

The <adt type> enables the user to create a column in a table with a previously defined data

type. Virtual columns can also be created with the <function typo or <formula typo. The

<method type> enables the user to create a column that comes from the results of executing a
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method on an ADT in another column. In <foraiula typo, an expression is specified. TTus

expression is evaluated when the column is referenced. Columns created with either <method

type> or <formula type> cannot be updated and may be implemented with a query rewrite

facility [23]. Columns of this type are useful in definition of information in a graphical

display.

4.11 Values and Targets

The <value specification> and <target specification> have been extended to allow the

specification of constructors to be used as literals, fimctions, class methods and ADT methods.

<value specification> ::=

<constructor specification>

i <fiuiction specification>

! <class method spa:ification>

I <adt method specification>

<function specification>

<spatial function specification>

I <adt management function speciRcation>

I <generic function specification>

<generic function specification>

<fimction name> <value expression lisO

<class method specification>

<table name> <method name> cvalue expression lisO

cadt method specification> ::=

<column specification> : <method name> <value expression list>

<constructor specification> ::=

<temporal constructor>

I <geometry constructor>

I <style consttuctor>

I <generic constructor>

<generic constructor>

<adt name> : <constructor name>

[ ( <constructor item>

[{, <constructor item> )...] ) ]

<constructor item> ::=

<value expression>

I <coordinate list>

I <coordinate>

I <subquery>

<temporal constructoo ::=

ANSI SQL 3.135-199X Compatible [2].

In the <class method specification> and the <adt method specificatioro, the values in the

<value expression list> must result in the appropriate data type as specified in the method

definitioa

The <geometry constructor> is defined in Section 5.3 and the <style constmctor> is defined in

Section 9.5.
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5 Spatial Extensions

5.1 Geometry ADT

The geometry ADT provides facilities to manage geometric information and topologic

relationships.

<data typo ::=

1

<geometry type item> ::=

1

<geometry typo
GEOMETRY [( <geometry type item> [{, <geometry type item> }...]

<dimensionality>

<integrated>

<dimensionality> ::=

1

1

1

1

SOLID
SURFACE
LINEAR
NODE
RASTER

1

<integrated> ::=

<value expression> CELL

[ NOT ] INTEGRATED

5.2 Coordinate Constructor

A <coordinate> is used to specify a position in space and often time. A <coordinate list> is an

ordered list of two or more <coordinates>.

<coordinate> ::=

<x_val>

1

( <x_val>, <y_val> [ , <z_val> ][ , <time> ]

)

<value expression>

NULL
<y_val> ::=

1

<value expression>

NULL
<z_val> ::=

1

<value expression>

NULL
<time> ::=

1

<value expression>

NULL
<coordinate liso ::=

( <coordinate> {, <coordinate> }... [, <z> ][, <time> ]

)

Coordinates may be specified in any combination of 2d, 3d, 2dAime or 3d/time. The <time>

specification in the <coordinate liso will apply to aU coordinates in the list that do not have a

<time> specified. The <z_val> specification in the <coordinate liso wiU apply to aU -
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coordinates in the list that do not have a <z_val> specified.

5.3 Geometry Constructor

The <geometry constructoi> is used to specify <literal>’s of type GEOMETRY.

<geoinetry constructor> ::=

<geometry constructor item>

I AMALGAMATE ( <geometry constructor item>

[{, <geomeUy constructor item> }...]

)

<geometry constructor item> ::=

<node constructor>

I <linear constnictor>

I <directed linear constructor>

I <surface constructor>

I <solid constructor>

I <triangle constructor>

I <raster constructor>

I <eaf constructor>

I <centroid>

<shared body> ::=

SHARED <subquery>

The <shared body> specifies one or more objects to build up topology. AMALGAMATE
enable multiple geometries to be grouped into one. This is useful when an entity may be split

into more than one piece.

5.3.1 Node Constructor. A <node constructoi> specifies a single point.

<node constructor> ::=

NODE ( [ cnode constructor item> [{, <node constructor item> }...] )

<node constructor item> ::=

COORDINATE <coordinate>

I <shared body>

5.3.2 Linear Constructor. A <linear constructoi> specifies a line. There are a number of

linear types supported; simple polyline Gine), curves and arcs.

<linear constructor> ;:=

<line constructor>

I <curve constructor>

I <arc constructor>

I LINEAR ( [ <linear constructor item> [{, <linear constructor item> }...])

<linear constructor item> ::=

<line constructor>

I <curve constructor>

I <arc constructor>

I START_NODE <subquery>

I END_NODE <subquery>
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1 <shared body>

<line constructor> ::=

LINE <coor(linate list>

I RECTANGLE <coordinate lisi>

<curve constructor> ;:=

I BSPLINE <coordinate list>

I BEZIER <coordinate list>

<tangent> ::=

<value expression>

<arc constructor> ::=

ARC <ccK)rdinate Iist>

I ARC ( <center>, <radius> , <start direction>, <end directioii> )

I CIRCLE ( <center>, <radius> )

<center> ::=

COORDINATE <coordinate>

<radius> :;=

<value expression>

<start direction> ::=

<value expression>

<end direction> :;=

<value expression>

The <line constructon> is a simple polyline consisting of a starting point, zero or more

intermediate points and an end point.

The <curve constructoi> is a parametric cubic curve definition. BEZIER type curves are

defined as Bezier curves [12] p. 488. BSPLINEs are defined as Uniform Non Rational

B-spline curves [12] p. 491. NURB and MESH types may be added in the future. The <value

expression> in <tangent> is an angle.

The <arc constructor> is a segment of circle. Arcs can be specified by three coordinates that

are not coUinear. An alternate way of specifying an ARC is by a center point, radius and two

angles. This specification will be extended to include elliptical arcs.

5.3.3 Directed Linear Constructor. The direction of a line is from the first point to the last

point in the coordinate list. The REVERSED directive in <directed linear constructoi> will

cause the line direction to be from the last point to the first point.

<directed linear constructor> ::=

<linear constructor>

I REVERSED ( <Iinear constructor> )

5.3.4 Surface Constructor. The <surface constructor> is used to specify polygons, or

polygons with islands or holes.

<surface constructor> ;:=

<island body> ::=

SURFACE ( <surface constructor body> [(, <island body> }...] )

ISLAND_SURFACE ( <surface constructor body> )
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<surface constructor body> ::=

<surface constructor iteni> [{, <surface constructor item> }...]

<surface constructor item> ::=

<directed linear constructor>

I <shared body>

In the <surface coiistructor> the exterior surface may be created from one or more <line

constructors>. A surface may have zero or more <island constmctors>. The islands are created

with <surface constmctor body>.

Surface geometries have the exterior boundary formed in a clockwise fashion. The island

boundaries are foimed in a counter-clockwise fashion (i.e. the right hand rule). The linear

geometries may have their direction logically reversed to maintain this property.

5.3.5

Solid Constructor. The <solid constmctor> specifies a solid geometry. Research is

currently focused in the area of 3D topologic models [19].

<solid constructor> ::=

<hollow body> ::=

<solid constructor body> ::=

<solid constructor item> ;;=

I

SOLID ( csolid constructor body> [{, <hollow body> }...]

SOLID_HOLLOW ( <solid constmctor body> )

<solid constmctor item> [{, <solid constmctor item> )...]

<surface constmctor>

<shared body>

5.3.6

Triangle Constructor. The <triangle constructoi> is used to specify a triangular

irregular network (TIN). A set of triangles can be used to model a surface in 3D. Digital

Elevation Modeling can be down using the RASTER constmctor (Section 5.3.7). In this case,

the value of each cell would contain the z coordinate.

<triangle constmctor> :;=

TRIANGLE <coordinate Iist>

I TRIANGLE ( <iriangle constmctor item>

[{, <triangle constmctor item> }...] )

<triangle constmctor item> ::=

LINE <coordinate list>

I ADJACENT_TRIANGLE <subquery>

1 TRIANGLE_NODE <subquery>

1 <shared body>

In the <triangle constmctor>, 3 points in a coordinate list are specified. The coordinates cannot

be coUinear.

5.3.7

Raster Constructor. The <raster constmctor> is used to specify a raster image.
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craster constructor> ::=

RASTER ( <raster constructor iteni> [{, <raster constructor item> }...] )

I PIXEL <value expression list>

<raster constructor item> :;=

ORTHOGONAL_RASTER ( <value expression> )

I RAW_RASTER_DATA ( <value expression> )

I RASTER_TRANSFORM ( <value expression>

I RASTER_FORMAT ( <value expression> )

I RASTER_SIZE <value expression list>

I RASTER_LOCATION <coordinate>

I RASTER_RESOLUnON <value expression list>

1 RASTER_NPLANES ( <value expression> )

I RASTER_DEFTH ( <value expression> )

I <surface constructor>

I <colour constructor>

I <shared body>

The RASTER_SIZE directive contains the size of the image in the x, y and optional z axis. The

<coordinate> in the RASTER_LOCATION directive contains the x, y and optional z elements for the

location of the image. The RASTER_RESOLUTION directive contains the pixel size of the image in

the X, y and optional z axis. The <value expression> in the RASTER_FORMAT directive defines the

type of raster image such as ORTHOGONAL_RASTER, RAW_RASTER_DATA either contain the

raster data or reference a file containing the raster information. The data should preferably be copied

into the database so that all the transaction management facilities are available.

5.3.8 EAF Constructor. An Edit Attention Flag (EAF) is used to show the location of a

potential data problem area. They are typically used in the data cleanup phase of data capture.

<eaf constructor> ::=

<eaf constructor item> ::=

I

EAF ( <eaf constructor item>

[{, <eaf constructor item> }...] )

EAF_LC)CATION <coordinate list>

EAF_CAUSE ( <value expression> )

EAF_CODE ( <value expression> )

EAF_DESCRIPTION ( <value expression> )

<shared body>

5.3.9 Centroid . The centroid is used to specify a single location for an entity. This is

primarily used as a location to display attribute values for a spatial entity.

<centroid> ::=

CENTROID <coordinate>
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5.4 Between

Predicate

The <between predicate>

has been extended to

handle GEOMETRY
typed attribute. It will

return TRUE if the first

cvalue expression> is

spatially between the

second cvalue

expression> and third

cvalue expression>.

5.5 Spatial Predicates

The cspatial predicate> specifies a set of spatial predicates for use between values.

cpredicate> ::=

I <spatial predicate>

<spatial predicate> ::=

<value expression> [ NOT ] cspatial op>

{ <value expression> 1 csubquery> }

cspatial op> :: =

cspatial op key word> [ cspatial op parameters> ]

cspatial op parameters> ::=

1

PARAMETER <value expression Iist>

PARAMETERS cvalue expression list>

cspatial op key word> ::=

1

1

1

1

1

1

[AT] START [OF] 1 [AT] END [OF] 1 CONNECTED [TO]

OVERLAPS 1 [IS] OUTSIDE [OF]

CONTAINS 1 [IS] CONTAINED [BY]

[IS] ADJACENT [TO]

[IS] cdirection> [OF]

[IS] LEFT [OF] 1 [IS] RIGHT [OF]

[IS] NEAREST [FROM] 1 pS] FARTHEST [FROM]
cdirection> :;=

1

1

1

NORTH 1 SOUTH 1 EAST 1 WEST
NORTH EAST 1 NORTH WEST 1 SOUTH EAST 1 SOUTH WEST
EAST NORTH 1 EAST SOUTH 1 WEST NORTH 1 WEST SOUTH
ABOVE 1 BELOW 1 DIRECTION

Definitions of predicates follows. Note that not all conditions or assumptions are included in this paper.
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Formal discussion of many spatial predicates may be found in [8] and [11]. The predicates work on

columns of type GEOMETRY. A full implementation should handle all geometric types ((n) node, (1)

linear, (s) surface, (o) solid) defined for predicate. Allowable types are specified as a series of letters

separated by or bars (I) in parentheses. Additional predicates are defined in [24]

[AT] END [OF] returns TRUE if the LHS entity (nlllslo) is at the end of the RHS entity (!)•

An optional tolerance parameter may be specified.

