
7 NIST .

PUBUCATIONS A111D3 IISMSM

Applied and

Computational

Mathematics

Division

NISTIR 5168

Computing and Applied Mathematics Laboratory

Computational Experience with

Radial Basis Function Networks

James L. Blue

Technology Administration

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

100
1

.U56
j

//5168 I

1993 I





Computational Experience with
Radial Basis Function Networks

James L Blue

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Computing and Applied Mathematics Laboratory

Gaithersburg, MD 20899

May 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director



7



Computational Experience with Radial Basis Function Networks*

James L. Blue

Applied and Computational Mathematics Division

National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract

We discuss the use of Radial Basis Functions for use in neural networks for hand-

printed character recognition. The results are expected to apply to other appli-

cations of neural networks for classifying input patterns.

1. Introduction

Several types of Radial Basis Functions (RBFs) and RBF networks have been

suggested. The general idea is simple: the activation of a node should be large for

an input pattern close to a particular pattern defined as the node’s center, and

small for an input pattern far from the center. For an n-component input vector

X, one simple RBF has a Gaussian activation depending on the scaled Euclidean

distance of x from center j, Cf

d] ^ I

i=\

= exp(-d2) (1)

However, any distance function d that is (mathematically) a norm could be used,

and any activation function (j) that is nonnnegative and decreases monotonically

to zero with increasing distance could be used. (Some appropriate RBFs are

discussed by Poggio and Girosi.®) The most general quadratic distance function

is, using matrix notation.

d̂3 = (x-c,)'^A(x-c,)

where A is any symmetric, positive- definite matrix. The easiest generalization,

and the one used in this paper, is to let the scaling width, Uj, differ for each i.

’Contribution of the National Institute of Standards and Technology. Not subject to

copyright.

1



This is equivalent to making A a diagonal matrix.

(
2

)

We consider two activation functions, called types 1 and 2; type 2 includes a bias

term for each RBF

:

(j)^^\dj) = exp(-d5)

1 + exp{6j + (Pj)

Other generalizations have also been used (for example, see Musavi, et al.^), but

are difficult to manage for large n. For function approximation, a network com-

posed of a layer of RBFs followed by a linear output layer is commonly used; for

classification, a standard output layer of sigmoidal nodes may also be used. The

RBF in (1) is radially symmetric in n-dimensional space; more general ones are

not, but the name has stuck.

Some early papers suggested choosing the centers and widths a priori and using

supervised learning for selecting the output layer weights; later papers suggest

learning some combination of the centers, widths, and weights.

2. Training

The current work uses training and test sets, each containing 10,000 48-component

patterns selected randomly from NIST Special Database 3.^ Each pattern is a

truncated Karhunen-Loeve expansion of a 32 by 32 pixel binary image of a hand-

printed digit. The RBF networks considered have 24 to 48 inputs, a hidden layer

consisting of from one to four RBFs per digit, and an output layer of 10 hnear

or sigmoidal nodes. Also considered are some standard Multi-Layer Perceptron

(MLP) networks, with sigmoidal hidden and output layers.

The supervised learning minimized the standard objective function, the sum of

squares of the output errors. For networks with a sigmoidal output layer, a small

constant times the sum of squares of the output layer weights, was added to the

objective function as a regularization, i.e. to minimize over-training. In order to

simphfy the gradient calculation, the inverses of the widths, Sij = IjcTij, were used

as variables.

2



The optimization (training) was done using a combination of scaled conjugate

gradients'^ and a limited-memory quasi-Newton algorithm.^ The program was

written to allow any combination of the centers, widths, and weights to be learned,

and the remainder to stay fixed. Training was done with varying training set sizes,

from 156 patterns to the entire 10,000 patterns; testing was done on the entire

10,000 pattern testing set.

