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Abstract

We report recognition results for several pattern classifiers trained and tested on disjoint sets of 30620 digits

selected from the first 500 writers of NIST Special Database 3. The classifiers are ubiquitous in traditional

pattern recognition literature (minimum distance, maximum a posteriori, nearest neighbor) as well as neural

network literature (multilayer perceptron, radial basis functions, probabilistic neural network). For the purpose

of valid comparison of classifiers fixed sets of Karhunen-Loeve Transforms, were used as features. These were

produced from images preprocessed using the fixed methods for size and orientation normalization. The “K-

means” clustering algorithm is used to produce subclasses thereby supervising training and aiding recognition.

Graphical displays of classification and associated confidences illustrate classifier complexity. Recognition error

rates for all the classifiers are tabulated as a function of feature vector dimension. Computational and memory
requirements of the different classifiers are also compared.

1 Introduction

Optical Character Recognition (OCR) has been a popular focus of Pattern Recognition research since at least the

1960’s. The ready availability of image samples and the continuing challenge of commercially viable recognition

has meant that OCR research is ongoing. However classification of loosely constrained handwritten digits, at

least, is essentially a solved problem [1].

A good review of OCR is found in [2]. The huge quantity of research from academia and industry has yielded

a multitude of algorithms for normalization [3] [4], feature extraction [5], and classification [6] [7] [8] [9], that

are capable of digit OCR. The popularity of OCR research was maintained with the advent of neural network

paradigms applicable to feature extraction and classification. The advantage of many neural network classifiers,

once trained, is their efficiency, and despite advances in computational resources, future commercial segmentation

and recognition efforts [10] [11] will be precluded from using numerous techniques from the literature because of

their algorithmic computational requirements. The trade-off between classification performance and computa-

tional requirements has prompted this study of digit classifier efficacy. The reader should see Kimura et al. [12]

for a similar survey.

2 NIST OCR Databases

The classifiers described in this report were trained and tested using feature vectors derived from the digit images

of NIST Special Database 3 [13]. This database consists of binary 128 by 128 pixel raster images segmented from
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Figure 1: Components of Classification System

the sample forms of 2100 writers published on CD as [14]. External results on segmentation and recognition of

this database have been reported [15]. The relative difficulties of the NIST OCR databases have been discussed

in [16]. For this study samples are drawn randomly from the first 250 writers to yield a training set of 7480 digits

with a priori class probabilities all equal to 0.1. Even for digits, depending on the application, certain classes may
be more prevalent; in banking tasks, for example, “0” is more common. The test set is similarly constructed from

the second 250 writers yielding 23140 samples. The images are size normalized by pixel deletion, stroke width is

bounded by binary erosion and dilation, and consistent orientation is effected by row shearing.

3 Components of Classification System

Each experimental OCR classifier notionally comprises the modules of Figure 1. The ovals indicate inputs and

outputs, the rectangles represent processing modules, and the arrows show logical procedure. A 32 pixel square

raster contains the normalized digit image. The feature extraction module linearly transforms the binary data

yielding reduced dimensionality classifiable features. The next module is the bank of “Discriminant Functions”.

There are as many discriminant functions as there were clusters in the training set. For several classifiers more

than one cluster per class was used. Each function maps an n dimensional extracted feature vector to a scalar

which adopts a large value if the unknown input is of the cluster corresponding to that particular discriminant

function. The values produced by the bank of discriminant functions are sent, finally, to both the “Class Finder”

and the “Rejector”. The class finder infers the hypothesized class from the discrimant values associated with each

cluster, yielding the classifier’s best guess of the class. The rejector module computes a “confidence function”

of the discriminant values, compares the result with a specified threshold, and thereby indicates whether the

unknown should be accepted or rejected. Rejection implies the hypothesized class is not trustworthy and such

examples are either ignored or reclassified more robustly.