CONNECTED [TO] returns TRUE if the LHS entity (nlllslo) is connected to the RHS entity at

a point (1). An optional tolerance parameter may be specified.

OVERLAPS returns TRUE if the LHS entity (nlllslo) overlaps the RHS entity (nlllslo).

An optional tolerance parameter may be specified.

[IS] OUTSIDE [OF] returns TRUE if the LHS entity (nlllslo) does not overlap the RHS entity

(nlllslo). An optional tolerance parameter may be specified. An
optional tolerance parameter may be specified.

CONTAINS returns TRUE if the LHS entity (slo) contains the RHS entity (nlllslo). An
optional tolerance parameter may be specified.

[IS] CONTAINED [BY] returns TRUE if the LHS entity (nlllslo) is contained by the RHS (slo). An
optional tolerance parameter may be specified.

[IS] ADJACENT [TO] returns TRUE if the LHS entity (nlllslo) is adjacent to the RHS entity

(nlllslo) by sharing a point or line segment. An optional tolerance

parameter may be specified.

[IS] <direction> [OF] returns TRUE if the LHS entity (nlllslo) is in the direction from the

specified RHS entity (nlllslo). A 45 degree pie shape is used that is

centered on the direction (22.5 degrees either sided) to determine the

result. The DIRECTION predicate has the azimuth as a parameter.

An optional parameter may be specified to change the default 45

angle to the specified value.

nS] LEFT [OF] uses the line direction to return TRUE if the LHS entity (slo) is to the left

of the RHS entity (1).

[IS] RIGHT [OF] uses the line direction to return TRUE if the LHS entity (slo) is to the

right of the RHS entity (1).

[IS] NEAREST [TO] returns TRUE if the LHS entity (nlllslo) is the nearest to the RHS entity

(nlllslo).

[IS] FARTHEST [FROM] returns TRUE if the LHS entity (nlllslo) is furthest from the RHS entity

(nlllslo).
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5.6 Spatial Functions

The <spatial function specification> specifies a set of spatial functions.

<spatial function specification> ::=

<spatial function key word>

<value expression list>

<spatial function key word> ::=

EXTENT
I MER
I BUFFER
I DETERMINE_CENTROID
I SKELETON
I LENGTH
I AZIMUTH
I SLOPE
I AREA
I PERIMETER
I VOLUME
I TRANSFORM
I OVERLAP
I CONTAIN
I ADJACENT
I SEPARATION
I GEOMETRY_UNION
I AXIS.PROJECT
I THIESSEN_POLYGON

The function definitions for <spatial function key word> are:

EXTENT returns a surface geometry that is the convex polygon

that wotild contain the specified geometry (n 1 1 1 s).

MER returns a minimum enclosing rectangle or box that would
contain the specified geometry (n 1 1 1 s I o). An
optional parameter may specify the dimensionality:

2D for a rectangle or 3D for a box.

BUFFER returns a geometry representing an expanded region

around the given geometry (n 1 1 i s I o). The required

second parameter is the width of the expansion. An
optional third parameter is the filtering tolerance

and optional forth parameter is the dimension of the

calculation: 2D or 3D.

DETERMINE_CENTROID returns the node geometry representing the centroid of

the given geometry. If the centroid is not sp>ecified in

the geometry, it is calculated. An optional third

parameter is the dimension of the calculation: 2D or
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3D.

SKELETON returns the linear geometry representing the skeleton of

the given geometry (s 1 o).

LENGTH returns the length of the given geometry (1 1 s). The
optional second parameter specifies the dimension of

the calculation: 2D or 3D.

AZIMUTH returns the bearing (azimuth) of the given linear

geometry. The optional second parameter specifies

degrees, radians or grads.

SLOPE returns the slope of the given 3D geometry (1 1 s).

AREA returns the area of the given geometry (s 1 o).

PERIMETER returns the exterior perimeter length of the given

geometry (s). The optional second parameter

specifies the dimension of the calculation: 2D or 3D

VOLUME returns the volume of the given geometry (o).

TRANSFORM transforms a given geometry through a given

transformation. The second parameter is the

transform to perform (See section 6.6.3). The third

parameter sf>ecifies the direction of the

transformation: 0 is from the base to the target and 1

is from the target to the base.

OVERLAP returns a geometry of the overlapping portion of the two
sp>ecified geometries (n 1 1 1 s 1 o). NULL is returned if

there is no overlap. Boundaries are considered part

of the entity.

CONTAIN returns a geometry of the first geometric entity (n 1 1 1 s 1 o)

if the first geometry is contained in the second

geometric entity (s 1 o). NULL is returned othenvise.

Boundaries are considered part of the entity.

ADJACENT returns a geometry of the adjacent portion of the two
specified geometries (n 1 1 1 s 1 o). NULL is returned if

the two geometries are not adjacent. An optional

third parameter can specify node or linear results.

Boundaries are considered part of the entity.

SEPARATION returns the shortest distance between the two given

geometries (n 1 1 1 s 1 o).
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GEOMETRY_UNION unites the specified geometries (n 1 1 1 s I o) into one

geometry.

AXIS_PROJECT returns a geometry representing the geometry projected

on the given axis. The optional second parameter is

the axis specification. It is a string containing ”x",

"y", "z" or "t". The default is "xy". The values can be

swapped by changing the order of "x", "y" or "z".

There is no order in the time dimension.

THIESSEN_POLYGON returns geometries representing the thiessen polygons

around the set of specified geometries (n).

6 Data Dictionary Extensions

The following data dictionary extensions are presented to maintain more details about the

geographic information in the database (project), definitions of long transactions (partitions),

display styles, (styles), thematic display (theme, dynamic theme), transformations (ellipsoid,

projection, transformation, control point, orientation) and accuracy. These extensions are

maintained in database tables that can be controlled by the privilege mechanism.

6.1 Project

The project defines the spatial extent for the database. The definition includes the

transformation, unit system, themes and class definitions used in the GIS project

<project management statements> :;=

CREATE PROJECT <project name> <project body>

ALTER PROJECT <project name> <alter projecO

[{, <alter project> }...]

DROP PROJECT <project name>

COPY PROJECT <project name> TO <project name>
RENAME PROJECT <project name> TO <project name>
DISPLAY PROJECT [ cproject name> ]

( <project item> [{, <project item> }...]

)

<surface constructor>

UNIT [ METRIC I IMPERIAL ]

HOST <value expression>

PORT <value expression>

LOCATE IN <value expression>

TRANSFORMATION <transformation name>

[ NOT ] COMPRESSED

ADD cproject item>

CHANGE cproject item>

DELETE cproject item>

I

I

I

I

cproject body> ::=

cproject item> ::=

I

I

I

calter projeco ::=
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6.2 Partition

A partition defines a subset of classes and attributes that may be used in a long transaction.

The long transaction is started when the partition is checked out of the project. At this time the

partition may be used locally or moved to a remote site. At the remote site, the partition must

contain all the information needed because the project may not be accessible. The long

transaction is committed when the partition is checked in.

<partition management statements> ::=

CREATE PARTITION <partition name> cpaitition body>

I ALTER PARTITION <partition name> <alter partition>

[{, <alter partition> }...]

I DROP PARTITION <partition name>

I COPY PARTITION <partition name> TO <partition name>

I RENAME PARTITION <partition name> TO <partition name>
I DISPLAY PARTITION [ cpartition name> ]

<paitition body> ::=

( <partition item> [{, <partition item> }...] )

<partition item> ::=

<project item>

I CLASS <table name> I CLASS <table name> . <column name>
I CLASS <table name ( <column name> [{, <column name> }...]

)

<alter partition>

ADD <partition item>

I CHANGE <partition item>

I DELETE cpartition item>

The checkout or checkin of a partition is handled by the following statement,

ccico statement> ::=

CHECK { INIOUT } <db name>

A check out command starts a long transaction. A check in will commit the long transaction.

The <db name> must contain a partition specification that it defmed.

6.3 Style

A style defines the display characteristics for spatial and attribute information. A fill style

defines how surface primitives are displayed. A linear style defines how linear primitives are

displayed. A symbol style defines how node primitives are displayed. An annotation style

defines how to display an attribute value. The style constructor is defined in Section 9.5.

cstyle management statements> ::=

CREATE STYLE cstyle name> cstyle constructor>

I DROP STYLE cstyle name>

1 COPY STYLE cstyle name> TO cstyle name>

I RENAME STYLE cstyle name> TO cstyle name>

I DISPLAY STYLE [ cstyle name> ]
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6.4 Theme

A theme defines one way to graphically display attributes in a set of tables. It contains a set of

thematic display elements that match display styles with a set of entities in a class. A default

map scale and masking order definition is provided primarily for physical output devices (for

example plotters).

<create theme statement> :;=

CREATE THEME <theme name> <create theme body>

I ALTER THEME <theme name> <create theme command>

[{, <create theme command> )...]

I DROP THEME <theme name>

I COPY THEME <theme name> TO <theme name>
I RENAME THEME <theme name> TO <theme name>

I DISPLAY THEME [ <theme name> ]

<create theme body> ::=

( <create theme item> [{, <create theme item> }...]

)

<create theme item> ;:=

<table name>
I <table name> . <column name>

I <table name ( <column name> [{, <column name> }...]

I MAPSCALE ( <value expression> )

I MASKING [ <create theme where> ] <create theme seo
<create theme where>

OVER <table name>
I UNDER <table name>

<create theme seo ::=

<creaie theme group>

I ( <create theme group> [{, <create theme group> }...]

)

<create theme group> ::=

( <table name> [{, <table name> }...]

)

<alter theme command> ::=

ADD <creaie theme iiem>

I CHANGE <create theme item>

I DELETE <create theme item>

A table name without a column specification will, by default, include all attributes for the

table.

The item MASKING will define one masking set. Its location in the masking order is

determined by the <create theme where> clause. Any class not in the MASKING clause will

default to a set at the end of the masking order.

The OVER directive indicates that the masking group will mask everything in the group that

contains the <table name> and any groups lower in the list. The UNDER directive indicates

that the masking group will be masked by everything in the group that contains the <table

name> and any groups higher in the list.

The MAPSCALE is used as the default scaling factor for physical devices.
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6.5 Thematic Display

A thematic display controls the style of a specific entity being displayed, based on the current

theme, current scale and the constraint specification (<search condition>).

