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Abstract

Progress in the development of an algebraic grid generation system that tracks a

solid-liquid interface during directional solidification of a binary alloy is discussed. A
single mapping, constructed with tensor product B-splines, is proposed for calculations

of both shallow and deep solidification cells. The initial spline coefficients for the

coordinate mapping are modified to minimize a discrete functional that regulates the

smoothness and orthogonality of the mesh. The use of transfinite blending function

interpolation to obtain an initial grid is examined.

Keywords: boundary fitted grid generation, algebraic grid generation, adaptive, B-

splines, transfinite blending functions, directional solidification

1. Introduction

One of the well known techniques used to study the microstructures that develop during

sohdification of binary alloys is Bridgman growth, a directional solidification technique in

which a sample of the alloy is drawn through a constant temperature gradient at a uniform

rate of speed, V, as shown in Figure 1. A considerable amount of theoretical work has

focused on examining the morphological instabilities of the growing soHd-liquid interface [1-

6]. MulHns and Sekerka [1] used Hnear stability theory to predict the critical velocity for the

onset of instabihty for a planar interface. Experimental observations confirm the vahdity of

their results and show that after the onset of instability the structure of the interface can

change from planar to cellular to dendritic and back again as the growth velocity is increased

[7, 8]. Coriell et al. [2] extended the results of MulHns and Sekerka, including the effects

from convection in the Hquid.

Although cellular microstructures are much simpler than dendritic, as the control param-

eters, growth velocity or temperature gradient, are changed, the ceUs may become very deep

and narrow with re-entrant bulb-Hke shapes. To successfully track the interface, the grid
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Figure 1: Bridgman growth technique.

generation mapping must adapt to large deformations of the interface shape while maintain-

ing as much orthogonality and smoothness as possible. Ettouney and Brown [4] successfully

modeled slightly nonplanar interfaces by using an algebraic grid generation system where the

interface was described in terms of a univariate function. Unfortunately, this representation

of the interface, called a Monge transformation, fails for cells with vertical or re-entrant

walls. To overcome that problem, Ungar and Brown [5] developed a representation defined

by the division of the interface into disjoint sections that could be expressed as separate

Monge transformations written in either polar or rectangular coordinates. With this mixed

transformation, Ungar and Brown modeled cellular interfaces with grooves as much as 15

times longer than their wavelength. Ideally, analysts want a single grid generation tech-

nique that can track the interface as it changes from a shallow deformation to a narrow and

deeply grooved cell with re-entrant sidewalls. Furthermore, it should capture the change in

wavelength if the cell sphts.

Tsiveriotis and Brown [6] have made some progress in this area by using a two-step

procedure. In one direction the coordinate is defined by a generaHzed Poisson equation with

a scahng condition that forces the grid lines into concave areas of the interface. The other

coordinate is obtained by minimizing smoothness and orthogonality functionals similar to

those of BrackbiU and Saltzman [9]. Tsiveriotis and Brown show impressive examples of

grids developed for narrow and re-entrant cells, but it is not clear whether this method is

as successful as the previous method of Ungar and Brown because the most narrow cells in

the earher paper are not redone. Also, to obtain better results, they fix a horizontal line

near the interface to decouple the far field domain from the domain near the interface. This

essentially creates two separate domains whose grid cells are not smoothly connected near
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the line. This is fine for finite element calculations, but suggests problems for those who are

interested in using the technique to create grids suitable for finite difference schemes.

This paper describes progress to date in the development of an algebraic technique for

generating a boundary/interface fitted coordinate system that is smooth enough to be used

for finite difference calculations. No partial differential equations (pdes) are solved to obtain

the coordinate system, and the same system is used for the entire domain. The computation

of the interface is not discussed in this paper. It is assumed that the interface is available as

a discrete set of points, having been determined by some means such as an evaluation of the

Gibbs-Thomson equation which relates the interface mean curvature, concentration of solute

in the liquid, and the melting temperature near the interface [8, 10]. The grid generation

algorithm is an extension of an algebraic technique for generating boundary fitted grids [11].

This paper discusses the modifications needed and addresses the problems in tracking an

interface that deforms from a planar shape to a deep, re-entrant cellular microstructure.

Section 2 provides a brief description of algebraic techniques for generating coordinate

systems, focusing on transfinite blending function interpolation, the technique used to obtain

an initial approximation for the boundary/interface fitted mesh. Section 3 explains the

construction of the grid generation mapping and Section 4 examines the results to date.