2.1. Initial Values

The initial values for the RBF centers were obtained from a K-means algorithm.^

The widths produced by the K-means algorithm were not directly useful. Instead,

uniform widths, several times the typical widths from the K-means algorithm,

were used. It proved better to make the Gaussians much too broad than too

narrow; the exact value used is unimportant as long as it is large enough. The

importance of large widths may be understood by the following argument.

Suppose a pattern x has all its dj values so large that their activations are es-

sentially zero. Then the contribution from x to the gradient of the objective

function will be essentially zero for all centers, and the pattern will not influence

the training at all. An extreme case of this behavior can be seen by taking all

widths much too small. Then all RBFs produce zero for all patterns, and all the

optimization can do is to adjust the bias terms in the output layer; the process

converges rapidly to a poor local minimum.

For the same reason, random output layer weights do not work well for RBF
networks. In the work reported here, the initial weights used were “sensible”:

positive for the weights from the centers to their corresponding output nodes,

zero for the remaining weights and for the biases.

2.2. Comments on Traitting

The number of free parameters in the experiments reported here ranged from

570 to 4250. The objective function has multiple local minima and is sensitive

to details of the initial values; a relatively small change in the initial values for

the parameters generally results in finding a different local minimum. For each

network, ten different sets of initial conditions were used; for RBFs, it proved

adequate to use a random ±5% variation on the widths. For MLPs, initial weights

were chosen from a uniform random distribution in (—0.5, +0.5).

3



Two strategies were used in training. The first is to train on successively larger

subsets of the 10,000 pattern training set: 156, 312, 625, 1250, 2500, 5000, and

finally 10,000 patterns. Training on the smallest sets goes quickly, and each set of

parameters is a good initial guess for training on the next larger training set, but

there is a possibility of wasting some work. The second strategy is to train only

on the full training set.

The first strategy was, on average, faster, but not drastically faster. It has the

added advantage of providing extra information, as seen in Figures 1 and 2. Es-

pecially for larger networks, the first strategy, on average, provides better training

and testing.

3. Computational Experience

The following comments refer only to experience obtained on NIST Special Database

3.

Keeping the centers and widths fixed and learning appropriate weights resulted in

poor training and poor testing in networks with only one or a few RBFs per class.

Accordingly, centers and widths were also learned. Using initial widths from the

K-means algorithm also resulted in poor training and testing; the optimization

got stuck in a poor local minimum. Accordingly, all initial widths were then set

to the same reasonably large value, with a small random variation.

In general, RBF networks with sigmoidal output layers trained significantly more

slowly than RBF networks with hnear output layers, and gave somewhat worse

training and testing errors.

In general, RBF type 2 networks trained more slowly than RBF type 1 net-

works and gave slightly poorer training and testing errors. However, RBF type 2

networks with sigmoidal output layers have the useful property that the output

weights can be fixed at reasonable values, rather than learned, with little or no

worsening of the training and testing error.

RBF networks are self-pruning to some degree. Unimportant connections are

effectively pruned away by the training process learning a large width, Uij\ each

large width effectively deletes one connection from an input to one RBF and

reduces the number of active parameters by two. More pruning is done with small

training sets than with large ones, and more with large networks than with small

4



ones. Some results are shown in Table 1.

The remainder of the paper refers only to RBF type 1 networks with linear output

layers

.

Compared to MLP networks of a similar size (i.e., similar numbers of free param-

eters to optimize), RBF networks in general train at about the same rate. Their

behavior versus training set size is different, though. Figure 1 gives results for a

small (24-16-10, 570 parameters) and a large (48-36-10, 2130 parameters) MLP
network. The large network gives quite accurate training results, much better

than the small one, but the testing error is not much different for large training

set sizes.

For comparison. Figure 2 gives results for a small (24-10-10, 590 parameters) and

a medium (24-30-10, 1750 parameters) RBF network. The large network does

not train as accurately, but there is much less difference in training and testing

accuracy than for the MLP networks. The RBF networks are less hkely to overfit

the training data.

