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Observations About Joined Circular Arcs

Christoph Witzgall, NIST

Abstract. Smoothly joined pairs of circular arcs - termed biarcs - may serve as a device

for data fitting with smooth piecewise circular curves. Geometric properties of such biarcs

are investigated.

Key words: biarcs, circle pencils, cocyclic tangents, curve-fitting, piecewise circular, plane

geometry

Introduction. There is interest in interpolating and approximating strings of points in the

plane by piecewise-circular smooth curves because that representation lends itself readily

to some computer-automated manufacturing processes. In particular, when interpolating

a string of given consecutively distinct planar points, it is commonly assumed that these

points are also the “knots” of the interpolating piecewise-circular curve, that is, the points

at which successive circular arcs connect. If an initial direction is specified, such interpolating

curves are uniquely determined by the string of points. This interpolation problem becomes

overdetermined, however, if directions are prescribed at all points of the string. In that

case, pairs of circular arcs joined together smoothly at some suitable intermediate point -

configurations termed “biarcs” (K.M.Bolton [3])
- can be used to connect successive points

with prescribed directions. Several geometric observations concerning families of biarcs will

be reported in this paper.

It is unlikely that some of these observations have not been made before, particularly

in the older literature, but search for a record has been unsuccessful so far. For general

geometric background material, the reader may want to consult H.E.Baker [1], M.Berger [2],

R.A.Johnson [4], or D.Wells [5].

1. Circular arcs and biarcs. The

(1.1) “circular arcs”

considered here are directed and have distinct start and endpoints. Also, they should not

cover a full circle. Depending on whether they move counterclockwise or clockwise, they are,

respectively, defined as the directed curves

A = {{x,y) € R2
: x = x + r cos p, y = y + r sin p, p B < p < pe },

where p„ < pe ,
and

A = {(x, y) £ R2
: x = x + r cos p, y = y + r sin p, p B > p > y? e },
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where ipa > ipe - In both cases, it is understood that 0 < <pa < 2tt and
|

ipe — (p a
\

< 2n. In

the above definitions, the point (x,y) is the center of the arc, and r > 0 is its radius. At

every point
(
x(ip ), y(<p)), a circular arc A has a tangential direction (— sin cp, cos <p), the term

“direction” being reserved for vectors of length 1

.

For each circular arc (1.1), there is a

(1.2) “complement

”

or “complementary arc

”

that is, the arc

A = {(z>2/) € R2
' x = x + r cosip, y = y + rsiny>, <p s > ip > <pe },

or the arc

A = {(x,y ) e R
2

: X = x + rcosy>, y = y + rsin(^, ip a < ip < <pe },

respectively. In other words, the complement of a conterclockwise arc is the clockwise axe

with the same start and end angles, and vice versa. The union of a circular arc and its

complement covers a circle, duplicating only the start and endpoints.

In the context of piecewise circular curves, straight line segments

A = {(x,y) e R2
: x = x a + 9(xe - x a ), y = ya + 6(ye - ya ), 0 < 6 < 1},

with
(
x a ,ya ) (

xe ,ye ), are typically considered among the circular arcs, representing the

degenerate case r = oo. Included among those

(1.3) “line-degenerate arcs

”

are also cures which consist of an entire line but exclude a straight line segment. Such an

“arc” is of the form

A = {(x,y) G R 2
: x = x a + 6(xe - x a ),y = y9 + 6{ye - ya ), 0 > 6 or 6 > 1},

may be viewed as a straight line segment passing through oo, and will be considered the

complement (1.2) of a finite straight line-degenerate arc. The tangential directions of line-

degenerate arcs are given by

1

L

depending on whether the axe is finite or infinite. Those tangential directions axe the same

at each point of a line-degenerate axe.

Two axes joined together smoothly, that is, the endpoint of the first arc is the start point

of the other and the tangential directions of the two arcs coincide at that juncture, form

what is called here a

(xe - x a ,ye - ya )
with L = yj(xe - x a )

2 + (ye - ya )
2

,
+-(xe - x a ,ye -ya )
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(1.4) “biarc”.

The point at which the two arcs of a biarc meet is called its

(1.5) “knot”.