4 Feature Extractor

The normalized input images are 2^ pixels high and the width is less than or equal to the height. Raster

dimensionality is 2^°. A lower dimensionality feature vector is obtained as the incomplete Karhunen-Loeve (K-L)

transformation of the image, typically of useful dimension < 2®. The K-L transformation is an orthonormal

function and corresponds to projection of the images onto the eigenvectors of the covariance matrix of the image
data. (The production of this transform is also known as principal factors or principal components analysis.) The
covariance matrix is diagonalized (using, for example, EISPACK serial Fortran routines) producing the largest

eigenvalues and corresponding eigenvectors. Feature extraction is thus the application of an affine function to
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Figure 2: Eigenvalues and Eigenvectors. The latter are shown in eigenvalue order top to bottom then left to right.

Note the central support on the x-axis for the basis functions due to the tight constraints imposed by the size

normalization. It is visually apparent that several eigenvectors will have large correlations and anti-correlations

with several digit classes.

the image; the mean image vector is subtracted and the result is premultiplied by the matrix whose rows are the

eigenvectors. Thus each element of the K-L transform is the projection of the image onto a basis vector. The
sample variance of that element is the respective eigenvalue, which is therefore a measure of its “size”. Only 64 of

the eigenvectors were retained with eigenvalues ranging from 72.9 down to 0.9. Figure 2 shows the eigenvalues on

a log scale; their rapid decline implies that the information content of the K-L features is concentrated in the first

few features. This variance ordering of the features provides a consistent method for reducing the dimensionality

of the feature sets, the less variant coefficients being discarded first. Figure 2 also shows the leading eigenvectors.

Figure 3 shows locations of the 748 training examples per class represented using the first two K-L features.

Although graphical representation of high dimsensional spaces is the perennial problem for pattern recognition

it is apparent that two features are insufficient to separate all classes. Despite “0”s and “l”s, and “6”s and “9”s

separating reasonably, no classifier, in two dimensions, acheived better than 50% test set error.

Only one type of feature has been considered for this comparsion of classifiers. Although many other feature types

are known to be classifiable for OCR [17] [18], the Karhunen-Loeve transform is, among the unitary transforms,

an optimally compact signal representation of the original data. These features have the further benefit that

reconstruction of the images is possible and the K-L transform is optimal, for n coefficients of a unitary transform,

at mean square error between reconstruction and original. The variance ordering is useful for comparing classifiers

at reduced dimensionalities.

5 Feature Clustering

For several classifiers described below it is well known [19] that splitting class prototypes into clusters yields

improved performance. Indeed clustering algorithms can be used for unsupervised classification [20]. One readily

available method is the “K-means” algorithm [21] [22]. The examples are iteratively split into clusters as follows.

The first iteration starts with the cluster of all prototypes and computes the distances from each to the cluster

center. The second iteration divides the cluster into two, moving cases from one to the other until no further

movements decrease the distances between each case and the center of its assigned cluster. For subsequent
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Figure 3: Locations by class of the training samples. Compare these with the EMD classification map of figure

4. The horizontal and vertical cixes correspond to the first and second eigenvectors respectively.

iterations, the cluster with the largest variance is split and its prototypes are assigned to the cluster whose mean
is least distant. The means are then updated and reassignment continues until no movements are made for an

iteration. It is important to note that this distance clustering is classless such that clusters could be formed from

neighbors of different class. Supervison is enforced by application of the algorithm to each class independently.

6 Classifiers and Discriminant Functions

Each classifer consists of a bank of discriminant functions. The classifiers are separated into three categories. It

is, however, notable that the category names are somewhat arbitrary ant that some classifiers have attributes

of more than one category. In the statistical pattern recognition literature [23] the Parametric classifiers use

variables such as the expected means and covariances to express the class density functions. In assuming, for

example, linear and quadratic forms for our discriminant functions we categorize simple Euclidean Minimum
Distance (EMD), the more advanced Quadratic Minimum Distance (QMD) and the Normal (NRML) classifier

as parametric classifiers. The Non-Parameiric classifiers do not adopt a structured expression of the density

functions; two Nearest Neighbor classifiers, the popular K-NN and an improvement termed Weighted Several

Nearest Neighbors (WSNN) are considered. Finally, the Neural Net category contains the Multi-Layer Perceptron

(MLP), Radial Basis Functions classifiers of two types (RBFl and RBF2), and the Probabilistic Neural Net (PNN).

