
Optimization of Adaptive
Resonance Theory Network
With Boltzmann Machine

Omid M. Omidvar
Charles L. Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

-QC
100 NIST
.056

//5176

1993





Optimization of Adaptive
Resonance Theory Network
With Boltzmann Machine

Omid M. Omidvar
Charles L Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

April 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director



I* V.

4
'’



OPTIMIZATION OF ADAPTIVE RESONANCE
THEORY NETWORK WITH
BOLTZMANN MACHINE

Omid M. Omidvar,Computer Science Dept.

University of the District of Columbia

Washington, DC 20008

C L. Wilson, National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract

Optimization of large neural networks is essential in improving the network speed and

generalization power, while at the same time reducing the training error and the network

complexity. Boltzmann methods have been used as a statistical method for combinatorial

optimization and for the design of learning algorithms. In the networks studied here, the

Adaptive Resonance Theory (ART) serves as a connection creation operator and the Boltz-

mann method serves as a competitive connection annihilation operator. By combining these

two methods it is possible to generate small networks that have similar testing and training

accuracy and good generalization from small training sets. Our findings demonstrate that for

a character recognition problem the number of weights in a fiilly connected network can be

reduced by over 80%. We have applied the Boltzmann criteria to differential pruning of the

connections which is based on the weight contents rather than on the number of connections.

1 Introduction

Most optimization strategies are a trade-off between error and network complexity. Many
known optimization schemes [1, 2, 3, 4] have used this trade-off to minimize the cost function.

Boltzmann methods have been used as a statistical method for combinatorial optimization

and for the design of learning algorithms [5, 6]. These methoda have also been used in

conjunction with a supervised learning method to dynamically reduce network size [7]. The

strategy used in this research is to create a network using ART [8] and to remove the weights

using Boltzmann criteria during the training process. The ART algorithm was originally

implemented in a parallel environment and it was applied to character recognition [9].

This implementation of the ART algorithm consists of finding two sets of weights. Each

active memory location is used to store bottom-up and top-down weights which have an

optimal resonance with one of the input images. At the beginning of the learning process aU

memory locations are blank. As learning progresses, the two sets of weights in each active
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memory location are updated in parallel for all active images. When an image meeting the

vigilance constraint is found, the appropriate weights are updated. The vigilance parameter

provides a correlation measure of the association strength between the image and the learned

weights. If no resonance is achieved for a given image, a new memory location is added to the

active hst and the weights of this blank location are updated using the image. This process

is continued with each image until all available memory location are set and or all of the

input images are used.

The Boltzmann method seeks to minimize the number of weights while maintaining the

information content of the network. The ART method seeks to minimize an error function

on the training set. The important controUing parameter for the Boltzmann method is

the information in the network and the iteration time, t, as t approaches infinity. The

controlling informational parameter for the ART method is the information provided at t = 0

in the initial weights. The algorithmic control in the Boltzmann method is the temperature

sequence apphed during the iteration. The equivalent controlling parameter for the ART is

the vigilance.

The ART network is used as a starting network for pruning. The pruning is carried

out by selecting a normalized temperature, and discarding the weights is based on a removal

probabihty calculated via the Boltzmann method. The probability of the removal is compared

to a set of uniformly distributed random numbers. If the calculated probabihty is greater

than the random numbers then the corresponding weight is set to zero. The process is carried

out for each iteration of ART. If a weight is removed it may subsequently be restored by the

ART algorithm; the restored weight may survive if it has sufficient magnitude in subsequent

iterations. The result of the temperature changes indicates that a network of reduced size

can perform as good as, or in some cases better than, the fully converged initial network.

The effect of changes in the vigilance parameter on the pruning and restoration process is

studied. The optimized network, which is considerably smaller in size, has a higher speed for

testing and training, and yields better generalization than the unpruned ART network.

2 ART Architecture

2.1 ART-1 Learning

The ART-1 algorithm developed by Carpenter and Grossberg [8] is ideally suited for self-

organization of unconstrained fonts or hand printed characters. The calculations involved are

weU adapted to parallel implementation on a single bit processor and are naturally parallel

across the image field. The specific implementation of ART-1 for the parallel array processor

is shown in figure 1. All of the three-hne paths involve operations on 1024 bits of image data

in parallel and represents parallel transfer of data.