The start point of the first arc and the endpoint of the second arc will be considered the

(1.6) “origin" Pa and the “destination” Pd

of the biarc. Correspondingly, the tangential directions of the respective arcs at the origin

and the destination will be referred to as the

(1.7) “origin” and “destination (tangential) directions” T0 and Td

(||T0 ||
=

1

1 Tj ||=1) (Figures 1 and 2). Note also that the arcs of a biarc may be line-degenerate

(1.3) (Figure 3).

The complements (1.2) of the two axes in a biarc form again a biarc, the

(1.8) “complement” or “complementary biarc

”

of the original biarc. Figures 2 and 3 dis-

play instances of biarcs together with their complements. The latter are indicated by dashed

lines. The heavy lines with arrows at the origin PQ and destination Pd indicate the tangential

directions T0 and Tj, respectively.

It will be shown that, given any two distinct points P0 ^ Pd with tangential directions Ta
and Td ,

biarcs exist which originate at PD in direction Ta and terminate at Pd with direction

Td

.

Indeed, the following simple construction will work in most cases. Choose a circle that

avoids point Pd but passes through PQ with tangent T0 . Then there exists usually a unique

second circle through Pd with tangent Td that touches the first circle at, say, point K. The

two constituent arcs of a suitable biarc are then chosen in the obvious fashion from the two

circles with point K as knot. This argument will be made more precise later on (see Lemma

(3.4)

.

Since there is one degree of freedom in the choice of the first circle, the biarcs meeting

the above specifications may be expected to form a 1-parameter family, as do the knots of

these biarcs.

The purpose of this work is to characterize the locus of knots of such families of biarcs.

2. Families of biarcs. Let

(2.1) B{P„,Tc,Pd,Td)

denote the family (=set) of biarcs from Pa to Pj, assuming the two given tangential directions

T0 and Td ,
respectively, at those points. Within that family, biarcs are determined uniquely
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by their knots. The biarcs in the

(2.2) “complementary family ” B = B{P0 ,
—Ta ,

Pd, —Td

)

are complementary (1.8) to the biarcs in the family (2.1), and vice versa. Any family of

biarcs B and its complementary family B have therefore the same set of knots. Of interest

will be the relationship of the family (2.1) of biarcs to its

(2.3) “opposite family ” B* = B(P0 ,
T0 ,

Pd, —Td)

that is, the family that differs from (2.1) only in that the destination direction is reversed.

Figures 1 and 2 feature biarcs of opposite families.

The straight tangent line through the origin PQ in direction T0 ,
and the analogous line

through the destination Pd of the biarc in direction Td, will play a role in the subsequent

geometric arguments, and will be referred to as

(2.4) end tangents

of the family of biarcs (2.1). Note that the complementary family (2.2) and the opposite

family (2.3) both have the same end tangents as the original family.

3. The symmetric case. Before examining that problem in general, an important special

case requires attention. Given the tangential directions T0 and Td, suppose that the vector

T0 + Td does not vanish and is parallel to the base line PQ ,
P

t

d

:

To + Td = 7](Pd - PQ ), 7
? ^ 0

(see Figure 4). In this case, the simple construction of a specified biarc outlined in Section 1

does not work. However, there exists a single circular arc A from origin PD to destination Pd

with the prescribed tangential directions T0 and Tj. Thus any point on arc A - other than

P0 or Pd - can be chosen as a knot K between two circular subarcs. Such a family of biarcs

Ba will be called a

(3.1) “symmetric family ”,

and the circle containing axe A will be referred to as the

(3.2) “source circle”

of the symmetric family B a . Definition (3.1) includes the family B(P0,T0 = T,Pd,Td = T),

with direction T parallel to the base line P0Pd • In that case, the arc A is line-degenerate

(1.3), and the source circle becomes the base line.

The following observation highlights the special role of symmetric families.
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(3.3) Lemma : All biarcs in a symmetric family Bb are contained in its source circle.