2. Algebraic Grid Generation Techniques

In algebraic grid generation, a direct transformation describes the relationship between the

computational and physical domains. The transformation is constructed so that it interpo-

lates the boundary points and/or points in the interior. It may also be constrained to match

derivatives. No partial differential equations are solved to obtain the curvilinear coordinates,

so algebraic techniques can be easier to construct than pde methods, and give easier con-

trol over grid characteristics such as orthogonality and grid point spacing. However, these

methods are sometimes criticized for allowing discontinuities on the boundaxy to propagate

into the interior and for not generating grids as smooth as those generated by pde methods.

Nevertheless, algebraic techniques have been used successfully to generate grids in both two

and three dimensions [11-16].

One of the most common and easiest algebraic methods to implement is transfinite

blending function interpolation, where interior regions are represented in terms of bound-

ary functions. This technique, which has been widely used for problems in grid generation

[11, 12, 14, 15, 16], was originally developed for problems in computer aided design. Gor-

don and Hall [14] adapted and apphed the technique to grid generation for finite element

and finite difference calculations in the late sixties and early seventies. A simple example is

illustrated by the mapping T from the unit square I2 to the physical domain defined by

T«.r,) =
t

3
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where 0 = {o < • • • < Cm = 1 and 0 = 7]o < . . . < r]N = 1. The continuous vector-

valued function f describes the boundary of the physical domain. $ and are “blending”

or “connecting” functions that satisfy the conditions

^.(0) = =
I o’ i ^ j

(2)

Mm) = 4, =
{ J; ^ ;

(3)

Therefore, if M=N=1, one might choose $ and to be hnear Lagrange polynomials so that

T matches f on the boundary of fy- If M and N are larger and derivative information is

given, the blending functions can be chosen so that interior curves and the derivatives there

are matched. Unfortunately, transfinite blending function interpolation may allow boundary

singularities to propagate into the interior of the mesh. Furthermore, if the boundary is

nonconvex, the grid lines may overlap the boundary. The choice of blending functions and

parametrization of the boundary function are very important in alleviating these problems.

Transfinite blending function interpolation provides a relatively easy way of obtaining an

initial grid that can be refined and smoothed by other techniques, whether algebraic, pde,

or variational. However, unfortunately, some techniques cannot use the grid if it contains

areas where the grid lines overlap, that is, areas of negative Jacobian [17].

Saunders [11] developed a boundary fitted grid generation mapping composed of tensor

product B-splines whose coefficients are originally chosen so that the mapping approximates

transfinite blending function interpolation. An apphcation of the technique is shown in

Figures 2 and 3 for a puzzle shaped domain. The boundary and initial grid are shown

in Figure 2. The initial grid was constructed using hnear Lagrange polynomials for the

blending functions. Note that the grid fines overlap the nonconvex boundary. The grid

generation system iterates on the coefficients to minimize a functional designed to increase

the smoothness and orthogonality of the initial mesh. The grid on the left in Figure 3

shows the mesh obtained using the minimized coefficients. The skewed areas have been

eliminated and the overlapping grid fines have been pulled into the interior. The grid on

the right, computed with the same coefficients, shows a refined mesh concentrated near the

bottom boundary using an exponential function. One dimensional concentrations of this

type are easy to obtain by replacing the mapping T(fy 7/) with T(^(^), 7/(77)) where ( and fj

are appropriate spacing control functions in C and 7
/ [11]. The algorithm discussed in this

paper is an extension of the boundary fitted mapping to interpolate a curve in the interior

of the physical domain. As in the case of the boimdary fitted algorithm, it will be shown
that the new algorithm is robust enough to smooth and untangle an initial grid containing

skewed and overlapping grid lines.
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Figure 2: Puzzle shaped domain. Grid on right was produced using an approximation of

transfinite blending function interpolation.

Figure 3: Optimized puzzle grids.
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3. Grid Generation Mapping

The proposed grid generation mapping, T, maps the unit square, I2, onto the physical

domain and is constructed so that the interface is the coordinate curve 77 = 1 /2 as shown in

the figure. The mapping is defined by

T

r\

1

1/2

I

2

Computational Domain

Y

Figure 4 : Grid generation mapping.