2.1.1 Parallel Weight Selection

The ART-1 algorithm finds two sets of weights, Z’s, for each of j active memory locations

(each memory location is used to store a pair of bottom-up and top-down weights) which

have an optimal resonance with one of the i input images. At the beginning of the learning

process all memory locations are blank. As learning progresses, two sets of weights Z^pj and

Zrfown.j, for the j active memory locations are updated for each of i images, Ij, by calculating:
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and finding the maximum /i for which T > p, the vigilance parameter of the required reso-

nance. T provides a correlation measure of the association strength between the image, I,

and the learned weights Zdown- When an image meeting the vigilance parameter constraint

is found, the appropriate weights are adapted using;

Zup.j — Ij • Zdown,

j

+ '^ij) (^)

and

Zdown,j
— It '^down,j (3)

If no resonance is achieved for a given image, a new memory location is added to the active hst

and the weights of this “blank” location are adapted to the image. This process is continued

with each image until all available memory locations are set or aU of the input images in the

training set are used. After all vacant memory locations are used, each memory location is

compared to the product and the memory location for which this product is largest

is then updated.

2.1.2 Evaluation of Self-Organization

The evaluation of the self-organized classes is achieved by accumulation of statistics in a

classification variable:

^class,k,j — ^class,k,j T 1 if claSS of(Ii) — h (b).

This table can then be used to determine the maximum selection strength of each mem-
ory location for all images and to assign classes to images based on resonance performance

achieved over all memory location and class assignments. This allows a new set of images

to be learned whoUy by example and divided into classes based on the recognition results

achieved using the images assigned to the training set.

3 Recognition

Recognition is achieved by finding the maximum strength of resonance for the weighted

classes, max(tt;A;j), using:

^k,j — ^ ^ ^class,k,j X (^)‘

t^k

In addition, the average resonance strength of the strongest weighted resonance,

P = mdix{wk,j/n^^k,j), ( 8 )

where n^^k,j is the number of terms used to form each Wk,j, provides a confidence hmit for

the evaluation of classification errors. If the value of P is less than the confidence expected

for correctly classified data in the training set, then items should be classified as unknown.
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This procedure for detecting incorrect classifications is in such a way that both detectable

errors, labeled “Unknown”, and undetectable errors, labeled “Wrong” are considered. This

same process will label some correct classifications as either “Unknown” or “Wrong”. This

is unavoidable since some correct classifications may have low confidence. Detectable errors,

which are found by imposing confidence limits on the association strength, P, are separated

from undetectable errors by examining the cumulative distributions of recognition rate with

respect to the association strength, for example, all matches exceed an association strength

of 0.5 and no match exceeds an association strength of 0.875. If all matches with association

strength greater than 0.64 are accepted, aU incorrect matches are detected and no correct

matches are lost. In this case, no correct classifications are lost in the rejection process.

4 Data Set

The test sample consisted of 300 machine printed digits taken from a single set of laser

printer output. The primary source of variation in the test sample can be traced to variation

in thresholding during scanning and segmentation. The digits were not centered in the field

or scaled to fit the 32 by 32 image size used in feature extraction. Each test set is divided

into two 150 character samples. The first 150 characters are used for the construction of

the optimized ART-1 weights and the Zdass statistical array. The second 150 image samples

are then used to test the classification of previously unseen images for maximum resonance.

The image representation of the bottom up weights and the digits used in learning these

weights for unfiltered machine print characters with and without optimization are shown in

figures 2 and 3 respectively. The reason that the character images in figure 2 are much less

clear than the images in figure 3 is that the pruning method is independent of the positional

associations present in the image data of the training set.

5 Optimization Process

The ART network is used as a starting point for the Boltzmann weight pruning algorithm.

The pruning was carried out by selecting a normalized temperature, T, and removing weights

based on a probability of removal.