For each type of discriminant function, one or more diagrams are provided showing the resulting hypothetical

class regions in two-dimensional feature space. These diagrams show the hypothesized classifications of regularly

spaced feature vectors sampled over the square region centered on (0,0) and with extent large enough to contain

the training vectors. Restriction of this graphical representation to two dimensions is undeniably, but necessarily,

not ideal. These class maps should be compared with the real distributions of figure 3.

6.1 Notation

The notation below will be used in the descriptions of the discriminant functions.

L = number of classes. For digits, L = 10
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N
n

R"

X

M,

x(')

m,

S,

Si

?’^(x,y,z)

A(x)

number of clusters, N > L

dimensionality of features

the set of all n-tuples of real numbers = “feature space”

extracted “feature vector” of a digit (x 6 R"^)

number of training prints of cluster i {I < i < N)

feature vector from digit of cluster i {I Mi) (x^^^ £ R")

mean feature vector for cluster i {1 < i < N) {fj,i R")

an estimate of

covariance matrix for cluster i (1 < f < N){'Si G R"^*^)

an estimate of Si

(x — y)^(x — y) = squared Euclidean distance between x and y (x, y G R")

- yi)/zi)^

i= l

distance between x and y normalized by z (x, y,z G R")

discriminant function ( 1 < ? < -/V, x G R”

)

6.2 Parametric Classifiers

6.2.1 Euclidean Minimum Distance (EMD) Classifier

This is perhaps one of the simplest classifiers that one can design. Its discriminant functions are of the form

Di{x) = -d^(x,mi).

An unknown is assigned the class associated with the cluster of the highest-valued discriminant function. This is

equivalent to using the class label of the estimated cluster-mean that is closest, in the Euclidean distance sense, to

the unknown. In the one cluster per class case the hypothetical class regions are convex polygons. This classifier is

essentially the Perceptron (although the actual boundaries may be different) whose linear separability limitations

were described by Minsky and Papert [24]. Figure 4 shows the class regions when only two features are used.

The estimated cluster mean vectors m, are marked with plus signs.

6.2.2 Quadratic Minimmn Distance (QMD) Classifier

The training examples of each cluster i are used to produce sample covariance matrices, Sj, and estimated mean
vectors m, . The following discriminants are used;

A(x) = -(x - mi)'^S“^(x - mi)

z = A~^^J{x-m.i)

That is, the cluster mean, mj, is first subtracted from the unknown, and the result projected onto the eigenvectors

of the cluster i covariance matrix, and finally whitened by dividing each component by the root of the

corresponding eigenvalues A, This can be thought of as a form intermediate between EMD and the Normal

(NRML) classifier, described below. Figure 4 shows the resulting class regions; the boundary between any two

clusters is quadratic. When the number of clusters per class increases the inverse covariance matrices for a given

cluster are formed from a decreasing number of training examples. Computational difficulties occur when the

number of cluster examples forming the covariance is small. The rank of Sj may then be less than n and Si is

singular preventing its conventional inverse from being evaluated. It should be noted that QMD is not a true
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Figure 4: Parametric Classifiers. For EMD note the class boundaries are the perpendicular bisectors of segments

connecting pairs of class means. For QMD and NRML note the quadratic forms of the decision boundaries. The

+ signs indicate the locations of the estimated class means.

parametric classifier in the sense that the estimated conditional density functions do not integrate to unity. If

this condition is forced then the normal classifier results.