<thematic display management statements> ::=

CREATE THEMATIC DISPLAY <thematic name> <create thematic

body>

I ALTER THEMATIC DISPLAY <thematic name> <create thematic

command>

[{, <create thematic command> }...]

I DROP THEMATIC DISPLAY <thematic name>

I COPY THEMATIC DISPLAY <thematic name> TO <thematic name>
I RENAME THEMATIC DISPLAY <thematic name> TO <thematic name>
I DISPLAY THEMATIC DISPLAY [ <thematic name> ]

<create thematic body> ::=

( <create thematic group item> [{, <create thematic group item> }...] )

<create thematic item> :=

FOR <column specification> <style constructor>

I IN <theme name>

I BEFORE <thematic name>

I AFTER <thematic name>

I <where clause>

calter thematic command> ::=

ADD <create thematic item>

I CHANGE <create thematic item>

I DELETE <create thematic item>

Only one thematic definition with no <search condition> is allowed for each unique pair of

<table name> and <theme name>. This construct is used to define the default style for the

class in the theme. The BEFORE and AFTER directives control the display priority.

6.6 Transformation

A transformation consists of a group of extensions to manage the transformation and

projection information for the spatial data.

6.6.1 Ellipsoid Management . An ellipsoid is required by NOAA GCTP/n
transformation package [17].

<ellipsoid management statements> ::=

CREATE ELLIPSOID <ellipsoid name> <create ellipsoid body>

1 ALTER ELLIPSOID <ellipsoid name> <alter ellipsoid command>

[{, <alter ellipsoid command> )...]

I DROP ELLIPSOID <ellipsoid name>

I COPY ELLIPSOID <ellipsoid name> TO <ellipsoid name>

I RENAME ELLIPSOID <ellipsoid name> TO <eIlipsoid name>

I DISPLAY ELLIPSOID [ <eUipsoid name> ]
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<create ellipsoid body> :;=

( <create ellipsoid item> [{, <create ellipsoid itein> )...]

)

<create ellipsoid item> ::=

SEMIMAJORAXIS ( <value expression> )

i ECCENTRICITYSQUARED ( <value expression> )

<alter ellipsoid commaiid> ::=

ADD <create ellipsoid item>

I CHANGE <create ellipsoid item>

I DELETE <create ellipsoid item>

6.6.2 Proiection Management. A projection specifies a projection system in the NOAA
GCTP/n transformation package [17].

cprojection management statements>

CREATE PROJECTION <projection name> <create projection body>

I ALTER PROJECTION <projection name> caller projection command>

[{, caller projection command> }...]

I DROP PROJECTION cprojection name>

1 COPY PROJECTION cprojection name> TO cprojection name>

I RENAME PROJECTION cprojection name> TO cprojection name>

1 DISPLAY PROJECTION [ cprojection name> ]

ccreate projection body> ::=

( ccreate projection item> [{, ccreate projection item> }...]

)

ccreate projection item> ::=

ELLIPSOID cellipsoid name> [ ccreate ellipsoid body> ]

1 PROJECTION cvalue expression list>

PARAMETER cliteral> cvalue expression list>

1 ZONE ( cvalue expression> )

calter projection command> ::=

ADD ccreate projection item>

I CHANGE ccreate projection item>

1 DELETE ccreate projection item>

The cvalue expression> for the PROJECTION and PARAMETER item must be an unsigned

integer.

6.6.3 Transformation Management . Transforms are used to manage many types of

transformations for a project. They may be a projection (BASE PROJECTION, TARGET
PROJECTION), non-linear transformation (NONLINEARCELLS, NONLINEARXFORM),
linear transformation (SCALE, SHIFT, ROTATION), polynomial transformation by

coefficients (POLYNOMIAL) and control points (CONTROL). The orientation can be changed

within a transformation by the BASE ORIENTATION and TARGET ORIENTATION.

ctransformation management statements> ::=

CREATE TRANSFORMATION ctransformation name>

ccreate transformation body>

I ALTER TRANSFORMATION ctransformation name>

calter transformation command>

[{, calter transformation command> )...]
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1 DROP TRANSFORMATION <transformation name>
I COPY TRANSFORMATION <transfonnation namo TO

<transfonnation namo
I RENAME TRANSFORMATION <transformation namo TO

<transformaiion namo
1 DISPLAY TRANSFORMATION [ <transformation namo ]

<create transformation body> ;:=

( <create transformation item> [{, <create transformations item> }...] )

<create transformation item> ::=

BASE PROJECTION cprojection namo [ <create projection body> ]

I TARGET PROJECTION <projection namo [ <create projection body> ]

I NONLINEARCELLS ( <value expressioro )

I NONLINEARXFORM ( <value expression> )

I LINEARSCALE ( <value expression> [ , <value expression>

[ , <value expression> ]]

)

I LINEARSHIFT ( <value expression> [ , <value expression>

[ , <value expression> ]]

)

I LINEARROTATION ( <value expression>

[ , cvalue expression> [ , <value expression> ]]

)

I POLYNOMIAL <value expression list>

I CONTROL <controI point item> , <control point item>

I BASE ORIENTATION <orientation namo
1 TARGET ORIENTATION <orientation namo

<alter transformation command> ::=

ADD <create transformation item>

I CHANGE <create transformation item>

I DELETE <create transformation item>

<control point item> ::=

<coordinate>

1 <control point name>

6.6.4 Control Point Management . The control points are used to calculate a polynomial

transformation.

<control point management statements> ::=

CREATE CONTROL POINT <control point name>

<create control point body>

1 DROP CONTROL POINT <control point namo
I COPY CONTROL POINT <control point name> TO

<controI point namo
I RENAME CONTROL POINT <control point namo TO

<control point namo
I DISPLAY CONTROL POINT [ <control point namo ]

<create control point body> ::=

<coordinato
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6.6.5 Orientation Management. The orientation controls the coordinate system and azimuth

settings.

<orientation management statements> ::=

CREATE ORIENTATION <orientation name> <create orientation body>

I DROP ORIENTATION <orientation name>

I COPY ORIENTATION <orientation name> TO <orientation name>
I RENAME ORIENTATION <orientation name> TO <orientation name>

I DISPLAY ORIENTATION <orientation name>

<create orientation body> ::=

( <create orientation item> [{, <create orientations item> )...] )

<create orientation item> ::=

X_AXIS ( <value expression> )

I Y_AXIS ( <value expression> )

1 NORTH ( <value expression> )

I EAST ( <value expression> )

I XY_ORDER
1 YX_ORDER

The orientation specification always works

in the following system to specify the new
system:

If the following is specified in an

orientation, X_AXIS(270), Y_AXIS(180),

NORTH(180), EAST(90). the resulting ^(270)

orientation of the coordinate system is:

S(0)

S(180)

XY_ORDER is used for (x, y) coordinate systems

and the default, YX_ORDER is for (y, x)

coordinate systems.

Axis N(180)

X Axis W(270) E(90)
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6.7 Data Accuracy

The data accuracy for a region can be specified by the survey number, completion date, sigma

number and value of sigma for the survey. Additional information can be specified in the

description.

caccuracy management statements> ::=

CREATE ACCURACY caccuracy name> ccreate accuracy body>

I DROP ACCURACY caccuracy name>
I COPY ACCURACY caccuracy name> TO caccuracy name>
I RENAME ACCURACY caccuracy name> TO caccuracy name>
I DISPLAY ACCURACY caccuracy name>

ccreate accuracy body> ::=

ccolumn name>
I SIGMA cvalue expression>

I SIGMA NUMBER cvalue expression>

I SURVEY NUMBER cvalue expression>

i REGION cgeometry constructor>

I DESCRIPTION cvalue expression>

I COMPLETION cvalue expression>

7 Distributed Processing/Multibase Extensions

The need for distributed systems increases as data volumes grow from year to year and the

data management becomes more decentralized [15]. With standards like RDA [3] and SDTS
[22] becoming more prominent in the database industry, the need for GIS extensions to SQL
so that external database management system can use geographic information transparently, is

in high demand.

The management of the distributed parts of a database should be straight forward for the DBA
to manage. A new data dictionary extension has been proposed to manage the distributed

parts. The fragment may be based on spatial extent (a spatial variant of horizontal

fragmentation), set of classes (vertical fragmentation) or a combination of both [18].

cfiragment management statements> ::=

CREATE FRAGMENT cfragment name> cfiragment body>

I ALTER FRAGMENT cfiragment name> calter fragment>

[[, calter firagment> )...]

I DROP FRAGMENT cfragment name>
I COPY FRAGMENT cfragment name> TO cfragment name>

I RENAME FRAGMENT cfragment name> TO cfiragment name>

I DISPLAY FRAGMENT [ cfragment name> ]

cfiragment body> ::=

cfragment item> ;:=

( cfiragment item> [[, cfragment item> }...]

)

cproject item>

REPLICATION [ OF ] cfragment name>

CLASS ctable name>

CLASS ctable name> . ccolumn name>
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I CLASS <table name ( <column name> [ {, <column name> }...]

)

<alter fragmeno ::=

ADD <fragment item>

I CHANGE <fragment item>

I DELETE cfragment item>

See Section 6. 1 for a definition of <project item>.

An additional mechanism to relocate tables in other locations in the system is necessary to

distribute the tables across many partitions. The <locate in clause> is one mechanism that may
be used. The <value expression> is implementor-defined.

<locate in clause> ::=

LOCATE IN <value expression>

The <value expression> must result in a valid disk location specification, it is system and

implementor specific.

For federated or multibase systems, extensions have been added to allow specification of a

table in another system. If the specified database is remote, an implementation of RDA [3] or

SDTS [22] could be used to exchange the information.

<table name> ::=

1 DB <db name> . <table identifier>

I DB <db name> . <authorization identifier> . <table identifier>

<db name> ;:=

<project name>
I <project name> ( <partition name> )

8 Language Extensions

8.1 Create Function Statement

The <create function statement> provides an extensible mechanism to create new general

purpose functions.

<create function statement> ::=

CREATE FUNCTION <function name> (

PARAMETERS ( <data typo [{, <data typo }...] ),

RETURNS ( <data typo ), <entry point>

[ , <linker clauso ] [ , ON ERROR <value expression> ]

)

The value of the ON ERROR directive is set in the SQLCODE on an error in Embedded SQL.
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8.2 Create Aggregate Set Function Statement

Beside normal functions, it should be possible to extend the set functions that are available in

SQL so that functions like shortest path can be added to the system easily.

<distinct set fLinction> ::=

call set functioio ::=

cset function> ::=

{AVGIMINIMAXISUMICOUNTkset function>}

( DISTINCT ccolumn specification> )

{AVGIMINIMAXISUMIcset function>} ( [ALL] cvalue expression> )

cfunction naine>

ccreate aggregate statement> ::=

CREATE AGGREGATE cfunction name> (

PARAMETERS ( cdata type> [( , cdata typo }...] ),

RETURNS ( cdata type> ),

ENTRY cvalue expression list> [ , clinker clause> ]

[ , ON ERROR cvalue expression> ] )

This definition is similar to a function definition except that a number of entry points are

defined to provide facilities to initialize the set function, start a group, process an attribute

value, end a group, and cleanup the set function.