Proof. Let Aa and Ad be the first and second arcs of a biarc in a symmetric family, and let

C0 and Cd be their respective circles. There are two circles C i and C2 tangential to circle

C0 and passing through Pd with tangential direction Td- One of these two circles must be

Cd- In order to distinguish which circle is in fact Cd

,

consider the orientations conferred on

circle CQ by tangential direction T0 and on circles Cx and C2 by Td - Then one of the two

circles C x and C2 touches circle CQ with equal tangential direction, whereas the other touches

C0 with opposite tangential direction. The former circle must be the one which equals Cd,

because biarcs must have equal tangential directions at their knots. Circle Cd is therefore

uniquely defined by the above conditions. It is now easily seen, that the source circle also

meets these conditions: it passes through Pd with tangential direction Td, through P0 with

tangential direction PQ ,
and thus touches circle CD at Pa with common tangential direction.

It coincides, therefore, with Cd, which implies that arc Ad is contained in the source circle.

By symmetric argument, it follows that arc A a ,
too, is contained in the source cycle.

In view of Lemma (3.3), the following statement holds only in the nonsymmetric case.

(3.4) Lemma: Given a nonsymmetric family B = B(Pa ,
T0 , Pd, Td), and any circle CQ through

origin Pa with tangential direction T0) but not meeting destination Pd, then there exists in B
a unique biarc whose first arc A is contained in the circle CQ .

Proof. Since Pd Cq ,
the same argument as in the previous proof shows that there is a

unique circle Cd which passes through Pd with tangential direction Td and touches circle Ca

with common tangential direction at some point K

.

Now K ^ PQ as otherwise family B
would be symmetric. Arc A a can thus be chosen as proceeding in circle C0 from origin Pa

to knot K. As K € Coy but Pd & Ca by hypothesis, K ^ Pd, and there is a circular arc Ad
from K to destination Pd within circle Cd- The two arcs Aa and Ad combine to form a biarc

in family B. The knot K of that biarc is uniquely defined by the parameters of the family

B and the choice of circle CQ ,
and so is the biarc.

By Lemma (3.3), all knots of biarcs in a symmetric family (3.1) must lie on a circle,

namely the source circle, which contains the circular arc A from origin PQ to destination Pd

with correct tangential directions Ta and Td- Choosing a knot K on the source circle outside

arc A will result in an

(3.5)

“overlapping biarc”.

Indeed, the first arc of such a biarc will stretch from origin Pa to knot K
,
passing the

destination Pd along the way, while the second arc starts at knot K and passes origin Pa on

the way to its endpoint Pd - all within the same circle (or straight line). The proof of the

following proposition is left to the reader.

(3.6)

Proposition: Symmetric families (3.1) are the only families of biarcs (2.1) which contain
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overlapping biarcs (3.5). All nonoverlapping biarcs are simple curves, that is, they do not

have multiple points.

It is also seen, that if overlapping biarcs are accepted, the locus of knots of biarcs in a

symmetric family (3.1) is a circle through the origin Pa and the destination Pd, with these

points removed. In the following section, It will be shown that this statement holds in

general.

4. The knot circle. The the following is a necessary condition for a point to be realizable

as knot of a biarc in the family of biarcs (2.1).

(4.1)Proposition: The locus of knots of bi-arcs in the family B = B(P0 ,
Ta , Pd, Td) is contained

in a unique circle, the

t(
knot circle ”

,

through the points P0 and Pd- The knot circle may degenerate to a straight line.

Proof. Two main cases are illustrated in Figures 5 and 6, respectively. A special case

is examined with reference to Figure 7. Of course there are further cases that need be

examined for a complete proof. In all of them, the proof proceeds in analogous fashion.

Exhaustive proofs may be obtained by routine analytical procedures. In this exposition,

however, arguments are based on elementary geometry axe preferred because they ilustrate

the underlying geometrical relationships.

Figure 5 displays a biarc in family B{P0 ,
T0 ,

Pd, Td). It starts at point P0 in direction Ta ,

moves along an arc until it meets a second arc at knot K. That second arc terminates at

the point Pd in direction Td- The following relations between the angles indicated in Figure

5 are obvious:

It follows that

0} + p + O = 7r

a = 2p

P = 2a

a + (3 + 7 = 7r.

a + (3p-a = 7r

2

The angle u thus depends only on the angle 7 ,
and is therefore independent of the knot

position K. In other words, the line segment PaPd appears from any knot K under the same
angle, and lies therefore on a circle through points Pa ,

Pj.
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For the angles displayed in Figure 6, one finds the similar relationships

and consequently

Uf + p + cr = 7T

a = 2p

P = 2a

a + (3 = 7-

a + P
p — (7 — 7T

2

Again uj is constant, and the locus of the knots is therefore part of a circle passing through

the points Pa and Pd.