) \ Er=i TU )
’

where 0 < ^,77 < 1 and each Bij is the tensor product of cubic B-sphnes. Hence, =
Bi{^)Bj{Tj) where Bi and Bj are elements of cubic B-spline sequences associated with finite

nondecreasing knot sequences, say, and respectively. As defined by de

Boor
[
18], B-sphnes are essentially piecewise polynomials with continuity conditions at each

breakpoint determined by the repetition of the breakpoint value in the associated knot

sequence. For a typical cubic B-spline Bj, the value of the B-spHne is determined by the five

knots tj, tj+i, tj+2, tj+3i ij+4- Its support is small, that is, Bj can be nonzero only on the

interval [tj,tj+4]. Consequently, only four B-splines, Bj-z, Bj_2, Bj-i, Bj can be nonzero on

the interval {tj,tj^i).

The spline coefficients for T can be divided into three groups. The boundary coefficients

are the coefficients of the Bij that are nonzero on the boundary of I2. Since T is defined so

that the interface corresponds to coordinate curve 77 = 1/2, the coefficients of the Bij that

are nonzero when 77 = 1/2 are called the interface coefficients. The remaining coefficients
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are called the interior coefficients. To obtain an initial grid, the sphne coefficients are chosen

to produce a variation diminishing spline approximation to the transfinite blending function

interpolant that matches the boundary and interface of the physical domain. In short, this

means the coefficients are obtained by evaluating the transfinite mapping at average knot

values as discussed in [18]. This shape preserving approximation reproduces straight lines

and preserves convexity [11, 18].

If the deformation of the interface is only moderate, then the initial grid may be suit-

able; but as the interface becomes more distorted, additional smoothing and orthogonahty

are needed. To increase orthogonahty and decrease the overlapping of grid hnes and skew-

ness, the interior coefficients of T are modified to minimize a discrete approximation to the

following functional first described in [11]:

where T denotes the grid generation mapping, J is the Jacobian of the mapping, and Wi(^, tj)

and W2 {C,ri) are weight functions. When Wi is large, the variation of the Jacobian values at

nearby points will be small, thereby decreasing skewness. When W 2 is large, the dot product

term will be small, causing the grid lines to approach orthogonahty.

Clearly, the flexibility of the boundary and the interface coefficients is limited. Using the

continuity properties of B-splines with repeated knots [18], one can show that if the first

four knots of and are 0, the last four knots are 1, and the rest located in the

interval (0, 1), the only boundary coefficients are aij,^ij and for j = 1, . .

.

,n and

0^1 j Ai 3-nd Oin, Pin for i = 1, . .
.

,

m. Furthermore, unless all the “interior” knots are clustered

near the center of (0, 1), the boundary coefficients will have a minimal effect on the interior of

the square. For example, aij, will only affect points on the support of Bij, that is, the narrow

band
[
0

,
55

]
x [tj,tj+4 ]

illustrated in Figure 5, where Ss is the first interior knot in

In fact the area of influence of ah the boundary coefficients wiU be a narrow region along

the boundary of the square. Consequently, even if the boundary coefficients remain fixed,

the smoothing functional should be able to produce a significant amount of orthogonahty

and smoothness in the grid. Ideally, of course, the boundary coefficients should also be

adjusted by the smoothing functional, but the boundary fittedness requirement severely

restricts their movement. For a general boundary of arbitrary shape, small changes in the

boundary coefficients can destroy the shape preserving properties of the spline mapping. In

such a case, fixing the boundary coefficients is probably the simplest solution. However, if the

boundary is rectangular, as it is for Bridgman growth, more flexibility is possible. Using the

smoothing functional, the boundary coefficients can be modified so that a reparametrization

of the boundary mapping results.

Since the interface may be quite complex, very httle change is permitted in the interface

coefficients when the other coefficients are adjusted by the minimization of the smoothing

functional. Unfortunately, unlike the boundary coefficients, the interface coefficients affect

a significant number of points on the interior besides those mapped onto the interface. To

determine the interface coefficients one first finds I such that 1/2 G Then the
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Figure 5: Support of tensor product B-spline Bij.

interface coefficients will be Pik where 1 < i < m and I — 3 < k < 1. These are the

coefficients of the tensor product B-splines that might be nonzero when 77 = 1/2. However,

fixing these coefficients affects the mapping T not only on [0,1] x [ii,i/+i], but also on

the much larger band, [0,1] x [t/_3 ,t/+4 ]
seen in Figure 6

,
that is, the total support of

the associated tensor product B-splines. This band can be narrowed significantly by using

a larger number of knots for the t sequence and concentrating some near 1/2. However,

concentrating the knots too closely will affect the smoothness of the grid lines. On the

other hand, since a continuous B-sphne is close to zero near the boundary of its support,

all interface coefficients do not have an equal effect on the interface mapping. In particular,

allowing the coefficients ai^i-3 and for 1 < i < m to move appears to have very little

effect on the accuracy of the interface mapping. Nevertheless, at the outset, the interface

coefficients should be chosen to produce as much orthogonahty and smoothness as possible.