Pt = 1- exp{-\wi\/T) (9)

The values of Pi are compared to a set of uniformly distributed random numbers, R,, on

the interval [0,1]. If the probabiHty Pi is greater than R, then the weight is set to zero. The
process is carried out for each iteration of the ART algorithm during the training process and

is dynamic. If a weight is removed it may subsequently be restored by the ART algorithm;

the restored weight may survive if it has sufficient magnitude in subsequent iterations.

As the size of the temperature change increases the number of weights removed initiaRy

increases, but the effect of later iterations of optimization and pruning is to decrease the rate

at which weights are removed. The critical temperature, Tc, is the temperature at which

recognition rate of the network is at a maximum. Any increase in T beyond Tc results in

a decrease in recognition. The changes in the number of connections with respect to the

iteration time t at two temperatures during the optimization process are shown in figures

4 and 6. The temperature of 0.5 shown in figure 4 is less than Tc- The temperature of

4



0.8 shown in figure 6 is greater than Tc. Below Tc the ART learning recreates most of the

connections after each learning cycle. This causes the oscillation shown in figure 4. Above

Tc the ART learning process can’t keep up with the more rapid pruning and several learning

cycles are reqmred for a single cycle of weight creation and destruction. This is shown in

figure 6.

The effect of changes in the vigilance parameter and two temperature on the performance

of the network is also investigated. As the temperature is increased the accuracy of the

network for recognition decreases slowly for temperatures up to 0.4. As the temperature

approaches 0.5 the rate of weight removal slows and the rate of accuracy decay accelerates.

The curves for T = 0.5 and T = 0.8 are shown in figures 5 and 7. Each point on these curves

is the result of a calculation of the type shown in figures 4 and 6. The critical temperatue

is estimated to be 0.58. Testing accuracy below this temperature is not strongly effected by

the pruning process. Accuracy, for networks pruned above Tc is reduced. The peak accuracy

at r = 0.5 is is 91% when p = 0.7. The peak accuracy at T = 0.8 is is 70% when p = 0.6.

In a given training cycle some weights are removed. If these weights are redundant they

wiU be compensated by other weights in the network. If these weights are critical they wiU

be restored by the ART optimization. At Tc, the ART creation process is just balanced by

the Boltzmann pruning. To evaluate the generalization capabUity of the pruned network, the

network associated with a temperature T = 0.5 was tested on a sample of 150 digits. The

training accuracy was 90%; the accuracy achieved in the test was 91%. This is consistent

with good generalization with a value of T = 0.5. The optimal vigilance value was around

0.7. The highest recognition rate was achieved with these values.

6 Conclusions

A method of network optimization has been developed which reduces the number of weights

required for moderately accurate character recognition by 80%. The method is based on

achieving equilibrium between the information in the training set and the number of network

weights by concurrent weight creation using ART learning and Boltzmann optimization by

weight removal. These reductions allow both smaller training sets and smaller classification

networks to be used. This type of optimization was much more sucessful when applied to

MLP network [7] because in these networks the ordering of the information in the network

is unrelated to the ordering of information in the learnings set. In ART, there is a direct

positional association between the image information stored in the network and the training

set.
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Input

Parallel Data

Figure 1: ART-1 architecture as implemented on the parallel processor array. The upper summa-

tion over the top-down weights is carried out using equation 3 to produce T. The lower summation

over the bottom up weights is carried out using equation 1 to produce //. The Limit shown on the

two gates is the learning threshold, p.
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Figure 2: ART-1 feature extraction for machine print with no filter and with Boltzmann optimiza-

tion for a. T, = 0.7.
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Figure 3: ART-1 feature extraction for machine print with no filter and without Boltzmann

optimization.

9



10000-

9000—

i 234667S9 10

OPTIMIZATION STEP

ure 4: Changes in number of connections during the optimization process T = 0.5 and p = 0.7

Figure 5: Network testing accuracy at T = 0.5
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OPTIMIZATION STEP

Figure 6: Changes in number of connections during the optimization process T = 0.8 and p = 0.8

Figure 7: Network testing accuracy a,t T = 0.8
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