If the origin direction Ta equals the destination direction Tdl then the corresponding

family of biarcs (see Figure 7)

Bp = B{P0,T0,Pd,Td = T0 )

will be called a

(4.2)
u
parallel family”

of biarcs. It is readily seen, that any point on the full straight line P0Pd with the exception

of the points Pa and Pd is the knot of a biarc. To see the converse, consider a biarc in Bp

with knot K. Let a denote the angle between the line P0Pd and any of the two parallel end

tangents (2.4) of family Bp ,
and draw a straight line through K at the supplementary angle

7r — a to the line P0Pd . As indicated in Figure 7, this line intersects the end tangents in

points Ia and Id . The triangles P0KI0 and PdKId are similar, and the points K,P0,Pd are

therefore collinear.

(4.6) Proposition: A point K ^ PQ ,
Pd on the knot circle of a family of biarcs B(P0 ,

T0 ,
Pd ,

Td )

determines in that family a unique biarc which has K as a knot.

Proof. In Section 3, the proposition was established for symmetric families (3.1) of biaxcs. It

is thus assumed that the family B of biarcs is not symmetric. Consider the circle (or straight

line) C0 through K and PD with tangential direction T0 . Then by Lemma (3.4), there exists

a biarc in B with knot K'. Both K and K' belong to the knot circle as well as to C0 . Since

C0 is not the knot circle - that would be the symmetric case -, the knot circle and CD have

at most two points in common, one of them being P0 . Since neither K nor K' is equal to

P0 ,
they must share the remaining location. Thus K = K'

.
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5. Characterizing knot circles. Consider any family B = B{P0,T0 , Pd,Td) that is not

symmetric (3.1) and whose opposite (2.3) family B * = B(P0,T0 , Pd, —Td) is not symmetric

either. Then both B and B* contain biarcs that are partially line-degenerate (1.3). Indeed,

since the origin Pa does not he on the end tangent through the destination Pd, there exists a

circle through Pa that is tangential to both end tangents. By the nonsymmetry assumptions,

that circle does not meet Pd, and by Lemma (3.4), there exists a biarc whose first arc A0

belongs to that circle, whose knot K ^ Pd lies on the other end tangent, and whose second

arc is, therefore, line-degenerate. Figure 8 shows such a biarc, where the second arc moves

from knot K on the end tangent through the infinite point of the latter to the destination

Pd-

Note that in either case the knot K is in symmetric position vis-a-vis the origin Pa ,
that

is, it represents the mirror image of PD with respect to an angle bisector of the the end

tangents (2.4). More precisely, symmetry holds with respect to this bisector - drawn dashed

in Figure 8 - whose direction is parallel to T0 — Td, ||T0 ||
= ||Tj|| = 1. This symmetry implies

that the center Ck of the knot circle is to be found on the that bisector of the end tangents.

In the case of a symmetric family B, the knot circle coincides with the source circle (3.2) of

that family. The knot circle of the opposite famliy B * is the circle through PQ and Pd centered

at the intersection of the end tangents, if the end tangents have a unique intersection. The

proof of this fact, and the examination of remaining special cases is left to the reader. With

suitable interpretations of infinite points and lines, the following proposition holds.

(5.1) Proposition : The knot circle of a family of biarcs B(P0,T0 , Pd,Td) is the unique circle

or straight line, passing through origin PQ and destination Pd, whose center lies on the line

bisecting the two end tangents of the family in the direction parallel to the vector % — Td

Figure 8 also displays the knot circle of the opposite family, showing the two knot circles to

be mutually orthogonal. In what follows, this observation will be confirmed in general.