83 Indexing

There are no index specification statements in [1] but are a common mechanism used to

improve query performance. The <create index statement> and cdrop index statement> have

been added to control how attributes are indexed. Unique indices should be applied to

attributes defined with the cunique constraint definitioro automatically. In addition to indexing

provided in many common commercial relational database systems, a spatial index can be

defined on attributes with the GEOMETRY data type. R-Trees [14, 7] or RT-Trees [13] are

types of spatial indexing methods available.

ccreate index statement> ::=

CREATE ccreate index type> INDEX [ cindex name> ]

ON ccreate index specification>

ccreate index type> ::=

SPATIAL
I UNIQUE
1 ( cvalue expression> [ , cvalue expression> ] )

ccreate index specification> ::=

ctable name> . ccolumn name>

I ctable name ( ccolumn name> [ {, ccolumn name> ]...] )

SPATIAL indices can only be created on GEOMETRY type attributes. UNIQUE indices

cannot be created on attributes that allow NULL values.
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8.4

Alter Statement

The data model for a working system must be changed from time to time, as new requirements

are placed on the system. It must be possible to modify the database schema while the

database is on-line. Schema changes must be performed within the transaction model so that it

can be rolled back when necessaiy. During a historical query, the schema of the table should

be presented at the time specified in the queiy.

calter table statement> ::=

ALTER TABLE ctable name> caller table command>

[{, caller table command> }...]

calter table command>
ADD ctable element> [ AFTER ccolumn name> ]

I CHANGE ctable element>

I DELETE ctable eiement>

8.5

Drop Statement

When a component in the schema is no longer necessaiy, it should be dropped from the

database using the cdrop statement>. Like the alter statement, schema changes must be

performed within the transaction model.

cdrop statement> ::=

DROP SCHEMA cschema authorization identifier>

I DROP MODULE cmodule name>
I DROP TABLE ctable name>
I DROP VIEW ctable name>
I DROP INDEX cindex namK>
I DROP INDEX ccreate index specification>

I DROP ADT cadt name>
I DROP CONSTRUCTOR cconstructor name>
I DROP FUNCTION cfunction name>

I DROP AGGREGATE cfunction name>

8.6

Display Statement

A facility to display information in the data dictionary is provided by the cdisplay statement>.

cdisplay statement> ::=

cdisplay item>

[ALL]
[ cdestination clause> ]

cdisplay item> ::=

DISPLAY MODULE [ cmodule name>]

I DISPLAY PROCEDURE [ cprocedure name>]

I DISPLAY TABLE [ ctable name>]

1 DISPLAY VIEW [ ctable name> ]

1 DISPLAY FUNCTION [ cadt name> ]
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I DISPLAY AGGREGATE [ <adi narno ]

I DISPLAY PRIVILEGE [ <table nanie> ] [ FOR <grantee> ]

I DISPLAY PRIVILEGE DB [ <table name> ] [ FOR <grantee> ]

I DISPLAY TRANSACTION [ ctransaction id> ]

I DISPLAY VERSION
I DISPLAY DB

<transaction id> ::=

Implementor-defined transaction indicator

If the name of the entity is not specified, aU the entities of the type are displayed. The ALL
clause causes a more verbose output to be generated. For example, all references in the

composite DAG, class definition hierarchy will be displayed for tables and aU style references

for style.

If a <destination clause> (defined in Section 9.2) is not specified, the output wiU be printed on

the standard output device.

Indices are displayed in the <display table statement>.

8.7 Rename Statement

The <rename stalement> will rename a data dictionary element.

<rename statement> ::=

RENAME <table name> TO <table name>

I RENAME <table name> . <column name> TO <column name>
I RENAME FUNCTION <function name> TO <function name>
I RENAME AGGREGATE <function name> TO <function name>

8.8 Copy Statement

The <copy statement> wiU copy a data dictionary element.

<copy statement> :;=

COPY <table name> TO <table name>

I COPY FUNCTION <function name> TO <function name>

I COPY AGGREGATE <function name> TO <function name>

8.9 Comment Statement

The <comment statement> provides a mechanism to document a table or column.

<commeru statement> ::=

COMMENT ON <table name>

I COMMENT ON <table name> <character string literal>

I COMMENT ON <table name> . <coIumn name>

I COMMENT ON <table name> . <column name>

<character string Iiteral>
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8.10 Like Predicate

The <lik;e predicate> has been extended to perform pattern matches based on phonetics.

<like predicate> ::=

1 <column specificauon> [ NOT ] SOUNDEX <pattem>

9 Input, Output, Graphical Display

The current SQL standard does not specify facilities to control input units or output

destinations and formats. With geographic information it is very important to handle the

graphical display of the data. Since the definition of how the information looks is separate

from the geometric and topologic data, a new ADT, STYLE, is defined to manage the

specificatioiL There have been proposals in the past [10] that have proposed a separate

language for graphic display. The specification of the graphics display has bee; ncluded in

this definition to provide one consistent interface to managing GIS information.

9.1 Input Control

This GIS/SQL accommodates units for spatial informatiotL TTiere are numerous unit systems

that are handled in a global sense and a local sense. For example, the units of the coordinate

system may be specified in meters but for a specific SQL query the results are presented in

miles. This is implemented by a postfix unary operator such as ‘km’ that could convert ft'om

kilometers to meters.

9.2 Output Control

The <destination clause> controls the destination of the results from a select or data dictionary

display command. By default, if the <destination clause> is not specified, the results are

formatted and printed on the terminal.

<destination clause> ::=

<desunation file> ::=

<destination command> :;=

INSERT [INTO] <table reference>

INTO <destination file>

DUMP [[INTO] <destination file> ]

PIPE [INTO] <destination command>
DUMP PIPE [ INTO ] <destination conimand>

<value expressioii>

<value expression>

The INSERT keyword directs the results into a table. The table specified in <table reference>

will be created if it does not exist. If the table exists, the results of the query must match the

<table reference> otherwise an error wiU result.
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The INTO keyword directs the results into a specified file. The <value expression> of

<destination file> and <destination comniand> are implementor-defined. The DUMP keyword

specifies that a dump format representation is output The dump format should be standard

across all systems and include information such as units. This will provide a simple

mechanism to move data from one system to another. If the <destination file> is not specified,

standard output is used. The PIPE keyword specifies the results to be written to the standard

input of the command specified. This command may be any implementor-defined OS
command.

9.3

Select Many Statement

The cselect statement: many> statement has been added to select many rows from one or more

tables into an optional destination.

<select statemeirt; many> ::=

<query specification> [ <order by clauso ] [ <destination clause> ]

9.4

Default Clause

The <default clauso specifies the default graphical display style for a <column definition>.

<default clauso ::=

I DEFAULT <style constructor>

9.5

Style Constructor

The <style constructor> specifies a display style for geometry or attribute data.

<style constructors ::=

<colour constructors

I <pattem constructors

I <unit format constructors

1 <fill constructors

I <stroke constructors

I <symbol constructors

I <annotation constructors

1 <grid constructors

The Style should match the type of information:
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Attribute Type Style Type

NODE GEOMETRY symbol

LINEAR GEOMETRY stroke

SURFACE GEOMETRY (unclosed) stroke

SURFACE GEOMETRY (closed) fill

SOLID GEOMETRY fill

RASTER GEOMETRY NULL
All Others annotation

Default styles can be defined on a base class like Simple that will be used if there is no style

defined for the data being display.

9.6 Colour Constructor

The <colour constructoi> specifies a colour definition.

<colour constructor> ::=

<colour body> ::=

<colour item> ::=

<hls degreo ::=

<colour name> ::=

COLOUR ( <colour body> )

FOREGROUND ( <colour body> )

BACKGROUND ( <colour body> )

<colour item>

<colour name>

<colour itein>

RGB ( cvalue expression> , cvalue expression> , cvalue expression> )

CMY ( <value expression> , <value expression> , <value expression> )

HLS ( <hls degree> , <value expression> , <value expressions )

<value expressions

<style names

<value expression>

The <style names is used to reference an existing colour. No other items can be specified if

this directive is used. <hls degrees is a number in degrees between 0 and 360. The -cvalue

expressions in RGB, CMY or HLS directives are real numbers between 0 and 1.

9.7 Pattern Constructor

The <pattem constructois specifies a fiU pattern for graphic fills or cursors.

cpattem constructors ::=

<pattem item> ::=

PATTERN ( cpattem items [{, cpattem item> }...]

)

cstyle names
ccolour constmctors

cpattem colours
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I PATTERN_SIZE ( <value expression> [ , <value expression>] )

I PATEERN_ORIGIN ( <value expression> [ , cvalue expression>] )

I PATTERN_BrrMAP ( <value expression list> )

I PATTERN_EXTENT <coordinate list>

1 DRA'W_TEXT ( <value expression>, <coordinate> ,

cannotation constructor> )

I DRAW_GRAPHIC ( <geometry constructor> , <style constructor> )

I <default style>

<pattem colour> ::=

PATTERN_COLOUR ( <value expression> , <colour constructor> )

<default style> ::=

DEFAULT_STYLE ( <style name> )

The <style namo is used to reference an existing pattern. No other items can be specified if

this directive is used. The <value expression> in <pattem coloui> must specify a string of

length 1. The <pattem colour> defines one colour for the patteriL The PATTERN_S1ZE
directive defines the size of the pattern. The PATTERN_0R1GIN directive defines the hot spot

for the pattern if used as a cursor.

Each -cvalue expression> in the PATTERN_BITMAP directive must evaluate to a string with

the same length. If the PATTERN_S1ZE is specified then the number of characters must equal

the first «cvalue expression> (x) and the number of cvalue expression>’s in the

PATTERN_BITMAP directive must equal the second cvalue expression> (y).

The PATTERN_EXTENT directive has two coordinates in the ccoordinate list>. This directive

defines the coordinate space for the pattern’s drawing area used by the DRAW_TEXT and

DRAW_GRAPH1C directives. This space will be mapped to the size of the pattern. The

DRAW_TEXT directive specifies a string to draw in the pattern. The DRAW_GRAPHIC
directive specifies a geometry to draw in the pattern. The cstyle constructor> must be

consistent with the cgeometry constructor>.

In the PATTERN_BITMAP directive, a blank character in the string specifies the background

colour and a "1" flags the foreground colour. The default action can be changed by a cpattem

coloui> specification.

9.8 Unit Format Constructor

The <unit format constructor> defines an output format to display.

<unit format constructor> ::=

UN1T_F0RMAT ( <format item> [{, <fonnat item> }...] )

<format item> ::=

<style namo
UN1T_0UTPUT ( -cvalue expression> )

UNrr_EXPRESSION ( <value expression> )
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The <style name> is used to reference an existing unit format. The <value expression> in the

UNIT_EXPRESSION defines the expressions to calculate the components of the unit The

<value expression> in the UNIT_FORMAT defines the output format of the unit

9.9 Fill Constructor

The <fill constructor> specifies a graphic fill style.