As expected, the results in the next section indicate that the type of blending functions used

in defining the initial coefficients is very important.

4. Results

For aU the examples shown, constants of values 1 and 10 are used for the Jacobian and orthog-

onahty weights, respectively, in the smoothing functional. As in [11], a simple minimization

technique, the cyclic coordinate method, is used to minimize a discrete approximation to

the functional. The number of spline coefficients used to define the grid generation mapping
is 2 X X Nr, where is the number of B-sphnes associated with sequence {5}, or the
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Figure 6: Support of tensor product B-splines nonzero when rj = 1J2.

sequence, and Nj, is the number associated with sequence {t}, the “t/” sequence. A
concentration of grid points near the interface (coordinate curve rj — 1/2) is obtained by

replacing r} with the hyperbolic sine function

, sinh(2c77 — c) — sinh(— c)
^ ^ sinh(c) — sinh(—c)

where c is a constant that determines the degree of concentration. To increase the accuracy

of the spline mapping and decrease the area affected by the interface coefficients, illustrated

in Figure 6, the sinh function is also used to concentrate the rj knots near the interface.

This means that the sequence {^(i)} is used instead of {t} in the definition of the mapping.

The values of c associated with these two types of concentration will be called the mesh

concentration and the knot concentration, respectively. It should also be noted that the

term “initial grid” is used to refer to any grid computed using the initial spline coefficients.

The first example illustrates the difficulty in extending the algorithm in [11] to develop a

grid that interpolates a solid-liquid interface. The bottom of the puzzle boundary displayed

in Figure 2 is now shown as an interface. This is similar to the re-entrant shape that

commonly appears in cellular microstructures. = 19 and Nr, = 20 for this example. To
obtain the transfinite approximation, the physical domain is divided into top and bottom

halves separated by the interface. In each section linear Lagrange polynomials are used as

blending functions to create a mapping that interpolates the boundary and interface. The
initial coefficients are chosen to create a variation diminishing spline approximation to the

transfinite mapping. A knot concentration of 3 is used to define the spline approximation.

In Figure 7 the mesh on the left shows a grid computed with the initial coefficients. As with

the original puzzle grid shown in Figure 2, one can see that the grid cells near the re-entrant

-9-



curve are skewed and overlap each other. Attempts to improve the grid by minimizing

the smoothing functional were unsuccessful. The grid on the right was computed using

coefficients obtained after twenty iterations of the cyclic coordinate minimization routine on

a 35 X 60 initial grid with mesh concentration equal 3.

Figure 7: Grids produced using biHnear blending functions. Initial grid is on the left. Grid

on right shows smoothing routine unable to improve grid.

The use of higher degree polynomials for the blending functions permits the creation of

mappings that not only interpolate the boundary and interface but also match derivatives

there. For example, using cubic blending functions in the rj coordinate, one can interpolate

the top and bottom boundaries, the interface, and the normal vectors at the interface.

However, even when orthogonality is obtained at the interface, polynomials of high degree

may produce a significant amount of skewness and overlap of grid cells elsewhere in the mesh.

Among the polynomials tested: Hnear, quadratic, cubic, and hermite quintic (fifth degree),

the hermite quintic polynomials produced the least amount of skewness and overlap. For aU

the grids that foUow, hermite quintic blending functions were used for the 77 coordinate and

linear Lagrange polynomials for the ^ coordinate. Unlike the previous example, the same

transfinite mapping is used over the entire domain. Boundary data input by the user is used

to define a continuous vector valued function f that maps the boundary of the square to

the boundary of the physical domain and the line 77 = 1/2 to the interface. The transfinite

mapping T is constructed to interpolate f on the boundary and match f and df/dr} at

77 = 1/2. It has the form

i=0

-10-



7=0

t=0 7=0

^ di.-
(«)

where ^o = 0, = 1 and 770 = 0, 771 = 1/2, 772 = 1. The hnear blending functions satisfy

= ^^3 for i,j = 0,1

while the hermite quintic blending functions and /3 satisfy

"^riVs) = ^TS

KM = 0

PiVs) = 0

P'iVs) = Su for r, s = 0, 1, 2 .