6. Circles centered on alternate angle bisectors. In this section, the two sets of circles

centered, respectively, on a pair of orthogonal lines will be examined. In particular, we will

establish the

(6.1) Proposition: Consider the two families of circles centered, respectively, on two mutually

orthogonal lines intersecting at a point S. Consider a pair of circles, one from each family,

intersecting in two points P\ and P2 . That pair is orthogonal if and only if the lines through

S and Pi and S and P2 are mutually symmetric with respect to the orthogonal lines.

Proof. Figure 9 shows two - dotted - circles centered, respectively, at point Cx on the

horizontal line through the point 0, and at point Cy on the vertical line through 0. The
two circles are orthogonal if and only if the triangle CxI\Cy is a right triangle. In that case,

the five points Cx,0,I\,Cy,I2 he on a third circle. It follows that a and (j) are peripheral
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angles of that circle over the chord CyIi; thus a =
(f>.

Analogously, /3 = <f>,
and therefore

a = (3. This proves the “only if’ direction of the proposition.

Now suppose a = (3. Then the chord Iil3 of the circle around Cx is bisected by the

horizontal line through O. The angle p is therefore one half of the center angle of the chord

I1 I3 . On the other hand, the angle a is a peripheral angle of that chord. Thus p = a.

Considering triangle OS/2 ,

_ . 7T . 7r _

cr = 7T -P-(- + e) = --P-e.

Since the angle at Cx of triangle CyCxO is given by 7r/2 - e,

Thus p = a imphes (3 = <J)
= a. The angle a at point O, and the angle

<f>
at point Cx are

equal angles over the same line segment I\CV . Therefore the four points Cx,0,Ii,Cy axe

cocyclic. Since triangle CxOCv is a right triangle, the triangle CxI\Cy is too.

(6.2) Corollary: The knot circles of two opposite families (4.2) of biarcs are mutually orthog-

onal. If the two end tangents shared by those families are parallel or identical, one of the

knot circles may degenerate to a straight line.

7. The knot-tangent circle. What can be found about the

(7.1) “fcnot tangents”

to biarcs at their knots? It turns out that many results remain true if the roles of lines and

circles are interchanged.

(7.1) Proposition: The knot tangents of a family of biarcs B = B(P0,T0 ,
Pj, Tj) are cocyclic

in the sense that they are all tangential to the same

(C
knot-tangent circle ”,

which is concentric with the knot circle (4.1) tangential to both end tangents (2.4).

Proof. Figure 10 illustrates a major case. A biarc in family B is shown, with arc A 0 from

origin point P0 to knot K followed by axe A4 from K to the destination point Pj. By
Proposition (4.1), the knot K lies on the - heavy dotted - knot circle, centered at Ck • It is

claimed that the - heavy solid - knot tangent of the biarc is also tangential to the - heavy

dashed - knot-tangent circle, also centered at Ck and tangential to the end tangents, which

axe determined by the tangential directions T0 and Tj.

In Figure 10, C0 is the center of the circle through arc A0 . This circle intersects the

knot circle at the points Pa and Pj. The - dashed - line through the centers C0 and Ck,
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respectively, of those two circles is a line of symmetry for both. In particular, the points

P0 and K are in symmetric position, and so are the end tangent through Pa and the knot

tangent through K. Since the above end tangent is also a tangent of the knot-tangent circle,

whose center lies on the line of symmetry, the symmetric image of the end tangent through

P0 is again a tangent to the knot-tangent circle. But that symmetric image was already seen

to be the knot tangent.

Note that in the symmetric case (3.1), the knot-tangent circle coincides with the knot

circle (4.1). For a family of biarcs opposite (2.3) to a symmetric family, all knot tangents

pass through a single point, the intersection of the two end tangents. In the parallel case

(4.2), all knot tangents are parallel to each other.