<fill constructor> :;=

cfill item> ::=

1

1

1

1

1

1

1

1

1

1

FILL ( <fill item> [{, <fill item> }...] )

<style name>

<colour constructor>

SCALE ( <value expression> [ , <value expression> ] )

BLANK
SOLID
TILE ( <pattem constructor> )

STIPPLE ( <pattem constructor> )

OPAQUE ( <pattem constructor> )

HATCH ( <stroke constructor> )

BORDER ( <stroke constructor> )

<fill hatch>

1

<fill hatch> ::=

1

1

<default stylo

HATCH_NORMAL [ ( <value expression> ) ]

HATCH_SHORTEST [ ( <value expression> ) ]

HATCH_DIRECnON [ ( <value expression ) ]

The <style name> is used to reference an existing fill. The BLANK directive specifies a

hollow fill. The SOLID directive specifies a solid fill using the foreground colour. The TILE,

STIPPLE and OPAQUE directives define the ways to render the pattern in a fill operation.

The HATCH directive specifies a line in a cross hatch fiU. The angle and offset are defined in

the referenced <stroke constructor>. BLANK, SOLID, TILE, STIPPLE and OPAQUE are

mutually exclusive.

<fiU hatch> defines the fill angle with regard to the specific fiU operation:

NORMAL reference axis is not rotated. This is the default.

SHORTEST reference axis is rotated to the angle of the shortest line in the polygon

border.

DIRECTION reference axis is rotated to the angle of the line closest to the X axis.

The <value expression> of the <fill hatch> defines an additional angle of rotation. The

BORDER directive specifies a border line for the fill.

Towards SQL Database Language Extensions for GIS page 120



9.10 Stroke Constructor

The <stroke cx)nstructon> specifies a graphic stroke style.

<stroke constructor> ::=

<stroke item> ::=

<stroke dashed typo ;:=

<stroke dashed start> ::=

<stroke cap typo ::=

<stroke join typo ::=

<stioke relative typo ::=

STROKE ( <stroke item>

[{, cstroke item> )...] )

<style name>
<colour constructor>

BLANK
SOLID
OFFSET ( cvalue expression> )

ANGLE ( <value expression> )

SCALE ( <value expression> [ , cvalue expression> ] )

DASHED ( cstroke dashed type> , cstroke dashed start> ,

cvalue expression> [{, cvalue expression> }...] )

PARALLEL ( cstroke constructor> )

RELATIVE ( csymbol constructor> , cstroke relative typo )

REPEAT ( csymbol constructor> )

INTERMEDIATE ( csymbol constructor> )

WIDTH ( cvalue expression> )

CAP ( cstroke cap typo )

JOIN ( cstroke Join type> )

cdefault stylo

cvalue expression>

cvalue expression>

cvalue expression>

cvalue expression>

cvalue expression>

The cstyle naine> is used to reference an existing stroke. The BLANK directive specifies that

the base line is not rendered. The SOLID directive specifies a solid line using the foreground

colour. The DASHED directive is used to define a dashed line. The cstroke dashed type>

defines the kind of dashed line. The cstroke dashed start> defines if the dash starts on an up

or down stroke. The cvalue expression>’s define the alternating lengths of the up and down
strokes of the dashed line. BLANK, SOLID and DASHED are mutually exclusive.

The cvalue expression> of cstroke dashed type> is a string with the following values:

CONTINUOUS, ABSOLUTE, DOUBLE. CONTINUOUS uses the length defined in physical

distances. ABSOLUTE and DOUBLE use the lengths in screen pixels. All three types draw

the down stroke in the foreground colour. In CONTINUOUS and ABSOLUTE the up stroke is

blank. In DOUBLE, the up stroke is drawn in the background colour. The cvalue expression>

of cstroke dashed start> is a string with the following values: UP and DOWN.
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The PARALLEL directive specifies a parallel line. The <olfset> specified in the referenced

<stroke constructor> is the offset of the parallel line finm the base line. The RELATIVE
directive specifies a relative symbol. The <value expression> of <stroke relative type> is a

string with the following values: LEFT, MIDDLE, RIGHT. LEFT draws the symbol on the

right end point of the line. MIDDLE draws the symbol at the midpoint between the left mid

right ends of the line. RIGHT draws the symbol on the left end point of the line. The

REPEAT directive specifies a repeat symbol. The <offset> specified in the referenced <node

constructor> is the distance between repeating symbols. The INTERMEDIATE directive

specifies a symbol to draw at the halfway point on the line.

The WIDTH directive specifies the line width. The width is specified in pixels. The CAP
directive specifies the line cap style: BUTT, NOTLAST, PROJECTING or ROUND. The JOIN
directive specifies the line join style. The JOIN directive only applies to lines that are wider

than one pixel and has the following values: BEVEL, MITER, ROUND.

9.11 Symbol Constructor

The <symbol constructoi> specifies a graphic symbol style.

<symbol constructor> ;:=

<symbol item> :;=

constructoo )

SYMBOL ( <symbol item> [{, <symbol item> }...] )

<style name>

OFFSET ( <value expression> )

ANGLE ( <value expression> )

SCALE ( <value expression> [ , <value expression> ] )

ORIGIN <coordinate>

DIMENSION <coordinate list>

MASK ( <linear constructor> )

DRAW_TEXT ( <value expression>, <coordinate> , <annotation

DRAW_GRAPHIC ( <geometry constnicton> , <style consimctor> )

<default stylo

The cstyle name> is used to reference an existing symbol. The ORIGIN directive defines the

point where the symbol will be rendered. The DIMENSION directive is the dimension of the

symbol. The MASK directive defines the masking footprint.

The DRAW_TEXT directive specifies a string to draw in the symbol. The DRAW_GRAPHIC
directive specifies a geometry to draw in the symbol. The <style constructor must be

consistent with the <geometry constmctor.

9.12 Annotation Constructor

The <annotation constructor> specifies a graphic annotation style.

<annotation constructor> :;=

ANNOTATION ( cannotation item> [{, <annotauon item> }...] )
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cannotation iteni> ::=

<style name>
I <colour constructor>

I FONT ( cvalue expression> )

1 <umt format constructor>

I FONT_TYPE ( <value expression> )

I PLACEMENT ( <value expression> [ , <value expression> ] )

I PATH ( <value expression> )

1 SIZE ( <value expression> [ , <value expression> ]

)

I SPACING ( <value expression> [ , <value expression> ] )

I ANGLE ( <value expression> )

I POSITION <coordinate>

I COURSE <coordinate list>

I <default style>

The <style name> is used to reference an existing annotation. The FONT directive references a

stroke font if the precision is STROKE or a bit map font if the precision is BITMAP. The

<unit format constructor> defines the unit conversion for the attribute display.

The FONT_TYPE directive defines the type of font to use. The cvalue expressioro must result

in a string with the following values: STROKE and BITMAP.

The PLACEMENT directive defines where the text is placed relative to the origin. The cvalue

expression>’s must result in a string with the following values: LEFT, CENTER, RIGHT,
BOTTOM, MIDDLE and TOP and RIGHT. TOP RIGHT is the default.

The PATH directive defines the direction to print the text. The cvalue expression> must result

in a string with the following values: LEFT, RIGHT (default), UP, DOWN.

The SIZE directive defines the x and y size of the text for stroke precision. If the second

cvalue expression> is not specified, y size wiU be the same as the x size. The SPACING
directive defines the spacing between letters and between lines for stroke precision. If the

second cvalue expression> is not specified, the spacing between lines will be the same as the

horizontal spacing. The ANGLE directive defines the angle to draw the text.

The COURSE directive specifies a coordinate list to draw the text along.

9.13 Grid Constructor

The cgrid constructor> specifies a graphic grid style.

cgrid constructor> ::=

cgrid item> ::=

I

GRID ( cgrid item> [{, cgrid item> )...] )

cstyle name>
SCALE ( cvalue expression> [ ,

cvalue expression> ] )

SIZE ( cvalue expression> [ , cvalue expression> ]

)

GRID_MARGIN cgrid margin body>
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I

I

I

I

<grid margin body> ::=

<grid margin item> ::=

I

I

I

I

I

<grid tick body> ::=

<grid tick item> ::=

I

I

I

<grid mark body> ::=

<grid mark item> :;=

I

I

I

<grid annotation body> ::=

<grid annotation item> ::=

I

I

I

<grid mask> ::=

<grid mask bit> ::=

GRID_TICK <grid tick body>

GRID_MARK <grid mark body>

GRID_ANNOTATION <grid annotation body>

<defaiilt stylo

( <grid margin item> [{, <grid margin item> }...] )

<stroke constructor>

GRID_LEFT ( <value expression> )

GR]D_RIGHT ( <value expression> )

GRID_TOP ( cvalue expression> )

GRID_BOTrOM ( <value expression> )

GRID_THICKNESS ( <value expression> )

( <grid tick item> [{, <grid tick item> }...]

)

<stroke constructor>

GRID_SIZE ( <value expression> )

GRID_OFFSET ( <value expression> )

GRID_LOCATION <grid mask>

( <grid mark item> [{, <grid mark item> )

<symbol constructor>

GRID_SCALE ( <value expression> [ , <value expression> ] )

GRID_ANGLE ( -cvalue expression> )

GRID_SPACING ( cvalue expression> [ , cvalue expression> ] )

( cgrid annotation item> [{, cgrid annotation item> )

cannotation constructor>

GRID_AXIS_FORMAT ( cvalue expression> [ , cvalue expression> ] )

GRID_OFFSET ( cvalue expression> )

GRID_LOCATION cgrid maslo

( cgrid mask bio [{, cgrid mask bio ]...] )

cvalue expression>

The cstyle name> is used to reference an existing grid. The GRID_AXIS_FORMAT directive

defines the format statement for the labels X and Y axis of the grid. The SIZE directive

defines the sheet height and width. The GRID_MARGIN directive defines the appearance of

the border. The GRID_TICK directive defines the appearance of the tick marks. The

GRID_MARK directive defines the appearance of the grid marks. The GRID_ANNOTATION
directive defines the appearance of the margin text.
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10 Concluding Remarks

To summarize, these are the following GIS extensions to SQL:

• Object oriented extensions include data modeling facilities and ADT support.

• Spatial Extensions to enable the user to store (with a GEOMETRY ADT),

query and update the spatial data.

• Extended Transaction model that includes a Long (possibly remote)

transaction.

• Data Dictionary Extensions to maintain the information required for projects,

long transactions, fragmentation information, thematic display,

transformations and accuracy.

• Input/Output Facilities including destination clause and STYLE ADT.
• Language extensions to add flexibility to the current SQL standard.

GIS/SQL wiU benefit the users by providing a common language to manage the GIS

information and control data transfers through SQL gateways. External systems that do not

have support for GIS information can stiU take advantage of information by defining a view

on a spatial constraint The object oriented modeling facilities provide a way to present the

user with a view of their data and relationships that is familiar. Using the long transaction

model, the problem of large data loading or update that is typically performed off site is

handled in a simple manner. The temporal extensions enable the user to deal with information

from the past, present and a possible future in the same environment The spatial extensions

enable the user to perform very sophisticated spatial analysis in an ad hoc fashion. This is

done by building on the same language foundation contained in most relational database

systems today.
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11 Glossary

ADT Abstract Data Type: A data type that is defined from the set of system

Angle

ATB
Attribute

defined data types. Operations on ADTs are performed with

methods and operators.