6.2.3 Normal (NRML) Classifier

This classifier is based on parametric density estimation that presupposes a multivariate normal distribution for

each class. First, it will be useful to mention a few facts that pertain to any parametric classifier, using the

following terminology:

p{i)

p(x)

p(x|i)

p(z'|x)

a priori probability of cluster i

loss incurred by classifying to i a print that is of cluster j (1 < < N)

mixture density: for 5 C R”, fgp(x)dx = P(x E -S')

conditional density: for S C R”, J^p(xli)dx = P{x € S\x is from a cluster-i print)

a posteriori probability: for a particular x, p(ilx) = P(x is from a cluster-i print)

Given a particular loss function A(i|j), the optimal or “Bayesian” classifier is the one that minimizes the expected

loss. Define the “symmetric” loss function in terms of the Kronecker delta:

A(i|;) = 1 - 6ij
0 i = 3

1 otherwise

This means that correct classifications produce no losses and that all kinds of incorrect classifications produce

equal loss values of 1 unit. In this case, the Bayesian classifier is the one that classifies each unknown x to the

cluster i for which the a posteriori probability p(i|x) is highest. According to Bayes’s rule [25],

.l„^ _ p(^Mxi^)

Since the value of the mixture density p(x) has no effect on which possible i value maximizes p(zlx), p(x) may be

disregarded. Also for a pattern recognition problem in which the a priori probabilities are the same then the p(f)

can be ignored. The result is to classify x to the cluster i for which p(x|z) is highest. For the Normal classifier

each cluster, i, is assumed to have conditional density function

p(x|f) = (27r)-t|Si|-5exp ^-^(x - /Xi)'^S~^(x - ^i)^ ,

where pLi and Sj are the mean vector and covariance matrix for cluster i. For classification the (27r)“ t term is

constant and may be discarded. Finally by replacing the mean vectors pi and covariance matrices Sj with their

sample estimates, mi and Si, squaring, and taking logarithms the discriminant function for the Normal classifier

becomes

Di{x) = -log|Si| - (x - mi)'’^Sj ^(x - mi).
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1-NN

Figure 5: Single Nearest Neighbor Classifier. Note the very intricate non-contiguous decision boundaries local to

each training prototype.

The hypothetical class regions are given in figure 4. The location of the means in that figure, indicated by the +
signs, shows that if x = nij then, in two dimensions, misclassification can result solely because of the determinant

terms.

6.3 Nearest Neighbor Classifiers

Nearest-neighbor classifiers have been the subject of decades of research (see, for example, Dasarathy’s collection

of papers [36]). The following are simple and ubiquitous yet effective examples of such methods.

6.3.1 k-Ne^L^est Neighbor (k-NN)

If ^ = 1, this is an elaboration of EMD; instead of using just nij, as a single prototype for the class, the 1-

NN classifier uses all of the class-z training examples as prototypes for the class. The 1-NN classification of an

unknown vector is simply the class of the nearest prototype. This rule is intuitively appealing, and Cover and

Hart [6] have shown it to have good asymptotic behavior: under mild assumptions, its large-sample probability of

error is bounded above by twice the Bayes (i.e. minimum possible) probability of error. The 1-NN discriminant

functions have the form:

T>j(x) = — min d^fx,

Figure 5 shows the class regions. Each region is the union of many convex polygons each containing a single

prototype of the class; hence, a class region is a very complicated polygon, not necessarily convex or even

connected. In the more general case voting between the k nearest neighbors is used. The majority class is used

as the hypothesis. The method is useful near class boundaries when the single nearest neighbor may be of the

wrong class but the majority are not. If Sx is the set of the k closest prototypes voting on the class of x then it

is the union of the sets of voting prototypes, S^\ containing only prototypes of class i. The k-NN discriminant

function is then simply the set size:

A(x) = |4‘>|.

6.3.2 Weighted Several Necirest Neighbors (WSNN)

A more elaborate form of the nearest neighbor method is to allow A: to be a random variable such that the number

of voting neighbors is different for each unknown. This classifier finds the closest prototype to the unknown, then

defines the “neighboring” prototypes to be those whose squared Euclidean distance from the unknown is less than

a times the squared-distance of the nearest prototype, where a is a constant. Further the number of “votes”

received by class i is divided by the square root of the sum of squared-distances of class-z near neighbors from the
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a = 1000

Figure 6: Weighted Several Nearest Neighbors. In the limit of small a this classifier defaults to 1-NN. Note the

fine grained structure throughout that is typical of nearest neighbor methods.

unknown, so as to diminish the importance of neighbors that are relatively far away compared to other neighbors.