Figure 3 summarizes many hours of computation for MLP and RBF networks.

Training and testing results from ten random starts are shown for each each

network.

The RBF results are closer to the diagonal, the diagonal being as good as one

could ever expect. The smaller networks are closer to the diagonal than the larger

ones; 10,000 training patterns are sufficient to train the small networks as well as

they can be trained, but more patterns are needed for the larger networks.

The MLP results are farther from the diagonal. Increasing the network size gives

better training error, but no better testing error. Many more training patterns

are needed.

Figure 4 shows testing error versus number of free parameters. For a small number

of free parameters, MLP networks do better.

Figure 5 shows the testing error versus the percent of the testing patterns rejected

as inconclusive. Rejection was based solely on the activation level of the highest

output node. There is no apparent advantage either to MLP or RBF networks.

5



4. Comment

RBF networks are not limited to using equal numbers of centers per class. This

can be useful for digits, for example, where the digits ‘0’ and ‘1’ are easy to

recognize, but ‘5’ and ‘8’ are more difficult; more RBFs can easily be assigned to

the harder classes.

References

[1] M. D. Garris and R. A. Wilkinson. Handwritten segmented characters

database. Technical Report Special Database 3, HWSC, National Institute

of Standards and Technology, February 1992.

[2] J. A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[3] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large

scale optimization. Mathematical Programming^ 45:503-528, 1989.

[4] M. F. Mpller. A scaled cbnjugate gradient algorithm for fast supervised learn-

ing. Technical Report PB-339, University of Aarhus, November 1990.

[5] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and K. M. Hummels. On
the training of radial basis function classifiers. Neural Networks, 5:595-603,

1992.

[6] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings

of the IEEE, 78(9):1481-1497, 1990.

6



Table 1: Networks used and free parameters for each; for RBF networks, active

number used in best solution found training on the full training set.

RBF/MLP Structure Parameters Active

R 24-10-10 590 566

R 24-20-10 1170 1014

R 24-30-10 1750 1448

R 24-40-10 2330 1972

R 36-10-10 830 766

R 36-20-10 1650 1364

R 48-10-10 1070 982

R 48-20-10 2130 1650

R 48-30-10 3190 2122

R 48-40-10 4250 2870

M 24-16-10 570

M 24-24-10 850

M 24-36-10 1270

M 48-18-10 1072

M 48-36-10 2134

7



Percent

Error

10 ^ 10 ^ 10 "^

Training Set Size

Figure 1; Testing error (top curves) and training error (bottom curves) versus train-

ing set size for MLP networks. The results are shown for a representative random
start when trained with the full training set: 24-16-10 (O)) 48-36-10 (A).

8



Percent

Error

Figure 2: Testing error (top curves) and training error (bottom curves) versus train-

ing set size for RBF type 1 networks with a linear output layer. The results are shown

for a representative random start when trained with the full training set: 24-10-10

(O), 48-40-10 (A).

9



Figure 3: Training error versus testing error for different networks. All training is on

the full training set. The symbols near the upper left of the figure are MLP networks:

24-16-10 (•), 24-24-10 (+), 24-36-10 (x), 48-18-10 (), and 48-36-10 (O). The sym-

bols nearer the diagonal fine are RBF t)rpe 1 networks with a linear output layer:

24-10-10 (-I-), 24-20-10 (x), 24-30-10 (lower group of +), 24-40-10 (lower group of x),

36-10-10 (A), 36-20-10 (v), 48-10-10 (), 48-20-10 (O), 48-30-10 (lower group of ),
and 48-40-10 (lower group of O).

10



Figure 4: Testing error versus number of free parameters for MLP networks (+) and

for RBF networks ().

11



Percent

Testing

Error

Figure 5: Testing error versus percent rejected for representative networks trained

with the full training set. Sohd hne: RBF type 1, 48-40-10; dashed hne: MLP, 48-36-

10 .

12