An angle is measured in degrees counter-clockwise where 0 is East.

Analytical Tool Box: SYSTEM 9 Analysis Package.

A descriptor for a given characteristic that derives its value from a

domain. This is represented as a column in a table.

Azimuth

Centroid

An azimuth is measured in degrees clockwise where 0 is North.

The center of gravity for a entity projected so that it is usually

contained within the geometry.

Qass Definition A classification of a real world phenomenon. This is represented as a

table.

Composite Feature

DAG
Entity

An entity that is formed from two or more simpler entities.

Directed Acyclic Graph (or Acyclic Directed Graph).

The abstraction of a real world phenomenon defined in terms of its

geometry, topology or attribute data.

Feature The abstraction of a real world phenomenon defined in terms of its

geometry and topology data.

GIS
Geometry

LHS
Masking

Geographic Information System

The coordinate representation for an entity.

Left Hand Side.

An operation in plotting to determine how the information is rendered

on the output device.

Persistent Object

RHS
Simple Feature

Transaction

Objects that are stored on a persistent storage media such as a disk.

Right Hand Side.

An entity that models a single real world phenomenon.

A program module that accesses a database and has the following

properties [18]:

Atomicity Either all the transaction’s actions are

completed, or none of them are.

Consistency A transaction changes from one consistent

database state into another.

Isolation The results of a transaction cannot be seen by

other concurrent transactions until it commits.

Topology

Durability Once a transaction commits, its results on the

database are permanent.

The properties of a geometrical figure that are unaffected when it is

subjected to any continuous transformation or deformation.
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A. Appendix - Examples

A.l Create New Simple Classes

This example creates a class called parcel that is a subclass of Simple. The attribute

s9_geometry has been modified from the Simple definition to specify surface topology. The
attribute pid holds that parcel id.

CREATE TABLE parcel (

ISA Simple,

s9_geometry GEOMETRY (SURFACE),

pid CP1ARACTER(8) NOT NULL UNIQUE);

This example creates a class called road that is a subclass of Simple. The attribute

s9_geometry has been modified from the Simple definition to specify linear topology. The

attribute name holds the name of the road. The attribute road_length holds the calculated

length of the road.

CREATE TABLE road(

ISA Simple,

s9_geometry GEOMETRY (LINEAR),

name CHAR(64),

road_length LENGTH(s9_geometry));

A.l Create new Composite Class

This example creates a composite feature class called block. This composite includes two

simple feature classes called parcel and road. The attribute plan holds the plan number for the

block.

CREATE TABLE block (

ISA Composite,

COMPOSED OF (parcel/oad),

plan INTEGER);

A.3 Create an Entity

This example inserts an entity into the class parcel.

INSERT INTO parcel (pid , s9_geometry )

VALUES ( "1079647A", SURFACE

( ( 501596.4 , 6276913.3 ),

( 501613.9 , 6276917.4 ),

( 501614.2 , 6276957.4 ),

( 501695.3 , 6276957.3 ),

( 501596.4 , 6276913.3 )));
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A.4 Selecting Entities

This example selects the parcel ids of all the parcels that overlap any soil of type KNZ2.

SELECT pid FROM parcel WHERE s9_geometry OVERLAPS (

SELECT s9_geometry FROM soil

WHERE type = "KNZ2");

This example selects all the gravel pits within 100 kilometers:

SELECT FROM gravel_pit WHERE s9_geometry OVERLAPS (

SELECT BUFFER(s9_geometry, lOOkm) FROM PARCEL
WHERE owner = "Jones");

This example selects the parcels that have an area greater than 100 acres and have some
frontage on a lake in the district of Parry Sound.

SELECT FROM parcel WHERE AREA(s9_geometry) > lOOac AND
s9_geometry IS ADJACENT TO (

SELECT lake.s9_geonietry FROM lake,district

WHERE lake.s9_geometry OVERLAPS
districLs9_geometry AND
district.name = “Parry Sound”);

This example determines the type of soil on aU parcels greater than or equal to 20 acres. The

area of each soil type in the parcel is also calculated.

SELECT parcel.pid,soil.type,

AREA(OVERLAP(parcel.s9_geometry^oil.s9_geometry))

FROM parcel, soil

WHERE AREA(parcel.s9_geometry) >= 20ac;

A.5 Create a Project Schema Example

This is a detailed example of creating a project schema from scratch with GIS/SQL.

A.5.1 create the project.

CREATE PROJECT ’Northem.Ontario’ (

SURFACE ( ( 501596.4 , 6276913.3 ),

( 501613.9 , 6276917.4 ),

( 501614.2 , 6276957.4 ),

( 501695.3 , 6276957.3 ),

( 501596.4 , 6276913.3 ) ),

UNIT METRIC,
HOST ’ThunderBay’,

PORT 1040,

LOCATE IN Vdbs’,
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NOT COMPRESSED);

A.5.2 create some styles.

CREATE STYLE ’solid.blue.fill’ FILL ( FOREGROUND (’blue’));

CREATE STYLE ’soUd_blue_line’ STROKE ( FOREGROUND (’blue’), SOLID );

CREATE STYLE ’dam’ SYMBOL (

ORIGIN (.5,.5), DIMENSION ((0,0),(1,1)), MASK
(RECTANGLE ((0, 0),(1,1))),

DRAW_GRAPHIC (

LINE((0, .55), (1, .55), (1, .45),

(0, .45), (0, .55)),

STROKE ( COLOR ("blue"), SOLID) ) );

CREATE STYLE ’black_line’ STROKE ( FOREGROUND (’black’), SOLID );

CREATE STYLE ’black_border_fill’ FELL ( BLANK, BORDER ( ’black_line’ ) );

CREATE STYLE ’black_text’

ANNOTATION ( FOREGROUND (’black’), FONT ("simprom"),

FONT.TYPE ("STROKE"), SIZE (.3, .4), SPACING (.4), POSITION (0,

.5),

PLACEMENT ("TOP", "RIGHT"), PATH ("RIGHT"));

A.5.3 create some classes.

CREATE TABLE lake (

ISA Simple,

name CHARACTER (24) NOT NULL,
max_depth DOUBLE PRECISION,

s9_geometry GEOMETRY (surface)

DEFAULT FILL (’soUd_blue_fill’ ) );

CREATE TABLE river (

ISA Simple,

name CHARACTER (24) NOT NULL,

len LENGTH(s9_geometry),

s9_geometry GEOMETRY (LINEAR)

DEFAULT FILL ’soUd_blueJine’ ) );

CREATE TABLE dam (

ISA Simple,

name CHARACTER (12) NOT NULL,
owner STRING (12, 24, 64),

s9_geometry GEOMETRY (node)

DEFAULT SYMBOL (’dam’ ) );
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CREATE TABLE parcel_boundary (

ISA

legaljength

calcjength

legal_direction

calc_direction

s9_geometry

Simple,

DOUBLE PRECISION,

LENGTH(s9_geometry),

DOUBLE PRECISION,
AZIMUTH(s9_geometry),

GEOMETRY (Unear)

DEFAULT STROKE ( "blackjine" ));

CREATE TABLE soU (

ISA Simple,

type SMALLINT
DEFAULT ANNOTATION (’black_text’

)

NOT NULL
CHECK ( type > 0 and type < 4 ),

s9_geometry GEOMETRY (surface));

CREATE TABLE water_way (

ISA

COMPOSED OF
Composite,

Gake, river, dam));

CREATE TABLE parcel (

ISA Composite,

COMPOSED OF parcel_boundary,

s9_geometry GEOMETRY (surface)

DEFAULT FILL ( ’black_border_fiU’ ));

A.5.4 create some themes.

CREATE THEME water ( MAPSCALE ( 5000 ), lake, river, dam );

CTREATE THEME soil_map ( MAPSCALE ( 10000 ), lake, river, dam, soil, parcel );

A.5.5 create thematic display.

CREATE THEMATIC DISPLAY ’sandy’(

FOR soil.s9_geometry,

IN soil_map,

CREATE THEMATIC DISPLAY ’rock’(

FOR soil.s9_geometry

IN soil_map,

CREATE THEMATIC DISPLAY ’loam’(

FOR soil.s9_geometry

IN soil_map.

FILL ( COLOUR (’brown’), SOLID),

WHERE type = 1 );

FILL ( COLOUR (’violet’), SOLID),

WHERE type = 2 );

FILL ( COLOUR (’tan’), SOLID),

WHERE type = 3 );
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1 Introduction

This paper is an exploratory paper, written as a vehicle for developing ideas for a spatial query

language. As such it is incomplete, may contain inconsistencies, inadequate references and

incomplete ideas. We hope that it will get a few main points across, so that these can be

rejected or be further explored.

Many proposals for SQL extensions are based on the object in a field concept, where the

objects can be lines, points or polygons, or other things. Relational database managers

increasingly support a binary large object or "blob" as a data type. ADT Ingress supports

abstract data types such as line, point or polygon. The SQL 3 proposal has user defined

abstract data types. Various operations on these objects are proposed, for example, those

based on distance, direction and neighbouibood relationships. The general trend seems to be

make SQL the "kitchen-sink: query language, supporting not only a relational but also an

object oriented philosophy.

We would like to go back to the basics, and try to see if relational concepts can be applied to

spatial data, and whether existing relational operations can be used when a piece of two

dimensional space is conceptually considered a relation. If this can be done then the large

body of relational knowledge can be used and existing SQL constructs can be applied in a new
light

2 Cover as Relation

Let us define a cover as a subset of two dimensional space. It can be said to consist of an

infinite set of points, but with a finite extent In practice, it is either represented by vector

data or by raster data. The vector representation copes with the infinite number of points by

describing the fence around the points, while raster data solves this problem by using a

sampled representation. Whatever the practical representation methods may be, they should

not restrict the types of questions that can be asked. Queries are made on a conceptual level

and they can manipulate abstract concepts. We can therefore conceive of a cover as a relation

with an infinite number of tuples, and express the queries in terms of the conceptual relations.

This may sound like a worthwhile goal, but unfortunately we are restricted in the practical

representation of the data. It does not make sense to perceive of queries on a conceptual level
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that cannot be carried at the practical level, because the conceptual information is physically

absent

The fences in vector data represent the interior as one blob, and any heterogeneous attributes

that occur inside such a fence cannot be attached to individual points. Similarly, for raster

data, heterogeneous attributes associated with a raster point cannot be attached to its

surroundings.

The solution is a compromise, based on the concept of a practical spatial object, its

"unfolding" to the conceptual level of an infinite relation, followed by a query, then followed

by a "folding" into practical spatial objects.

3 The coverage meta schema

To define more precisely how a coverage can be viewed as a spatial relation we must define

prototype schema for the coverage. A relational schema is defined as a set of attributes with

respective domains. The set union of a number of relational schemas is also a relational

schema. We define a spatial object meta-schema as a class of relational schemas where each

schema of that class has a certain functionality with respect to a spatial object The set union

of a number of meta-schemas is also a meta-schema. The following meta schemas are

proposed:

S is the meta schema for the spatial address of the point Its attributes represent

coordinates or spatial address components.