Formally,

O'

4‘’

The discriminant functions are then

A(x) =
I

^
^

.

t 0 otherwise

Figure 6 shows the WSNN class regions resulting from a values of 50, 500 and 1000.

6.4 Neural Net Classifiers

6.4.1 Multi-Layer Perceptron (MLP)

This classifier is also known as a feedforward neural net. We have used an MLP with three layers (counting the

inputs as a layer). It will be convenient to define the following notation:

= number of nodes in layer {i = 0, 1, 2), N’l®! = n, = L

f{x) = 1/(1 + e“^) = sigmoid function

= bias weight of node of layer (A: = 1, 2; 1 < z <

= weight connecting node of k^^ layer to node of

{k - 1)‘^ layer (A: = 1, 2; 1 < z' < l<j<

= V

neighborhood-size factor

the set of indices of class-z training vectors that are

in the u-neighborhood of unknown vector x

1 < i < Mi,d‘^ (x, x^'^) < a min <f (x, x^^^) |
(

- \ 3 j i<k<N,i<p<Mk \ p y J

= number of “votes” for class z

The discriminant functions are then of the form

A(x) = /

For the training of the weights of this network, a reasonable procedure is the use of an optimization algorithm to

minimize the mean-squared-error, over the training set, between the discriminant values actually produced and
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Figure 7: MLP Clcissification and Confidence Maps. From left; class boundaries, highest discriminant value,

difference in highest two discriminant values.

“target discriminant values” consisting of the appropriate strings of I’s and O’s as defined by the actual classes of

the training examples. For example, if a training feature vector is of class 2, then its target vector of discriminant

values is set to (0,1, 0,0,0,0,0,0,0,0). It is more feasible to minimize this kind of an “error function” than to attempt

to directly minimize the number of incorrectly classified training examples, since the latter number will take on

only relatively few values and is a discontinuous “step function”. The error function is modified by addition of a

scalar “regularization” term [26]. This equals a tunable constant. A, multiplied by the mean square weight,

This term prevents large weights which are associated with overtraining, i.e. the overfitting of the weights to the

training data. This has been shown to increase the generalization ability of the network [27].

Networks of the MLP type are the most commonly used “neural nets” in use today, and they are usually trained

using a “backpropagation” algorithm [28]. A “scaled conjugate gradient” training method instead [29, 30, 31, 27]

has been preferred to the ubiquitous backpropagation method, speed gains of an order of magnitude being typical.

Figure 7 shows MLP class regions resulting from varying the first two inputs to a trained 8 input, 48 hidden unit

network.

6.4.2 Radial Basis Functions (RBFl and RBF2)

Neural nets of the Radial Basis Functions type get their name from the fact that they are built from radially

symmetric Gaussian functions of the inputs. Actually, the RBF nets discussed here use Gaussian functions that

are more general than radially symmetric functions: their constant potential surfaces are ellipsoids whose axes are

parallel to the coordinate axes, whereas radially symmetric Gaussian functions have spherical constant potential

surfaces. However, the name Radial Basis Functions has become customary for any neural net that uses Gaussian

functions in its first layer.

We have experimented with RBF networks of two types, which will be denoted RBFl and RBF2. The following

notation will be convenient:

= number of nodes in layer (i = 0, 1,2)

= center vector of hidden node (1 < J < G R”) = i

crO) = width vector of j*** hidden node (1 < i < R") = . .
.