8. Resulting theorem on circle pencils. The results of the previous sections yield a

theorem on “circle pencils”
,
that is, sets of circles whose equations

F(x,y
)
= Q{x 2

-f y
2

) -f Ax + By + C = 0

are linear combinations, with weights Ai and A2 that do not vanish simultaneously,

F(x,y) = Ai Fi{x,y) + A 2F2(x,y),

of the equations Fx (x,y) and F2(x,y), respectively, of two distinct circles. Some of the

resulting equations F(x,y) = 0 may have complex solutions only. Also, if the above circles

are not concentric, the above pencil contains a single straight line

F2(x,y) - Fx (x,y) = {A2 - A x )x + (B2 - Bx )y + (
C2 - Ci) = 0

known as the “radical axis” of the circle pencil. Examples of circle pencils include the set of

all circles - and the straight line - through two distinct points as well as the set of all circles

orthogonal to the circles in that pencil. Of interest here are

(8.1) “tangential circle pencils”.

Such a pencil consists of circles which are all mutually tangential at the same point and

whose radical axis is therefore a common tangent to all. The end tangent through PQ and

the end tangent through Pd, where P0 and Pd are the origin and destination, respectively, of

the biarcs in a family (2.1) B(P0) T0 ,
Pd, Tj), define two such tangential circle pencils, which

figure in the following theorem.

(8.2) Theorem: Given straight lines A0 and Ad in the plane. Select point P0 £ A0 and point

Pd £ Ad such that Pa ^ Pd . Consider the tangential pencil Co of circles passing through point

P0 with tangent Aol and the analogous tangential pencil Cd of circles tangential to line Ad at

point Pd.

If the lines A0 and Ad have a unique intersection S
,
then

10



“locus of tangential points ”,

that is, the locus of all points at which a circle in pencil Co touches a circle in pencil Cj,

consists of the two m utually orthogonal circles intersecting each other at the points Pa and

Pd, and centered, respectively, on the two angle bisectors of the lines A and Ad at their

intersection S

.

If the lines Aa and Ad are parallel or identical, then the locus of all tangential points

consists of the straight line PDPd together with the circle through points Pa and Pd centered

at the intersection of line P0Pd with the mid-parallel Am of the parallels Aa and Ad.

In the general case,

“the set of common tangents”,

that is, the set of all tangents common to two tangential circles at their common point

consists of the tangents to two circles. These circles are tangential to the given lines A and

Ad, and are concentric with the above mentioned pair of mutually orthogonal circles which

are the locus of all tangential points. In special cases, one of the circles described by the set

of common tangents degenerates to a single - possibly infinite - point.

In this formulation, single points are considered circles of radius zero and tangential to any

other circle on which the lie. For this reason, the points PQ and Pd themselves are not

excluded from the above description of the locus of osculation points of two circle pencils.

A similar convention leads to counting the lines A a and Ad among the common tangents.

The above theorem was about two distinct tangential circle pencils (8.1). It might be

conjectured, that the locus of tangential points of any two circle pencils consists of circles.

Simple counterexamples show this not to be the case.
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Figure 1: Biarc extending from point Pa with tangential direction Ta to point Pd with

tangential direction Tj. The biarc consists of a circular arc from PD to the knot K and a a

second circular arc from K to Pd- Both circular arcs have the same tangent at knot K.

12



Figure 2: Origin Pa ,
destination Pd, and tangential direction Ta are as in Figure 1, but the

tangential direction Td at Pd has been replaced by its opposite. The biarc displayed here

and the one shown in Figure 1 thus represent opposite families. The dashed curve indicates

the complementary biarc.
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Figure 3: Example of a biarc containing a line-degenerate arc. The biarc follows a proper

circular arc from origin Pa to knot K
,
and continues straight in direction Td to oo, passes

through oo, and returns within the same straight line of direction Td to destination Pd- The

dashed lines indicate the complementary biarc.
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Figure 4: Biarc in the symmetric case. The two circular arcs connecting at K belong to the

same circle.
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Figure 5: Illustration of first main case in the proof of Proposition (4.1).
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Figure 6: Illustration of second main case in the proof of Proposition (4.1).
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Figure 8: Characterization of the knot circle. A knot K is found by proceding from Pa along

a circle tangential to both tangent lines and then following a line-degenerate arc. The knot

circle is P0PdK. Dots indicate the knot circle of the opposite family.
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Figure 9: Illustration of proof of Proposition (6.1).
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Figure 10: The knot-tangent circle - heavily dashed - and the knot circle - dotted - are

concentric.
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