To force orthogonality at the interface, the components of the derivative

are chosen to be

dr}

drj

where

L = 'aAV /%
\{d^) +Ui.

and K is a. user defined orthogonality constant that regulates the magnitude of the normal

vectors at the interface. The variation diminishing spline approximation to T produces the

mesh shown on the left in Figure 8. As in the first example, the knot concentration equals

3, = 19 and Nr, = 20. The orthogonality constant A" is 3. Although the grid cells

are skewed in some areas, the grid is more orthogonal near the interface than the previous

example. Hence, the initial grid already looks fairly good there. This is important since

most of the interface coefficients remain fixed throughout the minimization process. Using a
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Figure 8: Grids produced using linear and hermite quintic blending functions. Initial grid is

on the left. Grid on right was produced after twenty iterations of smoothing routine.

35 X 60 initial grid with mesh concentration 3, the optimization routine easily improves the

smoothness and general orthogonality of the grid cells. This is illustrated in the grid on the

right, computed after twenty iterations.

To illustrate the flexibility of the grid generation routine, the next six grids show a typical

deformation of an interface from a planar shape to a deep cell. The grids were constructed

independently of each other. That is, each grid was created by first starting with boundary

data and interface data for the specific interface shape. An initial grid was formed from

the spline approximation to the transfinite mapping using a knot concentration of 3. For

all the grids, K = 2^ and A/,, = 24. The 2 x x Nr, spline coefficients were then

iterated on to minimize the smoothing functional. Except for the planar grid which required

no iterations, the grids shown were produced after twenty iterations using a 30 x 60 grid

with mesh concentration 4. Although aU the grids are relatively smooth, one can see that

smoothness and orthogonahty are harder to maintain as the cell deepens.

The final example shows a grid constructed for a deep re-entrant cell. Figures 12 and

13 show the mesh after 0, 1, 5, and 10 iterations, respectively. The orthogonahty constant

K = 2, = 18, Nr, = 24 and the knot concentration is 3. The minimization was done on a

60 X 50 grid ivith mesh concentration 4. ]^lote that the initial grid overlaps itself several tim.es

in the area underneath the bulb-hke bottom. The smoothing routine is able to untangle this

area after only five iterations.
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Figure 9: Deformation of a solid-liquid interface. Stages 0 and 1.
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Figure 11: Deformation of a solid-liquid interface. Stages 4 and 5.

Figure 12: Re-entrant interface shape. Initial grid on left shows skewed and overlapping grid

cells. Grid on right produced after 1 iteration of smoothing routine.
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Figure 13: Re-entrant interface shape. Grid on left produced after 5 iterations of smoothing

routine. Grid on right produced after 10 iterations.

5. Conclusions

Progress in the development of an algebraic grid generation system that tracks a sohd-liquid

interface has been discussed. The proposed grid generation mapping effectively interpolates

interior curves of varying degrees of complexity from planar to deep re-entrant grooved

shapes. Transfinite blending function interpolation appears to be a good method for creating

an initial grid if the blending functions are chosen appropriately. Additional study wiU be

continued in this area.

Currently, the grids are developed by starting with the boundary and interface data for

a particular shape. Hence, the grid generation problem becomes quite challenging for deeply

grooved and narrow re-entrant shapes. In an actual application, the initial grid will be the

grid used in the previous iteration. Therefore, the interface change should be more gradual.

Hopefully, starting with a previously developed grid wiU allow the system to generate meshes

for interfaces that are more narrow and grooved. This is the current area of study.

The next phase wiU be to couple the grid generation algorithm with equations that

determine the interface shape so that the system can be used in the numerical analysis of

microstructures that develop during directional solidification. Although the system will be

designed to track the deformation of a planar interface into a deep cell, it may also be used

to improve calculations in phase field models where the interface is not viewed as a curve or

surface with zero thickness. Accuracy can be improved by concentrating the grid points in
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the area near the interface even if the interface is not tracked exactly.
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