,

= bias weight to the node of the layer

f{x) = 1/(1 + e“^) = sigmoid function

Wij = weight connecting i*** output node to hidden node (1 < f 1 < j <

Each hidden node computes a radial basis function. For RBFl, these functions are unbiased exponentials

d>j(x) = exp (-r2(x, crO))^
,
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Figure 8: RBFl Classification regions for increasing numbers of centers per class.

and for RBF2, they are of the sigmoidal form with bias

For either type of RBF, the discriminant function is the following function of the radial basis functions:

A(x) = /
i=i

The centers widths hidden-node bias weights 6^^^ (RBF2 only), output-node bias weights and

output-node weights Wij may be collectively thought of as the trainable “weights” of the RBF network. They are

trained initially using the cluster means (from a “K-means” algorithm applied to the prototype set) as the center

vectors The width vectors are set to a single tunable positive value. More sophisticated methods of

determining RBF parameters may be found in [32] [33]. The output layer weights are set such that each output

node is connected with a positive weight to hidden nodes of its class (that is, hidden nodes whose initial center

vectors are means of clusters from its class), and connected with a negative weight to hidden nodes of other

classes. Training proceeds by optimization identical to that described for the MLP. Figure 8 shows RBFl class

regions resulting from the use of up to 6 hidden nodes per class, and Figure 9 shows RBF2 class regions for the

same numbers of hidden nodes per class.

6.4.3 Probabilistic Neural Net (PNN)

This classifier is proposed in a 1990 paper by Specht [34]. Each training example becomes the center of a kernel

function which takes its maximum at the example and recedes gradually as one moves away from the example

in feature space. An unknown x is classified by computing, for each class z, the sum of the values of the class-z

kernels at x. Many forms are possible for the kernel functions; we have obtained our best results using radially

symmetric Gaussian kernels. The resulting discriminant functions are of the form

A(x) = ^exp (x,x5.^))

j
,
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2 3

Figure 9: RBF2 Classification regions for increasing numbers of centers per class.

where cr is a scalar “smoothing parameter” that may be optimized by trial and error. Figure 10 shows the PNN
class regions resulting from the use of cr values of 0.25, 1.00, and 5.00. Notice that a small cr value produces very

complex class regions similar to those of 1-NN, and that as cr is increased, the regions become simpler.

7 Class Finder and Rejector

The “Class Finder” module is a function mapping the discriminant values to a single index indicating hypothesized

class. In the most elementary case the index of the maximum indicates the class. The function may be more

complicated; discriminant values associated with the same class may be combined in some weighted voting.

The Rejector module produces a confidence value; it is a function of the discriminant values

a((T>l(x),...,Z);v(x)):R^-.R^

and it quantifies the assertiveness of the classifier for the unknown x. The simplest use of a is to subtract from

it some predefined threshold value, oq. A negative result implies rejection of the hypothesized class of x. This

mechanism allows examplars to remain unclassified with the intent of achieving a lower substitutional error rate

on those testing vectors whose classifications are accepted. This study only considers the simple strategy of

using the maximum discriminant value as the confidence. An error rate versus rejection rate plot is obtained by

selecting one confidence rule and varying the threshold oq. High thresholds cause rejection of more examples but

lower error rates on those accepted.

8 Comparison of the Classifiers

8.1 Accuracy

For each class z, the number of the 2314 class-i test digits that were correctly classified is denoted by Cj. Clearly,

Cj/2314 may be used as an estimate of the conditional probability of correct classification of a print given that the

actual class of the print is i. The mixture probability of correct classification is then the a priori weighted sum

11
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Figure 10: PNN Classification and Confidence Maps in 2 dimensions for increasing a values. From left: class

boundaries, highest discriminant value, difference in highest two discriminant values.

of the by-class probabilities. Table 8.1 shows for each classifier these estimated probabilities of error, expressed

as percentages, for increasing dimensionality of the K-L feature set.

Note that the optimal number of features (shown in bold) is not the same for all classifiers, the parametric

classifiers, QMD and NRML, being noticeably more parsimonious in the number of features required. It is also

apparent that most of the classifiers attain a plateau as the number of features reaches approximately 32 thereafter

only gaining several tenths of a percent. The best classifiers are the computationally expensive nearest neighbor

classifiers and their relative PNN. They achieve one third less errors than the neural networks and parametric

classifiers. The optimum value of a = 1.1 for WSNN corresponds to a 1-NN scheme for most test patterns.

Accordingly k-NN is seen to have a higher error rate for increasing k.

Figure 11 gives the error versus rejection profiles for the classifiers.