A is the meta schema for the homogeneous attributes of a spatial object

B is the meta schema for the heterogeneous attributes of a spatial object

K is the meta schema for an attribute called the object key. The value of this

key is a unique representation for the object

Let C = S[K][A][B], where C is the set union of the meta-schema S and any combination of K, A, or

B, with the brackets indicating optional use. We would require the minimum meta schema of SKA for

a spatial object cover.

We would then say that a schema C is an instance of the meta schema and a cover c(C) is an

instance of a relation for this schema.

We may consider the relational primary key for various combinations of the component meta

schemas. SKAB has primary key S, because each point is uniquely defined by its spatial

address. KAB has primary key KB, because by definition A is functionally dependent on K.

KA has primary key K.

Unique values for A represent disconnected spatial objects which may be called zones, themes

or regions, and are equivalent to the "value" concept for a grid cell value. The schema for a

raster representation might therefore well be SA.
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Two coverages are said to be spatial join compatible when each coverage has the same
subschema S. Attribute names for a subschema of type K should never be identical for

coverages that are to be joined.

4 Spatial Objects

For our definition of a spatial object there are two important concepts. First, the object

consists of points that have the same defining attributes, and hence the term homogeneous

attributes. Let t and f represent two tuples corresponding to separate points. They have the

same homogeneous attributes if the subtuples obtained by mapping ontothe sub-schemaA are

identical, or (actually, it suffices to consider the attributes in the relational primary key

of A, since the other homogeneous attributes are functionally dependent on this key).

Secondly, the points in the object should be contiguous or nearly contiguous. If we define a

distance function d(tis,t's)> a neighbourhood e then the tuples in c(C) can be grouped into

objects based on the distance function as weU as homogeneity. Each object is an equivalence

class of an equivalence partition defined by the equivalence of the two arbitrary tuples, t‘ q* t\

where q is the transitive closure of the relation q, which is:

p : (d(ts , tgO < e )a Ia =

Each object will have an assigned unique object key which embodies both attribute

homogeneity and contiguity.

Note that the size of e defines the granularity and fuzziness of the boundary between

neighbouring objects.

5 Folding and Unfolding

The folding and unfolding concepts are borrowed from Lorentzos and Johnson (1987) who

used the same idea to extend the relational model to cope with generic intervals, although they

used a discrete interval model. Their operators produce practical results, while ours are

conceptual.

Conceptual unfolding for a practical vector representation merely means to think of the

coverage data as a relation. The vector boundary may be stored in one file, while the

homogeneous attributes are stored in primary feature table which has the meta schema KA,
with an object key and a set of homogeneous attributes. Heterogeneous attributes may be

stored in a second table with defined join attributes, such as the spatial object key. To think

of aU these components as in a single relation is not too difficult. The concept is that of a

"universal relation." Date (1990) makes the following remark about the universal relation:

"...The second, and more pragmatically significant, manifestation of the universal relation

concept is as a user interface ... Users should frame their database requests, not in terms of

relations and joins among those relations, but rather in terms of attributes alone."
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Conceptual folding, after the relations have been manipulated, consists of folding the points

back into new objects. The process consists of four main steps: (1) specification of new
defining (homogeneous) attributes, (2) determination of the object keys, (3) a change in the

spatial relation to reflect the new homogeneous attributes, and (4) separation of spatial and

attribute information.

The homogeneous attributes are defined as a part of the query. If there is no specification, the

set union of the input schemas is used.

The new defining attributes determine the new object keys through the object relation specified

earlier. Old object key attributes never can be join items, because they are required to have

different names by definition. If they are present, for instance as the result of a natural join,

they are eliminated in favour of a new object key attribute or they might be renamed and

become type A or B attributes.

The change in the spatial relation that occurs because of a change in defining attributes results

from the relationship between the object key and other attributes. For homogeneous attributes

it is a single valued dependency, for heterogeneous attributes a multi-valued dependency.

We demonstrate the concept with a coverage relation consisting of two points defining two

spatial objects that are merged into a single object by folding:

TABLE 1

S K A

X Y K T1 T2

1 1 1 a bl

2 1 2 a b2

In Table 1 the homogeneous attributes are T1 and T2. Suppose that the folding process

redefines T1 as the sole homogeneous attribute, while T2 becomes heterogeneous. The result

is that every single point then acquires the properties bl and b2.

TABLE 2

S K A B

X Y K T1 T2

1 1 1 a bl

1 1 1 a b2

2 1 1 a bl

2 1 1 a b2
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After separation of spatial and other attributes a feature attribute table for a vector object

corresponding to Table 2 may be:

TABLE 3

K A B

K T1 T2

1 a bl

1 a b2

Or one might separate these tables into a primary and secondary feature attribute table;

K

TABLE 4

A

K T1

1

TABLE 5

a

K B

K T2

1 bl

1 b2

where Table 3 is a primary feature attribute table with a one-to-one relationship between object

and rows and Table 4 is a related table with a one to many relationship. Unfolding of the

boundary representation and reattaching the feature attribute tables (Tables 3 and 4) is

equivalent to performing joins on object key as the join item, producing Table 2.

6 Operations on spatial relations

In the conceptually unfolded state either relational algebra or relational calculus can be applied

to express the desired query results. Corresponding SQL constructs can be used to formulate

SQL queries. We will first consider the relational algebra as a method to convey our ideas,

because it aUows their expression in the simplest and most direct way. A number of examples

are presented. This then followed by a corresponding form of spatial SQL, and a restatement

of some of the examples.
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6.1 Relational Algebra

The relational algebra operators are: selection, projection, product, union, intersection,

difference, join, divide and rename. We will use the syntax provided by Date (1990) and

specify the required extensions for the approach proposed here.

A brief summary of Date’s relational algebra operator syntax is:

Operator Syntax

Union A UNION B

Intersection A INTERSECT B

Product A TIMES B

Difference A MINUS B

Selection A WHERE X theta

Y

Projection A[X,Y,....Z]

Natural join A JOIN B

Theta-join (A TIMES B) where

X theta Y

Rename A RENAME X AS
Y

Divide A DIVIDEBY B

Comments

relations A and B must be schema compatible

relations A and B must be schema compatible

Cartesian product

relations A and B must be schema compatible

instead of X theta Y can use restriction condition

X,Y,...Z must be in schema of A

if A and B have no attributes in common A TIMES
B

Join on other than equality

A schema Xl,Xl,Xm,Yl,Yl,Ym; B schema

Yl,Y2,Ym

Any expression is a valid relation, and parenthesized expressions can be used as input to an

operator. A precise BNF is found in Date (1990:300).

6.2 Natural Joins and Natural Outerjoins

The natural join of two spatial relations is equivalent to a "spatial overlay." The natural join

takes the intersection of both input attribute schemas to define the attributes for which tuple

values must match to generate a join tuple. It takes the set union of the attribute schemas to

determine the output schema.

Assuming for the moment that both input relations have the same spatial address schema

(necessary if the dimensionality of the output should be the same as the input), then the natural

join guarantees that this subschema is also part of the output schema, and that points in the

output relation are common to both input relations, thus performing a spatial intersection.
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The set intersection of the input schemas may include other attributes as well. They are

evaluated along with the spatial address. If common attributes for the same spatial address do

not agree in value, a hole will appear in the output relation for that point.

A natural outer join between two relations does not discard tuples that do not match on the set

intersection of the attribute schemas, but instead outputs the tuple and supplies null values for

the attributes in the output schema that are not a part of the input relation schema. A left

natural outer join does this only for the first relation, and a right natural outer join does it for

the second relation. The spatial results of the various joins are shown schematically in Figure

1 .

r'

Relation 1

r

Relation 2

r

Natural Join

Left natural outerjoin Right natural outerjoin Natural outerjoln

Figure 1. Spatial effects of natural join and natural outerjoin.

We win use the following notation for the various outer join operators:

Operator Syntax

Natural Outerjoin A JOIN+ B
Left natural outerjoin A JOIN+L B
Right natural outerjoin A JOIN+R B

It is interesting that the different types of join have a direct correspondence to the overlay

functions in Arc/Info (ESRI, 1991):
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Join Overlay function

Join

Natural outer join

Left natural outer join

Right natural outer join

Intersect

Union

A Identity B
B Identity A

So far we have discussed operations on two layers. For more than two layers we must

perform multiple joins, for instance (A JOIN B) JOIN C. As Date (1990) points out the JOIN
is both associative and commutative so that we may simplify to: A JOIN B JOIN C. The same

holds for the outer natural join, but not for either the left or right outer natural join.

6.3 Relational Set Operators

The join operators as described above can be used for a number of spatial operations, but they

do not form a complete set For instance, they cannot be used to achieve the data management

functions in Arc/Info (ESRI, 1991) such as "erase" and "clip." The reason is that the joins

themselves are composite operations that operate both on spatial and other attributes

simultaneously. Separating the spatial operations, and then combining the result with non-

spatial attributes leads to a basic system that can be used to accomplish any spatial operation.

Separating the spatial address from a spatial relation requires a project, for instance A[LOC]
and B[LOC] for coverages A and B. Note that the projection removes duplicate spatial

addresses, so that each point is represented by a single row. The projected A and B coverages

are then schema compatible by definition, so that the UNION, INTERSECTION, and

DIFFERENCE operators can be applied to produce spatial residts. The spatial results must

then be joined back to the original relation to attach the attributes.

The result of the natural join in the previous sections is then obtained with the following

statement:

(AILOC] INTERSECT B[LOC]) JOIN A JOIN B

where the term in parentheses represents the spatial operation, and the JOIN A JOIN B term

represents the reattachment of non-spatial attributes.

The natural outer join is then:

(AILOC] UNION B[LOC]) JOIN+L A JOIN+L B

The left outer joins are required to pick up null attributes in the A and B coverages where the

spatial result has spatial addresses that do not occur in the A or B coverages.
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The left and right natural outer joins are expressed as:

((A[LOC] E^TTERSECT B[LOC]) UNION A(LOC]) JOIN A JOIN+L B
((A[LOC] INTERSECT B[LOC]) UNION B[LOC]) JOIN+L A JOIN B

An "erase" of a part of cover A that corresponds to the area occupied by cover B (where A
and B need not be schema compatible) may now be expressed as

(A[LOC] DIFFERENCE B[LOC]) JOIN A

And a clip of cover A using the area of cover B is

(A[LOCJ INTERSECT B[LOC]) JOIN A.

Thus operations can be expressed in a "standard" manner in which spatial address operations

are first done, and are followed by attribute joins. The coverages involved need not be schema

compatible.

Finally, we note that the joins in the attribute joins could all be replaced with left natural outer

joins. This would help standardize the attribute join operation.

7 The FOLD Operator

The conceptual folding and unfolding approach does not require any special algebra operator

for unfolding the cover. However, folding requires the specification of the defining attributes.

These attributes (and any other attributes that are functionally dependent) become the new
homogeneous attributes.

Following the Date (1990) type syntax, the fold operator will be as follows:

R FOLD A1 A2.Am

where R is the conceptual spatial relation to be folded and Al, A2, ..Am are the defining

attributes. This operator is very similar to the traditional GIS "merge and dissolve," and

equivalent to the Arc/Info (ESRI, 1991) dissolve operation on a single or redefined

(compound) item. In the algebra it is not necessary to use the FOLD expression if the sub-

schema for homogeneous attributes is the set union of the homogeneous attribute sub-schemas

of the input layers.