8.2 Computational Requirements

High training costs for a classifier can hinder experimentation, of course, and sufficiently large expense in training

can ultimately preclude the use of such a classifier. Of the algorithms described here, for a fixed size training

set, no classifier took more than three hours of workstation time. The neural networks are notoriously expensive

to train whereas the nearest neighbor methods, including PNN, require no training. Once off-line training is

12



System 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

knn:l 27.0 7.9 4.6 3.5 3.1 2.9 2.7 2.7 2.7 2.6 2.6 2.6 2.7 2.7 2.7 2.7

knn:3 23.7 7.1 4.2 3.4 3.1 2.8 2.7 2.7 2.7 2.6 2.7 2.7 2.7 2.7 2.8 2.7

knn:5 22.1 6.8 4.1 3.3 3.1 2.9 2.8 2.8 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8

wsnn:l.l 26.8 7.8 4.5 3.4 3.0 2.8 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.5 2.6

pnn:3.0 21.9 7.2 4.3 3.3 2.9 2.7 2.7 2.6 2.6 2.5 2.6 2.6 2.6 2.6 2.5 2.5

inlp;32 23.6 9.7 6.9 6.4 6.2 5.8 5.6 5.7 5.5 5.6 5.5 5.3 5.4 5.4 5.3 5.4

mlp:48 22.8 9.0 6.5 5.9 5.4 5.2 5.2 5.0 4.7 4.9 5.0 4.7 4.6 4.9 5.0 4.9

mlp:64 22.2 8.7 6.2 5.3 4.9 4.6 4.5 4.6 4.5 4.5 4.5 4.5 4.3 4.5 4.4 4.5

rbfl:l 29.8 14.3 13.2 13.0 13.4 13.2 13.1 13.9 13.0 12.6 13.4 12.6 13.2 13.3 13.2 13.2

rbfl:2 24.4 11.5 9.8 9.3 8.9 8.5 8.5 8.4 8.2 8.4 8.2 8.1 8.3 8.1 7.9 7.9

rbfl:3 22.7 10.0 8.0 61.4 7.1 6.7 6.6 6.5 6.5 6.5 6.4 6.4 6.2 6.4 6.2 6.3

rbfl :4 22.2 9.3 6.9 6.1 5.8 5.7 5.5 5.5 5.5 5.4 5.5 5.4 5.4 5.3 5.3 5.4

rbfl:5 21.4 8.9 6.4 5.5 5.0 5.0 4.7 4.9 5.0 4.9 4.8 4.7 4.9 4.9 4.7 4.6

rbfl:6 21.0 8.5 5.9 5.1 4.9 4.6 4.4 4.3 4.5 4.3 4.3 4.2 4.2 4.4 4.3 4.4

rbf2:l 28.5 71.3 11.7 9.9 9.7 8.7 9.5 9.1 9.1 9.2 8.6 8.8 8.8 8.9 8.9 8.9

rbf2:2 24.3 11.3 8.9 7.9 7.3 6.7 6.4 6.1 6.1 6.3 6.3 6.2 6.3 6.2 6.2 6.5

rbf2:3 23.0 9.9 7.2 7.0 6.1 5.6 5.5 5.0 6.0 5.4 4.9 5.7 4.9 5.0 5.6 5.0

rbf2:4 22.4 9.6 6.4 5.3 5.4 4.4 5.6 5.0 4.3 4.5 4.6 4.6 4.5 4.4 4.8 4.7

rbf2:5 21.7 8.2 6.0 5.1 5.3 4.5 4.6 4.4 4.6 4.4 4.4 4.4 4.2 4.1 4.1 4.0

rbf2:6 21.4 8.6 5.6 4.7 4.7 4.3 4.5 4.0 4.0 4.2 3.9 4.2 4.0 3.9 4.0 4.0

emd:l 37.3 19.1 17.3 16.1 15.6 15.2 15.1 15.0 15.0 14.9 14.9 14.8 14.8 14.8 14.8 14.8

emd:2 29.6 14.4 13.1 11.7 11.2 11.0 10.8 10.7 10.7 10.7 10.7 10.7 10.6 10.6 10.6 10.6

emd:3 26.8 12.7 10.8 9.3 9.0 8.8 8.8 8.7 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7

emd:4 25.4 11.9 9.5 8.1 7.6 7.3 7.3 7.4 7.3 7.1 7.2 7.1 7.1 7.1 7.1 7.1

emd:5 25.5 11.1 8.9 7.5 6.7 6.7 6.6 6.6 6.5 6.3 6.7 6.6 6.2 6.2 6.2 6.3

emd:6 26.4 10.7 8.2 7.3 6.1 6.1 5.9 6.1 6.0 5.7 6.0 5.8 5.9 6.0 5.9 6.1

emd:7 26.3 10.3 7.6 6.1 5.9 5.6 5.3 5.5 5.3 5.2 5.4 5.1 5.2 5.4 5.4 5.6

qmdil 26.2 10.0 6.3 5.1 5.0 4.8 4.9 5.1 5.1 5.2 5.3 5.6 5.6 5.8 5.8 5.9

qmd:2 23.6 9.2 5.8 4.9 4.7 4.7 4.9 4.9 5.0 5.2 5.3 5.5 5.6 5.7 5.8 5.9

qmd:3 25.8 9.1 5.4 4.5 4.1 4.0 4.5 4.7 4.9 5.1 5.3 5.4 5.6 5.9 6.0 6.3

qmd:4 25.5 8.9 5.7 5.0 5.0 4.5 4.9 5.0 5.3 5.5 6.1 6.3 6.5 6.9 7.2 7.6

nrml 26.1 9.9 6.3 5.1 5.0 4.8 4.9 5.0 5.0 5.2 5.3 5.5 5.6 5.5 5.5 5.6

Table 1: Dependence of Classification Error on KL Transform Dimensionality. Given with the classifier acronym

are: For k-NN the value of k, for WSNN the value of or, for PNN the value of cr, for MLP networks the number of

hiddens units, for RBF networks the number of centers per class, and for EMD and QMD classifiers the number

of clusters per class. Bold type indicates the dimensionality yielding minimum error for each classifier.

complete the classification rate is of more interest. The dominant term in recogniton rate is not classification

time but the cost of dimensionality reducing feature extraction. Pure classification rates, excluding the K-L
transform time, range from 13 characters per second (cps) for the neighbor classifiers (KNN, WSNN and PNN)
through 80 cps for two-cluster QMD to 130 cps for RBF and 250 cps for the MLP all on a serial workstation.

Nevertheless timing is particularly difficult and the reader is encouraged to first consider algorithmic complexity.

9 Future Work

The focus in academia and commerce on OCR research is now migrating toward the more difficult problem of

recognition of structured documents. At its ^si^pleSTthis involves segmentation and recognition of text fields. The

processes may be tightly coupled as in th^cse of recognition of multiple objects or cluttered field OCR. The Image

Recognition Group recognizes that digit OURis essentially a solved problem for many applications. However work

will continue into upper and lower case recognition as it applies to text field processing. There is an emphasis

on investigation of algorithms that conserve computational resources as required by commercial products. In
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Figure 11: Error versus Rejection, log e(r). The log of the classification error percent of accepted patterns as a

function of the low confidence classification rejection percentage. The initial gradients of the curves e'(r) range

from -0.62 to -0.47.

particular, the relationship between dimensionality, prototype set size, feature type and computational expense

is a candidate for investigation. For example the preservation of performance while reducing neighbor prototype

set size is of obvious interest.

10 Summary and Conclusions

We have performed numerous experiments for digit OCR using “statistical” and “neural net” classification of K-L

features. The result is that the EMD and QMD parametric classifiers are able to compete with the popular MLP
and RBF neural architectures presented here. The lowest error rate classifier, PNN, as described here is more akin

to the KNN and WSNN non-parametric neighbor methods in terms of error rate and computational expense than

to the other neural network schemes. The authors maybe contacted over email using jerry@magi.ncsl.nist.gov

and patrick@magi.ncsl.nist.gov.
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