7.1 The Distance Join

To cope with GIS functions such as the buffer-zone operator, we need one more extension to

the traditional relational algebra.

It is a special form of the theta join, which in Date’s syntax is written as:

(A TIMES B ) WHERE X theta Y
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where X and Y are attributes (or constants) and theta may represent <, >, <=, etc.

Assuming that A and B are spatial relations where each tuple has a spatial address, we can

define a distance function DIST on the spatial addresses of two arbitrary tuples from A and B.

A distance join is then defined as:

(A TIMES B) WHERE DIST theta Y.

To see how this constmct generates a buffer zone, consider that for each tuple in A aU tuples

from B within the distance are joined, generating a circle. The next point also generates a

circle, slightly offset fi-om the first, all duplicate tuples are removed because the output is a

set, making a union of the two circles. Then the third circle is joined with the union of the

first two, and so on.

8 Examples

We will now present some examples for traditional GIS operations as expressed in the

relational algebra. For these examples we will use the following data dictionary for the feature

attribute table. The unfolded relation will have an object key and a spatial address as

attributes as well (KEY and LOG).

8.1. Select and Intersect. A map needs to be developed showing sites meeting the

criteria of land use is brushland and soiltypes are suitable for development. The following

statements express this goal:

(SOILS WHERE SUITABILITY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

An alternate fonn is

(SOILS JOIN LANDUSE) WHERE SUTTABILITY = 3

AND LUTYPE = 300

8.2. Select and Union. A variation on the theme in the first example is to select those

sites where either one of the two criteria holds. For this we use the natural outer join:

(SOILS WHERE SUITABILITY = 3)

JOIN+
(LANDUSE WHERE LUTYPE = 300)

As in the first example, an alternate form is

(SOILS JOIN+ LANDUSE) WHERE SUITABILITY = 3 OR LUTYPE = 300

8.3. Selection with multiple layers. In the above example the input consists of two

layers. For more than two layers we must perform multiple joins, for instance (A JOIN B)

JOIN C. As explained, this my be simplified to A JOIN B JOIN C. The same holds for the
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outer natural join, but not for either the left or right outer natural join. To locate the semi-

improved roads that pass through unsuitable soils with a landuse of water:

ROADS JOIN+ LANDUSE JOIN+ SOILS
WHERE ROADCLASS = 2 AND (LUTYPE = 500 OR SUrTABIUTY = 0 )

The join condition is the algebraic form of the GIS sandwich. One proposal for a spatial

query language is to let this condition exists as a default for all registered layers of interest

8.4. Dissolve. A cover may also be created in which the spatial objects for the selected area

show only the difference in land use type (thus "dissolving" on the other attributes). This is

accomplished with the FOLD operator:

FOLD(
(SOILS WHERE SUITABILITY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

) LUTYPE

In the resultant schema for the output cover, LUTYPE is the homogeneous attribute, while

SOILTYPE and COST/HA now are heterogeneous attributes. Thus a vector output map would

show only the maximal size polygons with a single LUTYPE.

8.5. Biifferzone. Suppose that the site selection requires that the selected sites are within

300 meters of existing sewer lines. This is accomplished with the distance join:

( (SOILS WHERE SUTTABILITY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

) TIMES SEWER WHERE DIST < 300

At the same time, the selected sites must be more than 20 meters removed from any existing

streams.

( ( (SOILS WHERE SUTTABILirY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

) TIMES SEWER WHERE DIST < 300

) TIMES STREAMS WHERE DIST > 20

8.6.

Erase. An erase can be defined as an operation where one cover is "erased" by the

overlapping part of a second cover. If the two covers have compatible schemas, one can

simply use the difference operator, but this is usually not the case. The solution is to make

compatible schemas by projecting only the spatial addresses, to take the difference, and then to

perform a join of the resulting relation with the first input relation to recover the original input

schema. In the following example a part of the soil’s coverage is erased where there is

overlap with landuse:

(SOILS [LOG] MINUS LANDUSE[LOC])
JOIN
SOILS
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DATA DICTIONARY

Coverage Feature Type Attributes Value Description

SOILS poly SOILTYPE string soiltype

SUITABIUTY 0 unsuitable

1 poor suitability

2 moderate suitability

3 good suitability

LANDUSE poly LUTYPE 100 urban

200 agriculture

300 brushiand

400 forest

500 water

600 wetlands

700 barren

UNITCOST integer cost per area u

STREAMS line STREAMCLASS 1 major stream

2 minor stream

SEWERS line DIAMETER real number pipe diameter

SYMBOL 1 60 cm pipe

77 45 cm pipe

ROADS line ROADCLASS 1 improved

2 semi-improved

8.7. Update. An update is an operation where one part of a cover is replaced with another

part, that is "pasted" onto the old part. We mentioned in the discussion of the natural join for

spatial relations, that points will not appear in the output where locations agree, but similar

attributes do not Holes are left instead. We can make use of this fact to do an update. The

new cover will have attributes that are the same or different from the old. For those that are

different, a hole is created. Then we can use the union operator between the joined cover with

the hole and the new cover to fill the hole. Any overlap will be eliminated due to the fact that

relations are sets without duplicate tuples. Assuming for the example that we update SOILS
with SOELSNEW, the expression becomes:

(SOILS JOIN SOILSNEW)
UNION SOILSNEW

8.8. Identity. In Arc/Info (ESRI, 1991) there is an operation called "identity" where one

map is intersected with another map, but the outline of the first map determines the outline of

the output map. This is exactly what is accomplished with a left outer natural join. An
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identity between soils and landuse is therefore written:

SOILS JOIN+L LANDUSE

8.9. CUp. And a clip of cover A using the area of cover B is

(AILOC] INTERSECT B[LOC]) JOIN A.

9 Extended SQL

The SQL extensions needed are the same as the extensions to the relational algebra, namely a

FOLD clause, and a distance function. These are very minimal extensions compared to some

other attempts. The FOLD clause is explicit, and unlike the algebra, is present in every query,

similar to the select cause. The query is begun with a "create cover" clause. The reader

should keep in mind that the purpose of the SQL is to do spatial overiays, we do not deal with

frequently encountered additions dealing with object relationships such as "to the North of or

"adjacent to." These belong to a different class of spatial query.

9.1. Select and Intersect. SQL requires that the join conditions for a join are specified

explicitly. In the algebra

(SOILS WHERE SUITABILITY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

Where JOIN means natural join. This operator would automatically join on common
attributes. In SQL one has to be specific, and have prior knowledge of corresponding

columns. It is easier therefore to pick the spatial location columns as the attributes that

correspond by definitioa As the LOG attribute is a guaranteed join item, we have specified it

in the following syntax:

CREATE COVER goodsites AS
FOLD soils.*, landuse.*

SELECT soils.*, landuse.*

FROM soils, landuse

WHERE soils.loc = landuse.loc

AND soils.suitability= 3

AND landuse.lutype = 300;

In this case the results are the same as those for the algebra because there are no other

common attributes. If this was not the case, and the values for the other attributes did not

agree, while spatial locations did, a hole would appear with the use of the algebra, but not

with the SQL.
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9.2. Select and Union. The syntax is the same as for the previous example, with the

exception of the outer join notation in SQL:

CREATE COVER goodsites AS
FOLD soils.*, landuse.*

SELECT soils.*, landuse.*

FROM soils, landuse

WHERE soils.loc = landuse.loc{+)

AND soils.suitability= 3

AND landuse.lutype = 300;

9.3. Selection with multiple layers

CREATE COVER goodroads AS
FOLD roads.*

SELECT roads.*

FROM roads, soils, landuse

WHERE roads.loc = landuse.loc(+)

AND roads.loc = soils.loc(+)

AND roads.roadclass = 2

AND (landuse.lutype = 300

OR soils.suitability = 0);

9.4. Dissolve
CREATE COVER goodsites AS
FOLD landuse.lutype

SELECT soils.*, landuse.*

FROM soils, landuse

WHERE soils.loc = landuse.loc

AND soils.suitability= 3

AND landuse.lutype = 300

9.5. Bufferzone
CREATE COVER goodsites AS
FOLD soils.*, landuse.*

SELECT soils.*, landuse.*

FROM soils, landuse

WHERE soils.loc = landuse.loc

AND soils.suitability= 3

AND landuse.lutype = 300

AND soils .loc IN
(SELECT soib.loc

FROM soils, sewer

WHERE DIST(soils.loc, sewer.loc) < 300);

AND soils.loc IN
(SELECT soils.loc

FROM soils, streams

WHERE DIST(soils.loc, streams.loc) > 20);
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10 Comparison of Algebra and SQL

The SQL examples show that the algebra is more succinct and elegant than the SQL. Perhaps

a different set of extensions will provide better results, but the SQL seems unwieldy and

indirect The use of subqueries for buffei:zones is not very satisfactory. The algebra on the

other hand is lacking summary operators such as GROUP BY, SUM, AVE and COUNT,
which are available in SQL. A spatial equivalent that is needed is AREA. Without these

operators meaningful queries can not be made.

Date (1990) suggests a SUMMARIZE A GROUPBY X ADD SUM Y AS Z type of statement

where SUM may be replaced by COUNT, AVG, MAX, and MIN. We suggest dropping

"SUMMARIZE A" and adding the capability to GROUPBY contiguous non-universe spatial

locations (those that are in the spatial relation) as GROUPBY CONTIGUOUS.

The SUM function needs clarificatioa The spatial relation is conceptual and has an infinite

number of tuples. We must therefore define SUM X as a total figure for the area of the group

weighted by the areas within the group for which X is constant. AREA is defined as SUM 1.

Finding those sites then with an area > 2 ha and also computing the construction costs for

those potential sites is expressed as:

FOLD(
(GROUBY CONTIGUOUS(

( ( (SOILS WHERE SUITABILITY = 3)

JOIN
(LANDUSE WHERE LUTYPE = 300)

)TIMES SEWER WHERE BIST < 300

)TIMES STREAMS WHERE BIST > 20

)ABB SUM 1 AS AREA,
ABB SUM COST/HA AS COST)
WHERE AREA > 2

)LUTYPE, COST

11 Concluding Remarks

This paper outlines an approach to spatial query language that uses the mechanics and

semantics from the relational model. Spatial data can be thought of as conceptual relations

through "folding and unfolding." It seems that the advantages of the approach are:

• Minimal algebra and minimal SQL extensions required

• Relational algebra applies

• Approach has significant expressive power for overlay type queries.

• Can be applied to both raster and vector data.
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On the other hand we may say that:

• The average user may not be able to think in relational terms for spatial data.

• The approach does not make very much use of topology and therefore does not

lend itself to queries related to neighbourhoods

• It does not distinguish between different feature types, such as point, line and

polygon.

• It is not clear how such an approach should be implemented.

Since we have presented the approach in terms of an algebra, we can conclude with Date

(1990) in saying that an algebra is often used as a yardstick against which the expressive

power of a relational query language can be measured. This implies that SQL should have the

same potential as the algebra, but on the surface it would seem that the equivalent

implementation in SQL is more cumbersome and unwieldy than the algebra.
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